JP5807893B2 - Method for producing fine particles - Google Patents

Method for producing fine particles Download PDF

Info

Publication number
JP5807893B2
JP5807893B2 JP2011017820A JP2011017820A JP5807893B2 JP 5807893 B2 JP5807893 B2 JP 5807893B2 JP 2011017820 A JP2011017820 A JP 2011017820A JP 2011017820 A JP2011017820 A JP 2011017820A JP 5807893 B2 JP5807893 B2 JP 5807893B2
Authority
JP
Japan
Prior art keywords
fine particles
sputtering
polyethylene glycol
temperature
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011017820A
Other languages
Japanese (ja)
Other versions
JP2012158785A (en
Inventor
義清 畠山
義清 畠山
西川 恵子
恵子 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2011017820A priority Critical patent/JP5807893B2/en
Publication of JP2012158785A publication Critical patent/JP2012158785A/en
Application granted granted Critical
Publication of JP5807893B2 publication Critical patent/JP5807893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微粒子の製造方法に関する。より具体的には、貴金属微粒子、Si微粒子又はCd微粒子の製造方法に関する。   The present invention relates to a method for producing fine particles. More specifically, the present invention relates to a method for producing noble metal fine particles, Si fine particles, or Cd fine particles.

金属微粒子は配線材料や医療用検査試薬等の原料素材として利用されている。その中でも特にナノレベル(10−9m程度)の金属微粒子には、装置等の小型化はもちろん、微細ゆえ例えば量子効果等特殊な現象が発現し、予想を超える性能や特異な性能を有すると期待されており、いわゆるナノテクノロジーとして研究が盛んにおこなわれている。 Metal fine particles are used as raw materials for wiring materials and medical test reagents. In particular, nano-level (about 10 -9 m) metal fine particles not only reduce the size of the device, but also exhibit special phenomena such as the quantum effect due to their fineness, and have performance exceeding expectations and unique performance. It is expected and researches are actively conducted as so-called nanotechnology.

たとえば下記特許文献1、非特許文献1にはイオン液体にスパッタリングを行い、金属・半導体のナノ粒子を調整する方法が報告されている。   For example, the following Patent Document 1 and Non-Patent Document 1 report a method of preparing metal / semiconductor nanoparticles by sputtering an ionic liquid.

特開2007−231306号公報JP 2007-231306 A

T.Torimotoら、“Sputter deposition onto ionic liquids:Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles“、Applied Physics Letters、89、243117(2006)T. T. et al. Torimoto et al., “Sputter deposition on ionic liquids: Simple and clean synthesis of high disperse ultrafine metal nanoparticulates”, Applied Physic.

しかしながら、上記特許文献1、非特許文献1に記載の技術において、イオン液体は非常に高価であって、技術普及への大きな問題となる。また薬品の処分を考えた場合、使用薬品の構成元素から、環境負荷が小さいとは言い難い。また、水により凝集を引き起こす恐れがあるため水溶液としての展開は難しいといった課題がある。   However, in the techniques described in Patent Document 1 and Non-Patent Document 1, the ionic liquid is very expensive, which is a big problem for the spread of technology. Also, when considering the disposal of chemicals, it is difficult to say that the environmental load is small due to the constituent elements of the chemicals used. Moreover, since there exists a possibility of causing aggregation with water, there exists a subject that development as aqueous solution is difficult.

そこで、本発明は、イオン液体代替の、より環境負荷が小さく安定的に金属微粒子を製造する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for stably producing metal fine particles with a smaller environmental load, which is an alternative to an ionic liquid.

上記課題を解決するための第一の手段に係る金属微粒子の製造方法は、液体高分子ポリエチレングリコールに貴金属、Si及びCdの少なくともいずれかをスパッタリングする。   The method for producing fine metal particles according to the first means for solving the above-described problem involves sputtering at least one of a noble metal, Si and Cd on a liquid polymer polyethylene glycol.

以上、本発明により、イオン液体代替の、より環境負荷が小さく安定的に金属微粒子を製造する方法を提供することができる。   As described above, according to the present invention, it is possible to provide a method for stably producing metal fine particles with a smaller environmental load, instead of an ionic liquid.

実施例1において作製した微粒子の電子顕微鏡写真の図である。2 is an electron micrograph of fine particles produced in Example 1. FIG. 実施例1において温度調製した場合の微粒子の電子顕微鏡写真の図である。3 is an electron micrograph of fine particles when temperature is adjusted in Example 1. FIG. 実施例1において温度調製した場合の微粒子の粒径の変化を示す図である。It is a figure which shows the change of the particle size of microparticles | fine-particles at the time of adjusting temperature in Example 1. FIG. 実施例1において温度調製した場合の微粒子の紫外可視吸収スペクトルを示す図である。It is a figure which shows the ultraviolet visible absorption spectrum of the microparticles | fine-particles at the time of adjusting the temperature in Example 1. FIG. 実施例1においてスパッタリング後の加熱による粒径変化を示す図である。It is a figure which shows the particle size change by the heating after sputtering in Example 1. FIG. 実施例1において、100℃加熱における金微粒子の電子顕微鏡写真図である。In Example 1, it is an electron micrograph figure of the gold fine particle in 100 degreeC heating.

以下、本発明を実施するための最良の形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited only to the embodiments and examples described below.

本実施形態に係る微粒子の製造方法(以下「本方法」という。)では、液体高分子ポリエチレングリコールに貴金属、Si及びCdの少なくともいずれかをスパッタリングする。   In the method for producing fine particles according to this embodiment (hereinafter referred to as “the present method”), at least one of a noble metal, Si, and Cd is sputtered onto a liquid polymer polyethylene glycol.

本実施形態において、液体高分子ポリエチレングリコールとは、スパッタリングの際に液体である高分子ポリエチレングリコールであって、この限りにおいて限定されるわけではないが、一般にスパッタリングを室温で行なう場合に液体であることが好ましく、数平均分子量で200以上800以下であることが好ましく、より好ましくは400以上600以下である。   In the present embodiment, the liquid polymer polyethylene glycol is a polymer polyethylene glycol that is liquid at the time of sputtering, and is not limited to this, but is generally liquid when sputtering is performed at room temperature. The number average molecular weight is preferably 200 or more and 800 or less, and more preferably 400 or more and 600 or less.

本実施形態において貴金属とは、限定されるわけではないが金、銀、銅、白金の少なくともいずれかを含むことが好ましい。   In the present embodiment, the noble metal is not limited, but preferably includes at least one of gold, silver, copper, and platinum.

また本実施形態において、スパッタリングは、容器の中に上記液体の高分子ポリエチレングリコールを入れて配置し、この容器を真空チャンバー内に配置し、上記貴金属、Si及びCdの少なくともいずれかをターゲットとして配置し、チャンバーを真空に引きながら希ガス等をターゲットに衝突させ、原子を容器中の高分子ポリエチレングリコールに到達させることで行なう。なおスパッタリングの温度は、特に限定されないが20℃以上120℃以下の範囲が好ましく、時間は、適宜調整可能であるが、10分以上180分以内が好ましい範囲である。スパッタリングの際の捕獲媒体である高分子ポリエチレングリコールの温度を調整することで、後述の実施例から明らかなように、微粒子に対し径、粒径を調整することができるようになる。   In this embodiment, the sputtering is performed by placing the liquid polymer polyethylene glycol in a container, placing the container in a vacuum chamber, and placing at least one of the noble metal, Si, and Cd as a target. Then, noble gas or the like is collided with the target while evacuating the chamber, and atoms are allowed to reach the polymer polyethylene glycol in the container. The sputtering temperature is not particularly limited, but is preferably in the range of 20 ° C. or higher and 120 ° C. or lower. By adjusting the temperature of the high molecular weight polyethylene glycol, which is a trapping medium during sputtering, the diameter and particle size of the fine particles can be adjusted, as will be apparent from the examples described later.

以上、本方法では、上記スパッタリングによって、微粒子を得ることができるが、本方法では、上記スパッタリング後に、加熱することが好ましい。加熱は、高分子ポリエチレングリコール中に微粒子を保持させた状態で行なうことが好ましい。本法では、加熱をすることで、作製した微粒子の径を調整することができる。加熱前の微粒子の大きさは、例えば金微粒子の場合、5nm以下の数nm程度のものが主となるが、加熱を行なうことで10nm程度にまで大きくすることができ、その加熱の温度については、室温以上であれば特に限定されないが、高すぎると微粒子の凝集が起こる場合があるため、100℃以下に抑えておくことが好ましい。   As described above, in this method, fine particles can be obtained by the above sputtering, but in this method, it is preferable to heat after the sputtering. The heating is preferably performed in a state where fine particles are held in the high-molecular polyethylene glycol. In this method, the diameter of the produced fine particles can be adjusted by heating. For example, in the case of gold fine particles, the size of the fine particles before heating is mainly about several nanometers of 5 nm or less, but by heating, the size can be increased to about 10 nm. The temperature is not particularly limited as long as it is room temperature or higher, but if it is too high, aggregation of fine particles may occur.

以上、本実施形態では、イオン液体に比べ市場価格が50分の1程度を達成することができる。しかもポリエチレングリコールには環境に負荷を与える元素は含まれておらず、非常に環境負荷が小さい。また、凝集を引き起こすおそれも小さいといった非常に大きな利点がある。   As described above, in this embodiment, the market price can be about 1/50 that of the ionic liquid. Moreover, polyethylene glycol does not contain any elements that give an environmental load, and has a very low environmental load. Moreover, there is a very great advantage that the possibility of causing aggregation is small.

以下、上記実施形態に係る微粒子の製造方法について実際に微粒子の作製を行いその効果を確認した。以下詳細に説明する。   Hereinafter, fine particles were actually produced for the method for producing fine particles according to the above embodiment, and the effects were confirmed. This will be described in detail below.

本実施例では、微粒子の原材料として、貴金属である金を使用し、数平均分子量600の液体の高分子ポリエチレングリコール(和光純薬工業社製、600)を使用した。   In this example, gold, which is a noble metal, was used as a raw material for the fine particles, and liquid high molecular weight polyethylene glycol having a number average molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd., 600) was used.

まず、上記高分子ポリエチレングリコールを容器(深さ3mm、底面関15.9cm、ステンレス製)に2mlに入れ、ターゲットとなる金とともにスパッタリング装置に配置した。そして20℃の温度で真空に引いた後50分間スパッタリングを行うことで、容器内に金微粒子を製造した。図1に、本実施例において作製した金微粒子の電子顕微鏡写真図を示しておく。 First, the high molecular weight polyethylene glycol was placed in a container (depth 3 mm, bottom surface 15.9 cm 2 , made of stainless steel) in 2 ml and placed in a sputtering apparatus together with gold as a target. Then, after drawing a vacuum at a temperature of 20 ° C., sputtering was performed for 50 minutes to produce gold fine particles in the container. FIG. 1 shows an electron micrograph of gold fine particles produced in this example.

更に、本実施例では、上記スパッタリングの温度を適宜調整(20℃、30℃、40℃、50℃、60℃)に調整して複数回金微粒子の作製を行った。図2に、60℃で調整した場合の金微粒子の電子顕微鏡写真図を、図3に粒子径分布の温度による変化を、図4に紫外可視吸収スペクトルの結果を示しておく。これらの図から、調整温度が高くなるに従い、粒径が大きくなる(数nm程度から10nm程度まで増大する)とともに、異方性があらわれていることを確認した。   Furthermore, in this example, the above-described sputtering temperature was appropriately adjusted (20 ° C., 30 ° C., 40 ° C., 50 ° C., 60 ° C.) to produce gold fine particles multiple times. FIG. 2 shows an electron micrograph of gold fine particles adjusted at 60 ° C., FIG. 3 shows changes in the particle size distribution with temperature, and FIG. 4 shows the results of ultraviolet-visible absorption spectra. From these figures, it was confirmed that as the adjustment temperature increases, the particle size increases (increases from about several nm to about 10 nm) and anisotropy appears.

一方、上記20℃で作製した金微粒子に対し、スパッタリング後の加熱による粒径の変化を調べた。図5に、スパッタリング後の加熱による粒径変化を示す。なおこの粒子径分布については、小角X線散乱法によって評価した。また、図6に100℃における金微粒子の電子顕微鏡写真図をそれぞれ示しておく。   On the other hand, for the gold fine particles produced at 20 ° C., the change in particle size due to heating after sputtering was examined. FIG. 5 shows the change in particle size due to heating after sputtering. The particle size distribution was evaluated by a small angle X-ray scattering method. FIG. 6 shows an electron micrograph of gold fine particles at 100 ° C.

この結果、加熱温度を上昇させるに従い粒子径を大きく調整することができることが確認できた。一方、90℃まで十分に球形状を保っていることが確認できたが、110℃程度となると凝集が起こってしまっていることが確認でき、凝集を防ぐ範囲としては100℃程度が好ましいことが確認できた。   As a result, it was confirmed that the particle diameter can be adjusted to be larger as the heating temperature is increased. On the other hand, although it was confirmed that the spherical shape was sufficiently maintained up to 90 ° C., it was confirmed that agglomeration had occurred at about 110 ° C., and about 100 ° C. was preferable as a range to prevent aggregation. It could be confirmed.

また、上記実施例と同様に、数平均分子量400についても同様に実験を行ったところ、分子量が変わっても粒子の大きさは同様であり、実験、解析の誤差範囲内であることを確認した。   Further, as in the above example, the same experiment was conducted for the number average molecular weight 400, and it was confirmed that the particle size was the same even when the molecular weight was changed and was within the error range of the experiment and analysis. .

以上、本実施例により、微粒子を製造することができることを確認した。   As described above, it was confirmed that fine particles can be produced according to this example.

本発明は、ナノレベルの微粒子の製造方法として産業上利用可能性がある。   The present invention has industrial applicability as a method for producing nano-level fine particles.

Claims (1)

数平均分子量が400以上600以下の範囲にある液体高分子ポリエチレングリコールに、金、銀、銅、白金の少なくともいずれかを含む貴金属、Si及びCdの少なくともいずれかを20℃以上120℃以下の温度範囲でスパッタリングし、
当該スパッタリングの後、100℃以下の範囲で加熱処理を行うことにより粒径を調整する微粒子の製造方法。
A liquid polymer polyethylene glycol having a number average molecular weight in the range of 400 to 600 , and a temperature of 20 ° C. or more and 120 ° C. or less of at least one of noble metals including at least one of gold, silver, copper and platinum , Si and Cd. Sputtering in the range
A method for producing fine particles in which the particle size is adjusted by performing a heat treatment in the range of 100 ° C. or less after the sputtering.
JP2011017820A 2011-01-31 2011-01-31 Method for producing fine particles Expired - Fee Related JP5807893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017820A JP5807893B2 (en) 2011-01-31 2011-01-31 Method for producing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017820A JP5807893B2 (en) 2011-01-31 2011-01-31 Method for producing fine particles

Publications (2)

Publication Number Publication Date
JP2012158785A JP2012158785A (en) 2012-08-23
JP5807893B2 true JP5807893B2 (en) 2015-11-10

Family

ID=46839556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017820A Expired - Fee Related JP5807893B2 (en) 2011-01-31 2011-01-31 Method for producing fine particles

Country Status (1)

Country Link
JP (1) JP5807893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910029B2 (en) * 2015-08-17 2021-07-28 国立研究開発法人科学技術振興機構 Nanocluster dispersion, nanocluster membrane, nanocluster dispersion, nanocluster dispersion manufacturing method and nanocluster dispersion manufacturing equipment
JP6208316B1 (en) * 2016-11-24 2017-10-04 アドバンス理工株式会社 Method and apparatus for supporting metal nanoparticles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819699B2 (en) * 1989-12-05 1998-10-30 エヌオーケー株式会社 Manufacturing method of magnetic fluid
JP2003041305A (en) * 2001-07-27 2003-02-13 Fuji Photo Film Co Ltd Ultra-fine particle, and manufacturing method and apparatus therefor
DE10297575T5 (en) * 2001-12-20 2005-01-13 Aveka, Inc., Woodbury Process for the preparation of reacted aluminum or copper nanoparticles

Also Published As

Publication number Publication date
JP2012158785A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
Mahdieh et al. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence
Cheng et al. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight
Deng et al. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities
Zhang et al. Highly efficient photoinduced enhanced Raman spectroscopy (PIERS) from plasmonic nanoparticles decorated 3D semiconductor arrays for ultrasensitive, portable, and recyclable detection of organic pollutants
Dixon et al. Preparation, structure, and optical properties of nanoporous gold thin films
Patra et al. Green nanobiotechnology: factors affecting synthesis and characterization techniques
Song et al. Hydrophobic interactions increase attachment of gum arabic-and PVP-coated Ag nanoparticles to hydrophobic surfaces
Marzun et al. Adsorption of colloidal platinum nanoparticles to supports: charge transfer and effects of electrostatic and steric interactions
Apalangya et al. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles
Pellarin et al. Plasmon Spectroscopy and Chemical Structure of Small Bimetallic Cu (1–x) Ag x Clusters
Calderón-Jiménez et al. Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media
Palencia et al. Size separation of silver nanoparticles by dead-end ultrafiltration: Description of fouling mechanism by pore blocking model
Al-Douri et al. GaNO colloidal nanoparticles synthesis by nanosecond pulsed laser ablation: Laser fluence dependent optical absorption and structural properties
Lee et al. Universal sulfide-assisted synthesis of M–Ag heterodimers (M= Pd, Au, Pt) as efficient platforms for fabricating metal–semiconductor heteronanostructures
Rajput et al. Vertically standing nanoporous Al–Ag zig-zag silver nanorod arrays for highly active SERS substrates
Ali et al. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
Kumara et al. Atomic Structure of Au329 (SR) 84 Faradaurate Plasmonic Nanomolecules
Deokar et al. Unveiling an unexpected potential of beetroot waste in green synthesis of single crystalline gold nanoplates: A mechanistic study
Del Rosso et al. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers
JP5807893B2 (en) Method for producing fine particles
Karami-Darehnaranji et al. Size tuned synthesis of FeOOH nanorods toward self-assembled nanoarchitectonics
Ni et al. One-pot preparation of pomegranate-like polydopamine stabilized small gold nanoparticles with superior stability for recyclable nanocatalysts
Dat et al. Facile Synthesis of Eco‐Friendly Silver@ Graphene Oxide Nanocomposite for Optical Sensing
Mescola et al. Controlled formation of gold nanostructures on biopolymer films upon electromagnetic radiation
Karumuri et al. Silver nanoparticles supported on carbon nanotube carpets: Influence of surface functionalization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5807893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees