JP5807424B2 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
JP5807424B2
JP5807424B2 JP2011161920A JP2011161920A JP5807424B2 JP 5807424 B2 JP5807424 B2 JP 5807424B2 JP 2011161920 A JP2011161920 A JP 2011161920A JP 2011161920 A JP2011161920 A JP 2011161920A JP 5807424 B2 JP5807424 B2 JP 5807424B2
Authority
JP
Japan
Prior art keywords
output shaft
transmission element
force transmission
nut
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161920A
Other languages
Japanese (ja)
Other versions
JP2012042050A (en
Inventor
伊藤 毅
毅 伊藤
幹史 坂井
幹史 坂井
徹也 児玉
徹也 児玉
橋本 浩司
橋本  浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011161920A priority Critical patent/JP5807424B2/en
Publication of JP2012042050A publication Critical patent/JP2012042050A/en
Application granted granted Critical
Publication of JP5807424B2 publication Critical patent/JP5807424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明はアクチュエータに関する。   The present invention relates to an actuator.

回転運動を直線運動に変換するボールねじを利用することにより、比較的小さな入力トルクから大きな軸方向の出力を得る動力変換装置として、ボールねじ式直動型アクチュエータが従来から広く使用されている。電動モータ等の駆動源からの比較的小さな入力トルクを、ボールねじを構成するねじ軸(又はナット)に減速機構を介して入力し、このねじ軸(又はナット)を所望の方向に回転させると、ねじ軸(又はナット)の回転運動が、複数のボールを介してねじ軸(又はナット)と螺合したナット(又はねじ軸)の直線運動に変換される。そして、このナット(又はねじ軸)の直線運動を、ナットと連結された出力軸から(又はねじ軸から直接)取り出す。   2. Description of the Related Art Conventionally, a ball screw type direct acting actuator has been widely used as a power conversion device that obtains a large axial output from a relatively small input torque by using a ball screw that converts rotational motion into linear motion. When a relatively small input torque from a drive source such as an electric motor is input to a screw shaft (or nut) constituting a ball screw via a speed reduction mechanism, the screw shaft (or nut) is rotated in a desired direction. The rotational motion of the screw shaft (or nut) is converted into linear motion of the nut (or screw shaft) screwed with the screw shaft (or nut) via a plurality of balls. Then, the linear motion of the nut (or screw shaft) is taken out from the output shaft connected to the nut (or directly from the screw shaft).

ナットと出力軸との連結方法は種々あるが、特許文献1には、ナットの軸方向一端部の内周面に形成された雌ねじと、出力軸の外周面に形成された雄ねじとの螺合により、ナットと出力軸とを連結したボールねじ式直動型アクチュエータが開示されている。このような連結方法を採用した場合は、ナット及び出力軸を内包する筒状のケーシングにナットを支持するナット支持部材を、ナットの軸方向他端部に設けることが可能となる。   There are various methods for connecting the nut and the output shaft. However, Patent Document 1 discloses a screw connection between a female screw formed on the inner peripheral surface of one end of the nut in the axial direction and a male screw formed on the outer peripheral surface of the output shaft. Discloses a ball screw type direct acting actuator in which a nut and an output shaft are connected. When such a connection method is adopted, it is possible to provide a nut support member that supports the nut on the other end in the axial direction of the nut in a cylindrical casing that includes the nut and the output shaft.

その結果、ケーシングに出力軸を支持する出力軸支持部材と前記ナット支持部材との間の軸方向距離、すなわち支持点間距離を大きく取ることができるので、出力軸支持部材に作用するラジアル荷重が軽減されるとともに、ストローク量の大きいアクチュエータの設計が可能である。   As a result, since the axial distance between the output shaft support member that supports the output shaft on the casing and the nut support member, that is, the distance between the support points can be increased, the radial load acting on the output shaft support member is reduced. It is possible to design an actuator with reduced stroke and a large stroke amount.

特開2000−161461号公報JP 2000-161461 A 特許第2860252号公報Japanese Patent No. 2860252 特開2005−82028号公報JP 2005-82028 A

しかしながら、ナットと出力軸との連結方法を螺合とした場合には、ナットと出力軸との軸芯を一致させるために、インロー等の芯だし機構を別途設ける必要があった。両軸芯のズレが大きい場合は、出力軸支持部材に作用するラジアル荷重が大きくなるため、出力軸支持部材の寿命が低下するおそれがあった。
そこで、本発明は上記のような従来技術が有する問題点を解決し、長寿命なアクチュエータを提供することを課題とする。
However, when the nut and the output shaft are connected by screwing, it is necessary to separately provide a centering mechanism such as an inlay in order to make the shaft cores of the nut and the output shaft coincide. When the misalignment between both shaft cores is large, the radial load acting on the output shaft support member becomes large, which may reduce the life of the output shaft support member.
Accordingly, it is an object of the present invention to solve the above-described problems of the prior art and provide an actuator having a long life.

前記課題を解決するため、本発明の態様は次のような構成からなる。すなわち、本発明の一態様に係るアクチュエータは、回転運動を直線運動に変換するアクチュエータにおいて、略筒状のハウジング部材と、前記ハウジング部材の内部空間に同軸に配され、回転力が入力されるねじ軸と、前記回転力により前記ねじ軸が回転することに伴って前記ねじ軸に沿って直線移動するように前記ねじ軸に係合されたナットと、前記ナットに連結され、前記ナットとともに直線移動して軸力を出力する中空状の出力軸と、前記出力軸の外周面と前記ハウジング部材の内周面との間に介装され、前記出力軸を前記ハウジング部材に支持する複数の出力軸支持部材と、を備えるとともに、下記の5つの条件A,B,C,D,Eを満足することを特徴とする。   In order to solve the above problems, an aspect of the present invention has the following configuration. That is, an actuator according to an aspect of the present invention is an actuator that converts rotational motion into linear motion, and is a substantially cylindrical housing member and a screw that is coaxially disposed in the inner space of the housing member and receives rotational force. A shaft, a nut engaged with the screw shaft so as to linearly move along the screw shaft as the screw shaft rotates by the rotational force, and a linear movement with the nut connected to the nut. And a plurality of output shafts interposed between the outer peripheral surface of the output shaft and the inner peripheral surface of the housing member and supporting the output shaft on the housing member. And a support member, and satisfy the following five conditions A, B, C, D, and E.

条件A:前記ナットは、前記出力軸の中空内部の軸方向一端部近傍に内包される。
条件B:前記ナットの外周面に形成された凹部と、該凹部に連続し且つ前記出力軸を径方向に貫通する貫通孔と、からなる空所が、軸方向略同位置に複数形成されており、各空所内に軸力伝達要素又は回転力伝達要素が配されていて、前記ナットは前記軸力伝達要素及び前記回転力伝達要素により、前記出力軸に連結されている。
Condition A: The nut is enclosed in the vicinity of one axial end portion of the hollow interior of the output shaft.
Condition B: a plurality of voids including a recess formed on the outer peripheral surface of the nut and a through hole that continues to the recess and penetrates the output shaft in the radial direction are formed at substantially the same position in the axial direction. In each cavity, an axial force transmission element or a rotational force transmission element is arranged, and the nut is connected to the output shaft by the axial force transmission element and the rotational force transmission element.

条件C:前記複数の出力軸支持部材は、前記出力軸の外周面に沿う略環状部材であり、そのうち第一出力軸支持部材は、前記軸力伝達要素及び前記回転力伝達要素を覆うように、前記各空所と軸方向略同位置に配されており、第二出力軸支持部材は、前記ハウジング部材の軸方向端部近傍に配されている。
条件D:前記軸力伝達要素の軸方向両端面は前記ナット及び前記出力軸と接し、前記軸力伝達要素の前記ナットの周方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に周方向隙間を有する。
Condition C: the plurality of output shaft support members are substantially annular members along the outer peripheral surface of the output shaft, and the first output shaft support member covers the axial force transmission element and the rotational force transmission element. The second output shaft support member is disposed in the vicinity of the axial end portion of the housing member.
Condition D: Both axial end surfaces of the axial force transmission element are in contact with the nut and the output shaft, and at least one of circumferential end surfaces of the nut of the axial force transmission element is between the nut and the output shaft. It has a circumferential clearance.

条件E:前記回転力伝達要素の前記ナットの周方向両端面は前記ナット及び前記出力軸と接し、前記回転力伝達要素の軸方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に軸方向隙間を有する。
また、本発明の他の態様に係るアクチュエータは、回転運動を直線運動に変換するアクチュエータにおいて、略筒状のハウジング部材と、前記ハウジング部材の内部空間に同軸に配され、回転力が入力されるねじ軸と、前記回転力により前記ねじ軸が回転することに伴って前記ねじ軸に沿って直線移動するように前記ねじ軸に係合されたナットと、前記ナットに連結され、前記ナットとともに直線移動して軸力を出力する中空状の出力軸と、前記出力軸の外周面と前記ハウジング部材の内周面との間に介装され、前記出力軸を前記ハウジング部材に支持する複数の出力軸支持部材と、を備えるとともに、下記の4つの条件F,G,H,Iを満足することを特徴とする。
Condition E: The circumferential end surfaces of the nut of the rotational force transmitting element are in contact with the nut and the output shaft, and at least one of the axial end surfaces of the rotational force transmitting element is between the nut and the output shaft. Has an axial clearance.
An actuator according to another aspect of the present invention is an actuator that converts a rotational motion into a linear motion, and is arranged coaxially in a substantially cylindrical housing member and an internal space of the housing member so that rotational force is input. A screw shaft, a nut engaged with the screw shaft so as to linearly move along the screw shaft as the screw shaft is rotated by the rotational force, and a nut coupled to the nut and linearly coupled with the nut. A hollow output shaft that moves to output axial force, and a plurality of outputs that are interposed between the outer peripheral surface of the output shaft and the inner peripheral surface of the housing member and support the output shaft on the housing member And a shaft support member, and satisfy the following four conditions F, G, H, and I.

条件F:前記ナットは、前記出力軸の中空内部の軸方向一端部近傍に内包される。
条件G:前記ナットの外周面に形成された凹部と、該凹部に連続し且つ前記出力軸を径方向に貫通する貫通孔と、からなる空所が、軸方向略同位置に複数形成されており、各空所内に軸力伝達要素又は回転力伝達要素が配されていて、前記ナットは前記軸力伝達要素及び前記回転力伝達要素により、前記出力軸に連結されている。
Condition F: The nut is enclosed in the vicinity of one axial end portion of the hollow inside of the output shaft.
Condition G: A plurality of voids including a recess formed on the outer peripheral surface of the nut and a through hole that is continuous with the recess and penetrates the output shaft in the radial direction are formed at substantially the same position in the axial direction. In each cavity, an axial force transmission element or a rotational force transmission element is arranged, and the nut is connected to the output shaft by the axial force transmission element and the rotational force transmission element.

条件H:前記複数の出力軸支持部材は、前記出力軸の外周面に沿う略環状部材であり、そのうち第一出力軸支持部材は、前記軸力伝達要素及び前記回転力伝達要素を覆うように、前記各空所と軸方向略同位置に配されており、第二出力軸支持部材は、前記ハウジング部材の軸方向端部近傍に配されている。
条件I:前記ナットの外周面と前記出力軸の内周面との間の径方向隙間が、前記第一出力軸支持部材の外周面と前記ハウジング部材の内周面との間の径方向隙間、及び、前記第二出力軸支持部材の内周面と前記出力軸の外周面との間の径方向隙間よりも大きい。
さらに、本発明の他の態様に係るアクチュエータは、回転運動を直線運動に変換するアクチュエータにおいて、略筒状のハウジング部材と、前記ハウジング部材の内部空間に同軸に配され、回転力が入力されるねじ軸と、前記回転力により前記ねじ軸が回転することに伴って前記ねじ軸に沿って直線移動するように前記ねじ軸に係合されたナットと、前記ナットに連結され、前記ナットとともに直線移動して軸力を出力する中空状の出力軸と、前記出力軸の外周面と前記ハウジング部材の内周面との間に介装され、前記出力軸を前記ハウジング部材に支持する複数の出力軸支持部材と、を備えるとともに、下記の6つの条件J,K,L,M,N,Oを満足することを特徴とする。
Condition H: The plurality of output shaft support members are substantially annular members along the outer peripheral surface of the output shaft, and the first output shaft support member covers the axial force transmission element and the rotational force transmission element. The second output shaft support member is disposed in the vicinity of the axial end portion of the housing member.
Condition I: A radial clearance between the outer peripheral surface of the nut and the inner peripheral surface of the output shaft is a radial clearance between the outer peripheral surface of the first output shaft support member and the inner peripheral surface of the housing member. And larger than the radial clearance between the inner peripheral surface of the second output shaft support member and the outer peripheral surface of the output shaft.
Furthermore, an actuator according to another aspect of the present invention is an actuator that converts a rotational motion into a linear motion, and is arranged coaxially in a substantially cylindrical housing member and an internal space of the housing member, and receives rotational force. A screw shaft, a nut engaged with the screw shaft so as to linearly move along the screw shaft as the screw shaft is rotated by the rotational force, and a nut coupled to the nut and linearly coupled with the nut. A hollow output shaft that moves to output axial force, and a plurality of outputs that are interposed between the outer peripheral surface of the output shaft and the inner peripheral surface of the housing member and support the output shaft on the housing member And a shaft support member, and satisfy the following six conditions J, K, L, M, N, and O.

条件J:前記ナットは、前記出力軸の中空内部の軸方向一端部近傍に内包される。
条件K:前記ナットの外周面に形成された凹部と、該凹部に連続し且つ前記出力軸を径方向に貫通する貫通孔と、からなる空所が、軸方向略同位置に複数形成されており、各空所内に軸力伝達要素又は回転力伝達要素が配されていて、前記ナットは前記軸力伝達要素及び前記回転力伝達要素により、前記出力軸に連結されている。
Condition J: The nut is included in the vicinity of one end in the axial direction inside the hollow of the output shaft.
Condition K: A plurality of voids including a recess formed on the outer peripheral surface of the nut and a through hole that continues to the recess and penetrates the output shaft in the radial direction are formed at substantially the same position in the axial direction. In each cavity, an axial force transmission element or a rotational force transmission element is arranged, and the nut is connected to the output shaft by the axial force transmission element and the rotational force transmission element.

条件L:前記複数の出力軸支持部材は、前記出力軸の外周面に沿う略環状部材であり、そのうち第一出力軸支持部材は、前記軸力伝達要素及び前記回転力伝達要素を覆うように、前記各空所と軸方向略同位置に配されており、第二出力軸支持部材は、前記ハウジング部材の軸方向端部近傍に配されている。
条件M:前記軸力伝達要素の軸方向両端面は前記ナット及び前記出力軸と接し、前記軸力伝達要素の前記ナットの周方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に周方向隙間を有する。
Condition L: The plurality of output shaft support members are substantially annular members along the outer peripheral surface of the output shaft, and the first output shaft support member covers the axial force transmission element and the rotational force transmission element. The second output shaft support member is disposed in the vicinity of the axial end portion of the housing member.
Condition M: Both axial end surfaces of the axial force transmission element are in contact with the nut and the output shaft, and at least one of circumferential end surfaces of the nut of the axial force transmission element is between the nut and the output shaft. It has a circumferential clearance.

条件N:前記回転力伝達要素の前記ナットの周方向両端面は前記ナット及び前記出力軸と接し、前記回転力伝達要素の軸方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に軸方向隙間を有する。
条件O:前記ナットの外周面と前記出力軸の内周面との間の径方向隙間が、前記第一出力軸支持部材の外周面と前記ハウジング部材の内周面との間の径方向隙間、及び、前記第二出力軸支持部材の内周面と前記出力軸の外周面との間の径方向隙間よりも大きい。
Condition N: Both end surfaces in the circumferential direction of the nut of the rotational force transmitting element are in contact with the nut and the output shaft, and at least one of both end surfaces in the axial direction of the rotational force transmitting element is between the nut and the output shaft. Has an axial clearance.
Condition O: A radial clearance between the outer peripheral surface of the nut and the inner peripheral surface of the output shaft is a radial clearance between the outer peripheral surface of the first output shaft support member and the inner peripheral surface of the housing member. And larger than the radial clearance between the inner peripheral surface of the second output shaft support member and the outer peripheral surface of the output shaft.

これらの態様に係るアクチュエータにおいては、前記第一出力軸支持部材は、軸方向に延びるスリットを有する略C字状の部材であるとともに、前記回転力伝達要素は、径方向外方に延びる突起を備えており、前記突起は前記スリットに係合している構成とすることができる。
また、これらの態様に係るアクチュエータにおいては、前記軸力伝達要素の軸方向両端面は前記出力軸の前記貫通孔に負隙間嵌合していてもよい。この場合には、前記軸力伝達要素の径方向外方部分は径方向内方部分よりも軸方向長さが大きく、前記径方向外方部分は前記貫通孔に負隙間嵌合し、前記径方向内方部分は前記凹部に隙間嵌合していることが好ましい。
In the actuator according to these aspects, the first output shaft support member is a substantially C-shaped member having a slit extending in the axial direction, and the rotational force transmitting element has a protrusion extending radially outward. The protrusion may be configured to engage with the slit.
Moreover, in the actuator which concerns on these aspects, the axial direction both end surfaces of the said axial force transmission element may be fitted into the said through-hole of the said output shaft by the negative clearance gap. In this case, the axially outer portion of the axial force transmission element has a larger axial length than the radially inner portion, and the radially outer portion is fitted into the through hole with a negative gap, and the diameter It is preferable that the inner portion in the direction is fitted in the recess in the gap.

さらに、前記軸力伝達要素は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて前記空所内に配されており、前記出力軸の移動先側の2つの面取り部が、前記出力軸の反移動先側の2つの面取り部よりも面取り寸法が大きいとともに、前記空所は、略八角柱状の前記軸力伝達要素に対応する形状となっていることが好ましい。   Further, the axial force transmission element is a substantially octagonal columnar member whose parallel four sides of a rectangular parallelepiped member are chamfered, and the octagonal surface is arranged in the cavity with the radially outward direction, and the output The two chamfered portions on the movement destination side of the shaft have a larger chamfer dimension than the two chamfered portions on the opposite movement destination side of the output shaft, and the space corresponds to the axial force transmission element having a substantially octagonal prism shape. A shape is preferred.

また、これらの態様に係るアクチュエータにおいては、前記軸力伝達要素と前記回転力伝達要素の形状が異なっていてもよい。この場合には、前記軸力伝達要素及び前記回転力伝達要素の径方向外方から見た外面の形状は略長方形であり、この外面の長手方向長さ又は短手方向長さは、前記回転力伝達要素よりも前記軸力伝達要素の方が大きいことが好ましい。あるいは、前記軸力伝達要素及び前記回転力伝達要素の径方向外方から見た外面の形状は略長方形であり、この外面の長手方向長さは、前記回転力伝達要素よりも前記軸力伝達要素の方が大きく、且つ、この外面の短手方向長さは、前記軸力伝達要素よりも前記回転力伝達要素の方が大きいことが好ましい。   Moreover, in the actuator which concerns on these aspects, the shape of the said axial force transmission element and the said rotational force transmission element may differ. In this case, the shape of the outer surface of the axial force transmission element and the rotational force transmission element viewed from the outside in the radial direction is substantially rectangular, and the longitudinal length or the short direction length of the outer surface is the rotation length. It is preferable that the axial force transmission element is larger than the force transmission element. Alternatively, the shape of the outer surface of the axial force transmission element and the rotational force transmission element viewed from the outside in the radial direction is substantially rectangular, and the length of the outer surface in the longitudinal direction is greater than that of the rotational force transmission element. It is preferable that the element is larger and the rotational length of the outer surface is greater in the rotational force transmission element than in the axial force transmission element.

さらに、前記軸力伝達要素及び前記回転力伝達要素は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて前記空所内に配されており、前記軸力伝達要素及び前記回転力伝達要素はいずれも、4つの面取り部のうち一部の面取り寸法が他部の面取り寸法とは異なることが好ましい。
さらに、前記軸力伝達要素及び前記回転力伝達要素は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて前記空所内に配されており、前記軸力伝達要素は、前記出力軸の移動先側の2つの面取り部が、前記出力軸の反移動先側の2つの面取り部よりも面取り寸法が大きく、前記回転力伝達要素は、一方の対角線上の2つの面取り部が、他方の対角線上の2つの面取り部よりも面取り寸法が大きく、前記回転力伝達要素の面取り寸法が大きい方の面取り部は、前記軸力伝達要素の面取り寸法が小さい方の面取り部よりも、面取り寸法が大きく、前記軸力伝達要素の面取り寸法が大きい方の面取り部は、前記回転力伝達要素の面取り寸法が小さい方の面取り部よりも、面取り寸法が大きいことが好ましい。
Further, the axial force transmission element and the rotational force transmission element are substantially octagonal columnar members whose parallel sides of a rectangular parallelepiped member are chamfered, and the octagonal surfaces are arranged in the voids with the octagonal surfaces facing radially outward. In the axial force transmission element and the rotational force transmission element, it is preferable that some of the four chamfered portions have chamfered dimensions different from the chamfered dimensions of the other portions.
Further, the axial force transmission element and the rotational force transmission element are substantially octagonal columnar members whose parallel sides of a rectangular parallelepiped member are chamfered, and the octagonal surfaces are arranged in the voids with the octagonal surfaces facing radially outward. In the axial force transmission element, the two chamfered portions on the movement destination side of the output shaft have larger chamfer dimensions than the two chamfered portions on the opposite side of the output shaft, and the rotational force transmission element The two chamfered portions on one diagonal are larger in chamfer dimension than the two chamfered portions on the other diagonal, and the chamfered portion having the larger chamfered dimension of the rotational force transmitting element is the axial force transmitting element. The chamfered portion with a larger chamfered dimension than the chamfered portion with the smaller chamfered dimension of the chamfered dimension of the axial force transmission element is larger than the chamfered part with the smaller chamfered dimension of the rotational force transmitting element. Large chamfer dimensions Preferred.

さらに、前記軸力伝達要素の径方向長さと前記回転力伝達要素の径方向長さが異なることが好ましい。
さらに、前記軸力伝達要素又は前記回転力伝達要素の前記貫通孔又は前記凹部の内面に対向する部分に凸部を設け、前記貫通孔又は前記凹部の内面に、前記凸部に係合する係合凹部を設けることが好ましい。
Furthermore, it is preferable that a radial length of the axial force transmission element and a radial length of the rotational force transmission element are different.
Further, a protrusion is provided on a portion of the axial force transmission element or the rotational force transmission element facing the inner surface of the through hole or the concave portion, and the inner surface of the through hole or the concave portion is engaged with the convex portion. It is preferable to provide a joint recess.

さらに、これらの態様に係るアクチュエータは、振動を低減する制振装置に使用してもよい。   Furthermore, the actuator according to these aspects may be used in a vibration control device that reduces vibration.

本発明に係るアクチュエータは、ストローク量を大きくとることができ、且つ、出力軸支持部材に作用するラジアル荷重が低いため長寿命である。   The actuator according to the present invention has a long life because the stroke amount can be increased and the radial load acting on the output shaft support member is low.

本発明に係るアクチュエータの第1実施形態の構造を示す断面図である。It is sectional drawing which shows the structure of 1st Embodiment of the actuator which concerns on this invention. 図1のアクチュエータのA−A断面図である。It is AA sectional drawing of the actuator of FIG. 出力軸ユニットに軸力伝達要素及び回転力伝達要素を取り付ける様子を示す斜視図である。It is a perspective view which shows a mode that an axial force transmission element and a rotational force transmission element are attached to an output shaft unit. 軸力伝達要素及び回転力伝達要素が取り付けられた状態の出力軸ユニットを示す斜視図である。It is a perspective view showing an output shaft unit in a state where an axial force transmission element and a rotational force transmission element are attached. 第一出力軸支持部材が取り付けられた状態の出力軸ユニットを示す斜視図である。It is a perspective view showing an output shaft unit in the state where a first output shaft support member is attached. 軸力伝達要素とナット及び出力軸との間の周方向隙間を示す出力軸ユニットの図である。It is a figure of the output-shaft unit which shows the circumferential direction clearance gap between an axial force transmission element, a nut, and an output shaft. 回転力伝達要素とナット及び出力軸との間の軸方向隙間を示す出力軸ユニットの図である。It is a figure of the output-shaft unit which shows the axial direction clearance gap between a rotational force transmission element, a nut, and an output shaft. コジリを抑制する手段を説明する断面図である。It is sectional drawing explaining the means to suppress galling. 第一出力軸支持部材の位相を固定する手段を説明する断面図である。It is sectional drawing explaining the means to fix the phase of a 1st output shaft support member. 第2実施形態の変形例を説明する部分断面図である。It is a fragmentary sectional view explaining the modification of a 2nd embodiment. 第2実施形態の第2変形例を説明する部分断面図である。It is a fragmentary sectional view explaining the 2nd modification of a 2nd embodiment. 第3実施形態の軸力伝達要素を径方向外方側から見た平面図である。It is the top view which looked at the axial force transmission element of 3rd Embodiment from the radial direction outer side. 第3実施形態の軸力伝達要素を軸方向一方側(出力軸の移動先側)から見た正面図である。It is the front view which looked at the axial force transmission element of 3rd Embodiment from the axial direction one side (movement destination side of an output shaft). 第3実施形態の軸力伝達要素を軸方向に直交する方向から見た側面図である。It is the side view which looked at the axial force transmission element of 3rd Embodiment from the direction orthogonal to an axial direction. 第4実施形態の軸力伝達要素及び回転力伝達要素の形状を説明する図である。It is a figure explaining the shape of the axial force transmission element of 4th Embodiment, and a rotational force transmission element. 第5実施形態の実施例1の軸力伝達要素の形状を説明する図である。It is a figure explaining the shape of the axial force transmission element of Example 1 of 5th Embodiment. 第5実施形態の実施例2の回転力伝達要素の形状を説明する図である。It is a figure explaining the shape of the rotational force transmission element of Example 2 of 5th Embodiment. 第6実施形態の軸力伝達要素及び回転力伝達要素の形状を説明する図である。It is a figure explaining the shape of the axial force transmission element of 6th Embodiment, and a rotational force transmission element. 第7実施形態の軸力伝達要素及び回転力伝達要素の形状を説明する図である。It is a figure explaining the shape of the axial force transmission element of 7th Embodiment, and a rotational force transmission element.

本発明に係るアクチュエータの実施の形態を、図面を参照しながら詳細に説明する。
〔第1実施形態〕
図1は、本発明に係るアクチュエータの第1実施形態の構造を示す断面図(軸方向に沿う面で切断した断面の図)であり、図2は、図1のアクチュエータのA−A断面図である。
Embodiments of an actuator according to the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a cross-sectional view showing a structure of a first embodiment of an actuator according to the present invention (a cross-sectional view taken along a plane along an axial direction), and FIG. 2 is a cross-sectional view taken along line AA of the actuator of FIG. It is.

本実施形態のアクチュエータは、回転運動を直線運動に変換するボールねじを利用することにより、電動モータ等の駆動源から入力された回転力を軸力(軸方向力)に変換して出力するボールねじ式直動型アクチュエータである。
本実施形態のアクチュエータは、回転運動を直線運動に変換するボールねじ10と、図示しない電動モータ等の駆動源から回転力を受けてボールねじ10のねじ軸1に伝達する回転力伝達部20と、ボールねじ10のナット3に連結され、ボールねじ10により前記回転力から変換された軸力を出力する中空状の出力軸30と、ボールねじ10及び出力軸30を内包する略筒状のハウジング部材40と、を備えている。
The actuator of this embodiment uses a ball screw that converts rotational motion into linear motion, thereby converting a rotational force input from a drive source such as an electric motor into an axial force (axial force) and outputting the ball. It is a screw type direct acting actuator.
The actuator of this embodiment includes a ball screw 10 that converts rotational motion into linear motion, and a rotational force transmission unit 20 that receives rotational force from a drive source such as an electric motor (not shown) and transmits the rotational force to the screw shaft 1 of the ball screw 10. A hollow output shaft 30 that is connected to the nut 3 of the ball screw 10 and outputs the axial force converted from the rotational force by the ball screw 10, and a substantially cylindrical housing that encloses the ball screw 10 and the output shaft 30. And a member 40.

このボールねじ10は、螺旋状のねじ溝1aを外周面に有するねじ軸1と、ねじ軸1のねじ溝1aに対向する螺旋状のねじ溝3aを内周面に有するナット3と、両ねじ溝1a,3aにより形成される螺旋状のボール転動路内に転動自在に装填された複数のボール(図示せず)と、前記ボールを前記ボール転動路の終点から始点へ戻し循環させるボール循環路(図示せず)と、を備えている。   The ball screw 10 includes a screw shaft 1 having a helical screw groove 1a on the outer peripheral surface, a nut 3 having a helical screw groove 3a facing the screw groove 1a of the screw shaft 1 on the inner peripheral surface, and both screws. A plurality of balls (not shown) that are slidably loaded in a spiral ball rolling path formed by the grooves 1a and 3a, and the balls are circulated back from the end point of the ball rolling path to the starting point. A ball circulation path (not shown).

すなわち、前記ボールは、前記ボール転動路内を移動しつつねじ軸1の回りを回って前記ボール転動路の終点に至り、そこで前記ボール転動路から掬い上げられて前記ボール循環路の一方の端部に入る。前記ボール循環路に入った前記ボールは前記ボール循環路内を通って前記ボール循環路の他方の端部に達し、そこから前記ボール転動路の始点に戻されるようになっている。   That is, the ball moves around the screw shaft 1 while moving in the ball rolling path to reach the end point of the ball rolling path, where the ball is scooped up from the ball rolling path to reach the ball circulation path. Enter one end. The ball that has entered the ball circulation path passes through the ball circulation path, reaches the other end of the ball circulation path, and then returns to the starting point of the ball rolling path.

なお、ねじ軸1,ナット3,及び前記ボールの素材は特に限定されるものではなく、一般的な材料を使用可能であり、例えば鋼等の金属やセラミックがあげられる。また、ねじ溝1a,3aの断面形状は、円弧状でもよいしゴシックアーク状でもよい。
このようなボールねじ10は、前記ボールを介してねじ軸1に螺合されているナット3とねじ軸1とを相対回転運動させると、前記ボールの転動を介してねじ軸1とナット3とが軸方向に相対直線移動するようになっている。そして、前記ボール転動路と前記ボール循環路により無端状のボール通路が形成されており、前記ボール転動路内を転動する前記ボールが無端状の前記ボール通路内を無限に循環するようになっているため、ねじ軸1とナット3とは継続的に相対直線移動することができる。
In addition, the material of the screw shaft 1, the nut 3, and the ball is not particularly limited, and general materials can be used, and examples thereof include metals such as steel and ceramics. Further, the cross-sectional shape of the thread grooves 1a, 3a may be an arc shape or a gothic arc shape.
When such a ball screw 10 relatively rotates the nut 3 and the screw shaft 1 screwed to the screw shaft 1 through the ball, the screw shaft 1 and the nut 3 are moved through the rolling of the ball. And move relative to each other in the axial direction. An endless ball path is formed by the ball rolling path and the ball circulation path so that the ball rolling in the ball rolling path circulates infinitely in the endless ball path. Therefore, the screw shaft 1 and the nut 3 can continuously move relative to each other.

このようなボールねじ10と、ボールねじ10のナット3に連結されている出力軸30とは、ハウジング部材40の内部空間に内包されており、ボールねじ10のねじ軸1及び出力軸30がハウジング部材40と同軸に配されている。ナット3は、出力軸30の中空内部30aの軸方向一端部(図1では左端の開口部)に内包されており、軸力伝達要素51及び回転力伝達要素53により、出力軸30に連結されている。   The ball screw 10 and the output shaft 30 connected to the nut 3 of the ball screw 10 are contained in the internal space of the housing member 40, and the screw shaft 1 and the output shaft 30 of the ball screw 10 are the housing. It is arranged coaxially with the member 40. The nut 3 is included in one axial end portion (left end opening in FIG. 1) of the hollow interior 30 a of the output shaft 30, and is connected to the output shaft 30 by the axial force transmission element 51 and the rotational force transmission element 53. ing.

以下に、ナット3と出力軸30の連結手段について説明する。ナット3の外周面の軸方向略同位置には、複数(本実施形態においては3個)の直方体状の凹部55が形成されており、そのうち2個の凹部55は、その長手方向がナット3の周方向に沿うように、残りの1個の凹部55は、その長手方向が軸方向に沿うように形成されている。また、出力軸30には、凹部55に連続し且つ出力軸30を径方向に貫通する断面長方形状の貫通孔57が形成されており、連続する凹部55と貫通孔57とから、軸力伝達要素51又は回転力伝達要素53が嵌め込まれる空所59が構成される。   Below, the connection means of the nut 3 and the output shaft 30 is demonstrated. A plurality of (three in the present embodiment) rectangular parallelepiped concave portions 55 are formed at substantially the same position in the axial direction of the outer peripheral surface of the nut 3, and two of the concave portions 55 have the longitudinal direction of the nut 3. The remaining one recess 55 is formed so that its longitudinal direction is along the axial direction. Further, the output shaft 30 is formed with a through-hole 57 having a rectangular cross-section that is continuous with the recess 55 and penetrates the output shaft 30 in the radial direction. An axial force is transmitted from the continuous recess 55 and the through-hole 57. A void 59 is formed in which the element 51 or the rotational force transmitting element 53 is fitted.

軸力伝達要素51及び回転力伝達要素53はいずれも、空所59とほぼ同形状の略直方体状の部材であるので、各空所59に軸力伝達要素51又は回転力伝達要素53が嵌め込まれる。3個の空所59は、いずれも断面長方形状であるが、その長手方向がナット3の周方向に沿う2個の空所59には軸力伝達要素51が嵌め込まれ、その長手方向が軸方向に沿う1個の空所59には回転力伝達要素53が嵌め込まれている。ボールねじ10と出力軸30と回転力伝達部20とからなる出力軸ユニットに、軸力伝達要素51及び回転力伝達要素53を取り付ける様子を図3に示し、軸力伝達要素51及び回転力伝達要素53が取り付けられた出力軸ユニットを図4に示す。   Since each of the axial force transmission element 51 and the rotational force transmission element 53 is a substantially rectangular parallelepiped member having substantially the same shape as the void 59, the axial force transmission element 51 or the rotational force transmission element 53 is fitted in each void 59. It is. Although the three cavities 59 are all rectangular in cross section, the axial force transmission element 51 is fitted in the two cavities 59 whose longitudinal direction is along the circumferential direction of the nut 3, and the longitudinal direction is the axis. A rotational force transmitting element 53 is fitted in one space 59 along the direction. FIG. 3 shows a state in which the axial force transmission element 51 and the rotational force transmission element 53 are attached to an output shaft unit composed of the ball screw 10, the output shaft 30, and the rotational force transmission unit 20. The output shaft unit to which the element 53 is attached is shown in FIG.

このとき、軸力伝達要素51の軸方向両端面はナット3及び出力軸30と接し(すなわち、空所59の内壁面と接し)、軸力伝達要素51の周方向両端面の少なくとも一方(図6においては周方向両端面)はナット3及び出力軸30との間に周方向隙間Caを有する(すなわち、空所59の内壁面とは接していない)。なお、本発明においては、「周方向」とはナットの周方向を意味し、「径方向」とはナットの径方向を意味する。   At this time, both axial end surfaces of the axial force transmission element 51 are in contact with the nut 3 and the output shaft 30 (that is, in contact with the inner wall surface of the cavity 59), and at least one of the circumferential end surfaces of the axial force transmission element 51 (see FIG. 6, both end surfaces in the circumferential direction) have a circumferential clearance Ca between the nut 3 and the output shaft 30 (that is, they are not in contact with the inner wall surface of the space 59). In the present invention, “circumferential direction” means the circumferential direction of the nut, and “radial direction” means the radial direction of the nut.

一方、回転力伝達要素53の周方向両端面はナット3及び出力軸30と接し(すなわち、空所59の内壁面と接し)、回転力伝達要素53の軸方向両端面の少なくとも一方(図7においては軸方向両端面)はナット3及び出力軸30との間に軸方向隙間Cbを有する(すなわち、空所59の内壁面とは接していない)。
このような構成により、軸力伝達要素51は、その軸方向両端面を介してナット3の軸力のみを出力軸30に伝達し、回転力伝達要素53は、その周方向両端面を介してナット3の回転力のみを出力軸30に伝達することができる。なお、軸力伝達要素51の軸方向両端面は、ナット3及び出力軸30と接していなくてもよく、ナット3及び出力軸30との間に隙間を有していてもよい。ただし、その場合には、該隙間の大きさは前記軸方向隙間Cbよりも小さい必要がある。同様に、回転力伝達要素53の周方向両端面は、ナット3及び出力軸30と接していなくてもよく、ナット3及び出力軸30との間に隙間を有していてもよい。ただし、その場合には、該隙間の大きさは前記周方向隙間Caよりも小さい必要がある。
On the other hand, both end surfaces in the circumferential direction of the rotational force transmitting element 53 are in contact with the nut 3 and the output shaft 30 (that is, in contact with the inner wall surface of the cavity 59), and at least one of both end surfaces in the axial direction of the rotational force transmitting element 53 (FIG. 7). (Both end surfaces in the axial direction) have an axial clearance Cb between the nut 3 and the output shaft 30 (that is, they are not in contact with the inner wall surface of the cavity 59).
With such a configuration, the axial force transmission element 51 transmits only the axial force of the nut 3 to the output shaft 30 via both axial end surfaces thereof, and the rotational force transmitting element 53 is transmitted via both circumferential end surfaces thereof. Only the rotational force of the nut 3 can be transmitted to the output shaft 30. In addition, the axial direction both end surfaces of the axial force transmission element 51 may not be in contact with the nut 3 and the output shaft 30, and may have a gap between the nut 3 and the output shaft 30. However, in that case, the size of the gap needs to be smaller than the axial gap Cb. Similarly, both end surfaces in the circumferential direction of the rotational force transmitting element 53 may not be in contact with the nut 3 and the output shaft 30, and may have a gap between the nut 3 and the output shaft 30. However, in that case, the size of the gap needs to be smaller than the circumferential gap Ca.

また、出力軸30をハウジング部材40に支持する複数(本実施形態においては2個)の出力軸支持部材が、軸方向に間隔を空けて、出力軸30の外周面とハウジング部材40の内周面との間に介装されている。これらの出力軸支持部材は、出力軸30の外周面及びハウジング部材40の内周面に沿う略環状部材であり、そのうち第一出力軸支持部材61は、軸力伝達要素51及び回転力伝達要素53を覆うように、各空所59と軸方向略同位置に配されている(図5を参照)。そして、第二出力軸支持部材63は、第一出力軸支持部材61とは軸方向に間隔を空けて、ハウジング部材40の軸方向端部(図1では右端部)に配されている。なお、第一出力軸支持部材61は、軸方向に延びるスリットを有する略C字状の部材でもよい。この場合は、スリットを拡開することにより、第一出力軸支持部材61をナット3に取り付けることができる。   In addition, a plurality (two in this embodiment) of output shaft support members that support the output shaft 30 on the housing member 40 are spaced apart in the axial direction from the outer peripheral surface of the output shaft 30 and the inner periphery of the housing member 40. It is interposed between the surfaces. These output shaft support members are substantially annular members along the outer peripheral surface of the output shaft 30 and the inner peripheral surface of the housing member 40, and the first output shaft support member 61 includes an axial force transmission element 51 and a rotational force transmission element. 53 is disposed at substantially the same position in the axial direction as each of the voids 59 (see FIG. 5). The second output shaft support member 63 is disposed at the axial end portion (right end portion in FIG. 1) of the housing member 40 with a space in the axial direction from the first output shaft support member 61. The first output shaft support member 61 may be a substantially C-shaped member having a slit extending in the axial direction. In this case, the first output shaft support member 61 can be attached to the nut 3 by expanding the slit.

また、第一出力軸支持部材61は、出力軸30の外周面に固定されており、ハウジング部材40の内周面とは遊嵌している。一方、第二出力軸支持部材63は、ハウジング部材40の内周面に固定されており、出力軸30の外周面とは遊嵌している。さらに、第一出力軸支持部材61及び第二出力軸支持部材63は、摺動特性に優れ摩擦,摩耗の生じにくい素材(例えばフッ素樹脂,ポリアセタール等の樹脂)で構成されており、出力軸30やハウジング部材40との間に摩擦が生じにくくなっている。   The first output shaft support member 61 is fixed to the outer peripheral surface of the output shaft 30 and is loosely fitted to the inner peripheral surface of the housing member 40. On the other hand, the second output shaft support member 63 is fixed to the inner peripheral surface of the housing member 40 and is loosely fitted to the outer peripheral surface of the output shaft 30. Furthermore, the first output shaft support member 61 and the second output shaft support member 63 are made of a material (for example, a resin such as fluororesin or polyacetal) that has excellent sliding characteristics and is less likely to cause friction and wear. In addition, friction is less likely to occur between the housing member 40 and the housing member 40.

このとき、ナット3の外周面と出力軸30の内周面との間の径方向隙間は、第一出力軸支持部材61の外周面とハウジング部材40の内周面との間の径方向隙間よりも大きく設定されており、且つ、第二出力軸支持部材63の内周面と出力軸30の外周面との間の径方向隙間よりも大きく設定されている。
ねじ軸1の両端のうち出力軸30の中空内部30aの外側に位置する端部(図1では左端部)には、回転力伝達部20を構成する歯車が取り付けられていて、図示しない電動モータ等の駆動源から回転力を受けてねじ軸1に伝達するようになっている。入力された回転力によりねじ軸1が回転すると、それに伴ってナット3がねじ軸1に沿って直線移動する。なお、ねじ軸1の回転方向によって、ナット3の直線移動方向が決定する。ナット3が直線移動すると、その軸力が軸力伝達要素51によって出力軸30に伝達され、出力軸30がナット3とともに直線移動するので、出力軸30から軸力が出力される。
At this time, the radial clearance between the outer peripheral surface of the nut 3 and the inner peripheral surface of the output shaft 30 is the radial clearance between the outer peripheral surface of the first output shaft support member 61 and the inner peripheral surface of the housing member 40. Is set larger than the radial clearance between the inner peripheral surface of the second output shaft support member 63 and the outer peripheral surface of the output shaft 30.
A gear constituting the rotational force transmitting portion 20 is attached to an end portion (left end portion in FIG. 1) located outside the hollow interior 30a of the output shaft 30 among both ends of the screw shaft 1, and an electric motor (not shown) A rotational force is received from a drive source such as the like and transmitted to the screw shaft 1. When the screw shaft 1 is rotated by the input rotational force, the nut 3 is linearly moved along the screw shaft 1 accordingly. The linear movement direction of the nut 3 is determined by the rotation direction of the screw shaft 1. When the nut 3 moves linearly, the axial force is transmitted to the output shaft 30 by the axial force transmission element 51, and the output shaft 30 moves linearly with the nut 3, so that the axial force is output from the output shaft 30.

このとき、第一出力軸支持部材61は、出力軸30の外周面に取り付けられているため(例えば、図8に示すように、出力軸30の外周面に形成された周方向に延びる2つの環状突出部30bの間に、第一出力軸支持部材61を装着してもよい)、ハウジング部材40の内周面と摺動しつつ出力軸30とともに軸方向に移動する。また、第二出力軸支持部材63は、ハウジング部材40の内周面に固定されているため軸方向への移動はせず、出力軸30の移動に伴って出力軸30の外周面と摺動する。   At this time, since the first output shaft support member 61 is attached to the outer peripheral surface of the output shaft 30 (for example, as shown in FIG. 8, there are two extending in the circumferential direction formed on the outer peripheral surface of the output shaft 30. The first output shaft support member 61 may be mounted between the annular protrusions 30b), and moves in the axial direction together with the output shaft 30 while sliding with the inner peripheral surface of the housing member 40. Further, since the second output shaft support member 63 is fixed to the inner peripheral surface of the housing member 40, the second output shaft support member 63 does not move in the axial direction, and slides with the outer peripheral surface of the output shaft 30 as the output shaft 30 moves. To do.

第一出力軸支持部材61が出力軸30とともに軸方向に移動して、第二出力軸支持部材63が取り付けられている軸方向位置に達すると、第一出力軸支持部材61が第二出力軸支持部材63と干渉する。よって、図8に示すように、第二出力軸支持部材63と干渉するまでの第一出力軸支持部材61の移動距離が、アクチュエータのストローク量となる。なお、図8は、図1とは位相が90°異なる断面図である。   When the first output shaft support member 61 moves in the axial direction together with the output shaft 30 and reaches the axial position where the second output shaft support member 63 is attached, the first output shaft support member 61 is moved to the second output shaft. It interferes with the support member 63. Therefore, as shown in FIG. 8, the moving distance of the first output shaft support member 61 until it interferes with the second output shaft support member 63 is the stroke amount of the actuator. 8 is a cross-sectional view that is 90 ° out of phase with FIG.

このような本実施形態のアクチュエータは、ナット3を出力軸30の中空内部30aに内包させ、ナット3と出力軸30を軸力伝達要素51及び回転力伝達要素53で連結し、さらに軸力伝達要素51及び回転力伝達要素53を第一出力軸支持部材61で覆うようにしたので、小型化が可能である。しかも、第一出力軸支持部材61及び第二出力軸支持部材63を、大きな軸方向距離を空けて配置することができるので、本実施形態のアクチュエータは小型であるにもかかわらず、ストローク量が大きい。   In the actuator of this embodiment, the nut 3 is enclosed in the hollow interior 30a of the output shaft 30, the nut 3 and the output shaft 30 are connected by the axial force transmission element 51 and the rotational force transmission element 53, and further the axial force transmission. Since the element 51 and the rotational force transmitting element 53 are covered with the first output shaft support member 61, the size can be reduced. In addition, since the first output shaft support member 61 and the second output shaft support member 63 can be arranged with a large axial distance, the stroke amount is small despite the small size of the actuator of this embodiment. large.

また、ナット3と出力軸30の連結方法を螺合とした場合には、ナット3と出力軸30との位相決めが困難であるため、位相決め機構を別途設ける必要があるが、軸力伝達要素51及び回転力伝達要素53を用いた上記のような連結方法であれば、位相決め機構を別途設ける必要はない。さらに、ナット3と出力軸30の連結方法を螺合とした場合には、ナット3及び出力軸30に設けられた両ねじの締結トルクを管理したり、場合によっては、安全設計の観点から前記両ねじの分離防止機構を別途設ける必要があるが、軸力伝達要素51及び回転力伝達要素53を用いた上記のような連結方法であれば、締結トルクの管理や分離防止機構の設置を行う必要はない。   Further, when the connecting method of the nut 3 and the output shaft 30 is screwed, it is difficult to determine the phase between the nut 3 and the output shaft 30, and therefore a phase determining mechanism needs to be provided separately. If it is the above connection methods using the element 51 and the rotational force transmission element 53, it is not necessary to provide a phasing mechanism separately. Furthermore, when the connection method of the nut 3 and the output shaft 30 is screwed, the fastening torque of both screws provided on the nut 3 and the output shaft 30 is managed, or in some cases, from the viewpoint of safety design, Although it is necessary to provide a separate prevention mechanism for both screws, if the connection method uses the axial force transmission element 51 and the rotational force transmission element 53 as described above, the fastening torque is managed and the separation prevention mechanism is installed. There is no need.

さらに、第一出力軸支持部材61により軸力伝達要素51及び回転力伝達要素53が覆われているので、軸力伝達要素51及び回転力伝達要素53が空所59から脱落するおそれはほとんどない。
さらに、第一出力軸支持部材61を取り付けるための環状突出部30bは、機械加工等の方法により出力軸30と一体に形成されているので、第一出力軸支持部材61を出力軸30に取り付ける際の両者の芯ずれがほとんど生じないようにすることができる。よって、両者の芯ずれに起因する第一出力軸支持部材61の損傷が生じにくいので、アクチュエータが長寿命となる。
Further, since the axial force transmission element 51 and the rotational force transmission element 53 are covered by the first output shaft support member 61, there is almost no possibility that the axial force transmission element 51 and the rotational force transmission element 53 fall off from the space 59. .
Furthermore, since the annular protrusion 30b for attaching the first output shaft support member 61 is formed integrally with the output shaft 30 by a method such as machining, the first output shaft support member 61 is attached to the output shaft 30. It is possible to prevent the misalignment between the two at the time. Therefore, the first output shaft support member 61 is not easily damaged due to the misalignment of the both, and the actuator has a long life.

さらに、軸力伝達要素51の周方向両端面がナット3又は出力軸30に接触していると、アクチュエータの稼働時に、径方向外方に向く荷重が軸力伝達要素51に作用するおそれがある。そうすると、第一出力軸支持部材61に軸力伝達要素51が押し付けられるので、第一出力軸支持部材61に損傷が生じてアクチュエータの寿命が低下するおそれがある。同様に、回転力伝達要素53の軸方向両端面がナット3又は出力軸30に接触していると、アクチュエータの稼働時に、径方向外方に向く荷重が回転力伝達要素53に作用するおそれがある。そうすると、第一出力軸支持部材61に回転力伝達要素53が押し付けられるので、第一出力軸支持部材61に損傷が生じてアクチュエータの寿命が低下するおそれがある。   Furthermore, when both end surfaces in the circumferential direction of the axial force transmission element 51 are in contact with the nut 3 or the output shaft 30, there is a possibility that a load directed radially outward acts on the axial force transmission element 51 during operation of the actuator. . Then, since the axial force transmission element 51 is pressed against the first output shaft support member 61, the first output shaft support member 61 may be damaged and the life of the actuator may be reduced. Similarly, if both end surfaces in the axial direction of the rotational force transmitting element 53 are in contact with the nut 3 or the output shaft 30, there is a possibility that a radially outward load acts on the rotational force transmitting element 53 during operation of the actuator. is there. If it does so, since the rotational force transmission element 53 is pressed against the first output shaft support member 61, the first output shaft support member 61 may be damaged, and the life of the actuator may be reduced.

本実施形態のアクチュエータにおいては、軸力伝達要素51の周方向両端面はナット3及び出力軸30に接触しておらず、且つ、回転力伝達要素53の軸方向両端面はナット3及び出力軸30に接触していないので、第一出力軸支持部材61の損傷が生じにくく、本実施形態のアクチュエータは長寿命である。
さらに、本実施形態のアクチュエータには、ボールねじ10のコジリを抑制する手段が備えられている。すなわち、ナット3の外周面と出力軸30の内周面との間の径方向隙間は、第一出力軸支持部材61の外周面とハウジング部材40の内周面との間の径方向隙間よりも大きく設定されており、且つ、第二出力軸支持部材63の内周面と出力軸30の外周面との間の径方向隙間よりも大きく設定されている。このような構成から、出力軸30にコジリが作用した場合でも、ボールねじ10にコジリが作用しにくくなり、コジリによる面圧の上昇を抑制することができる。よって、本実施形態のアクチュエータは長寿命である。
In the actuator of the present embodiment, both end surfaces in the circumferential direction of the axial force transmission element 51 are not in contact with the nut 3 and the output shaft 30, and both end surfaces in the axial direction of the rotational force transmission element 53 are the nut 3 and the output shaft. Since the first output shaft support member 61 is not easily damaged because it is not in contact with the actuator 30, the actuator of this embodiment has a long life.
Further, the actuator of the present embodiment is provided with means for suppressing squeezing of the ball screw 10. In other words, the radial clearance between the outer peripheral surface of the nut 3 and the inner peripheral surface of the output shaft 30 is larger than the radial clearance between the outer peripheral surface of the first output shaft support member 61 and the inner peripheral surface of the housing member 40. And is set larger than the radial clearance between the inner peripheral surface of the second output shaft support member 63 and the outer peripheral surface of the output shaft 30. With such a configuration, even when galling acts on the output shaft 30, galling becomes difficult to act on the ball screw 10, and an increase in surface pressure due to galling can be suppressed. Therefore, the actuator of this embodiment has a long life.

このようなアクチュエータは、振動を低減する制振装置に好適に使用可能である。特に、車両用の制振装置に好適である。車体と車輪等の接地部品との間にアクチュエータを設置して、車体に発生する振動を低減することができる。具体的には、車体の振動を検出し、その振動とは逆位相の制御力をアクチュエータで発生させて、該制御力を車体に作用させることにより車体の制振を行う。例えば、鉄道車両の制振においては、車体と台車との間にアクチュエータを設置し、車体の振動とは逆位相の制御力をアクチュエータで発生させて、車体に発生する振動を低減する。   Such an actuator can be suitably used for a vibration damping device that reduces vibration. Particularly, it is suitable for a vibration damping device for a vehicle. An actuator can be installed between the vehicle body and a grounding component such as a wheel to reduce vibrations generated in the vehicle body. Specifically, vibration of the vehicle body is detected, a control force having a phase opposite to that of the vibration is generated by an actuator, and the control force is applied to the vehicle body, thereby damping the vehicle body. For example, in vibration control of a railway vehicle, an actuator is installed between the vehicle body and the carriage, and a control force having a phase opposite to that of the vehicle body is generated by the actuator to reduce the vibration generated in the vehicle body.

なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態のアクチュエータには、第一出力軸支持部材61の位相を固定する手段を設けてもよい。すなわち、第一出力軸支持部材61を、軸方向に延びるスリット65を有する略C字状の部材とするとともに、回転力伝達要素53の外面に、径方向外方に延びる突起53aを設け、この突起53aをスリット65に挿通し係合させてもよい(図9を参照)。このような構成を採用すれば、第一出力軸支持部材61が周方向に回転して位相が変化することを防ぐことができる。   In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, the actuator of this embodiment may be provided with means for fixing the phase of the first output shaft support member 61. That is, the first output shaft support member 61 is a substantially C-shaped member having a slit 65 extending in the axial direction, and a protrusion 53 a extending radially outward is provided on the outer surface of the rotational force transmitting element 53. The protrusion 53a may be inserted into and engaged with the slit 65 (see FIG. 9). By adopting such a configuration, it is possible to prevent the first output shaft support member 61 from rotating in the circumferential direction and changing the phase.

また、図1,8に示すように、本実施形態のアクチュエータには、出力軸30とハウジング部材40との間の隙間の開口をシールするシール部材を設けてもよい。さらに、出力軸30とハウジング部材40との間の隙間の開口を覆い、且つ、出力軸30の進退に応じて伸縮するベローズ等の蛇腹状部材を設けてもよい。さらに、本実施形態のアクチュエータには、ボールねじ10の代わりに、すべりねじやローラねじ等を使用することもできる。   As shown in FIGS. 1 and 8, the actuator of the present embodiment may be provided with a seal member that seals the opening of the gap between the output shaft 30 and the housing member 40. Furthermore, a bellows-like member such as a bellows that covers the opening of the gap between the output shaft 30 and the housing member 40 and expands and contracts according to the advancement and retraction of the output shaft 30 may be provided. Furthermore, instead of the ball screw 10, a slide screw, a roller screw, or the like can be used for the actuator of this embodiment.

〔第2実施形態〕
第2実施形態のアクチュエータの構成、動作、及び作用効果等は、第1実施形態とほぼ同様であるので、異なる部分のみ説明し、同様の部分の説明は省略する。なお、以下の説明においては、第1実施形態のアクチュエータと同一又は相当する部分には、第1実施形態と同一の符号を用いて説明する。
[Second Embodiment]
Since the configuration, operation, effects, and the like of the actuator of the second embodiment are almost the same as those of the first embodiment, only different parts will be described and description of the same parts will be omitted. In the following description, the same or corresponding parts as those of the actuator of the first embodiment will be described using the same reference numerals as those of the first embodiment.

軸力伝達要素51は、出力軸30の貫通孔57に圧入され負隙間嵌合している。詳述すると、軸力伝達要素51の軸方向両端面は出力軸30と接し(すなわち、貫通孔57の内壁面と接し)、しかも負隙間嵌合している。軸力伝達要素51の周方向両端面の少なくとも一方は出力軸30との間に周方向隙間Caを有し(すなわち、貫通孔57の内壁面とは接していない)、隙間嵌合している。また、軸力伝達要素51の軸方向両端面及び周方向両端面は、ナット3の凹部55の内壁面とは接しておらず、軸力伝達要素51とナット3の凹部55とは隙間嵌合となっている。   The axial force transmission element 51 is press-fitted into the through hole 57 of the output shaft 30 and fitted in a negative gap. More specifically, both end surfaces in the axial direction of the axial force transmission element 51 are in contact with the output shaft 30 (that is, in contact with the inner wall surface of the through hole 57), and are fitted in a negative gap. At least one of both end surfaces in the circumferential direction of the axial force transmission element 51 has a circumferential clearance Ca between the output shaft 30 (that is, is not in contact with the inner wall surface of the through hole 57) and is fitted in the clearance. . Further, both end surfaces in the axial direction and both end surfaces in the circumferential direction of the axial force transmission element 51 are not in contact with the inner wall surface of the concave portion 55 of the nut 3, and the axial force transmission element 51 and the concave portion 55 of the nut 3 are clearance-fitted. It has become.

このように、軸力伝達要素51と出力軸30とが負隙間嵌合となっていることから、軸力伝達要素51の負隙間嵌合部にフレッチング摩耗が生じにくい。隙間嵌合となっていると、軸力伝達要素51と出力軸30とが繰り返し接触するため、フレッチング摩耗が生じるおそれがある。
なお、第2実施形態のアクチュエータにおいては、軸力伝達要素51及び空所59の形状を以下のようにすることが好ましい。すなわち、軸方向に沿う平面で切断した断面図である図10に示すように、軸力伝達要素51は、略直方体状の径方向外方部分51aと径方向内方部分51bとからなり、2つの直方体が一体となった部材であり、出力軸30の貫通孔57に収容される径方向外方部分51aは、ナット3の凹部55に収容される径方向内方部分51bよりも軸方向長さが大きい。また、空所59は、上記のような形状の軸力伝達要素51に対応する形状をなしており、凹部55の軸方向長さは、貫通孔57の軸方向長さ以下となっている。
As described above, since the axial force transmission element 51 and the output shaft 30 are fitted with a negative gap, fretting wear hardly occurs in the negative gap fitting portion of the axial force transmission element 51. If the gap is fitted, the axial force transmission element 51 and the output shaft 30 are repeatedly in contact with each other, which may cause fretting wear.
In the actuator of the second embodiment, it is preferable that the shapes of the axial force transmission element 51 and the void 59 are as follows. That is, as shown in FIG. 10 which is a cross-sectional view cut along a plane along the axial direction, the axial force transmission element 51 includes a substantially rectangular parallelepiped radial outer portion 51a and a radial inner portion 51b. This is a member in which two rectangular parallelepipeds are integrated, and the radially outer portion 51 a accommodated in the through hole 57 of the output shaft 30 is longer in the axial direction than the radially inner portion 51 b accommodated in the recess 55 of the nut 3. Is big. Further, the cavity 59 has a shape corresponding to the axial force transmission element 51 having the above-described shape, and the axial length of the recess 55 is equal to or less than the axial length of the through hole 57.

そして、径方向外方部分51aは貫通孔57に圧入され負隙間嵌合している。詳述すると、径方向外方部分51aの軸方向両端面は出力軸30と接し(すなわち、貫通孔57の内壁面と接し)、しかも負隙間嵌合している。径方向外方部分51aの周方向両端面の少なくとも一方は出力軸30との間に周方向隙間Caを有し(すなわち、貫通孔57の内壁面とは接していない)、隙間嵌合している。また、径方向内方部分51bの軸方向両端面及び周方向両端面は、ナット3の凹部55の内壁面とは接しておらず、径方向内方部分51bとナット3の凹部55とは隙間嵌合となっている。   The radially outer portion 51a is press-fitted into the through hole 57 and is fitted in a negative gap. More specifically, both end surfaces in the axial direction of the radially outer portion 51a are in contact with the output shaft 30 (that is, in contact with the inner wall surface of the through hole 57), and are fitted in a negative gap. At least one of both end surfaces in the circumferential direction of the radially outer portion 51a has a circumferential clearance Ca between the output shaft 30 (that is, not in contact with the inner wall surface of the through hole 57), and the clearance is fitted. Yes. Further, both end surfaces in the axial direction and both end surfaces in the circumferential direction of the radially inner portion 51 b are not in contact with the inner wall surface of the recess 55 of the nut 3, and there is a gap between the radially inner portion 51 b and the recess 55 of the nut 3. It is a fitting.

このような第2実施形態の変形例においては、径方向内方部分51bとナット3の凹部55との隙間嵌合により、軸力伝達要素51を空所59に圧入する前に位置決めを行うことができるので、軸力伝達要素51の位置決めが容易である。そして、径方向内方部分51bの径方向長さを径方向外方部分51aの径方向長さよりも大きくすれば、径方向外方部分51aが出力軸30に接する前に径方向内方部分51bが凹部55に達することができるので、軸力伝達要素51の位置決めがより容易となる。   In such a modification of the second embodiment, positioning is performed before the axial force transmission element 51 is press-fitted into the cavity 59 by fitting the gap between the radially inner portion 51b and the recess 55 of the nut 3. Therefore, the positioning of the axial force transmission element 51 is easy. If the radial length of the radially inner portion 51b is made larger than the radial length of the radially outer portion 51a, the radially inner portion 51b before the radially outer portion 51a contacts the output shaft 30. Can reach the recess 55, and the positioning of the axial force transmission element 51 becomes easier.

さらに、第2実施形態の変形例において、貫通孔57の形状を、軸方向に沿う平面で切断した断面図である図11に示すような形状とすることがさらに好ましい。すなわち、貫通孔57のうち径方向外方部分57aの軸方向長さ、つまり出力軸30の外周面に開口する貫通孔57の開口部の軸方向長さが、貫通孔57の径方向内方部分57bの軸方向長さよりも大きくなっており、軸力伝達要素51の軸方向両端面が貫通孔57の径方向内方部分57bの内壁面と接し、軸力伝達要素51の径方向外方部分51aと貫通孔57の径方向内方部分57bとが負隙間嵌合となっている。
このような第2実施形態の第2変形例においては、すわり(持ち手)があるので、圧入前の姿勢を安定させやすく、組立性が良好である。
Furthermore, in the modified example of the second embodiment, it is more preferable that the shape of the through hole 57 is a shape as shown in FIG. 11 which is a cross-sectional view cut along a plane along the axial direction. That is, the axial length of the radially outer portion 57 a of the through hole 57, that is, the axial length of the opening of the through hole 57 that opens to the outer peripheral surface of the output shaft 30 is the radially inward direction of the through hole 57. The axial length of the axial force transmission element 51 is larger than the axial length of the portion 57 b, and both axial end surfaces of the axial force transmission element 51 are in contact with the inner wall surface of the radial inner portion 57 b of the through-hole 57. The portion 51a and the radially inner portion 57b of the through hole 57 are fitted with a negative gap.
In such a second modification of the second embodiment, since there is a seat (a handle), the posture before press-fitting is easily stabilized and the assemblability is good.

〔第3実施形態〕
第3実施形態のアクチュエータの構成、動作、及び作用効果等は、第1実施形態又は第2実施形態とほぼ同様であるので、異なる部分のみ説明し、同様の部分の説明は省略する。なお、以下の説明においては、第1,2実施形態のアクチュエータと同一又は相当する部分には、第1,2実施形態と同一の符号を用いて説明する。
軸力伝達要素51は、図12に示すように、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて空所59内に配されている。そして、4つの面取り部のうち、出力軸30の移動先側(図6では左側)の2つの面取り部と、出力軸30の反移動先側(図6では右側)の2つの面取り部とでは、面取り寸法が異なっており、出力軸30の移動先側の2つの面取り部70a,70a(図12では下側の2つの面取り部)が、出力軸30の反移動先側の2つの面取り部70b,70b(図12では上側の2つの面取り部)よりも面取り寸法が大きい。これらの面取り部70a,70bは、図12に示すような平面状でもよいが、曲面状(R形状)でもよい。
[Third Embodiment]
Since the configuration, operation, effects, and the like of the actuator of the third embodiment are substantially the same as those of the first embodiment or the second embodiment, only different parts will be described and description of the same parts will be omitted. In the following description, the same or corresponding parts as those of the actuators of the first and second embodiments will be described using the same reference numerals as those of the first and second embodiments.
As shown in FIG. 12, the axial force transmitting element 51 is a substantially octagonal columnar member having four parallel sides of a rectangular parallelepiped member chamfered, and the octagonal surface is disposed in the cavity 59 with the octagonal surface facing radially outward. Has been. Of the four chamfered portions, two chamfered portions on the movement destination side (left side in FIG. 6) of the output shaft 30 and two chamfered portions on the opposite movement destination side (right side in FIG. 6) of the output shaft 30 The chamfer dimensions are different, and the two chamfered portions 70a, 70a (the two lower chamfered portions in FIG. 12) on the destination side of the output shaft 30 are the two chamfered portions on the opposite side of the output shaft 30. The chamfer dimension is larger than 70b and 70b (the two upper chamfers in FIG. 12). These chamfered portions 70a and 70b may be planar as shown in FIG. 12, but may be curved (R-shaped).

また、空所59を構成する貫通孔57及び凹部55は、略八角柱状の軸力伝達要素51に対応する形状とされている。すなわち、軸力伝達要素51の面取り部70a,70bに対向する4つの隅部は、軸力伝達要素51の面取り部70a,70bの面取り寸法に対応した大きさの例えば曲面状(R形状)とされている。
このような構成であれば、取り付け方向を誤って軸力伝達要素51を空所59に組み込む誤組が防止される。また、軸力伝達要素51及び回転力伝達要素53を、所定の空所59に間違いなく取り付けることができる。つまり、回転力伝達要素53のための空所59に、誤って軸力伝達要素51を取り付けるなどの誤組が防止される。
In addition, the through hole 57 and the concave portion 55 constituting the void 59 have a shape corresponding to the axial force transmission element 51 having a substantially octagonal prism shape. That is, the four corners facing the chamfered portions 70a and 70b of the axial force transmitting element 51 are, for example, curved surfaces (R-shaped) having a size corresponding to the chamfered dimensions of the chamfered portions 70a and 70b of the axial force transmitting element 51. Has been.
With such a configuration, it is possible to prevent erroneous assembly in which the axial force transmission element 51 is mistakenly installed in the space 59 by mistake in the mounting direction. In addition, the axial force transmission element 51 and the rotational force transmission element 53 can be definitely attached to the predetermined space 59. In other words, erroneous assembly such as erroneous attachment of the axial force transmission element 51 to the space 59 for the rotational force transmission element 53 is prevented.

さらに、軸力伝達要素51が面取りされており、しかも出力軸30の移動先側の2つの面取り部70a,70aの面取り寸法が大きいので、出力軸30の移動先側を向く軸方向荷重が空所59の内壁面に負荷された場合に、空所59(貫通孔57)の内壁面の隅部への応力集中が緩和される。
なお、軸力伝達要素51の径方向外方を向く八角形面72は、平面状でもよいが、図13に示すような径方向外方側に凸の曲面状でもよい。また、軸力伝達要素51の軸方向一端面(出力軸30の移動先側の面)は、図13,14に示すように、第2実施形態の変形例と同様の形状としてもよい。すなわち、軸力伝達要素51は、略直方体状の径方向外方部分51aと径方向内方部分51bとからなり、2つの直方体が一体となった部材であり、出力軸30の貫通孔57に収容される径方向外方部分51aは、ナット3の凹部55に収容される径方向内方部分51bよりも軸方向長さが大きい。
Further, since the axial force transmission element 51 is chamfered and the chamfer dimensions of the two chamfered portions 70a, 70a on the movement destination side of the output shaft 30 are large, the axial load directed toward the movement destination side of the output shaft 30 is empty. When a load is applied to the inner wall surface of the place 59, stress concentration at the corner of the inner wall surface of the void 59 (through hole 57) is alleviated.
Note that the octagonal surface 72 facing outward in the radial direction of the axial force transmission element 51 may be planar, or may be a curved surface convex outward in the radial direction as shown in FIG. Moreover, the axial direction one end surface (surface on the movement destination side of the output shaft 30) of the axial force transmission element 51 may have the same shape as the modification of the second embodiment, as shown in FIGS. That is, the axial force transmission element 51 is a member that is formed of a substantially rectangular parallelepiped radial outer portion 51 a and a radial inner portion 51 b, and is a member in which two rectangular parallelepipeds are integrated. The radially outer portion 51 a accommodated has a larger axial length than the radially inner portion 51 b accommodated in the recess 55 of the nut 3.

〔第4実施形態〕
第4実施形態のアクチュエータの構成、動作、及び作用効果等は、第1実施形態とほぼ同様であるので、異なる部分のみ説明し、同様の部分の説明は省略する。なお、以下の説明においては、第1実施形態のアクチュエータと同一又は相当する部分には、第1実施形態と同一の符号を用いて説明する。
[Fourth Embodiment]
Since the configuration, operation, effects, and the like of the actuator of the fourth embodiment are substantially the same as those of the first embodiment, only different parts will be described and description of the same parts will be omitted. In the following description, the same or corresponding parts as those of the actuator of the first embodiment will be described using the same reference numerals as those of the first embodiment.

第4実施形態のアクチュエータにおいては、軸力伝達要素51と回転力伝達要素53の形状が異なっている。このような構成であれば、軸力伝達要素51及び回転力伝達要素53を、誤った空所59に取り付ける誤組を抑制することができる。つまり、回転力伝達要素53のための空所59に、誤って軸力伝達要素51を取り付けるなどの誤組が抑制される。   In the actuator of the fourth embodiment, the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different. With such a configuration, it is possible to suppress erroneous assembly of attaching the axial force transmission element 51 and the rotational force transmission element 53 to the wrong space 59. In other words, erroneous assembly such as erroneous attachment of the axial force transmission element 51 to the space 59 for the rotational force transmission element 53 is suppressed.

例えば、軸力伝達要素51及び回転力伝達要素53が、径方向外方から見た外面の形状が略長方形である部材の場合には、回転力伝達要素53の外面の長手方向長さよりも軸力伝達要素51の外面の長手方向長さの方を大きくして、軸力伝達要素51と回転力伝達要素53の形状を異なるものとすればよい。あるいは、回転力伝達要素53の外面の短手方向長さよりも軸力伝達要素51の外面の短手方向長さの方を大きくして、軸力伝達要素51と回転力伝達要素53の形状を異なるものとしてもよい。   For example, in the case where the axial force transmission element 51 and the rotational force transmission element 53 are members whose outer surfaces are substantially rectangular when viewed from the outside in the radial direction, the axial force is longer than the longitudinal length of the outer surface of the rotational force transmission element 53. The longitudinal length of the outer surface of the force transmission element 51 may be increased so that the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different. Alternatively, the axial length of the axial force transmission element 51 and the rotational force transmission element 53 are made larger by making the lateral length of the outer surface of the axial force transmission element 51 larger than the lateral length of the outer surface of the rotational force transmission element 53. It may be different.

なお、空所59を構成する貫通孔57及び凹部55は、軸力伝達要素51又は回転力伝達要素53の形状に対応する形状をなしている。また、軸力伝達要素51及び回転力伝達要素53は、図15に示すように、直方体状部材の平行な四辺が面取りされた略八角柱状部材としてもよい(その八角形面を径方向外方に向けて空所59内に配されている)。
このような構成であれば、回転力伝達要素53のための空所59に軸力伝達要素51を入れることができないので、誤組を防止することができる。回転力伝達要素53に作用する周方向荷重よりも軸力伝達要素51に作用する軸方向荷重の方が一般的には大きいので、このような構成とすることが好ましい。
Note that the through hole 57 and the recess 55 constituting the space 59 have a shape corresponding to the shape of the axial force transmission element 51 or the rotational force transmission element 53. Further, as shown in FIG. 15, the axial force transmission element 51 and the rotational force transmission element 53 may be substantially octagonal columnar members in which four parallel sides of a rectangular parallelepiped member are chamfered (the octagonal surfaces are radially outward). Is located in the void 59).
With such a configuration, since the axial force transmission element 51 cannot be inserted into the space 59 for the rotational force transmission element 53, erroneous assembly can be prevented. Since the axial load acting on the axial force transmission element 51 is generally larger than the circumferential load acting on the rotational force transmission element 53, such a configuration is preferable.

より好ましくは、図15に示すような構成とするとよい。すなわち、回転力伝達要素53の外面の長手方向長さL2よりも軸力伝達要素51の外面の長手方向長さL1の方を大きくし、且つ、軸力伝達要素51の外面の短手方向長さd1よりも回転力伝達要素53の外面の短手方向長さd2の方を大きくするとよい。
このような構成であれば、回転力伝達要素53のための空所59に軸力伝達要素51を入れることができないことに加えて、軸力伝達要素51のための空所59に回転力伝達要素53を入れることができないので、誤組を完全に防止することができる。
More preferably, the configuration shown in FIG. That is, the longitudinal length L1 of the outer surface of the axial force transmitting element 51 is made larger than the longitudinal length L2 of the outer surface of the rotational force transmitting element 53, and the lateral length of the outer surface of the axial force transmitting element 51 is increased. The length d2 in the short direction of the outer surface of the rotational force transmitting element 53 is preferably larger than the length d1.
With this configuration, in addition to the fact that the axial force transmission element 51 cannot be inserted into the space 59 for the rotational force transmission element 53, the rotational force transmission to the space 59 for the axial force transmission element 51. Since the element 53 cannot be inserted, it is possible to completely prevent misconfiguration.

〔第5実施形態〕
第5実施形態のアクチュエータの構成、動作、及び作用効果等は、第1,4実施形態とほぼ同様であるので、異なる部分のみ説明し、同様の部分の説明は省略する。なお、以下の説明においては、第1,4実施形態のアクチュエータと同一又は相当する部分には、第1,4実施形態と同一の符号を用いて説明する。
[Fifth Embodiment]
Since the configuration, operation, effects, and the like of the actuator of the fifth embodiment are substantially the same as those of the first and fourth embodiments, only different parts will be described and description of the same parts will be omitted. In the following description, the same or corresponding parts as those of the actuators of the first and fourth embodiments will be described using the same reference numerals as those of the first and fourth embodiments.

第5実施形態のアクチュエータにおいては、軸力伝達要素51と回転力伝達要素53の形状が異なっている。このような構成であれば、軸力伝達要素51及び回転力伝達要素53を、誤った空所59に取り付ける誤組を抑制することができる。つまり、回転力伝達要素53のための空所59に、誤って軸力伝達要素51を取り付けるなどの誤組が抑制される。   In the actuator of the fifth embodiment, the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different. With such a configuration, it is possible to suppress erroneous assembly of attaching the axial force transmission element 51 and the rotational force transmission element 53 to the wrong space 59. In other words, erroneous assembly such as erroneous attachment of the axial force transmission element 51 to the space 59 for the rotational force transmission element 53 is suppressed.

例えば、軸力伝達要素51及び回転力伝達要素53が、直方体状部材の平行な四辺が面取りされた略八角柱状部材である場合には、軸力伝達要素51及び回転力伝達要素53の少なくとも一方において、4つの面取り部のうち一部の面取り寸法が他部の面取り寸法とは異なるようにして、軸力伝達要素51と回転力伝達要素53の形状を異なるものとすればよい。このような構成であれば、軸力伝達要素51と回転力伝達要素53を目視で判別することができるので、誤組を抑制することができる。   For example, when the axial force transmission element 51 and the rotational force transmission element 53 are substantially octagonal prism-shaped members having four parallel sides of a rectangular parallelepiped member chamfered, at least one of the axial force transmission element 51 and the rotational force transmission element 53 is used. In this case, the shape of the axial force transmission element 51 and the rotational force transmission element 53 may be made different by making some of the four chamfered portions different from the chamfered dimensions of the other portions. With such a configuration, the axial force transmission element 51 and the rotational force transmission element 53 can be discriminated visually, so that erroneous assembly can be suppressed.

軸力伝達要素51及び回転力伝達要素53においては、4つの面取り部のうち3つの面取り寸法を同一にして残り1つの面取り寸法をそれとは異なるようにしてもよいし、4つの面取り部の面取り寸法がそれぞれ全て異なるようにしてもよい。また、4つの面取り部のうち2つの面取り寸法を同一にして、残り2つの面取り寸法をそれとは異なるようにしてもよい。この場合には、前記残り2つの面取り寸法は、互いに同一でもよいし、異なっていてもよい。   In the axial force transmission element 51 and the rotational force transmission element 53, the three chamfered dimensions may be the same among the four chamfered parts, and the remaining one chamfered dimension may be different from that, or the four chamfered parts may be chamfered. All the dimensions may be different. Moreover, two chamfering dimensions may be made the same among the four chamfered portions, and the remaining two chamfering dimensions may be different from those. In this case, the remaining two chamfer dimensions may be the same or different from each other.

なお、空所59を構成する貫通孔57及び凹部55は、軸力伝達要素51又は回転力伝達要素53の形状に対応する形状をなしていてもよい。すなわち、軸力伝達要素51、回転力伝達要素53の面取り部に対向する4つの隅部は、上記面取り部の面取り寸法に対応した大きさの例えば曲面状(R形状)としてもよい。
以下に具体的な実施例をあげて説明する。まず、実施例1について説明する。軸力伝達要素51は、図16に示すように、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて空所59内に配されている。
Note that the through hole 57 and the recess 55 constituting the void 59 may have a shape corresponding to the shape of the axial force transmission element 51 or the rotational force transmission element 53. That is, the four corners facing the chamfered portions of the axial force transmitting element 51 and the rotational force transmitting element 53 may have a curved surface shape (R shape) having a size corresponding to the chamfered dimension of the chamfered portion.
Hereinafter, specific examples will be described. First, Example 1 will be described. As shown in FIG. 16, the axial force transmitting element 51 is a substantially octagonal columnar member having four parallel sides of a rectangular parallelepiped member chamfered, and the octagonal surface is disposed in the cavity 59 with the octagonal surface facing radially outward. Has been.

そして、4つの面取り部のうち、出力軸30の移動先側(図16では右側)の2つの面取り部70a,70aと、出力軸30の反移動先側(図16では左側)の2つの面取り部70b,70bとでは、面取り寸法が異なっており、出力軸30の移動先側の2つの面取り部70a,70aが、出力軸30の反移動先側の2つの面取り部70b,70bよりも面取り寸法が大きい。これらの面取り部70a,70bは、図16に示すような平面状でもよいが、曲面状(R形状)でもよい。   Of the four chamfered portions, two chamfered portions 70a, 70a on the movement destination side (right side in FIG. 16) of the output shaft 30 and two chamfers on the opposite movement destination side (left side in FIG. 16) of the output shaft 30. The chamfer dimensions of the portions 70b and 70b are different, and the two chamfered portions 70a and 70a on the destination side of the output shaft 30 are chamfered more than the two chamfered portions 70b and 70b on the opposite side of the output shaft 30 on the destination side. The dimensions are large. These chamfered portions 70a and 70b may be planar as shown in FIG. 16, but may be curved (R-shaped).

なお、軸力伝達要素51のための空所59を構成する貫通孔57及び凹部55は、軸力伝達要素51の形状に対応する形状をなしている。すなわち、軸力伝達要素51の面取り部70a,70bに対向する4つの隅部は、面取り部70a,70bの面取り寸法に対応した大きさの曲面状(R形状)となっている。
一方、回転力伝達要素53は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、4つの面取り部の面取り寸法が全て同一である。よって、軸力伝達要素51と回転力伝達要素53の形状が異なるため、誤組を抑制することができる。また、出力軸30の移動先側の2つの面取り部70a,70aの面取り寸法が大きいので、出力軸30の移動先側を向く軸方向荷重が空所59の内壁面に負荷された場合に、空所59(貫通孔57)の内壁面の隅部への応力集中が緩和される。
Note that the through hole 57 and the recess 55 constituting the space 59 for the axial force transmission element 51 have a shape corresponding to the shape of the axial force transmission element 51. That is, the four corners facing the chamfered portions 70a and 70b of the axial force transmitting element 51 are curved surfaces (R-shaped) having a size corresponding to the chamfered dimensions of the chamfered portions 70a and 70b.
On the other hand, the rotational force transmitting element 53 is a substantially octagonal columnar member in which four parallel sides of a rectangular parallelepiped member are chamfered, and the chamfer dimensions of the four chamfered portions are all the same. Therefore, since the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different, erroneous assembly can be suppressed. Further, since the chamfer dimension of the two chamfered portions 70a, 70a on the destination side of the output shaft 30 is large, when an axial load facing the destination side of the output shaft 30 is applied to the inner wall surface of the void 59, Stress concentration at the corner of the inner wall surface of the void 59 (through hole 57) is alleviated.

次に、実施例2について説明する。軸力伝達要素51の形状は、実施例1(図16)と同様である。また、軸力伝達要素51のための空所59を構成する貫通孔57及び凹部55の形状も、実施例1と同様である。
一方、回転力伝達要素53は、図17に示すように、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて空所59内に配されている。
Next, Example 2 will be described. The shape of the axial force transmission element 51 is the same as that of the first embodiment (FIG. 16). In addition, the shapes of the through hole 57 and the recess 55 that form the space 59 for the axial force transmission element 51 are the same as those in the first embodiment.
On the other hand, as shown in FIG. 17, the rotational force transmitting element 53 is a substantially octagonal columnar member whose parallel four sides of a rectangular parallelepiped member are chamfered, and the octagonal surface faces radially outward in the cavity 59. It is arranged in.

そして、4つの面取り部のうち、一方の対角線上の2つの面取り部72a,72aと、他方の対角線上の2つの面取り部72b,72bとでは、面取り寸法が異なっており、一方の対角線上の2つの面取り部72a,72aが、他方の対角線上の2つの面取り部72b,72bよりも面取り寸法が大きい。これらの面取り部72a,72bは、図17に示すような平面状でもよいが、曲面状(R形状)でもよい。   Of the four chamfered portions, the two chamfered portions 72a and 72a on one diagonal line and the two chamfered portions 72b and 72b on the other diagonal line have different chamfer dimensions, and are on one diagonal line. The two chamfered portions 72a and 72a have larger chamfer dimensions than the two chamfered portions 72b and 72b on the other diagonal line. These chamfered portions 72a and 72b may have a planar shape as shown in FIG. 17, but may also have a curved surface shape (R shape).

なお、回転力伝達要素53のための空所59を構成する貫通孔57及び凹部55は、回転力伝達要素53の形状に対応する形状をなしている。すなわち、回転力伝達要素53の面取り部72a,72bに対向する4つの隅部は、面取り部72a,72bの面取り寸法に対応した大きさの曲面状(R形状)となっている。
このように、軸力伝達要素51と回転力伝達要素53の形状が異なるため、誤組を抑制することができる。
Note that the through hole 57 and the recess 55 constituting the space 59 for the rotational force transmitting element 53 have a shape corresponding to the shape of the rotational force transmitting element 53. That is, the four corners facing the chamfered portions 72a and 72b of the rotational force transmitting element 53 have a curved surface shape (R shape) having a size corresponding to the chamfered dimensions of the chamfered portions 72a and 72b.
Thus, since the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different, erroneous assembly can be suppressed.

次に、実施例3について説明する。軸力伝達要素51及び回転力伝達要素53の形状は、それぞれ実施例2と同様である。また、軸力伝達要素51及び回転力伝達要素53のための空所59を構成する貫通孔57及び凹部55の形状も、それぞれ実施例2と同様である。
さらに、回転力伝達要素53の面取り寸法が大きい方の面取り部72aは、軸力伝達要素51の面取り寸法が小さい方の面取り部70bよりも、面取り寸法が大きく、軸力伝達要素51の面取り寸法が大きい方の面取り部70aは、回転力伝達要素53の面取り寸法が小さい方の面取り部72bよりも、面取り寸法が大きい。
Next, Example 3 will be described. The shapes of the axial force transmission element 51 and the rotational force transmission element 53 are the same as those in the second embodiment. Further, the shapes of the through hole 57 and the recess 55 constituting the space 59 for the axial force transmission element 51 and the rotational force transmission element 53 are the same as those of the second embodiment.
Further, the chamfered portion 72a with the larger chamfer dimension of the rotational force transmitting element 53 has a larger chamfered dimension than the chamfered portion 70b with the smaller chamfered dimension of the axial force transmitting element 51, and the chamfered dimension of the axial force transmitting element 51. The chamfered portion 70a having a larger chamfer has a chamfered dimension than the chamfered portion 72b having a smaller chamfered dimension of the rotational force transmitting element 53.

このような構成であれば、軸力伝達要素51の前記外面の長手方向長さL1と回転力伝達要素53の前記外面の長手方向長さL2とが同一で、且つ、軸力伝達要素51の前記外面の短手方向長さd1と回転力伝達要素53の前記外面の短手方向長さd2とが同一であったとしても、回転力伝達要素53のための空所59に軸力伝達要素51を入れることができないことに加えて、軸力伝達要素51のための空所59に回転力伝達要素53を入れることができないので、誤組を完全に防止することができる。   With this configuration, the longitudinal length L1 of the outer surface of the axial force transmission element 51 and the longitudinal length L2 of the outer surface of the rotational force transmission element 53 are the same, and the axial force transmission element 51 Even if the short direction length d1 of the outer surface and the short direction length d2 of the outer surface of the torque transmitting element 53 are the same, the axial force transmitting element is provided in the space 59 for the torque transmitting element 53. In addition to being unable to insert 51, the rotational force transmitting element 53 cannot be inserted into the space 59 for the axial force transmitting element 51, so that it is possible to completely prevent erroneous assembly.

〔第6実施形態〕
第6実施形態のアクチュエータの構成、動作、及び作用効果等は、第1,4実施形態とほぼ同様であるので、異なる部分のみ説明し、同様の部分の説明は省略する。なお、以下の説明においては、第1,4実施形態のアクチュエータと同一又は相当する部分には、第1,4実施形態と同一の符号を用いて説明する。
[Sixth Embodiment]
Since the configuration, operation, effects, and the like of the actuator of the sixth embodiment are substantially the same as those of the first and fourth embodiments, only different parts will be described and description of the same parts will be omitted. In the following description, the same or corresponding parts as those of the actuators of the first and fourth embodiments will be described using the same reference numerals as those of the first and fourth embodiments.

第6実施形態のアクチュエータにおいては、軸力伝達要素51と回転力伝達要素53の形状が異なっている。具体的には、軸力伝達要素51の径方向長さと回転力伝達要素53の径方向長さが異なっている。
軸力伝達要素51のための空所59は、軸力伝達要素51の形状に対応する形状をなしており、回転力伝達要素53のための空所59は、回転力伝達要素53の形状に対応する形状をなしているので、誤組がなされた場合には、軸力伝達要素51及び回転力伝達要素53のうち径方向長さの大きい方が空所59に入りきらず、径方向外方に突出することとなる。よって、第一出力軸支持部材61を取り付けることが困難となるので、誤組が抑制される。
In the actuator of the sixth embodiment, the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different. Specifically, the radial length of the axial force transmission element 51 and the radial length of the rotational force transmission element 53 are different.
The space 59 for the axial force transmission element 51 has a shape corresponding to the shape of the axial force transmission element 51, and the space 59 for the rotational force transmission element 53 has the shape of the rotational force transmission element 53. Since the corresponding shape is formed, when an incorrect combination is made, the larger one of the axial force transmission element 51 and the rotational force transmission element 53 in the radial direction does not enter the void 59, and the outer radial direction. Will protrude. Therefore, it is difficult to attach the first output shaft support member 61, and thus misassembly is suppressed.

軸方向に直交する平面で切断した断面図である図18に示すように、軸力伝達要素51の径方向長さH1が回転力伝達要素53の径方向長さH2よりも大きい構成とすることが好ましい。回転力伝達要素53の径方向長さH2が軸力伝達要素51の径方向長さH1よりも大きい構成としてもよいが、一般的には、回転力伝達要素53よりも軸力伝達要素51の方が大きい荷重を受けるため、回転力伝達要素53よりも軸力伝達要素51の方を大きくすることが好ましい。   As shown in FIG. 18 which is a cross-sectional view cut along a plane orthogonal to the axial direction, the radial length H1 of the axial force transmission element 51 is larger than the radial length H2 of the rotational force transmission element 53. Is preferred. Although the radial length H2 of the rotational force transmission element 53 may be larger than the radial length H1 of the axial force transmission element 51, in general, the axial force transmission element 51 is larger than the rotational force transmission element 53. Since the direction receives a larger load, it is preferable to make the axial force transmission element 51 larger than the rotational force transmission element 53.

〔第7実施形態〕
第7実施形態のアクチュエータの構成、動作、及び作用効果等は、第1,4実施形態とほぼ同様であるので、異なる部分のみ説明し、同様の部分の説明は省略する。なお、以下の説明においては、第1,4実施形態のアクチュエータと同一又は相当する部分には、第1,4実施形態と同一の符号を用いて説明する。
[Seventh Embodiment]
Since the configuration, operation, effects, and the like of the actuator of the seventh embodiment are substantially the same as those of the first and fourth embodiments, only different parts will be described and description of the same parts will be omitted. In the following description, the same or corresponding parts as those of the actuators of the first and fourth embodiments will be described using the same reference numerals as those of the first and fourth embodiments.

第7実施形態のアクチュエータにおいては、軸力伝達要素51と回転力伝達要素53の形状が異なっている。具体的には、図19に示すように、軸力伝達要素51の周方向両端部に、貫通孔57の内面に対向するように凸部74が形成されている。また、軸力伝達要素51のための空所59を構成する貫通孔57の内面には、凸部74に係合する係合凹部75が形成されている。そして、空所59に組み込まれた軸力伝達要素51の凸部74は、係合凹部75に係合している。   In the actuator of the seventh embodiment, the shapes of the axial force transmission element 51 and the rotational force transmission element 53 are different. Specifically, as shown in FIG. 19, convex portions 74 are formed at both ends in the circumferential direction of the axial force transmission element 51 so as to face the inner surface of the through hole 57. In addition, an engagement recess 75 that engages with the protrusion 74 is formed on the inner surface of the through hole 57 that forms the space 59 for the axial force transmission element 51. The convex portion 74 of the axial force transmission element 51 incorporated in the space 59 is engaged with the engaging concave portion 75.

一方、回転力伝達要素53の軸方向両端部に、貫通孔57の内面に対向するように窪み77が形成されている。また、回転力伝達要素53のための空所59を構成する貫通孔57の内面には、窪み77に係合する係合凸部78が形成されている。そして、空所59に組み込まれた回転力伝達要素53の窪み77は、係合凸部78に係合している。
このような構成であれば、軸力伝達要素51は、係合凹部75が形成されていない空所59には、凸部74が干渉して組み込むことができないので、誤組を防止することができる。なお、上記の例とは逆に、軸力伝達要素51に窪みを設け、回転力伝達要素53に凸部を設けてもよい。
On the other hand, recesses 77 are formed at both axial ends of the rotational force transmitting element 53 so as to face the inner surface of the through hole 57. Further, on the inner surface of the through hole 57 constituting the space 59 for the rotational force transmitting element 53, an engagement convex portion 78 that engages with the recess 77 is formed. The recess 77 of the rotational force transmitting element 53 incorporated in the space 59 is engaged with the engagement convex portion 78.
With such a configuration, the axial force transmission element 51 cannot be incorporated into the void 59 where the engagement concave portion 75 is not formed because the convex portion 74 interferes and can be prevented from being misassembled. it can. In contrast to the above example, the axial force transmission element 51 may be provided with a recess and the rotational force transmission element 53 may be provided with a convex portion.

また、軸力伝達要素51及び回転力伝達要素53の一方に凸部74を設けるとともに、貫通孔57の内面には、凸部74に係合する係合凹部75を設ければ、軸力伝達要素51及び回転力伝達要素53の他方には窪み77を設けなくてもよい(すなわち、他の実施形態と同様に、凸部74も窪み77も形成されていない部材でもよい)。
なお、第1〜第5実施形態は本発明の一例を示したものであって、本発明は第1〜第5実施形態に限定されるものではない。例えば、第1〜第5実施形態のうちいずれか2つ以上の実施形態の構成を組み合わせてもよい。
Further, if the convex portion 74 is provided on one of the axial force transmission element 51 and the rotational force transmission element 53 and the engagement concave portion 75 that engages the convex portion 74 is provided on the inner surface of the through hole 57, the axial force transmission is achieved. The other of the element 51 and the rotational force transmitting element 53 may not be provided with the depression 77 (that is, a member in which neither the convex portion 74 nor the depression 77 is formed may be provided as in the other embodiments).
In addition, 1st-5th embodiment showed an example of this invention, Comprising: This invention is not limited to 1st-5th embodiment. For example, you may combine the structure of any 2 or more embodiment among 1st-5th embodiment.

1 ねじ軸
3 ナット
10 ボールねじ
30 出力軸
30a 中空内部
40 ハウジング部材
51 軸力伝達要素
51a 径方向外方部分
51b 径方向内方部分
53 回転力伝達要素
53a 突起
55 凹部
57 貫通孔
57a 径方向外方部分
57b 径方向内方部分
59 空所
61 第一出力軸支持部材
63 第二出力軸支持部材
65 スリット
70a,70b 面取り部
72a,72b 面取り部
74 凸部
75 係合凹部
Ca 周方向隙間
Cb 軸方向隙間
DESCRIPTION OF SYMBOLS 1 Screw shaft 3 Nut 10 Ball screw 30 Output shaft 30a Hollow inside 40 Housing member 51 Axial force transmission element 51a Radial outer part 51b Radial inner part 53 Rotational force transmission element 53a Protrusion 55 Recess 55 Through-hole 57a Radial outer Direction portion 57b radial inner portion 59 void 61 first output shaft support member 63 second output shaft support member 65 slit 70a, 70b chamfered portion 72a, 72b chamfered portion 74 convex portion 75 engaging concave portion Ca circumferential clearance Cb shaft Direction gap

Claims (15)

回転運動を直線運動に変換するアクチュエータにおいて、
略筒状のハウジング部材と、
前記ハウジング部材の内部空間に同軸に配され、回転力が入力されるねじ軸と、
前記回転力により前記ねじ軸が回転することに伴って前記ねじ軸に沿って直線移動するように前記ねじ軸に係合されたナットと、
前記ナットに連結され、前記ナットとともに直線移動して軸力を出力する中空状の出力軸と、
前記出力軸の外周面と前記ハウジング部材の内周面との間に介装され、前記出力軸を前記ハウジング部材に支持する複数の出力軸支持部材と、
を備えるとともに、下記の5つの条件A,B,C,D,Eを満足することを特徴とするアクチュエータ。
条件A:前記ナットは、前記出力軸の中空内部の軸方向一端部近傍に内包される。
条件B:前記ナットの外周面に形成された凹部と、該凹部に連続し且つ前記出力軸を径方向に貫通する貫通孔と、からなる空所が、軸方向略同位置に複数形成されており、各空所内に軸力伝達要素又は回転力伝達要素が配されていて、前記ナットは前記軸力伝達要素及び前記回転力伝達要素により、前記出力軸に連結されている。
条件C:前記複数の出力軸支持部材は、前記出力軸の外周面に沿う略環状部材であり、そのうち第一出力軸支持部材は、前記軸力伝達要素及び前記回転力伝達要素を覆うように、前記各空所と軸方向略同位置に配されており、第二出力軸支持部材は、前記ハウジング部材の軸方向端部近傍に配されている。
条件D:前記軸力伝達要素の軸方向両端面は前記ナット及び前記出力軸と接し、前記軸力伝達要素の前記ナットの周方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に周方向隙間を有する。
条件E:前記回転力伝達要素の前記ナットの周方向両端面は前記ナット及び前記出力軸と接し、前記回転力伝達要素の軸方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に軸方向隙間を有する。
In an actuator that converts rotational motion into linear motion,
A substantially cylindrical housing member;
A screw shaft that is coaxially arranged in the internal space of the housing member and receives rotational force;
A nut engaged with the screw shaft so as to linearly move along the screw shaft as the screw shaft is rotated by the rotational force;
A hollow output shaft connected to the nut and linearly moving with the nut to output an axial force;
A plurality of output shaft support members interposed between an outer peripheral surface of the output shaft and an inner peripheral surface of the housing member, and supporting the output shaft on the housing member;
And an actuator characterized by satisfying the following five conditions A, B, C, D, and E:
Condition A: The nut is enclosed in the vicinity of one axial end portion of the hollow interior of the output shaft.
Condition B: a plurality of voids including a recess formed on the outer peripheral surface of the nut and a through hole that continues to the recess and penetrates the output shaft in the radial direction are formed at substantially the same position in the axial direction. In each cavity, an axial force transmission element or a rotational force transmission element is arranged, and the nut is connected to the output shaft by the axial force transmission element and the rotational force transmission element.
Condition C: the plurality of output shaft support members are substantially annular members along the outer peripheral surface of the output shaft, and the first output shaft support member covers the axial force transmission element and the rotational force transmission element. The second output shaft support member is disposed in the vicinity of the axial end portion of the housing member.
Condition D: Both axial end surfaces of the axial force transmission element are in contact with the nut and the output shaft, and at least one of circumferential end surfaces of the nut of the axial force transmission element is between the nut and the output shaft. It has a circumferential clearance.
Condition E: The circumferential end surfaces of the nut of the rotational force transmitting element are in contact with the nut and the output shaft, and at least one of the axial end surfaces of the rotational force transmitting element is between the nut and the output shaft. Has an axial clearance.
回転運動を直線運動に変換するアクチュエータにおいて、
略筒状のハウジング部材と、
前記ハウジング部材の内部空間に同軸に配され、回転力が入力されるねじ軸と、
前記回転力により前記ねじ軸が回転することに伴って前記ねじ軸に沿って直線移動するように前記ねじ軸に係合されたナットと、
前記ナットに連結され、前記ナットとともに直線移動して軸力を出力する中空状の出力軸と、
前記出力軸の外周面と前記ハウジング部材の内周面との間に介装され、前記出力軸を前記ハウジング部材に支持する複数の出力軸支持部材と、
を備えるとともに、下記の5つの条件F,G,H,I,Pを満足することを特徴とするアクチュエータ。
条件F:前記ナットは、前記出力軸の中空内部の軸方向一端部近傍に内包される。
条件G:前記ナットの外周面に形成された凹部と、該凹部に連続し且つ前記出力軸を径方向に貫通する貫通孔と、からなる空所が、軸方向略同位置に複数形成されており、各空所内に軸力伝達要素又は回転力伝達要素が配されていて、前記ナットは前記軸力伝達要素及び前記回転力伝達要素により、前記出力軸に連結されている。
条件H:前記複数の出力軸支持部材は、前記出力軸の外周面に沿う略環状部材であり、そのうち第一出力軸支持部材は、前記軸力伝達要素及び前記回転力伝達要素を覆うように、前記各空所と軸方向略同位置に配されており、第二出力軸支持部材は、前記ハウジング部材の軸方向端部近傍に配されている。
条件I:前記ナットの外周面と前記出力軸の内周面との間の径方向隙間が、前記第一出力軸支持部材の外周面と前記ハウジング部材の内周面との間の径方向隙間、及び、前記第二出力軸支持部材の内周面と前記出力軸の外周面との間の径方向隙間よりも大きい。
条件P:前記第一出力軸支持部材は、軸方向に延びるスリットを有する略C字状の部材であるとともに、前記回転力伝達要素は、径方向外方に延びる突起を備えており、前記突起は前記スリットに係合している。
In an actuator that converts rotational motion into linear motion,
A substantially cylindrical housing member;
A screw shaft that is coaxially arranged in the internal space of the housing member and receives rotational force;
A nut engaged with the screw shaft so as to linearly move along the screw shaft as the screw shaft is rotated by the rotational force;
A hollow output shaft connected to the nut and linearly moving with the nut to output an axial force;
A plurality of output shaft support members interposed between an outer peripheral surface of the output shaft and an inner peripheral surface of the housing member, and supporting the output shaft on the housing member;
And an actuator characterized by satisfying the following five conditions F, G, H, I , and P:
Condition F: The nut is enclosed in the vicinity of one axial end portion of the hollow inside of the output shaft.
Condition G: A plurality of voids including a recess formed on the outer peripheral surface of the nut and a through hole that is continuous with the recess and penetrates the output shaft in the radial direction are formed at substantially the same position in the axial direction. In each cavity, an axial force transmission element or a rotational force transmission element is arranged, and the nut is connected to the output shaft by the axial force transmission element and the rotational force transmission element.
Condition H: The plurality of output shaft support members are substantially annular members along the outer peripheral surface of the output shaft, and the first output shaft support member covers the axial force transmission element and the rotational force transmission element. The second output shaft support member is disposed in the vicinity of the axial end portion of the housing member.
Condition I: A radial clearance between the outer peripheral surface of the nut and the inner peripheral surface of the output shaft is a radial clearance between the outer peripheral surface of the first output shaft support member and the inner peripheral surface of the housing member. And larger than the radial clearance between the inner peripheral surface of the second output shaft support member and the outer peripheral surface of the output shaft.
Condition P: The first output shaft support member is a substantially C-shaped member having a slit extending in the axial direction, and the rotational force transmitting element includes a protrusion extending outward in the radial direction. Is engaged with the slit.
回転運動を直線運動に変換するアクチュエータにおいて、
略筒状のハウジング部材と、
前記ハウジング部材の内部空間に同軸に配され、回転力が入力されるねじ軸と、
前記回転力により前記ねじ軸が回転することに伴って前記ねじ軸に沿って直線移動するように前記ねじ軸に係合されたナットと、
前記ナットに連結され、前記ナットとともに直線移動して軸力を出力する中空状の出力軸と、
前記出力軸の外周面と前記ハウジング部材の内周面との間に介装され、前記出力軸を前記ハウジング部材に支持する複数の出力軸支持部材と、
を備えるとともに、下記の6つの条件J,K,L,M,N,Oを満足することを特徴とするアクチュエータ。
条件J:前記ナットは、前記出力軸の中空内部の軸方向一端部近傍に内包される。
条件K:前記ナットの外周面に形成された凹部と、該凹部に連続し且つ前記出力軸を径方向に貫通する貫通孔と、からなる空所が、軸方向略同位置に複数形成されており、各空所内に軸力伝達要素又は回転力伝達要素が配されていて、前記ナットは前記軸力伝達要素及び前記回転力伝達要素により、前記出力軸に連結されている。
条件L:前記複数の出力軸支持部材は、前記出力軸の外周面に沿う略環状部材であり、そのうち第一出力軸支持部材は、前記軸力伝達要素及び前記回転力伝達要素を覆うように、前記各空所と軸方向略同位置に配されており、第二出力軸支持部材は、前記ハウジング部材の軸方向端部近傍に配されている。
条件M:前記軸力伝達要素の軸方向両端面は前記ナット及び前記出力軸と接し、前記軸力伝達要素の前記ナットの周方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に周方向隙間を有する。
条件N:前記回転力伝達要素の前記ナットの周方向両端面は前記ナット及び前記出力軸と接し、前記回転力伝達要素の軸方向両端面の少なくとも一方は前記ナット及び前記出力軸との間に軸方向隙間を有する。
条件O:前記ナットの外周面と前記出力軸の内周面との間の径方向隙間が、前記第一出力軸支持部材の外周面と前記ハウジング部材の内周面との間の径方向隙間、及び、前記第二出力軸支持部材の内周面と前記出力軸の外周面との間の径方向隙間よりも大きい。
In an actuator that converts rotational motion into linear motion,
A substantially cylindrical housing member;
A screw shaft that is coaxially arranged in the internal space of the housing member and receives rotational force;
A nut engaged with the screw shaft so as to linearly move along the screw shaft as the screw shaft is rotated by the rotational force;
A hollow output shaft connected to the nut and linearly moving with the nut to output an axial force;
A plurality of output shaft support members interposed between an outer peripheral surface of the output shaft and an inner peripheral surface of the housing member, and supporting the output shaft on the housing member;
And an actuator characterized in that the following six conditions J, K, L, M, N, and O are satisfied.
Condition J: The nut is included in the vicinity of one end in the axial direction inside the hollow of the output shaft.
Condition K: A plurality of voids including a recess formed on the outer peripheral surface of the nut and a through hole that continues to the recess and penetrates the output shaft in the radial direction are formed at substantially the same position in the axial direction. In each cavity, an axial force transmission element or a rotational force transmission element is arranged, and the nut is connected to the output shaft by the axial force transmission element and the rotational force transmission element.
Condition L: The plurality of output shaft support members are substantially annular members along the outer peripheral surface of the output shaft, and the first output shaft support member covers the axial force transmission element and the rotational force transmission element. The second output shaft support member is disposed in the vicinity of the axial end portion of the housing member.
Condition M: Both axial end surfaces of the axial force transmission element are in contact with the nut and the output shaft, and at least one of circumferential end surfaces of the nut of the axial force transmission element is between the nut and the output shaft. It has a circumferential clearance.
Condition N: Both end surfaces in the circumferential direction of the nut of the rotational force transmitting element are in contact with the nut and the output shaft, and at least one of both end surfaces in the axial direction of the rotational force transmitting element is between the nut and the output shaft. Has an axial clearance.
Condition O: A radial clearance between the outer peripheral surface of the nut and the inner peripheral surface of the output shaft is a radial clearance between the outer peripheral surface of the first output shaft support member and the inner peripheral surface of the housing member. And larger than the radial clearance between the inner peripheral surface of the second output shaft support member and the outer peripheral surface of the output shaft.
前記第一出力軸支持部材は、軸方向に延びるスリットを有する略C字状の部材であるとともに、前記回転力伝達要素は、径方向外方に延びる突起を備えており、前記突起は前記スリットに係合していることを特徴とする請求項1又は請求項3に記載のアクチュエータ。 The first output shaft support member is a substantially C-shaped member having a slit extending in the axial direction, and the rotational force transmitting element includes a protrusion extending radially outward, and the protrusion is the slit. The actuator according to claim 1 , wherein the actuator is engaged with the actuator. 前記軸力伝達要素の軸方向両端面は前記出力軸の前記貫通孔に負隙間嵌合していることを特徴とする請求項1〜4のいずれか一項に記載のアクチュエータ。   5. The actuator according to claim 1, wherein both end surfaces in the axial direction of the axial force transmission element are fitted into the through hole of the output shaft with a negative clearance. 前記軸力伝達要素の径方向外方部分は径方向内方部分よりも軸方向長さが大きく、前記径方向外方部分は前記貫通孔に負隙間嵌合し、前記径方向内方部分は前記凹部に隙間嵌合していることを特徴とする請求項5に記載のアクチュエータ。   The radially outer portion of the axial force transmission element has a larger axial length than the radially inner portion, the radially outer portion is fitted with a negative gap in the through hole, and the radially inner portion is The actuator according to claim 5, wherein a gap is fitted into the recess. 前記軸力伝達要素は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて前記空所内に配されており、前記出力軸の移動先側の2つの面取り部が、前記出力軸の反移動先側の2つの面取り部よりも面取り寸法が大きいとともに、前記空所は、略八角柱状の前記軸力伝達要素に対応する形状となっていることを特徴とする請求項1〜6のいずれか一項に記載のアクチュエータ。   The axial force transmission element is a substantially octagonal columnar member whose parallel four sides of a rectangular parallelepiped member are chamfered, and is disposed in the space with the octagonal surface facing radially outward, and the output shaft The two chamfered portions on the destination side have a larger chamfer dimension than the two chamfered portions on the opposite side of the output shaft, and the space has a shape corresponding to the axial force transmission element having a substantially octagonal column shape. The actuator according to any one of claims 1 to 6, wherein the actuator is configured. 前記軸力伝達要素と前記回転力伝達要素の形状が異なることを特徴とする請求項1〜4のいずれか一項に記載のアクチュエータ。   The actuator according to claim 1, wherein the axial force transmission element and the rotational force transmission element have different shapes. 前記軸力伝達要素及び前記回転力伝達要素の径方向外方から見た外面の形状は略長方形であり、この外面の長手方向長さ又は短手方向長さは、前記回転力伝達要素よりも前記軸力伝達要素の方が大きいことを特徴とする請求項8に記載のアクチュエータ。   The shape of the outer surface of the axial force transmission element and the rotational force transmission element viewed from the outside in the radial direction is substantially rectangular, and the length of the outer surface in the longitudinal direction or the short direction is longer than that of the rotational force transmission element. The actuator according to claim 8, wherein the axial force transmission element is larger. 前記軸力伝達要素及び前記回転力伝達要素の径方向外方から見た外面の形状は略長方形であり、この外面の長手方向長さは、前記回転力伝達要素よりも前記軸力伝達要素の方が大きく、且つ、この外面の短手方向長さは、前記軸力伝達要素よりも前記回転力伝達要素の方が大きいことを特徴とする請求項8に記載のアクチュエータ。   The shape of the outer surface of the axial force transmission element and the rotational force transmission element viewed from the outside in the radial direction is substantially rectangular, and the longitudinal length of the outer surface is greater than that of the rotational force transmission element. The actuator according to claim 8, wherein the rotational force transmission element is larger than the axial force transmission element, and the outer length of the outer surface is larger than the axial force transmission element. 前記軸力伝達要素及び前記回転力伝達要素は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて前記空所内に配されており、前記軸力伝達要素及び前記回転力伝達要素はいずれも、4つの面取り部のうち一部の面取り寸法が他部の面取り寸法とは異なることを特徴とする請求項8〜10のいずれか一項に記載のアクチュエータ。   The axial force transmission element and the rotational force transmission element are substantially octagonal columnar members whose parallel four sides of a rectangular parallelepiped member are chamfered, and the octagonal surfaces are arranged in the space with the octagonal surfaces facing radially outward. The axial force transmission element and the rotational force transmission element both have a chamfer dimension of a part of the four chamfered parts different from the chamfer dimension of the other part. The actuator according to one item. 前記軸力伝達要素及び前記回転力伝達要素は、直方体状部材の平行な四辺が面取りされた略八角柱状部材であり、その八角形面を径方向外方に向けて前記空所内に配されており、
前記軸力伝達要素は、前記出力軸の移動先側の2つの面取り部が、前記出力軸の反移動先側の2つの面取り部よりも面取り寸法が大きく、
前記回転力伝達要素は、一方の対角線上の2つの面取り部が、他方の対角線上の2つの面取り部よりも面取り寸法が大きく、
前記回転力伝達要素の面取り寸法が大きい方の面取り部は、前記軸力伝達要素の面取り寸法が小さい方の面取り部よりも、面取り寸法が大きく、
前記軸力伝達要素の面取り寸法が大きい方の面取り部は、前記回転力伝達要素の面取り寸法が小さい方の面取り部よりも、面取り寸法が大きいことを特徴とする請求項8〜10のいずれか一項に記載のアクチュエータ。
The axial force transmission element and the rotational force transmission element are substantially octagonal columnar members whose parallel four sides of a rectangular parallelepiped member are chamfered, and the octagonal surfaces are arranged in the space with the octagonal surfaces facing radially outward. And
In the axial force transmission element, the two chamfered portions on the destination side of the output shaft have larger chamfer dimensions than the two chamfered portions on the opposite side of the output shaft,
In the rotational force transmitting element, two chamfered portions on one diagonal are larger in chamfer dimension than two chamfered portions on the other diagonal,
The chamfered portion with the larger chamfer dimension of the rotational force transmission element has a larger chamfer dimension than the chamfered portion with the smaller chamfer dimension of the axial force transmission element,
The chamfered portion having a larger chamfered dimension of the axial force transmission element has a larger chamfered dimension than the chamfered portion having a smaller chamfered dimension of the rotational force transmitting element. The actuator according to one item.
前記軸力伝達要素の径方向長さと前記回転力伝達要素の径方向長さが異なることを特徴とする請求項8〜12のいずれか一項に記載のアクチュエータ。   The actuator according to any one of claims 8 to 12, wherein a radial length of the axial force transmission element is different from a radial length of the rotational force transmission element. 前記軸力伝達要素又は前記回転力伝達要素の前記貫通孔又は前記凹部の内面に対向する部分に凸部を設け、前記貫通孔又は前記凹部の内面に、前記凸部に係合する係合凹部を設けたことを特徴とする請求項8〜13のいずれか一項に記載のアクチュエータ。   An engagement recess that engages the projection on the inner surface of the through-hole or the concave portion provided on the inner surface of the through-hole or the concave portion of the axial force transmission element or the rotational force transmission element. The actuator according to claim 8, wherein the actuator is provided. 振動を低減する制振装置に使用されることを特徴とする請求項1〜14のいずれか一項に記載のアクチュエータ。   The actuator according to claim 1, wherein the actuator is used in a vibration control device that reduces vibration.
JP2011161920A 2010-07-23 2011-07-25 Actuator Active JP5807424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161920A JP5807424B2 (en) 2010-07-23 2011-07-25 Actuator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010165668 2010-07-23
JP2010165668 2010-07-23
JP2011161920A JP5807424B2 (en) 2010-07-23 2011-07-25 Actuator

Publications (2)

Publication Number Publication Date
JP2012042050A JP2012042050A (en) 2012-03-01
JP5807424B2 true JP5807424B2 (en) 2015-11-10

Family

ID=45898603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161920A Active JP5807424B2 (en) 2010-07-23 2011-07-25 Actuator

Country Status (1)

Country Link
JP (1) JP5807424B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301201A (en) * 2003-03-31 2004-10-28 Asmo Co Ltd Electric actuator
JP5263652B2 (en) * 2007-05-17 2013-08-14 日本精工株式会社 Actuator

Also Published As

Publication number Publication date
JP2012042050A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US9631712B2 (en) Electric linear actuator
US20060117889A1 (en) Worm speed reducer and electric power steering device
US9353838B2 (en) Electric linear actuator
JP6111043B2 (en) Electric linear actuator
JP5853616B2 (en) Actuator and manufacturing method thereof
JP5807424B2 (en) Actuator
JP4696560B2 (en) Electric power steering device
WO2017065091A1 (en) Linear bushing capable of transmitting torque
JP5866852B2 (en) Actuator
JP2009257543A (en) Rotary shaft connecting structure and geared motor
JP2007032703A (en) Electric linear actuator
JP2013139827A (en) Actuator
JP2010242949A (en) Ball screw device
EP3733480A1 (en) Ball screw device and steering device
JP7222263B2 (en) electric power steering device
JP2010236598A (en) Ball screw device
JP2008069793A (en) Electric linear actuator
CN112977597A (en) Telescopic shaft and steering system
KR101171497B1 (en) Nut for ball screw
JP2013137087A (en) Actuator, and method for manufacturing the same
JP4731395B2 (en) Electric linear actuator
JP6254039B2 (en) Telescopic actuator
JP7375992B1 (en) Rotary linear motion converter and shift actuator
JP2012149685A (en) Shaft for constant velocity universal joint
JP2009127762A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5807424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150