JP5806100B2 - Porous silazane-coated particles, supported catalyst, and production method thereof - Google Patents

Porous silazane-coated particles, supported catalyst, and production method thereof Download PDF

Info

Publication number
JP5806100B2
JP5806100B2 JP2011275616A JP2011275616A JP5806100B2 JP 5806100 B2 JP5806100 B2 JP 5806100B2 JP 2011275616 A JP2011275616 A JP 2011275616A JP 2011275616 A JP2011275616 A JP 2011275616A JP 5806100 B2 JP5806100 B2 JP 5806100B2
Authority
JP
Japan
Prior art keywords
silazane
porous
group
particles
coated particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011275616A
Other languages
Japanese (ja)
Other versions
JP2013123697A (en
Inventor
光章 熊澤
光章 熊澤
平井 俊晴
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2011275616A priority Critical patent/JP5806100B2/en
Publication of JP2013123697A publication Critical patent/JP2013123697A/en
Application granted granted Critical
Publication of JP5806100B2 publication Critical patent/JP5806100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は多孔質シラザン被覆粒子、担持触媒およびこれらの製造方法に関する。   The present invention relates to porous silazane-coated particles, supported catalysts, and methods for producing them.

担体に金属粒子を担持させてなる排ガス浄化等のために用いる触媒として、従来、種々のものが提案されている。例えば担体物質(例えばアルミナ、ゼオライトなど)に、活性金属と呼ばれる各種金属粒子(例えばPt(白金)、Pd(パラジウム)、Cu(銅)など)を担持させてなるものが提案されている。
また、担体に金属粒子を担持させて金属粒子担持触媒を製造する方法も、従来、種々のものが提案されている。例えば担持させる金属を溶解した溶液中に担体物質を投入して、当該担体物質上に金属粒子を析出させる方法や、コロイド状の微小な粒子を分散させた金属粒子分散液に担体物質を投入して金属粒子を担持させる方法が挙げられる。
Conventionally, various catalysts have been proposed as catalysts used for purifying exhaust gas in which metal particles are supported on a carrier. For example, a material obtained by supporting various metal particles called active metals (for example, Pt (platinum), Pd (palladium), Cu (copper), etc.) on a support material (for example, alumina, zeolite, etc.) has been proposed.
Various methods for producing metal particle-supported catalysts by supporting metal particles on a carrier have been proposed. For example, a carrier material is introduced into a solution in which a metal to be supported is dissolved, and metal particles are precipitated on the carrier material, or a carrier material is introduced into a metal particle dispersion in which colloidal minute particles are dispersed. And a method of supporting metal particles.

例えば特許文献1には、金属酸化物などからなる微小な担体粒子の表面に、触媒活性をもつ微小な金属粒子を析出させる方法において、前記担体を合成する少なくとも一つの原料の吸収バンドに合致する波長を含む光を、前記原料に照射し前記担体粒子を析出させる工程と、析出した前記担体粒子と触媒活性をもつ前記金属粒子を析出するための前記原料とに、同時に、前記原料の吸収バンドに合致する波長を含む光を照射し、前記金属粒子を前記担体粒子の表面に析出させる工程と、析出した前記金属粒子を選別補収する工程とからなることを特徴とする触媒の製造方法が記載されている。   For example, in Patent Document 1, in a method of depositing fine metal particles having catalytic activity on the surface of fine carrier particles made of metal oxide or the like, it matches the absorption band of at least one raw material for synthesizing the carrier. An absorption band of the raw material is simultaneously applied to the step of irradiating the raw material with light including a wavelength to precipitate the carrier particles, and the raw material for depositing the precipitated carrier particles and the metal particles having catalytic activity. A method for producing a catalyst, comprising: a step of irradiating light having a wavelength matching the above and depositing the metal particles on the surface of the carrier particles; and a step of selectively collecting the deposited metal particles. Are listed.

特許文献2には、金属粒子及び/または金属化合物粒子が、該粒子を実質的に個々に且つ別々に保護する数平均分子量が3,000〜300,000の有機高分子化合物と共に固体担体に吸着担持されてなり、該高分子化合物及び該固体担体の少なくとも一方が、共有結合を形成して両者間に化学結合を作るべく作用し得る官能基を有さないことを特徴とする金属粒子及び/又は金属化合物粒子担持複合体が記載されている。また、その製造方法として、分散媒、金属粒子及び/又は金属化合物粒子及び保護コロイド粒子作用を持つ数平均分子量が3,000〜300,000の有機高分子化合物を含み、該粒子が該分散媒中に分散してコロイド粒子を形成し、且つ該高分子が該粒子に吸着して保護コロイド粒子として該粒子を実質的に個々に且つ別々に保護してなるコロイド粒子分散液を提供し、該コロイド粒子分散液と固体担体とを接触させ、該高分子化合物および該固体担体の少なくとも一方が、共有結合を形成して両者間に化学結合を作るべく作用し得る官能基を有さず、かくして、該高分子化合物で保護された該粒子が該固体担体に吸着されてなる粒子担持複合体を形成し、そして得られた複合体を該分散媒から単離することを特徴とする金属粒子及び/又は金属化合物粒子担持複合体の製造方法が記載されている。   In Patent Document 2, metal particles and / or metal compound particles are adsorbed on a solid support together with an organic polymer compound having a number average molecular weight of 3,000 to 300,000 that protects the particles substantially individually and separately. And / or metal particles characterized in that at least one of the polymer compound and the solid support does not have a functional group capable of forming a covalent bond and forming a chemical bond therebetween. Alternatively, a metal compound particle-supported composite is described. In addition, the production method includes a dispersion medium, metal particles and / or metal compound particles, and an organic polymer compound having a number average molecular weight of 3,000 to 300,000 having a protective colloid particle action. A colloidal particle dispersion comprising: a colloidal particle dispersed therein to form a colloidal particle; and the polymer is adsorbed on the particle to protect the particle substantially individually and separately as a protective colloidal particle; The colloidal particle dispersion is brought into contact with the solid support, and at least one of the polymer compound and the solid support does not have a functional group that can act to form a covalent bond and form a chemical bond therebetween, thus Metal particles characterized by forming a particle-supported complex formed by adsorbing the particles protected by the polymer compound to the solid support, and isolating the obtained complex from the dispersion medium, and /or Method for producing a metal compound particles carrying complexes have been described.

特許文献3には、金属含有イオン及び該金属含有イオンの還元により生成する金属粒子が担持される担体を含む溶液中にプロパルギルアルコールを加え、該金属含有イオンとプロパルギルアルコールとの反応物を該担体上に担持した後、該担体を水素ガスを含有する還元性ガス中で熱処理して、該担体上の金属含有イオンとプロパルギルアルコールとの反応物を金属含有コロイド粒子に還元することを特徴とする高分散金属含有コロイド粒子担持触媒の製造方法が記載されている。   In Patent Document 3, propargyl alcohol is added to a solution containing a carrier on which metal-containing ions and metal particles generated by reduction of the metal-containing ions are supported, and a reaction product of the metal-containing ions and propargyl alcohol is added to the carrier. After being supported on the substrate, the support is heat-treated in a reducing gas containing hydrogen gas to reduce a reaction product of metal-containing ions and propargyl alcohol on the support to metal-containing colloidal particles. A method for producing a highly dispersed metal-containing colloidal particle supported catalyst is described.

特許文献4には、担体となる固体物質の存在下、金属の化合物またはイオンを含有した還元能を有する液体または還元物質を溶解した液体に、マイクロ波を照射させるか、或いは、金属の化合物またはイオンを含有した、還元能を有する液体または還元物質を溶解した液体に、マイクロ波を照射させた後に、担体となる固体物質を存在させることを特徴とする、金属含有コロイド粒子を表面に付着させた金属含有コロイド粒子付着担体の製造方法が記載されている。   In Patent Document 4, in the presence of a solid substance serving as a carrier, a liquid having a reducing ability containing a metal compound or ions or a liquid in which a reducing substance is dissolved is irradiated with microwaves, or a metal compound or A metal-containing colloidal particle is attached to the surface, characterized by having a solid substance serving as a carrier after a microwave is irradiated to a liquid containing a reducing ability or containing a reducing substance containing ions. In addition, a method for producing a metal-containing colloidal particle adhesion carrier is described.

特許文献5には、周期表第4周期から第6周期の2B族、3B族、4B族、5B族、6B族及び第4周期8族の少なくとも1種の第二元素と金とを含有する金属粒子が析出担持法により担体上に担持された金属粒子担持体が記載されている。また、その製造方法として金及びその化合物の少なくとも1種ならびに第二元素及びその化合物の少なくとも1種を含む担体を熱処理することを特徴とする製造方法が記載されている。   Patent Document 5 contains at least one second element of Group 2B, Group 3B, Group 4B, Group 5B, Group 6B, and Group 8 of the Period 4 to Period 6 of the periodic table and gold. A metal particle carrier in which metal particles are supported on a carrier by a deposition support method is described. In addition, as a production method thereof, a production method is described in which a carrier containing at least one of gold and its compound and at least one of a second element and its compound is heat-treated.

このような従来の金属粒子担持触媒は、使用を続けると金属粒子が融着や凝集、粒子成長を起こし、その結果、触媒活性の低下や、寿命が短くなる問題が生じていた。このような問題は、高温下で使用すると特に顕著になる。   When such conventional metal particle-supported catalysts continue to be used, the metal particles cause fusion, aggregation, and particle growth, and as a result, there are problems in that the catalytic activity is reduced and the life is shortened. Such a problem becomes particularly noticeable when used at high temperatures.

これに対して高分子電解質型燃料電池(PEFC)電極用触媒が提案された。特許文献6には、白金族金属を含有するナノ粒子の表面に、無機酸化物からなる多孔質物質を有していることを特徴とする表面修飾化金属ナノ粒子が記載されており、このようなナノ粒子はナノ粒子同士が凝集するなどすることが顕著に抑制され、その活性が持続し、それを利用して触媒を製造して優れた性質を持つ高分子電解質燃料電池を提供できると記載されている。
なお、特許文献6には、多孔質の孔径について、燃料が金属ナノ粒子表面に拡散できる大きさであれば特に制限はないと記載されているものの、具体的な大きさについては全く記載されていない。
また、特許文献6には、多孔質の膜厚について、金属ナノ粒子同士の接触が防止できる厚さであれば特に制限はないが、燃料の金属ナノ粒子表面への拡散や、酸化反応で生じた電子の担持体への導電を阻害しない厚さであることが好ましい、と記載されており、具体的には、おおよそ0.5〜2nmの極薄のシリカ層が記載され、さらに、2つの実施例として、多孔質の膜厚がいずれも1nm程度であったことが記載されているのみである。
On the other hand, a catalyst for a polymer electrolyte fuel cell (PEFC) electrode has been proposed. Patent Document 6 describes surface-modified metal nanoparticles characterized by having a porous material made of an inorganic oxide on the surface of nanoparticles containing platinum group metals. Nanoparticles are remarkably suppressed from aggregating with each other, and their activity is sustained, and it is possible to produce a catalyst using them to provide a polymer electrolyte fuel cell having excellent properties. Has been.
Patent Document 6 describes that there is no particular limitation on the pore size as long as the fuel can be diffused to the surface of the metal nanoparticles, but the specific size is not described at all. Absent.
In Patent Document 6, there is no particular limitation on the porous film thickness as long as the metal nanoparticles can be prevented from coming into contact with each other. However, it is caused by diffusion of the fuel to the metal nanoparticle surface or an oxidation reaction. It is described that it is preferable to have a thickness that does not inhibit the conduction of electrons to the carrier, specifically, an ultrathin silica layer of approximately 0.5 to 2 nm is described, As an example, it is only described that the porous film thickness was about 1 nm.

特開昭61−268359号公報Japanese Patent Laid-Open No. 61-268359 特開平5−293383号公報JP-A-5-293383 特開平6−31181号公報JP-A-6-31181 特開2003−13105号公報JP 2003-13105 A 特開2003−053188号公報JP 2003-053188 A 特開2005−276688号公報JP 2005-276688 A

特許文献6に記載の表面修飾化ナノ粒子について、上記のように記載されていることから判断すると、この表面修飾化ナノ粒子は高分子電解質燃料電池電極用触媒としても用いることを前提としているので、多孔質の層の厚さは、燃料が金属ナノ粒子表面へ拡散し、また、電子が導電する程度に薄くする必要があり、逆にいれば、その程度にまで多孔質の層が薄いので、多孔質の層の細孔は必須ではないと考えられる。   Judging from the fact that the surface-modified nanoparticles described in Patent Document 6 are described as described above, it is assumed that these surface-modified nanoparticles are also used as a catalyst for polymer electrolyte fuel cell electrodes. The thickness of the porous layer needs to be so thin that the fuel diffuses to the surface of the metal nanoparticles and the electrons conduct, and conversely, the porous layer is so thin. The pores of the porous layer are not considered essential.

また、上記のように特許文献6には多孔質の孔径の大きさについて、具体的な記載はないので、本発明者は、特許文献6の実施例1に記載されているように、金属微粒子表面をアミノシランで処理し、ついで水ガラスで処理する方法によって、金属微粒子の表面をシリカで覆った表面修飾化金属ナノ粒子を製造し、そのシリカの層を観察した。その結果、細孔はほとんど存在せず、わずかに存在する場合がある細孔についても、その孔径は著しく小さい(おおむね1nm以下)ことを確認した。また、得られた表面修飾化金属ナノ粒子の触媒活性を測定したところ、極めて低いことを確認した。   In addition, as described above, since there is no specific description of the size of the porous pore diameter in Patent Document 6, the present inventor has disclosed the metal fine particles as described in Example 1 of Patent Document 6. Surface-modified metal nanoparticles in which the surface of metal fine particles was covered with silica were produced by a method of treating the surface with aminosilane and then with water glass, and the silica layer was observed. As a result, it was confirmed that the pore diameter was remarkably small (generally 1 nm or less) even with respect to the pore which may be slightly present, with few pores. Moreover, when the catalytic activity of the obtained surface-modified metal nanoparticles was measured, it was confirmed that it was extremely low.

このように特許文献6に記載の表面修飾化金属ナノ粒子における多孔質の層には細孔がほぼ存在しておらず、触媒活性も低いものであった。一方、特許文献1〜5のような触媒は、活性は高かったとしても、使用により凝集等が起こるので寿命が短かった。
このように従来、活性が高く、かつ寿命が長くて使用してもその活性が長期間維持される触媒は存在しなかった。
Thus, the porous layer in the surface-modified metal nanoparticles described in Patent Document 6 had almost no pores and low catalytic activity. On the other hand, even though the catalysts as described in Patent Documents 1 to 5 have high activity, they have a short life because aggregation occurs due to use.
Thus, conventionally, there has been no catalyst that has a high activity and has a long life and can maintain its activity for a long period of time.

本発明は上記のような課題を解決することを目的とする。
すなわち、活性が高く、使用してもその活性が長期間維持される担持触媒、その一部を構成し得る多孔質シラザン被覆粒子およびそれらの製造方法を提供することを目的とする。
An object of the present invention is to solve the above problems.
That is, an object of the present invention is to provide a supported catalyst that has high activity and maintains its activity for a long period of time even when used, porous silazane-coated particles that can constitute a part thereof, and a method for producing them.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(10)である。
(1)金属コア粒子と、その表面の少なくとも一部についた多孔質シラザン層とを有し、
前記多孔質シラザン層がポリシラザンを含み、
多孔質シラザン層が有する細孔の平均細孔径が0.2nm超8nm未満であり、
疎水性を備える、多孔質シラザン被覆粒子。
(2)金属コア粒子と、その表面の少なくとも一部についた多孔質シラザン層とを有し、
多孔質シラザン層が有する細孔の平均細孔径が0.2nm超8nm未満であり、
疎水性を備え、
前記金属コア粒子と、下記式(I)に示す繰り返し単位を少なくとも1つ含むシラザン化合物とを溶媒中において加温しながら接触させ、その後、固形分と前記溶媒とを分離してなる、多孔質シラザン被覆粒子。

Figure 0005806100
ここで、R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表す。
(3)前記多孔質シラザン層の厚さの平均値が2nm超である、上記(1)または(2)に記載の多孔質シラザン被覆粒子。
(4)前記細孔の容積が0.05〜0.5ml/gである、上記(1)〜(3)のいずれかに記載の多孔質シラザン被覆粒子。
(5)比表面積が100〜1000m2/gである、上記(1)〜(4)のいずれかに記載の多孔質シラザン被覆粒子。
(6)前記金属コア粒子が、第4周期遷移元素、第5周期遷移元素、白金、金、オスミウムおよびイリジウムからなる群から選ばれる少なくとも1つを主成分とする、上記(1)〜(5)のいずれかに記載の多孔質シラザン被覆粒子。
(7)上記(1)〜(6)のいずれかに記載の多孔質シラザン被覆粒子が担体の表面に担持している担持触媒。
(8)金属コア粒子が分散したコロイド溶液を得るコロイド調整工程と、
前記コロイド溶液と、前記式(I)に示す繰り返し単位を少なくとも1つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合して、シラザン被覆粒子を含む分散液(X)を得る被覆工程と、
前記分散液(X)に含まれる溶媒と固形分とを分離して、多孔質シラザン被覆粒子を得る細孔形成工程と
を備える、多孔質シラザン被覆粒子の製造方法。
(9)上記(1)〜(6)のいずれかに記載の多孔質シラザン被覆粒子が得られる、請求項8に記載の多孔質シラザン被覆粒子の製造方法。
(10)金属コア粒子が分散したコロイド溶液を得るコロイド調整工程と、
前記コロイド溶液と前記式(I)に示す繰り返し単位を少なくとも一つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合して、シラザン被覆粒子を含む分散液(X)を得る被覆工程と、
前記分散液(X)に担体を添加して分散液(Y)を得る添加工程と、
前記分散液(Y)に含まれる溶媒と固形分とを分離して、多孔質シラザン被覆粒子が担体に担持した担持触媒を得る担持工程と
を備える、担持触媒の製造方法。 The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention includes the following (1) to (10).
(1) having metal core particles and a porous silazane layer attached to at least a part of the surface thereof,
The porous silazane layer comprises polysilazane;
The average pore diameter of the pores of the porous silazane layer is more than 0.2 nm and less than 8 nm,
Porous silazane-coated particles with hydrophobic properties.
(2) having metal core particles and a porous silazane layer attached to at least a part of the surface thereof,
The average pore diameter of the pores of the porous silazane layer is more than 0.2 nm and less than 8 nm,
With hydrophobicity
A porous structure obtained by bringing the metal core particles into contact with a silazane compound containing at least one repeating unit represented by the following formula (I) while heating in a solvent, and then separating the solid from the solvent Silazane coated particles.
Figure 0005806100
Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylsilyl group, alkylamino group, alkoxy group Represents a group.
(3) The porous silazane-coated particle according to (1) or (2), wherein the average thickness of the porous silazane layer is more than 2 nm.
(4) The porous silazane-coated particle according to any one of (1) to (3), wherein the pore volume is 0.05 to 0.5 ml / g.
(5) The porous silazane-coated particle according to any one of (1) to (4), wherein the specific surface area is 100 to 1000 m 2 / g.
(6) Said (1)-(5) whose said metal core particle has as a main component at least 1 chosen from the group which consists of a 4th period transition element, a 5th period transition element, platinum, gold | metal | money, osmium, and iridium. ) The porous silazane-coated particles according to any of the above.
(7) A supported catalyst in which the porous silazane-coated particles according to any one of (1) to (6) are supported on the surface of a support.
(8) a colloid adjusting step for obtaining a colloid solution in which the metal core particles are dispersed;
A coating step of mixing the colloid solution and a silazane solution containing a silazane compound containing at least one repeating unit represented by the formula (I) while heating to obtain a dispersion (X) containing silazane-coated particles; ,
A method for producing porous silazane-coated particles, comprising: a pore forming step of obtaining a porous silazane-coated particle by separating a solvent and a solid content contained in the dispersion (X).
(9) The method for producing porous silazane-coated particles according to claim 8, wherein the porous silazane-coated particles according to any one of (1) to (6) are obtained.
(10) a colloid adjusting step for obtaining a colloid solution in which the metal core particles are dispersed;
A coating step of mixing the colloid solution and a silazane solution containing a silazane compound containing at least one repeating unit represented by the formula (I) while heating to obtain a dispersion (X) containing silazane-coated particles;
An addition step of adding a carrier to the dispersion (X) to obtain a dispersion (Y);
A supported catalyst manufacturing method comprising: a supporting step of separating a solvent and solid content contained in the dispersion (Y) to obtain a supported catalyst in which porous silazane-coated particles are supported on a support.

本発明によれば、活性が高く、使用してもその活性が長期間維持される担持触媒、その一部を構成し得る多孔質シラザン被覆粒子およびそれらの製造方法を提供することができる。   According to the present invention, it is possible to provide a supported catalyst that has high activity and that maintains its activity for a long period of time, porous silazane-coated particles that can constitute a part thereof, and a method for producing them.

本発明について説明する。
本発明は、金属コア粒子と、その表面の少なくとも一部についた多孔質シラザン層とを有し、前記多孔質シラザン層がポリシラザンを含み、多孔質シラザン層が有する細孔の平均細孔径が0.2nm超8nm未満であり、疎水性を備える、多孔質シラザン被覆粒子である。
このような多孔質シラザン被覆粒子を、以下では「本発明の被覆粒子」ともいう。
The present invention will be described.
The present invention has a metal core particle and a porous silazane layer attached to at least a part of the surface thereof, the porous silazane layer contains polysilazane, and the average pore diameter of the pores of the porous silazane layer is 0. These are porous silazane-coated particles that are more than 2 nm and less than 8 nm and have hydrophobicity.
Hereinafter, such porous silazane-coated particles are also referred to as “coated particles of the present invention”.

また、本発明は、本発明の被覆粒子が担体の表面に担持している担持触媒である。
このような担持触媒を、以下では「本発明の担持触媒」ともいう。
本発明の担持触媒は、例えばHC(炭化水素)分解システム(例えば自動車等の排ガス浄化用の三元触媒や、揮発性有機化合物(VOC)の分解)、高濃度硝酸分解システム(例えば、硝酸性窒素を還元して窒素を生成する処理)、水素化反応システムにおいて利用する触媒として好適である。
The present invention is also a supported catalyst in which the coated particles of the present invention are supported on the surface of a carrier.
Hereinafter, such a supported catalyst is also referred to as “the supported catalyst of the present invention”.
The supported catalyst of the present invention includes, for example, an HC (hydrocarbon) decomposition system (for example, a three-way catalyst for exhaust gas purification of automobiles, decomposition of volatile organic compounds (VOC)), a high-concentration nitric acid decomposition system (for example, nitric acid) Nitrogen is reduced to generate nitrogen), which is suitable as a catalyst used in a hydrogenation reaction system.

<金属コア粒子>
初めに、本発明の被覆粒子における金属コア粒子について説明する。
本発明の被覆粒子における金属コア粒子は触媒能を備える金属であれば特に限定されず、第4周期遷移元素、第5周期遷移元素、白金(Pt)、金(Au)、オスミウム(Os)およびイリジウム(Ir)からなる群から選ばれる少なくとも1つを主成分とするものであることが好ましく、Pt、Pd、Rh、Ru、Os、Ir、Cu、AuおよびAgからなる群から選ばれる少なくとも1つを主成分とするものであることがより好ましい。
ここで第4周期遷移元素とは、Sc、Ti、V、Cr、Mn、Fe、Co、NiおよびCuを意味する。また、第5周期遷移元素とは、Y、Zr、Nb、Mo、Tc、Ru、Rh、PdおよびAgを意味する。
<Metal core particles>
First, the metal core particles in the coated particles of the present invention will be described.
The metal core particle in the coated particle of the present invention is not particularly limited as long as it is a metal having catalytic ability. The fourth period transition element, the fifth period transition element, platinum (Pt), gold (Au), osmium (Os) and Preferably, the main component is at least one selected from the group consisting of iridium (Ir), and at least one selected from the group consisting of Pt, Pd, Rh, Ru, Os, Ir, Cu, Au, and Ag. More preferably, the main component is one.
Here, the fourth period transition element means Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The fifth period transition element means Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd and Ag.

また、ここで「主成分」とは、含有率が70質量%以上であることを意味する。すなわち、金属コア粒子における第4周期遷移元素(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu)、第5周期遷移元素(Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag)、白金(Pt)、金(Au)、オスミウム(Os)およびイリジウム(Ir)の合計含有率が70質量%以上であることが好ましい。この含有率は80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがより好ましく、99質量%以上であることがより好ましく、100質量%である、すなわち、金属コア粒子が実質的に第4周期遷移元素、第5周期遷移元素、白金(Pt)、金(Au)、オスミウム(Os)およびイリジウム(Ir)からなる群から選ばれる少なくとも1つからなることがさらに好ましい。ここで「実質的になる」とは、原料や製造過程から不可避的に含まれる不純物は含まれ得るが、それ以外は含まないことを意味する。なお、特に断りがない限り、本発明の説明において「主成分」および「実質的になる」は、このような意味で用いるものとする。   The “main component” here means that the content is 70% by mass or more. That is, the fourth periodic transition element (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu), the fifth periodic transition element (Y, Zr, Nb, Mo, Tc, Ru, Rh) in the metal core particle. , Pd, Ag), platinum (Pt), gold (Au), osmium (Os), and iridium (Ir), the total content is preferably 70% by mass or more. The content is more preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, more preferably 99% by mass or more, and 100% by mass. In other words, the metal core particle is substantially selected from the group consisting of the fourth period transition element, the fifth period transition element, platinum (Pt), gold (Au), osmium (Os), and iridium (Ir). More preferably, it consists of at least one. Here, “becomes substantially” means that impurities inevitably contained from the raw materials and the production process can be contained, but other than that are not contained. Unless otherwise specified, in the description of the present invention, “main component” and “substantially become” are used in this sense.

金属コア粒子が、第4周期遷移元素、第5周期遷移元素、白金(Pt)、金(Au)、オスミウム(Os)およびイリジウム(Ir)からなる群から選ばれる2つ以上の元素を含むと、金属コア粒子が化学的に安定化する傾向があるので好ましい。金属コア粒子はPd−Pt(PdおよびPtを含むことを意味する。以下、同様。)、Pd−Ag、Pd−Au、Pd−Cu、Pt−Ag、Pt−Au、Pt−Cu、Pt−Ru、Au−Ag、Au−Ruという組成であることが好ましい。また、さらにSnを含み、Ag−Pd−Sn、Pd−Cu−Snという組成であることが好ましい。   When the metal core particle includes two or more elements selected from the group consisting of a fourth periodic transition element, a fifth periodic transition element, platinum (Pt), gold (Au), osmium (Os), and iridium (Ir). It is preferable because the metal core particles tend to be chemically stabilized. The metal core particles include Pd—Pt (meaning that Pd and Pt are contained. The same applies hereinafter), Pd—Ag, Pd—Au, Pd—Cu, Pt—Ag, Pt—Au, Pt—Cu, Pt— A composition of Ru, Au—Ag, or Au—Ru is preferable. Further, Sn is preferably contained, and the composition is Ag—Pd—Sn or Pd—Cu—Sn.

金属コア粒子が、第4周期遷移元素、第5周期遷移元素、白金(Pt)、金(Au)、オスミウム(Os)およびイリジウム(Ir)以外に含んでもよい成分として、Sn、La、Ce、Prが挙げられる。   As a component that the metal core particle may contain in addition to the fourth periodic transition element, the fifth periodic transition element, platinum (Pt), gold (Au), osmium (Os), and iridium (Ir), Sn, La, Ce, Pr.

本発明における金属コア粒子が含有する成分(組成)の測定方法について説明する。
金属コア粒子が含有する成分(組成)は、金属コア粒子、本発明の被覆粒子または本発明の担持触媒を600℃で焼成し、残渣をアルカリ溶融剤によって溶融した後、28質量%塩酸または硝酸水溶液によって溶解し、得られた溶解液を純水で希釈した後、ICP誘導結合プラズマ発光分光分析装置(例えば、SPS1200A、セイコー電子株式会社製)を用いて測定するものとする。また、金属コア粒子と多孔質シラザン層に同一元素が含まれる場合は、本発明の被覆粒子または本発明の担持触媒についてEDXによる面分析(元素分布分析)を行い、金属コア粒子および多孔質シラザン層におけるその元素の存在比率を求め、得られた存在比率と上記のICP誘導結合プラズマ発光分光分析装置を用いた各成分の組成とから、金属コア粒子を構成する成分の含有率を算出して求めるものとする。
A method for measuring the component (composition) contained in the metal core particles in the present invention will be described.
The component (composition) contained in the metal core particle is obtained by calcining the metal core particle, the coated particle of the present invention or the supported catalyst of the present invention at 600 ° C., melting the residue with an alkali melting agent, and then adding 28% by mass hydrochloric acid or nitric acid. After dissolving with an aqueous solution and diluting the obtained solution with pure water, measurement is performed using an ICP inductively coupled plasma emission spectrometer (for example, SPS1200A, manufactured by Seiko Denshi Co., Ltd.). When the same element is contained in the metal core particle and the porous silazane layer, the coated particle of the present invention or the supported catalyst of the present invention is subjected to surface analysis (element distribution analysis) by EDX, and the metal core particle and the porous silazane. Obtain the abundance ratio of the element in the layer, and calculate the content ratio of the component constituting the metal core particle from the obtained abundance ratio and the composition of each component using the ICP inductively coupled plasma emission spectrometer. Suppose you want.

金属コア粒子の一次粒子の平均粒子径は特に限定されないが、0.5〜100nmであることが好ましく、1〜50nmであることがより好ましく、1〜40nmであることがより好ましく、1〜20nmであることがより好ましく、1〜15nmであることがさらに好ましい。このような範囲であると容易に製造することができ、また、粒子径が大きすぎる場合と比較して、本発明の被覆粒子を担体に担持してなる本発明の担持触媒の触媒能が高くなるからである。   The average particle diameter of the primary particles of the metal core particles is not particularly limited, but is preferably 0.5 to 100 nm, more preferably 1 to 50 nm, more preferably 1 to 40 nm, and more preferably 1 to 20 nm. It is more preferable that it is 1-15 nm. In such a range, it can be easily produced, and the catalytic activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher than when the particle diameter is too large. Because it becomes.

ここで、金属コア粒子の一次粒子の平均粒子径は、画像解析法によって測定される値を意味するものとする。画像解析法とは、走査型電子顕微鏡を用いて、金属コア粒子を倍率30万倍で写真撮影し、得られた写真から任意に100個の金属コア粒子を選び、各々の投影面積円相当径を測定して粒度分布を求め、それより平均粒子径(メジアン径)を算出して求める方法である。   Here, the average particle diameter of the primary particles of the metal core particles means a value measured by an image analysis method. The image analysis method uses a scanning electron microscope to photograph metal core particles at a magnification of 300,000 times, arbitrarily select 100 metal core particles from the obtained photograph, and each projected area has an equivalent circle diameter. Is a method for obtaining a particle size distribution by measuring and then calculating an average particle size (median diameter) therefrom.

金属コア粒子の形状は特に限定されず、例えば、球状、四面体状(三角錐型)、六面体状(立方体状または直方体状。以下「角状」ともいう。)、八面体状、不定形が挙げられる。   The shape of the metal core particle is not particularly limited. For example, the shape may be spherical, tetrahedral (triangular pyramid), hexahedral (cubic or cuboid, hereinafter also referred to as “square”), octahedral, or indefinite. Can be mentioned.

金属コア粒子は、上記のような平均粒子径の一次粒子が数個(例えば4〜30個)、数珠状に連結した鎖状粒子を形成していることが好ましい。   The metal core particles preferably form chain particles in which several (for example, 4 to 30) primary particles having an average particle diameter as described above are connected in a bead shape.

金属コア粒子の形状や態様は、上記のように、金属コア粒子の一次粒子の平均粒子径を測定する場合と同様に、走査型電子顕微鏡を用いて金属コア粒子を倍率30万倍で写真撮影することで、確認することができる。   The shape and form of the metal core particles are photographed at a magnification of 300,000 times using a scanning electron microscope, as in the case of measuring the average particle diameter of the primary particles of the metal core particles as described above. This can be confirmed.

<多孔質シラザン層>
次に、本発明の被覆粒子における多孔質シラザン層について説明する。
本発明の被覆粒子における多孔質シラザン層は、前記金属コア粒子の表面の少なくとも一部についている。本発明の被覆粒子は、金属コア粒子の全表面に多孔質シラザン層がついている、すなわち、金属コア粒子が多孔質シラザン層で覆われている態様であることが好ましい。
<Porous silazane layer>
Next, the porous silazane layer in the coated particles of the present invention will be described.
The porous silazane layer in the coated particle of the present invention is attached to at least a part of the surface of the metal core particle. The coated particles of the present invention preferably have a mode in which a porous silazane layer is attached to the entire surface of the metal core particles, that is, the metal core particles are covered with the porous silazane layer.

多孔質シラザン層はポリシラザンを含むものである。また、多孔質シラザン層におけるポリシラザンの含有率は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがより好ましく、99質量%以上であることがより好ましく、100質量%である(多孔質シラザン層はポリシラザンから実質的なる)ことがさらに好ましい(ここで「実質的になる」の意味は前述の通りである)。   The porous silazane layer contains polysilazane. The content of polysilazane in the porous silazane layer is preferably 70% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. More preferably, the content is 99% by mass or more, and more preferably 100% by mass (the porous silazane layer is substantially made of polysilazane). ).

また、ここでポリシラザンとは、次に示す式(I)の繰り返し単位を1つ以上含むものを意味するものとする。繰り返し数は特に限定されないが2〜500,0000であってよく、5〜100,000であることが好ましい。また、ポリシラザンは他の繰り返し単位を含むものであってもよい。   Here, polysilazane means one containing one or more repeating units of the following formula (I). The number of repetitions is not particularly limited, but may be 2 to 500,0000, and preferably 5 to 100,000. The polysilazane may contain other repeating units.

Figure 0005806100
Figure 0005806100

ここで、R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、シクロアルキル基、アリール基(フェニル基、トリル基、ナフチル基など)、アルキルシリル基(tert-ブチルジメチルシリル基など)、アルキルアミノ基、アルコキシ基(メトキシ基、エトキシ基など)を表す。
これらの中でも、R1、R2およびR3が水素原子またはメチル基であることが好ましい。
Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, alkenyl group, cycloalkyl group, aryl group (phenyl group, tolyl group, naphthyl group, etc. ), Alkylsilyl groups (such as tert-butyldimethylsilyl group), alkylamino groups, and alkoxy groups (such as methoxy and ethoxy groups).
Among these, it is preferable that R < 1 >, R < 2 > and R < 3 > are a hydrogen atom or a methyl group.

また、ポリシラザンの分子量は特に限定されず、多孔質シラザン層に含まれるポリシラザンの平均分子量として500〜10,0000g/molであってよく、1,000〜5,0000g/molであることが好ましい。   Moreover, the molecular weight of polysilazane is not particularly limited, and the average molecular weight of polysilazane contained in the porous silazane layer may be 500 to 10,000 g / mol, and preferably 1,000 to 5,000 g / mol.

多孔質シラザン層は、このような分子量のポリシラザン分子の複数が集合したものであってよく、1つのポリシラザン分子からなるものであってもよい。   The porous silazane layer may be a collection of a plurality of such polysilazane molecules having a molecular weight, or may be composed of one polysilazane molecule.

前記ポリシラザンとしては、例えばポリカルボシラザン、ポリオルガノシラザン、ペルヒドロポリシラザン、ポリボロオルガノシラザンなどが挙げられる。   Examples of the polysilazane include polycarbosilazane, polyorganosilazane, perhydropolysilazane, and polyboroorganosilazane.

多孔質シラザン層が前記ポリシラザン以外に含んでもよい成分としては、第3周期〜第6周期の元素からなる群から選ばれる少なくとも1つの元素の酸化物が挙げられる。具体的には、例えばSiO2、Al23、TiO2、ZnOなどが挙げられる。
多孔質シラザン層における前記ポリシラザン以外の成分の含有率は、30質量%以下であることが好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより好ましく、1質量%以下であることがより好ましく、0質量%である(すなわち多孔質シラザン層は前記ポリシラザンから実質的なる)ことがさらに好ましい(ここで「実質的になる」の意味は前述の通りである)。
ここで多孔質シラザン層における各成分の含有率は、前述の本発明の金属コア粒子が含有する成分(組成)の測定方法と同様の方法で測定するものとする。
Examples of components that the porous silazane layer may contain in addition to the polysilazane include oxides of at least one element selected from the group consisting of elements in the third to sixth periods. Specific examples include SiO 2 , Al 2 O 3 , TiO 2 , and ZnO.
The content of components other than the polysilazane in the porous silazane layer is preferably 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass or less. More preferably, it is 1% by mass or less, and more preferably 0% by mass (that is, the porous silazane layer is substantially composed of the polysilazane) (here, “substantially”). Is as described above).
Here, the content rate of each component in a porous silazane layer shall be measured with the method similar to the measuring method of the component (composition) which the metal core particle of the above-mentioned this invention contains.

多孔質シラザン層は主としてポリシラザンによって形成されており、多孔質シラザン層の最表面部には有機基が存在していて、これが本発明の被覆粒子を疎水性にしているものと、本発明者は推定している。   The porous silazane layer is mainly formed of polysilazane, and an organic group is present on the outermost surface portion of the porous silazane layer, which makes the coated particles of the present invention hydrophobic, the present inventor Estimated.

多孔質シラザン層は、平均細孔径が0.2nm超8nm未満である細孔が形成されているものである。このような範囲内であると本発明の被覆粒子を担体に担持した本発明の担持触媒の活性が高く、使用してもその活性が長期間維持される。多孔質シラザン層に形成されている細孔の平均細孔径が大きすぎると、本発明の担持触媒の寿命が短くなる傾向があり、逆に平均細孔径が小さすぎると、本発明の担持触媒の活性が低くなる傾向がある。
平均細孔径は0.2〜7nmであることが好ましく、0.5〜5.0nmであることがより好ましく、0.8〜4.0nmであることがさらに好ましい。
In the porous silazane layer, pores having an average pore diameter of more than 0.2 nm and less than 8 nm are formed. Within such a range, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is high, and the activity is maintained for a long time even when used. If the average pore diameter of the pores formed in the porous silazane layer is too large, the life of the supported catalyst of the present invention tends to be shortened. Conversely, if the average pore diameter is too small, the supported catalyst of the present invention The activity tends to be low.
The average pore diameter is preferably 0.2 to 7 nm, more preferably 0.5 to 5.0 nm, and still more preferably 0.8 to 4.0 nm.

ここで、多孔質シラザン層が有する細孔径の平均(平均細孔径)は、次に示す窒素吸着法[1]で測定して得た値を意味するものとする。
窒素吸着法[1]について説明する。
まず、測定対象物を乾燥させたもの(0.2g)を試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に吸着させて窒素吸着・脱着等温線を得る。そして、得られた窒素吸着・脱着等温線を用いてBJH(Barret-Joyner-Halenda)法により、試料の細孔径分布曲線を得て、その曲線に現れるメソ孔(粒子表面の細孔)側およびマクロ孔(粒子間細孔)側のピークのうち、メソ孔側のピークの細孔径を平均細孔径として求める。このような窒素吸着法は、例えば従来公知の細孔分布測定装置(例えば、日本ベル社製、BELSORP−mini(II))を用いて行うことができる。
本発明において多孔質シラザン層の細孔の径の平均値(平均細孔径)は、特に断りがない限り、ここに示した窒素吸着法[1]によって測定した値を意味するものとする。
Here, the average pore diameter (average pore diameter) of the porous silazane layer means a value obtained by measurement by the following nitrogen adsorption method [1].
The nitrogen adsorption method [1] will be described.
First, the dried measurement object (0.2 g) is placed in a measurement cell as a sample, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is treated with 30 vol% nitrogen and helium. A liquid nitrogen temperature is maintained in a 70% by volume mixed gas stream, and nitrogen is adsorbed on the sample to obtain a nitrogen adsorption / desorption isotherm. Then, using the obtained nitrogen adsorption / desorption isotherm, a BJH (Barret-Joyner-Halenda) method is used to obtain a pore size distribution curve of the sample, and the mesopores (pores on the particle surface) side appearing on the curve and Of the peaks on the macropore (interparticle pore) side, the pore diameter on the mesopore side is determined as the average pore diameter. Such a nitrogen adsorption method can be performed using, for example, a conventionally known pore distribution measuring apparatus (for example, BELSORP-mini (II) manufactured by Nippon Bell Co., Ltd.).
In the present invention, the average value of the pore diameter of the porous silazane layer (average pore diameter) means a value measured by the nitrogen adsorption method [1] shown here unless otherwise specified.

また、多孔質シラザン層は、細孔の容積が、本発明の被覆粒子の単位質量に対して0.05〜0.5ml/gであることが好ましく、0.08〜0.3ml/gであることがより好ましく、0.10〜0.2ml/gであることがさらに好ましい。このような範囲内であると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されるので好ましい。多孔質シラザン層に形成されている細孔の容積が大きすぎると、本発明の担持触媒の寿命が短くなる傾向があり、逆に細孔の容積が小さすぎると、本発明の担持触媒の活性が低くなる傾向がある。   The porous silazane layer preferably has a pore volume of 0.05 to 0.5 ml / g, preferably 0.08 to 0.3 ml / g, with respect to the unit mass of the coated particles of the present invention. More preferably, it is more preferably 0.10 to 0.2 ml / g. Within such a range, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and even when used, the activity is maintained for a longer period, which is preferable. If the pore volume formed in the porous silazane layer is too large, the life of the supported catalyst of the present invention tends to be shortened. Conversely, if the pore volume is too small, the activity of the supported catalyst of the present invention is reduced. Tend to be low.

ここで、多孔質シラザン層が有する細孔の容積は、次に示す窒素吸着法[2]で測定して得た値を意味するものとする。
窒素吸着法[2]について説明する。
まず、測定対象物を乾燥させたもの(0.2g)を試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に吸着させて窒素吸着・脱着等温線を得る。そして、得られた窒素吸着・脱着等温線における相対圧P/P0の値が0.4〜1.0の範囲に現れる、IUPACで規定されるIVヒステリシス曲線におけるメソ孔側部分の積算値を求め、これを細孔の容積として得る。このような窒素吸着法は、例えば従来公知の細孔分布測定装置(例えば、日本ベル社製、BELSORP−mini(II))を用いて行うことができる。
本発明において多孔質シラザン層の細孔の容積は、特に断りがない限り、ここに示した窒素吸着法[2]によって測定した値を意味するものとする。
Here, the pore volume of the porous silazane layer means a value obtained by measurement by the following nitrogen adsorption method [2].
The nitrogen adsorption method [2] will be described.
First, the dried measurement object (0.2 g) is placed in a measurement cell as a sample, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is treated with 30 vol% nitrogen and helium. A liquid nitrogen temperature is maintained in a 70% by volume mixed gas stream, and nitrogen is adsorbed on the sample to obtain a nitrogen adsorption / desorption isotherm. Then, the integrated value of the mesopore side portion in the IV hysteresis curve defined by IUPAC, where the value of the relative pressure P / P 0 in the obtained nitrogen adsorption / desorption isotherm appears in the range of 0.4 to 1.0, And obtain this as the volume of the pores. Such a nitrogen adsorption method can be performed using, for example, a conventionally known pore distribution measuring apparatus (for example, BELSORP-mini (II) manufactured by Nippon Bell Co., Ltd.).
In the present invention, the pore volume of the porous silazane layer means a value measured by the nitrogen adsorption method [2] shown here unless otherwise specified.

また、多孔質シラザン層の厚さは特に限定されないが、平均値が2nm超であることが好ましく、2.5nm以上であることがより好ましく、3nm以上であることがさらに好ましい。また、多孔質シラザン層の厚さは、その平均値が50nm以下であることが好ましく、40nm以下であることがより好ましく、20nm以下であることがより好ましく、10nm以下であることがより好ましく、7nm以下であることがさらに好ましい。このような範囲内であると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されるので好ましい。多孔質シラザン層の厚さが厚過ぎると、本発明の担持触媒の活性が低くなる傾向があり、逆に薄すぎると、本発明の担持触媒の寿命が短くなる傾向がある。   The thickness of the porous silazane layer is not particularly limited, but the average value is preferably more than 2 nm, more preferably 2.5 nm or more, and further preferably 3 nm or more. The average thickness of the porous silazane layer is preferably 50 nm or less, more preferably 40 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less. More preferably, it is 7 nm or less. Within such a range, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and even when used, the activity is maintained for a longer period, which is preferable. If the thickness of the porous silazane layer is too thick, the activity of the supported catalyst of the present invention tends to be low, and conversely if too thin, the life of the supported catalyst of the present invention tends to be short.

ここで多孔質シラザン層の厚さは、走査型電子顕微鏡を用いて、本発明の被覆粒子を倍率30万倍で写真撮影し、得られた写真から任意に100個の本発明の被覆粒子を選び、各々の本発明の被覆粒子において多孔質シラザン層の厚さを数箇所測定し平均して、その1つの本発明の被覆粒子における多孔質シラザン層の厚さとし、それら100個のデータを単純平均することで、その試料(本発明の被覆粒子の群)における多孔質シラザン層の厚さとする。   Here, the thickness of the porous silazane layer was measured by taking a photograph of the coated particles of the present invention at a magnification of 300,000 times using a scanning electron microscope, and arbitrarily selecting 100 coated particles of the present invention from the obtained photographs. The thickness of the porous silazane layer in each coated particle of the present invention was measured several times and averaged to obtain the thickness of the porous silazane layer in the coated particle of the present invention. By averaging, the thickness of the porous silazane layer in the sample (the group of coated particles of the present invention) is obtained.

多孔質シラザン層は、上記のような平均径および容積の細孔を有し、上記のような厚さを有するものであることが好ましいが、多孔質シラザン層の厚さと細孔径の平均径および容積とのバランスが適していると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されることを、本発明者は見出した。
具体的には、多孔質シラザン層が有する細孔の平均細孔径が0.5〜5nmであり、細孔の容積が0.10〜0.20ml/gであり、さらに、多孔質シラザン層の厚さが2〜8nmであると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されるものになる。
The porous silazane layer has pores having the average diameter and volume as described above, and preferably has the thickness as described above, but the thickness of the porous silazane layer and the average diameter of the pore diameter and When the balance with the volume is appropriate, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and the activity is maintained for a longer period of time even when used. Found.
Specifically, the average pore diameter of the pores of the porous silazane layer is 0.5 to 5 nm, the pore volume is 0.10 to 0.20 ml / g, and When the thickness is 2 to 8 nm, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and even when used, the activity is maintained for a longer period.

<本発明の被覆粒子>
本発明の被覆粒子は、疎水性を備える。したがって、本発明の被覆粒子を担体に担持した本発明の担持触媒は、例えば有機溶媒や樹脂の中での化学反応を促進するための触媒として好ましく用いることができる。
本発明の被覆粒子は疎水性であるので接触角が大きい。具体的には、本発明の被覆粒子における接触角は70〜110度程度となり、80〜100度となることが好ましく、90〜100度となることがより好ましい。
なお、接触角は、本発明の被覆粒子の1gを200℃で乾燥させた後、直径1cm、高さ5cmのセルに入れ、50kgfの荷重でプレスして成型物を得て、得られた成型物の表面に水を一滴たらして測定して得た値を意味するものとする。
<Coated particles of the present invention>
The coated particle of the present invention has hydrophobicity. Therefore, the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier can be preferably used as a catalyst for promoting a chemical reaction in an organic solvent or a resin, for example.
Since the coated particles of the present invention are hydrophobic, the contact angle is large. Specifically, the contact angle in the coated particles of the present invention is about 70 to 110 degrees, preferably 80 to 100 degrees, and more preferably 90 to 100 degrees.
The contact angle was obtained by drying 1 g of the coated particles of the present invention at 200 ° C., and then putting it in a cell having a diameter of 1 cm and a height of 5 cm and pressing it with a load of 50 kgf to obtain a molded product. It shall mean the value obtained by measuring a drop of water on the surface of the object.

本発明の被覆粒子の比表面積は特に限定されないが、100〜1000m2/gであることが好ましく、130〜900m2/gであることがより好ましく、150〜800m2/gであることがより好ましく、300〜700m2/gであることがさらに好ましい。このような範囲内であると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されるので好ましい。比表面積が大きすぎると、本発明の担持触媒の活性が低くなる傾向があり、逆に小さすぎると、本発明の担持触媒の寿命が短くなる傾向がある。
なお、比表面積は、次に示す窒素吸着法[3](BET法)で測定して得た値を意味するものとする。
窒素吸着法[3]について説明する。
まず、測定対象物(ここでは本発明の被覆粒子)を乾燥させたもの(0.2g)を試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、試料の比表面積を測定する。窒素吸着法[3](BET法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、ここに示した窒素吸着法[3](BET法)によって測定した値を意味するものとする。
Is not particularly limited specific surface area of the coated particles of the present invention is preferably 100~1000m 2 / g, more preferably 130~900m 2 / g, more to be 150~800m 2 / g Preferably, it is 300-700 m < 2 > / g. Within such a range, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and even when used, the activity is maintained for a longer period, which is preferable. If the specific surface area is too large, the activity of the supported catalyst of the present invention tends to be low. Conversely, if the specific surface area is too small, the life of the supported catalyst of the present invention tends to be short.
The specific surface area means a value obtained by measurement by the following nitrogen adsorption method [3] (BET method).
The nitrogen adsorption method [3] will be described.
First, a measurement object (here, coated particles of the present invention) dried (0.2 g) is placed in a measurement cell as a sample, degassed at 250 ° C. for 40 minutes in a nitrogen gas stream, The sample is kept at a liquid nitrogen temperature in a mixed gas stream of 30% by volume of nitrogen and 70% by volume of helium, and nitrogen is adsorbed on the sample by equilibrium. Next, the temperature of the sample is gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured. The nitrogen adsorption method [3] (BET method) can be performed using, for example, a conventionally known surface area measuring device.
In the present invention, the specific surface area means a value measured by the nitrogen adsorption method [3] (BET method) shown here unless otherwise specified.

本発明の被覆粒子は、前記金属コア粒子の表面の少なくとも一部に、前記多孔質シラザン層がついたものである。
本発明の被覆粒子において、金属コア粒子および多孔質シラザン層の質量比は特に限定されないが、金属コア粒子の質量に対する多孔質シラザン層の質量の比(多孔質シラザン層の質量/金属コア粒子の質量)が、0.1〜5000であることが好ましく、0.5〜3000であることがより好ましく、1〜2000であることがより好ましく、1〜1000であることがより好ましく、1〜500であることがより好ましく、1〜100であることがより好ましく、1〜33であることがさらに好ましい。このような範囲内であると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されるので好ましい。
The coated particles of the present invention are those in which the porous silazane layer is attached to at least a part of the surface of the metal core particles.
In the coated particles of the present invention, the mass ratio of the metal core particles and the porous silazane layer is not particularly limited, but the ratio of the mass of the porous silazane layer to the mass of the metal core particles (the mass of the porous silazane layer / the mass of the metal core particles) Mass) is preferably 0.1 to 5000, more preferably 0.5 to 3000, more preferably 1 to 2000, more preferably 1 to 1000, and 1 to 500. Is more preferable, it is more preferable that it is 1-100, and it is still more preferable that it is 1-33. Within such a range, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and even when used, the activity is maintained for a longer period, which is preferable.

ここで、本発明の被覆粒子における金属コア粒子および多孔質シラザン層の質量は、本発明の被覆粒子または本発明の担持触媒を600℃で焼成し、残渣をアルカリ溶融剤によって溶融した後、28質量%塩酸または硝酸水溶液によって溶解し、得られた溶解液を純水で希釈した後、ICP誘導結合プラズマ発光分光分析装置(例えばSPS1200A、セイコー電子株式会社製)を用いて含有率を測定し、それより算出して求めるものとする。また、金属コア粒子と多孔質シラザン層に同一元素が含まれる場合は、本発明の被覆粒子または本発明の担持触媒についてEDXによる面分析(元素分布分析)を行い、金属コア粒子および多孔質シラザン層におけるその元素の存在比率を求め、得られた存在比率と上記のICP誘導結合プラズマ発光分光分析装置を用いた各成分の組成とから、多孔質シラザン層に含まれる成分の含有率を算出し、それより求めるものとする。   Here, the masses of the metal core particles and the porous silazane layer in the coated particles of the present invention were determined by calcining the coated particles of the present invention or the supported catalyst of the present invention at 600 ° C., and melting the residue with an alkali melting agent. After dissolving with a mass% hydrochloric acid or nitric acid aqueous solution and diluting the obtained solution with pure water, the content rate is measured using an ICP inductively coupled plasma emission spectrometer (for example, SPS1200A, manufactured by Seiko Electronics Co., Ltd.) It shall be calculated and determined from it. When the same element is contained in the metal core particle and the porous silazane layer, the coated particle of the present invention or the supported catalyst of the present invention is subjected to surface analysis (element distribution analysis) by EDX, and the metal core particle and the porous silazane. The abundance ratio of the element contained in the porous silazane layer is calculated from the obtained abundance ratio and the composition of each component using the ICP inductively coupled plasma emission spectrometer described above. More than that.

本発明の被覆粒子の平均粒子径(メジアン径)は特に限定されないが、1〜500nmが好ましく、2〜100nmがより好ましく、3〜50nmがさらに好ましい。
ここで本発明の被覆粒子の平均粒子径は、測定対象物(ここでは本発明の被覆粒子)をヘキサメタリン酸ナトリウム水溶液へ添加し、超音波分散および攪拌によって分散させて、透過率が70〜90%となるように調節した後、従来公知のレーザ散乱法(例えばHORIBA LA−950V2)を用いて粒度分布を測定し算出した値を意味するものとする。
The average particle diameter (median diameter) of the coated particles of the present invention is not particularly limited, but is preferably 1 to 500 nm, more preferably 2 to 100 nm, and even more preferably 3 to 50 nm.
Here, the average particle diameter of the coated particles of the present invention is such that a measurement object (here, coated particles of the present invention) is added to a sodium hexametaphosphate aqueous solution and dispersed by ultrasonic dispersion and stirring, and the transmittance is 70 to 90. After adjusting to be%, it means a value calculated by measuring a particle size distribution using a conventionally known laser scattering method (for example, HORIBA LA-950V2).

次に、本発明の担持触媒について説明する。
本発明の担持触媒は、本発明の被覆粒子が担体の表面に担持しているものである。
Next, the supported catalyst of the present invention will be described.
The supported catalyst of the present invention is one in which the coated particles of the present invention are supported on the surface of a carrier.

担体は、前記金属コア粒子が担持可能なものであれば特に限定されず、例えば、Si、Al、C、Ti、ZrおよびCeからなる群から選ばれる少なくとも1つを主成分として含む無機系担体が挙げられる。
担体が含んでもよいその他の成分として、アルカリ金属、アルカリ土類、希土類、遷移金属(例えばLi、Na、K、Rb、Cs、Mg、Ca、Sr、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo)が挙げられる。
また、担体は非晶質であっても、晶質であってもよく、合成物質、天然鉱物のいずれであってもよい。
また、Si、Al、C、Ti、ZrおよびCeからなる群から選ばれる少なくとも1つを含む無機系担体は、その元素の酸化物からなること好ましく、複合酸化物であってもよい。このような無機系担体として、例えば、シリカ粒子(メソポーラスシリカ、シリカライト)、シリカ−アルミナ粒子、アルミナ粒子(活性アルミナ粒子)、カーボン粒子、活性炭(ヤシガラ系、フェノール樹脂系、塩基性など)、ゼオライト粒子(Y型、A型、モルデナイト型、ZSM−5型など、天然物でも合成物でもよい)、セリア(酸化セリウム)粒子、カオリン粒子、スメクタイト粒子、バーミキュライト粒子、雲母片、チタニアおよびジルコニアが挙げられる。
The carrier is not particularly limited as long as it can carry the metal core particles, and for example, an inorganic carrier containing at least one selected from the group consisting of Si, Al, C, Ti, Zr, and Ce as a main component. Is mentioned.
Other components that the support may contain include alkali metals, alkaline earths, rare earths, transition metals (eg, Li, Na, K, Rb, Cs, Mg, Ca, Sr, La, Pr, Nd, Pm, Sm, Eu , Gd, Tb, Dy, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo).
The carrier may be amorphous or crystalline, and may be a synthetic substance or a natural mineral.
The inorganic carrier containing at least one selected from the group consisting of Si, Al, C, Ti, Zr and Ce is preferably made of an oxide of the element, and may be a complex oxide. As such an inorganic carrier, for example, silica particles (mesoporous silica, silicalite), silica-alumina particles, alumina particles (active alumina particles), carbon particles, activated carbon (coconut shell, phenol resin, basic, etc.), Zeolite particles (Y type, A type, mordenite type, ZSM-5 type, etc., which may be natural or synthetic), ceria (cerium oxide) particles, kaolin particles, smectite particles, vermiculite particles, mica flakes, titania and zirconia Can be mentioned.

また、担体の形状は特に限定されず、例えば球状や不定形であってよい。   Further, the shape of the carrier is not particularly limited, and may be, for example, spherical or indefinite.

また、担体の平均粒子径(メジアン径)は特に限定されないが、10nm〜100mmが好ましく、12nm〜50mmがより好ましく、15nm〜10mmがより好ましく、20nm〜5mmがさらに好ましい。
ここで担体の平均粒子径は、測定対象物(担体)をヘキサメタリン酸ナトリウム水溶液へ添加し、超音波分散および攪拌によって分散させて、透過率が70〜90%となるように調節した後、従来公知のレーザ散乱法(例えばHORIBA LA−950V2)を用いて粒度分布を測定し算出した値を意味するものとする。
The average particle diameter (median diameter) of the carrier is not particularly limited, but is preferably 10 nm to 100 mm, more preferably 12 nm to 50 mm, more preferably 15 nm to 10 mm, and further preferably 20 nm to 5 mm.
Here, the average particle diameter of the carrier is adjusted so that the measurement object (carrier) is added to the sodium hexametaphosphate aqueous solution and dispersed by ultrasonic dispersion and stirring to adjust the transmittance to 70 to 90%. It means a value calculated by measuring the particle size distribution using a known laser scattering method (for example, HORIBA LA-950V2).

また、担体の比表面積は特に限定されないが、1〜2000m2/gであることが好ましく、5〜1800m2/gであることがより好ましく、10〜1500m2/gであることがさらに好ましい。
なお、ここで担体の比表面積は、前述の本発明の被覆粒子の比表面積と同様に、窒素吸着法[3](BET法)で測定して得た値を意味するものとする。
Although the specific surface area of the support is not particularly limited, it is preferably 1~2000m 2 / g, more preferably 5~1800m 2 / g, more preferably from 10~1500m 2 / g.
In addition, the specific surface area of a support | carrier here shall mean the value obtained by measuring by nitrogen adsorption method [3] (BET method) similarly to the specific surface area of the covering particle | grains of this invention mentioned above.

本発明の担持触媒は、このような担体の表面の少なくとも一部に本発明の被覆粒子が担持しているものである。   The supported catalyst of the present invention is such that the coated particles of the present invention are supported on at least a part of the surface of such a carrier.

本発明の担持触媒が含む前記金属コア粒子の量は特に限定されないが、100質量部の担体に対して、0.01〜100質量部であることが好ましく、0.1〜50質量部であることがより好ましく、0.5〜20質量部であることがより好ましく、1〜10質量部であることがさらに好ましい。担体に対して金属コア粒子の量が少なすぎると触媒能が低くなる傾向があり、逆に多すぎるとコストが高まる割には触媒能が高くならない傾向があるからである。
ここで、本発明の担持触媒が含む前記金属コア粒子の量は、本発明の担持触媒を600℃で焼成し、残渣をアルカリ溶融剤によって溶融した後、28質量%塩酸または硝酸水溶液によって溶解し、得られた溶解液を純水で希釈した後、ICP誘導結合プラズマ発光分光分析装置(例えばSPS1200A、セイコー電子株式会社製)を用いて金属コア粒子を構成する成分の含有率を測定して求めるものとする。また、金属コア粒子と多孔質シラザン層に同一元素が含まれる場合は、本発明の担持触媒についてEDXによる面分析(元素分布分析)を行い、金属コア粒子および多孔質シラザン層におけるその元素の存在比率を求め、得られた存在比率と上記のICP誘導結合プラズマ発光分光分析装置を用いた各成分の組成とから、金属コア粒子を構成する成分の含有率を算出して求めるものとする。
The amount of the metal core particles contained in the supported catalyst of the present invention is not particularly limited, but is preferably 0.01 to 100 parts by mass, and 0.1 to 50 parts by mass with respect to 100 parts by mass of the carrier. More preferably, it is 0.5-20 mass parts, More preferably, it is 1-10 mass parts. This is because if the amount of the metal core particles is too small relative to the support, the catalytic ability tends to be low, and conversely if too large, the catalytic ability tends not to be high for an increase in cost.
Here, the amount of the metal core particles contained in the supported catalyst of the present invention is such that the supported catalyst of the present invention is calcined at 600 ° C., the residue is melted with an alkaline melting agent, and then dissolved in 28% by mass hydrochloric acid or nitric acid aqueous solution. Then, after the obtained solution is diluted with pure water, the content of the components constituting the metal core particles is measured and obtained using an ICP inductively coupled plasma emission spectrometer (for example, SPS1200A, manufactured by Seiko Electronics Co., Ltd.). Shall. When the same element is contained in the metal core particle and the porous silazane layer, the supported catalyst of the present invention is subjected to surface analysis by EDX (element distribution analysis), and the presence of the element in the metal core particle and the porous silazane layer. The ratio is obtained, and the content of the component constituting the metal core particle is calculated from the obtained abundance ratio and the composition of each component using the ICP inductively coupled plasma emission spectrometer.

また、本発明の担持触媒において、本発明の被覆粒子は、担体の単位面積(1m2)あたり、102〜1017個/m2担持していることが好ましく、103〜1015個/m2担持していることがより好ましい。担体に対して本発明の被覆粒子の量が少なすぎると触媒能が低くなる傾向があり、逆に多すぎるとコストが高まる割には触媒能が高くならない傾向があるからである。
ここで、担体に担持している本発明の被覆粒子の個数は、走査型電子顕微鏡を用いて、本発明の担持触媒を倍率30万倍で写真撮影し、得られた写真から肉眼によって、または読取装置を用いて担持個数を測定する。
Further, in the supported catalyst of the present invention, the coated particles of the present invention, a unit area of the carrier (1 m 2) per preferably being 2 carries 10 2 to 10 17 / m, 10 3 to 10 15 atoms / More preferably, m 2 is supported. This is because if the amount of the coated particles of the present invention is too small relative to the support, the catalytic ability tends to be low, and conversely if too large, the catalytic ability tends not to be high for an increase in cost.
Here, the number of the coated particles of the present invention supported on the carrier was photographed with a scanning electron microscope at a magnification of 300,000 times, and from the photograph obtained by the naked eye, or The number of carrying is measured using a reader.

また、本発明の担持触媒の比表面積は特に限定されないが、1〜2000m2/gであることが好ましく、5〜1800m2/gであることがより好ましく、10〜1500m2/gであることがさらに好ましい。
なお、ここで本発明の担持触媒の比表面積は、前述の本発明の被覆粒子の比表面積と同様に、窒素吸着法[3](BET法)で測定して得た値を意味するものとする。
Further, the specific surface area of the supported catalyst of the present invention is not particularly limited, is preferably 1~2000m 2 / g, more preferably 5~1800m 2 / g, a 10~1500m 2 / g Is more preferable.
Here, the specific surface area of the supported catalyst of the present invention means a value obtained by measurement by the nitrogen adsorption method [3] (BET method) in the same manner as the specific surface area of the coated particles of the present invention described above. To do.

また、本発明の担持触媒の平均粒子径(メジアン径)は特に限定されないが、10nm〜100mmが好ましく、12nm〜50mmがより好ましく、15nm〜10mmがより好ましく、20nm〜5mmがさらに好ましい。
ここで本発明の担持触媒の平均粒子径は、測定対象物(本発明の担持触媒)をヘキサメタリン酸ナトリウム水溶液へ添加し、超音波分散および攪拌によって分散させて、透過率が70〜90%となるように調節した後、従来公知のレーザ散乱法(例えばHORIBA LA−950V2)を用いて粒度分布を測定し算出した値を意味するものとする。
The average particle diameter (median diameter) of the supported catalyst of the present invention is not particularly limited, but is preferably 10 nm to 100 mm, more preferably 12 nm to 50 mm, more preferably 15 nm to 10 mm, and further preferably 20 nm to 5 mm.
Here, the average particle diameter of the supported catalyst of the present invention is such that the measurement object (supported catalyst of the present invention) is added to a sodium hexametaphosphate aqueous solution and dispersed by ultrasonic dispersion and stirring, and the transmittance is 70 to 90%. After the adjustment, the value calculated by measuring the particle size distribution using a conventionally known laser scattering method (for example, HORIBA LA-950V2) is meant.

前述のように本発明の被覆粒子が疎水性であるため、本発明の担持触媒も、その表面が疎水性になり易い。   As described above, since the coated particles of the present invention are hydrophobic, the surface of the supported catalyst of the present invention tends to be hydrophobic.

次に、本発明の被覆粒子の製造方法について説明する。
本発明の被覆粒子の製造方法は特に限定されないが、次に説明する本発明の被覆粒子の好適製造方法によって製造することが好ましい。
本発明の被覆粒子の好適製造方法は、金属コア粒子が分散したコロイド溶液を得るコロイド調整工程と、前記コロイド溶液と、前記式(I)に示す繰り返し単位を少なくとも1つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合して、シラザン被覆粒子を含む分散液(X)を得る被覆工程と、前記分散液(X)に含まれる溶媒と固形分とを分離して、多孔質シラザン被覆粒子を得る細孔形成工程とを備える、多孔質シラザン被覆粒子の製造方法である。
Next, a method for producing the coated particles of the present invention will be described.
Although the manufacturing method of the coated particle of this invention is not specifically limited, It is preferable to manufacture with the suitable manufacturing method of the coated particle of this invention demonstrated below.
The preferred method for producing coated particles of the present invention includes a colloid preparation step for obtaining a colloidal solution in which metal core particles are dispersed, a silazane containing the colloidal solution, and a silazane compound containing at least one repeating unit represented by the formula (I). A porous silazane coating obtained by mixing a solution with heating to obtain a dispersion (X) containing silazane-coated particles, and separating the solvent and solids contained in the dispersion (X) It is a manufacturing method of porous silazane covering particle | grains provided with the pore formation process of obtaining particle | grains.

<コロイド調整工程>
初めに、本発明の被覆粒子の好適製造方法におけるコロイド調整工程について説明する。
コロイド調整工程は、金属コア粒子が分散したコロイド溶液を得る工程である。
例えば、溶液中で特定の金属イオンを還元することで、金属コア粒子が分散したコロイド溶液を得ることができる。また、溶液中で特定の金属イオンを還元する方法として、特定の金属イオンと還元剤とを溶液中で接触させる方法が挙げられる。ここで特定の金属イオンは、金属コア粒子を構成することになる金属の化合物(金属塩等)を溶媒に溶解して得ることができる。
また、特定の金属イオンと還元剤とを溶液中で接触させる場合、溶液中に、合わせて錯化安定剤を添加することが好ましい。還元後に得られる粒子が均一でかつ安定な粒子が調製できるためである。
<Colloid adjustment process>
First, the colloid adjustment step in the preferred method for producing coated particles of the present invention will be described.
The colloid adjusting step is a step of obtaining a colloid solution in which the metal core particles are dispersed.
For example, a colloidal solution in which metal core particles are dispersed can be obtained by reducing specific metal ions in the solution. Moreover, as a method of reducing a specific metal ion in a solution, a method of bringing a specific metal ion and a reducing agent into contact with each other in a solution can be mentioned. Here, the specific metal ion can be obtained by dissolving a metal compound (metal salt or the like) constituting the metal core particle in a solvent.
Moreover, when making a specific metal ion and a reducing agent contact in a solution, it is preferable to add a complexing stabilizer together in a solution. This is because the particles obtained after the reduction can be made uniform and stable.

このような金属の化合物(金属塩等)として、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、クエン酸パラジウム、酢酸パラジウムが挙げられる。このような化合物を溶媒に溶解すると、特定の金属イオンとしてパラジウムイオンが得られ、これと還元剤とを溶液中で接触させることでパラジウムを含む金属コア粒子が分散したコロイド溶液が得られる。
また、金属の化合物(金属塩等)として、塩化白金酸、塩化白金(IV)酸カリウム、塩化白金(IV)酸ナトリウム、テトラニトロ白金(II)カリウム、ヘキサヒドロキソ白金(IV)酸ナトリウム水和物、ジニトロジアンミン白金硝酸、ジニトロジアンミン白金アンモニア、テトラアンミンジクロロ白金水和物が挙げられる。このような化合物を溶媒に溶解すると、特定の金属イオンとして白金イオンが得られ、これと還元剤とを溶液中で接触させることで白金を含む金属コア粒子が分散したコロイド溶液が得られる。
また、金属の化合物(金属塩等)として、硝酸銀、硫酸銀が挙げられる。このような化合物を溶媒に溶解すると、特定の金属イオンとして銀イオンが得られ、これと還元剤とを溶液中で接触させることで銀を含む金属コア粒子が分散したコロイド溶液が得られる。
また、金属の化合物(金属塩等)として、塩化金酸、亜硫酸金ナトリウム、シアン化金カリウム、シアン化金ナトリウムが挙げられる。このような化合物を溶媒に溶解すると、特定の金属イオンとして金イオンが得られ、これと還元剤とを溶液中で接触させることで金を含む金属コア粒子が分散したコロイド溶液が得られる。
また、金属の化合物(金属塩等)として、塩化銅、硫酸銅、硝酸銅が挙げられる。このような化合物を溶媒に溶解すると、特定の金属イオンとして銅イオンが得られ、これと還元剤とを溶液中で接触させることで銅を含む金属コア粒子が分散したコロイド溶液が得られる。
さらに、金属の化合物(金属塩等)として、硫酸第二鉄、酢酸第一鉄が挙げられる。このような化合物を溶媒に溶解すると、特定の金属イオンとして鉄イオンが得られ、これと還元剤とを溶液中で接触させることで鉄を含む金属コア粒子が分散したコロイド溶液が得られる。
Examples of such metal compounds (metal salts and the like) include palladium chloride, palladium nitrate, palladium sulfate, palladium citrate, and palladium acetate. When such a compound is dissolved in a solvent, palladium ions are obtained as specific metal ions, and a colloidal solution in which metal core particles containing palladium are dispersed is obtained by bringing this ion into contact with a reducing agent.
In addition, chloroplatinic acid, potassium platinum (IV) chloride, sodium chloroplatinum (IV), potassium tetranitroplatinum (II), sodium hexahydroxoplatinum (IV) hydrate as metal compounds (metal salts, etc.) , Dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia, tetraamminedichloroplatinum hydrate. When such a compound is dissolved in a solvent, platinum ions are obtained as specific metal ions, and a colloidal solution in which metal core particles containing platinum are dispersed is obtained by bringing this ion into contact with a reducing agent.
Moreover, silver nitrate and silver sulfate are mentioned as a metal compound (metal salt etc.). When such a compound is dissolved in a solvent, silver ions are obtained as specific metal ions, and a colloidal solution in which metal core particles containing silver are dispersed is obtained by bringing this into contact with a reducing agent in a solution.
Examples of metal compounds (metal salts and the like) include chloroauric acid, sodium gold sulfite, potassium gold cyanide, and sodium gold cyanide. When such a compound is dissolved in a solvent, gold ions are obtained as specific metal ions, and a colloidal solution in which metal core particles containing gold are dispersed is obtained by bringing this into contact with a reducing agent.
Moreover, copper chloride, copper sulfate, copper nitrate is mentioned as a metal compound (metal salt etc.). When such a compound is dissolved in a solvent, copper ions are obtained as specific metal ions, and a colloidal solution in which metal core particles containing copper are dispersed is obtained by bringing this into contact with a reducing agent.
Furthermore, ferric sulfate and ferrous acetate are mentioned as a metal compound (metal salt etc.). When such a compound is dissolved in a solvent, iron ions are obtained as specific metal ions, and a colloidal solution in which metal core particles containing iron are dispersed is obtained by bringing this into contact with a reducing agent.

また、金属イオンを得るために、金属コア粒子を構成することになる金属の化合物(金属塩等)を溶解するために用いる溶媒は、その化合物と反応しないものであれば特に限定されず、例えば、水、アルコール類、ケトン類、アミド類、エーテル類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化炭化水素類、スルホキシド類、ピロリドン類などが挙げられる。   In addition, the solvent used for dissolving the metal compound (metal salt or the like) constituting the metal core particle in order to obtain the metal ion is not particularly limited as long as it does not react with the compound. , Water, alcohols, ketones, amides, ethers, glycol ethers, glycol ether acetates, esters, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, sulfoxides, pyrrolidones Etc.

また、還元剤としては、アルコール、ヒドラジン、蟻酸、ホルムアルデヒド、ヒドロキノン、過塩素酸、硫酸第一鉄、水素化ホウ素ナトリウム、過酸化水素、過マンガン酸カリウムなどが挙げられる。   Examples of the reducing agent include alcohol, hydrazine, formic acid, formaldehyde, hydroquinone, perchloric acid, ferrous sulfate, sodium borohydride, hydrogen peroxide, and potassium permanganate.

このような還元剤を金属イオンを含む溶液へ添加することで、金属イオンと還元剤とを溶液中で接触させることができる。また、還元剤を予め溶媒に溶解して溶液とし、この溶液と金属イオンを含む溶液とを混合することでも、金属イオンと還元剤とを溶液中で接触させることができる。還元剤を予め溶解する溶媒は、上記の金属コア粒子を構成することになる金属の化合物(金属塩等)を溶解する溶媒と同様であってよい。
金属イオンの還元は、溶液を攪拌しながら、還元剤を前記溶液に添加することにより行うことが好ましい。
By adding such a reducing agent to a solution containing metal ions, the metal ions and the reducing agent can be brought into contact with each other in the solution. Alternatively, the metal ion and the reducing agent can be brought into contact with each other in the solution by dissolving the reducing agent in a solvent in advance to form a solution and mixing the solution with a solution containing metal ions. The solvent in which the reducing agent is dissolved in advance may be the same as the solvent in which the metal compound (metal salt or the like) that constitutes the metal core particle is dissolved.
Metal ions are preferably reduced by adding a reducing agent to the solution while stirring the solution.

また、ここで金属イオンと還元剤との量比は特に限定されないが、金属イオン100質量部に対して、還元剤が10質量部〜500質量部であることが好ましく、50〜300質量部であることがより好ましい。   In addition, the amount ratio of the metal ion to the reducing agent is not particularly limited, but the reducing agent is preferably 10 parts by mass to 500 parts by mass with respect to 100 parts by mass of the metal ion, and 50 to 300 parts by mass. More preferably.

また、金属イオンと還元剤とを溶液中で接触させた後、必要に応じて、分散剤や界面活性剤(例えば、ポリビニルピロリドン、アミノシラン、ポリカルボン酸、有機酸など)を添加することが好ましい。金属コア粒子が凝集し難くなるからである。   Moreover, it is preferable to add a dispersant or a surfactant (for example, polyvinyl pyrrolidone, aminosilane, polycarboxylic acid, organic acid, etc.) as necessary after contacting the metal ion with the reducing agent in the solution. . This is because the metal core particles hardly aggregate.

また、金属イオンと還元剤とを溶液中で接触させた後、限外濾過器などを用いて洗浄して、未反応金属イオンや還元剤を取り除くことが好ましい。
また、金属イオンと還元剤とを溶液中で接触させた後、塩酸等の酸を加えて余分な塩を溶解し、その後、イオン交換樹脂等を用いて脱塩することが好ましい。
In addition, it is preferable to remove the unreacted metal ions and the reducing agent by bringing the metal ions and the reducing agent into contact with each other in the solution and then washing them using an ultrafilter or the like.
Further, it is preferable to contact a metal ion and a reducing agent in a solution, add an acid such as hydrochloric acid to dissolve excess salt, and then desalinate using an ion exchange resin or the like.

また、金属イオンと還元剤とを水溶液中で接触させた場合、好ましくは、上記のように、さらに限外濾過器を用いた洗浄およびイオン交換樹脂等を用いた脱塩を行った後に、溶媒(水)を有機溶媒へ置換することが好ましい。次の被覆工程において、金属コア粒子の表面にポリシラザンを含む被膜が形成され易いからである。
有機溶媒としてはメタノール、エタノール、プロパノール、2−プロパノール(IPA)、ブタノールなどのアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプピルエーテル、プロピレングリコールモノメチルエーテル、プピレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類等が挙げられる。
これらの中でもメタノール、エタノール、2−プロパノール(IPA)などのアルコール類を用いると、金属コア粒子が凝集を起こし難く安定する傾向があるので好ましい。
置換する方法としては、蒸留法、限外濾過膜法、ロータリーエバポレーター法等、従来公知の方法を採用することができる。
得られたコロイド溶液における固形分の濃度は0.5〜40質量%であることが好ましく、1.0〜30質量%であることがより好ましい。
Further, when the metal ion and the reducing agent are brought into contact with each other in an aqueous solution, preferably, the solvent is used after further washing with an ultrafilter and desalting with an ion exchange resin or the like as described above. It is preferable to replace (water) with an organic solvent. This is because in the next coating step, a film containing polysilazane is easily formed on the surface of the metal core particles.
As the organic solvent, methanol, ethanol, propanol, 2-propanol (IPA), alcohols such as butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropoxy b pills ether, propylene glycol monomethyl ether , ethers such as profile propylene glycol monoethyl ether; acetone, methyl ethyl ketone, ketones such as methyl isobutyl ketone.
Among these, the use of alcohols such as methanol, ethanol, 2-propanol (IPA) is preferable because the metal core particles are less likely to agglomerate and tend to be stable.
As a replacement method, a conventionally known method such as a distillation method, an ultrafiltration membrane method, or a rotary evaporator method can be employed.
The concentration of the solid content in the obtained colloidal solution is preferably 0.5 to 40% by mass, and more preferably 1.0 to 30% by mass.

<被覆工程>
次に、本発明の被覆粒子の好適製造方法における被覆工程について説明する。
被覆工程では、コロイド調整工程によって得られたコロイド溶液と、下記式(I)に示す繰り返し単位を少なくとも1つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合する。
<Coating process>
Next, the coating step in the preferred method for producing coated particles of the present invention will be described.
In the coating step, the colloid solution obtained in the colloid adjustment step and a silazane solution containing a silazane compound containing at least one repeating unit represented by the following formula (I) are mixed while heating.

Figure 0005806100
Figure 0005806100

ここで、R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、シクロアルキル基、アリール基(フェニル基、トリル基、ナフチル基など)、アルキルシリル基(tert-ブチルジメチルシリル基など)、アルキルアミノ基、アルコキシ基(メトキシ基、エトキシ基など)を表す。
これらの中でも、R1、R2およびR3が水素原子またはメチル基であることが好ましい。
Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, alkenyl group, cycloalkyl group, aryl group (phenyl group, tolyl group, naphthyl group, etc. ), Alkylsilyl groups (such as tert-butyldimethylsilyl group), alkylamino groups, and alkoxy groups (such as methoxy and ethoxy groups).
Among these, it is preferable that R < 1 >, R < 2 > and R < 3 > are a hydrogen atom or a methyl group.

このようなシラザン化合物は、下記式(II)に示すジシラザン化合物であることが好ましい。   Such a silazane compound is preferably a disilazane compound represented by the following formula (II).

Figure 0005806100
Figure 0005806100

ここで、R4、R5、R6、R7、R8、R9およびR10は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、シクロアルキル基、アリール基(フェニル基、トリル基、ナフチル基など)、アルキルシリル基(tert-ブチルジメチルシリル基など)、アルキルアミノ基、アルコキシ基(メトキシ基、エトキシ基など)を表す。
4、R5、R6、R7、R8、R9およびR10は、水素原子またはメチル基であることが好ましい。
Here, R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, alkenyl group, cycloalkyl group, An aryl group (phenyl group, tolyl group, naphthyl group, etc.), alkylsilyl group (tert-butyldimethylsilyl group, etc.), alkylamino group, alkoxy group (methoxy group, ethoxy group, etc.) are represented.
R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are preferably a hydrogen atom or a methyl group.

このようなジシラザン化合物として、具体的には1,1,1,3,3,3−ヘキサメチルジシラザン、1,3−Bis(クロロメチル)テトラメチルジシラザン、1,3−Bis(3,3,3−トリフルオロプロピル)−1,1,3,3−テトラメチルジシラザン、1,3−ジフェニルテトラメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、ヘプタメチルジシラザン、1,1,3,3−テトラメチルジシラザン等が挙げられる。   Specific examples of such a disilazane compound include 1,1,1,3,3,3-hexamethyldisilazane, 1,3-Bis (chloromethyl) tetramethyldisilazane, 1,3-Bis (3, 3,3-trifluoropropyl) -1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane , Heptamethyldisilazane, 1,1,3,3-tetramethyldisilazane and the like.

シラザン溶液は、前記シラザン化合物を溶媒に添加して得ることができる。ここで溶媒としては、メタノール、エタノール、プロパノール、2−プロパノール(IPA)、ブタノールなどのアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプピルエーテル、プロピレングリコールモノメチルエーテル、プピレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類等を用いることができる。
シラザン溶液における固形分の濃度は0.1〜10質量%であることが好ましく、0.2〜5質量%であることがより好ましい。
The silazane solution can be obtained by adding the silazane compound to a solvent. Here, as the solvent, methanol, ethanol, propanol, 2-propanol (IPA), alcohols such as butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropoxy b pills ether, propylene glycol monomethyl ether, ethers such as profile propylene glycol monoethyl ether; acetone, methyl ethyl ketone, can be used ketones such as methyl isobutyl ketone.
The concentration of the solid content in the silazane solution is preferably 0.1 to 10% by mass, and more preferably 0.2 to 5% by mass.

このような前記シラザン溶液と前記コロイド溶液とを加温しながら混合する。
また、2つの溶液を少しずつ、攪拌しながら混合することが好ましい。
例えば、前記シラザン溶液へ前記コロイド溶液を少しずつ、数時間〜数十時間(例えば1〜24時間程度)かけて、攪拌しながら添加して、混合することが好ましい。
The silazane solution and the colloid solution are mixed while heating.
Moreover, it is preferable to mix two solutions little by little, stirring.
For example, the colloidal solution is preferably added to the silazane solution little by little with stirring over several hours to several tens of hours (for example, about 1 to 24 hours) and mixed.

また、2つの溶液を加温しながら混合する。例えば、前記シラザン溶液を加温しつつ、ここへ常温の前記コロイド溶液を少しずつ加えていけば、2つの溶液を加温しながら混合することができる。
また、溶液の温度は溶媒の沸点以下の温度であれば特に限定されないが、30〜90℃程度であることが好ましく、40〜80℃程度であることがより好ましい。
Also, the two solutions are mixed while warming. For example, if the colloidal solution at room temperature is added little by little while heating the silazane solution, the two solutions can be mixed while heating.
The temperature of the solution is not particularly limited as long as it is a temperature not higher than the boiling point of the solvent, but it is preferably about 30 to 90 ° C, more preferably about 40 to 80 ° C.

また、2つの溶液を少しずつ、攪拌しながら混合することが好ましい。
例えば、前記シラザン溶液へ前記コロイド溶液を少しずつ、数時間〜数十時間(例えば1〜24時間程度)かけて、攪拌しながら添加して、混合することが好ましい。
Moreover, it is preferable to mix two solutions little by little, stirring.
For example, the colloidal solution is preferably added to the silazane solution little by little with stirring over several hours to several tens of hours (for example, about 1 to 24 hours) and mixed.

2つの溶液の混合比は特に限定されないが、混合する前記コロイド溶液に含まれる固形分の質量に対する、混合する前記シラザン溶液に含まれる固形分の比(シラザン溶液に含まれる固形分の質量/コロイド溶液に含まれる固形分の質量)が、0.1〜5000であることが好ましく、0.5〜3000であることがより好ましく、1〜2000であることがより好ましく、1〜1000であることがより好ましく、1〜500であることがより好ましく、1〜100であることがより好ましく、1〜33であることがさらに好ましい。このような範囲内であると、本発明の被覆粒子を担体に担持した本発明の担持触媒の活性がより高く、使用してもその活性がより長期間維持されるので好ましい。   The mixing ratio of the two solutions is not particularly limited, but the ratio of the solids contained in the silazane solution to be mixed with respect to the solids contained in the colloidal solution to be mixed (the mass of the solids contained in the silazane solution / colloid) The mass of the solid content contained in the solution is preferably 0.1 to 5000, more preferably 0.5 to 3000, more preferably 1 to 2000, and 1 to 1000. Is more preferable, 1 to 500 is more preferable, 1 to 100 is more preferable, and 1 to 33 is even more preferable. Within such a range, the activity of the supported catalyst of the present invention in which the coated particles of the present invention are supported on a carrier is higher, and even when used, the activity is maintained for a longer period, which is preferable.

このような被覆工程によって、前記コロイド溶液に含まれる金属コア粒子の表面にポリシラザンを含む被膜が形成されたシラザン被覆粒子を含む分散液(X)を得ることができる。   By such a coating step, a dispersion liquid (X) containing silazane-coated particles in which a film containing polysilazane is formed on the surface of the metal core particles contained in the colloidal solution can be obtained.

<細孔形成工程>
次に、本発明の被覆粒子の好適製造方法における細孔形成工程について説明する。
細孔形成工程では、前記分散液(X)に含まれる溶媒と固形分とを分離する。
<Pore forming step>
Next, the pore formation step in the preferred method for producing coated particles of the present invention will be described.
In the pore forming step, the solvent and solid content contained in the dispersion (X) are separated.

分散液(X)から溶媒を分離する方法は特に限定されず、例えば従来公知の固液分離法を適用して行うことができる。また、例えば分散液(X)を乾燥機内に置くことで乾燥して、分散液(X)から溶媒を分離することができる。
細孔形成工程では、分散液(X)を減圧乾燥することで、分散液(X)から溶媒を分離することが好ましい。
The method for separating the solvent from the dispersion liquid (X) is not particularly limited, and for example, a conventionally known solid-liquid separation method can be applied. Further, for example, the dispersion (X) can be dried by placing it in a dryer, and the solvent can be separated from the dispersion (X).
In the pore forming step, it is preferable to separate the solvent from the dispersion liquid (X) by drying the dispersion liquid (X) under reduced pressure.

このようにして、分散液(X)を乾燥等して溶媒を分離すると、その過程で、金属コア粒子の表面のポリシラザンを含む被膜が収縮する。そして、その被膜には細孔が形成される。
本発明者は、分散液(X)を乾燥する際に、乾燥温度が高いと細孔の径が小さくなる傾向があり、逆に乾燥温度が低いと細孔の径が大きくなる傾向があることを見出した。そして、乾燥温度を最適化することで、得られる多孔質シラザン被覆粒子における細孔の平均細孔径を調整することを見出した。ここで乾燥温度は30〜500℃であることが好ましく、50〜400℃であることがより好ましい。
Thus, when the dispersion liquid (X) is dried to separate the solvent, the coating containing polysilazane on the surface of the metal core particles shrinks in the process. And the pore is formed in the film.
When drying the dispersion liquid (X), the inventor tends to decrease the pore diameter when the drying temperature is high, and conversely, when the drying temperature is low, the pore diameter tends to increase. I found. And it discovered that the average pore diameter of the pore in the porous silazane covering particle | grains obtained was adjusted by optimizing a drying temperature. Here, the drying temperature is preferably 30 to 500 ° C, and more preferably 50 to 400 ° C.

次に、本発明の担持触媒子の製造方法について説明する。
本発明の担持触媒の製造方法は特に限定されないが、次に説明する本発明の担持触媒の好適製造方法によって製造することが好ましい。
本発明の担持触媒の好適製造方法は、金属コア粒子が分散したコロイド溶液を得るコロイド調整工程と、前記コロイド溶液と前記式(I)に示す繰り返し単位を少なくとも一つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合して、シラザン被覆粒子を含む分散液(X)を得る被覆工程と、前記分散液(X)に担体を添加して分散液(Y)を得る添加工程と、前記分散液(Y)に含まれる溶媒と固形分とを分離して、多孔質シラザン被覆粒子が担体に担持した担持触媒を得る担持工程とを備える、担持触媒の製造方法である。
Next, the manufacturing method of the supported catalyst element of this invention is demonstrated.
The method for producing the supported catalyst of the present invention is not particularly limited, but it is preferably produced by the preferred method for producing the supported catalyst of the present invention described below.
The preferred production method of the supported catalyst of the present invention includes a colloid preparation step for obtaining a colloid solution in which metal core particles are dispersed, and a silazane solution containing the colloid solution and a silazane compound containing at least one repeating unit represented by the formula (I). And mixing with heating to obtain a dispersion (X) containing silazane-coated particles, an addition step of adding a carrier to the dispersion (X) to obtain a dispersion (Y), And a supporting step of separating a solvent and solid content contained in the dispersion (Y) to obtain a supported catalyst in which porous silazane-coated particles are supported on a support.

このような本発明の担持触媒の好適製造方法におけるコロイド調整工程および被覆工程は、上記の本発明の被覆粒子の好適製造方法が備えるものと同様であってよい。   The colloid adjustment step and the coating step in the preferred production method of the supported catalyst of the present invention may be the same as those provided in the preferred production method of the coated particles of the present invention.

<添加工程>
本発明の担持触媒の好適製造方法における添加工程について説明する。
添加工程では、被覆工程によって得られた分散液(X)に、前記担体を添加する。
前記担体の添加量は特に限定されないが、分散液(X)に含まれる前記金属コア粒子が、100質量部の担体に対して、0.01〜100質量部となる添加量であることが好ましく、0.1〜50質量部となる添加量であることがより好ましく、0.5〜20質量部となる添加量であることがより好ましく、1〜10質量部となる添加量であることがさらに好ましい。
<Addition process>
The addition step in the preferred production method of the supported catalyst of the present invention will be described.
In the addition step, the carrier is added to the dispersion (X) obtained in the coating step.
The addition amount of the carrier is not particularly limited, but the metal core particles contained in the dispersion (X) are preferably in an addition amount of 0.01 to 100 parts by mass with respect to 100 parts by mass of the carrier. The addition amount is more preferably 0.1 to 50 parts by mass, the addition amount is more preferably 0.5 to 20 parts by mass, and the addition amount is 1 to 10 parts by mass. Further preferred.

<担持工程>
次に、本発明の担持触媒の好適製造方法における担持工程について説明する。
この担持工程は、本発明の被覆粒子の好適製造方法における細孔形成工程と類似している。
本発明の担持触媒の好適製造方法における担持工程では、前記分散液(Y)における溶媒を固形分から分離する。
<Supporting process>
Next, the supporting step in the preferred production method of the supported catalyst of the present invention will be described.
This supporting step is similar to the pore forming step in the preferred method for producing coated particles of the present invention.
In the supporting step in the preferred production method of the supported catalyst of the present invention, the solvent in the dispersion (Y) is separated from the solid content.

分散液(Y)に含まれる溶媒を分離する方法は特に限定されず、例えば従来公知の固液分離法を適用して行うことができる。例えば分散液(Y)を乾燥機内に置くことで乾燥して、分散液(Y)から溶媒を分離することができる。
担持工程では、分散液(Y)を減圧乾燥することで、分散液(Y)から溶媒を分離することが好ましい。
分散液(Y)から溶媒を分離すると、固形分として、多孔質シラザン被覆粒子が担体に担持したもの(本発明の担持触媒)を得ることができる。
The method for separating the solvent contained in the dispersion (Y) is not particularly limited, and for example, a conventionally known solid-liquid separation method can be applied. For example, the dispersion (Y) can be dried by placing it in a dryer, and the solvent can be separated from the dispersion (Y).
In the supporting step, it is preferable to separate the solvent from the dispersion liquid (Y) by drying the dispersion liquid (Y) under reduced pressure.
When the solvent is separated from the dispersion (Y), it is possible to obtain the solid silazane-coated particles supported on the support (supported catalyst of the present invention) as a solid content.

このようにして、分散液(Y)を乾燥等して溶媒を分離すると、その過程で、金属コア粒子の表面のポリシラザンを主成分とする被膜が収縮する。そして、その被膜には細孔が形成される。
本発明者は、分散液(Y)を乾燥する際に、乾燥温度が高いと細孔の径が小さくなる傾向があり、逆に乾燥温度が低いと細孔の径が大きくなる傾向があるので、乾燥温度を最適化することで、得られる多孔質シラザン被覆粒子における細孔の平均細孔径を調整することを見出している。ここで乾燥温度は30〜500℃であることが好ましく、50〜400℃であることがより好ましい。
In this way, when the dispersion (Y) is dried to separate the solvent, the coating containing polysilazane as the main component on the surface of the metal core particles shrinks in the process. And the pore is formed in the film.
When drying the dispersion liquid (Y), the inventor tends to decrease the pore diameter when the drying temperature is high, and conversely, when the drying temperature is low, the pore diameter tends to increase. It has been found that the average pore diameter of the pores in the resulting porous silazane-coated particles is adjusted by optimizing the drying temperature. Here, the drying temperature is preferably 30 to 500 ° C, and more preferably 50 to 400 ° C.

以下、本発明の実施例を説明する。本発明はこれらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below. The present invention is not limited to these examples.

<測定方法および評価方法>
実施例および比較例で行った各種測定方法および評価方法を説明する。
<Measurement method and evaluation method>
Various measurement methods and evaluation methods performed in Examples and Comparative Examples will be described.

[1]金属コア粒子の平均粒子径(メジアン径)の測定方法
画像解析法によって平均粒子径を測定した。すなわち、走査型電子顕微鏡(株式会社日立製作所製、S−5500)を用いて、試料(金属コア粒子、多孔質シラザン被覆粒子または担持触媒)を倍率30万倍で写真撮影し、得られた写真から任意に100個の金属コア粒子を選び、各々の投影面積円相当径を測定して粒度分布を求め、それより平均粒子径(メジアン径)を算出した。
[1] Method for measuring average particle diameter (median diameter) of metal core particles The average particle diameter was measured by an image analysis method. That is, using a scanning electron microscope (S-5500, manufactured by Hitachi, Ltd.), a sample (metal core particles, porous silazane-coated particles or supported catalyst) was photographed at a magnification of 300,000 times, and the resulting photograph 100 metal core particles were arbitrarily selected from the above, and the projected area circle equivalent diameter was measured to obtain the particle size distribution, and the average particle diameter (median diameter) was calculated therefrom.

[2]多孔質シラザン層の厚さの測定方法
走査型電子顕微鏡(株式会社日立製作所製、S−5500)を用いて、試料(多孔質シラザン被覆粒子)を倍率30万倍で写真撮影し、得られた写真から任意に100個の多孔質シラザン被覆粒子を選び、各々の多孔質シラザン被覆粒子において多孔質シラザン層の厚さを数箇所測定し平均して、その1つの多孔質シラザン被覆粒子における多孔質シラザン層の厚さとし、それら100個のデータを単純平均することで、その試料(多孔質シラザン被覆粒子の群)における多孔質シラザン層の厚さとした。
[2] Method for measuring thickness of porous silazane layer Using a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), a sample (porous silazane-coated particles) was photographed at a magnification of 300,000 times, One hundred porous silazane-coated particles are arbitrarily selected from the obtained photographs, and the thickness of the porous silazane layer in each porous silazane-coated particle is measured several times and averaged. And the thickness of the porous silazane layer in the sample (group of porous silazane-coated particles) by simply averaging the 100 data.

[3]多孔質シラザン層の細孔径の平均値の測定方法
細孔分布測定装置(日本ベル社製、BELSORP mini)を用いて、窒素吸着法[1]によって、多孔質シラザン層の細孔の径の平均値(平均細孔径)を測定した。
窒素吸着法[1]は次の方法である。
まず、測定対象物を乾燥させたもの(0.2g)を試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に吸着させて窒素吸着・脱着等温線を得た。そして、得られた窒素吸着・脱着等温線を用いてBJH(Barret-Joyner-Halenda)法により、試料の細孔径分布曲線を得て、その曲線に現れるメソ孔(粒子表面の細孔)側およびマクロ孔(粒子間細孔)側のピークのうち、メソ孔側のピークの細孔径を平均細孔径として求めた。
[3] Measuring method of average value of pore diameter of porous silazane layer By using a pore distribution measuring device (BELSORP mini, manufactured by BEL Japan Ltd.), nitrogen adsorption method [1], the pore size of the porous silazane layer is measured. The average value of the diameter (average pore diameter) was measured.
The nitrogen adsorption method [1] is the following method.
First, the dried measurement object (0.2 g) is placed in a measurement cell as a sample, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is treated with 30 vol% nitrogen and helium. The liquid nitrogen temperature was maintained in a 70% by volume mixed gas stream, and nitrogen was adsorbed on the sample to obtain a nitrogen adsorption / desorption isotherm. Then, using the obtained nitrogen adsorption / desorption isotherm, a BJH (Barret-Joyner-Halenda) method is used to obtain a pore size distribution curve of the sample, and the mesopores (pores on the particle surface) side appearing on the curve and Of the peaks on the macropore (interparticle pore) side, the mesopore-side peak pore diameter was determined as the average pore diameter.

[4]多孔質シラザン層の細孔の容積の測定方法
細孔分布測定装置(日本ベル社製、BELSORP mini)を用いて、窒素吸着法[2]によって、多孔質シラザン層の細孔の容積を測定した。
窒素吸着法[2]は次の方法である。
まず、測定対象物を乾燥させたもの(0.2g)を試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に吸着させて窒素吸着・脱着等温線を得た。そして、得られた窒素吸着・脱着等温線における相対圧P/P0の値が0.4〜1.0の範囲に現れる、IUPACで規定されるIVヒステリシス曲線におけるメソ孔側部分の積算値を求め、これを細孔の容積として得た。
[4] Method for measuring pore volume of porous silazane layer Volume of pore of porous silazane layer by a nitrogen adsorption method [2] using a pore distribution measuring device (BELSORP mini, manufactured by Bell Japan) Was measured.
The nitrogen adsorption method [2] is the following method.
First, the dried measurement object (0.2 g) is placed in a measurement cell as a sample, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is treated with 30 vol% nitrogen and helium. The liquid nitrogen temperature was maintained in a 70% by volume mixed gas stream, and nitrogen was adsorbed on the sample to obtain a nitrogen adsorption / desorption isotherm. Then, the integrated value of the mesopore side portion in the IV hysteresis curve defined by IUPAC, where the value of the relative pressure P / P 0 in the obtained nitrogen adsorption / desorption isotherm appears in the range of 0.4 to 1.0, This was obtained as the pore volume.

[5]多孔質シラザン被覆粒子の比表面積の測定方法
表面積測定装置(ユアサアイオニクス株式会社製、マルチソーブ12型)を用いて、窒素吸着法[3](BET法)によって、多孔質シラザン被覆粒子の比表面積を測定した。
窒素吸着法[3]は次の方法である。
まず、測定対象物(多孔質シラザン被覆粒子)を乾燥させたもの(0.2g)を試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、試料の比表面積を測定した。
[5] Method for measuring specific surface area of porous silazane-coated particles Porous silazane-coated particles by a nitrogen adsorption method [3] (BET method) using a surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Multisorb 12 type) The specific surface area of was measured.
The nitrogen adsorption method [3] is the following method.
First, a measurement object (porous silazane-coated particles) dried (0.2 g) is placed in a measurement cell as a sample, degassed at 250 ° C. for 40 minutes in a nitrogen gas stream, and then the sample Was maintained at a liquid nitrogen temperature in a mixed gas stream of 30% by volume of nitrogen and 70% by volume of helium, and nitrogen was adsorbed on the sample by equilibrium. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, and the amount of nitrogen desorbed during that time was detected, and the specific surface area of the sample was measured.

[6]多孔質シラザン被覆粒子のぬれ性(接触角)の測定方法
多孔質シラザン被覆粒子の1gを200℃で乾燥させた後、直径1cm、高さ5cmのセルに入れ、50kgfの荷重でプレスして成型物を得て、得られた成型物の表面に水を一滴たらして接触角を測定した。
[6] Method for measuring wettability (contact angle) of porous silazane-coated particles After drying 1 g of porous silazane-coated particles at 200 ° C., they are put into a cell having a diameter of 1 cm and a height of 5 cm, and pressed with a load of 50 kgf Then, a molded product was obtained, and a drop of water was dropped on the surface of the obtained molded product, and the contact angle was measured.

[7]触媒性能評価方法(触媒の活性および寿命の測定)
内径が30mmのガラス管内に、内径21mmの別のガラス管を挿通させた二重式ガラス反応管を用意し、内側のガラス管内に、その流路の一部を塞ぐように担持触媒を充填した。ここで充填した担持触媒の質量は、それに含まれる金属コア粒子の質量が0.002gとなる質量とした。
このような二重式ガラス反応管の内側のガラス管と外側のガラス管との間に40℃の温水を循環させて、内側のガラス管内の温度を一定に保った。その後、内側のガラス反応管内へ一方端部から混合ガスを422ml/minで導入した。そして、充填した担持触媒と接触した後の、他方端部から排出される排出ガスにおけるエチレン(C24)およびエタン(C26)の濃度をガスクロマトグラフィーを用いて測定した。測定は1時間に1回行い、最長で48時間行った。なお、内側のガラス反応管内へ導入した混合ガスは、N2:H2:C22=400:10:12(体積比)のものである。
そして、測定した排出ガス中のエチレン(C24)およびエタン(C26)の濃度から生成率を求めた。生成率は下記式で求め、この式から求められる当初の生成率(混合ガスの導入を始めて数分が経過して排出ガスの組成が安定した際に測定した生成率)を触媒活性とし、この触媒活性に対して生成率が3%低下した時間を寿命とした。
生成率=排出ガス中のエチレンおよびエタンの時間当たりのモル量(mol/min)の合計/混合ガス中のアセチレンの時間当たりのモル量(mol/min)×100
[7] Catalyst performance evaluation method (measurement of catalyst activity and life)
A double-type glass reaction tube in which another glass tube with an inner diameter of 21 mm was inserted into a glass tube with an inner diameter of 30 mm was prepared, and the supported catalyst was filled in the inner glass tube so as to block a part of the flow path. . The mass of the supported catalyst filled here was such that the mass of the metal core particles contained therein was 0.002 g.
Warm water at 40 ° C. was circulated between the inner glass tube and the outer glass tube of such a double glass reaction tube to keep the temperature in the inner glass tube constant. Thereafter, the mixed gas was introduced into the inner glass reaction tube from one end at 422 ml / min. Then, after contact with the supported catalyst filled, the concentration of ethylene (C 2 H 4) and ethane (C 2 H 6) was measured by gas chromatography in the exhaust gas discharged from the other end. The measurement was carried out once per hour and for a maximum of 48 hours. The mixed gas introduced into the inner glass reaction tube is N 2 : H 2 : C 2 H 2 = 400: 10: 12 (volume ratio).
Then, to determine the production rate from the concentration of ethylene (C 2 H 4) and ethane in the exhaust gas was measured (C 2 H 6). The production rate is obtained by the following equation, and the initial production rate obtained from this equation (the production rate measured when the composition of the exhaust gas is stabilized after a few minutes have passed since the introduction of the mixed gas) is defined as the catalyst activity. The time when the production rate decreased by 3% with respect to the catalyst activity was defined as the life.
Production rate = total amount of moles of ethylene and ethane in the exhaust gas per hour (mol / min) / mol amount of acetylene in the mixed gas per hour (mol / min) × 100

<金属コア粒子の調整方法>
次に、金属コア粒子が分散したコロイド溶液の調整方法を説明する。
<Method for adjusting metal core particles>
Next, a method for preparing a colloidal solution in which metal core particles are dispersed will be described.

[合成例1]
Pdコロイド溶液の調整方法
クエン酸水溶液(濃度30質量%)219gに、還元剤として硫酸第一鉄122gを溶解させた溶液を調製した。そして、この溶液341gを、硝酸パラジウム水溶液(濃度20質量%)39gに室温で添加し、充分に混合することによりPd粒子が分散した分散液を得た。そして得られた分散液を、限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄(脱塩等)し、濃縮し、Pd濃度が3質量%のPd分散液を得た。
得られたPd分散液を1000倍程度希釈し、その一部のPd粒子をコロジオン膜にのせ、乾燥させ、その平均粒子径、比表面積および接触角を前述の方法で測定した。その結果、平均粒子径は2nm、比表面積は273m2/g、接触角は56度であった。なお、走査型電子顕微鏡による観察により、Pd粒子は球形であることを確認した。
次に、得られたPd分散液100gに1体積%の塩酸を1g添加し、1時間攪拌後、陰イオン交換樹脂(三菱化学社製、SANUPC)を10g入れ、脱塩を行った。そして、脱塩後、遠心分離機(G=8000)を用いて粗大粒子のカットを行い、さらに限外濾過膜を用いて分散媒を水からメタノールへ置換して、Pdのコロイド溶液を得た。
その後、ICP誘導結合プラズマ発光分光分析装置SPS1200A(セイコー電子株式会社製)を用いてPd濃度を測定した。そして、Pd濃度が2.5質量%となるように調整したPdコロイド溶液を得た。
得られたコロイド溶液の物性等を第1表に示す。
[Synthesis Example 1]
Preparation Method of Pd Colloid Solution A solution was prepared by dissolving 122 g of ferrous sulfate as a reducing agent in 219 g of an aqueous citric acid solution (concentration: 30% by mass). Then, 341 g of this solution was added to 39 g of an aqueous palladium nitrate solution (concentration: 20% by mass) at room temperature and mixed well to obtain a dispersion in which Pd particles were dispersed. The obtained dispersion was washed (desalted, etc.) using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500) and concentrated to obtain a Pd dispersion having a Pd concentration of 3% by mass.
The obtained Pd dispersion was diluted about 1000 times, a part of the Pd particles was placed on a collodion film and dried, and the average particle diameter, specific surface area and contact angle were measured by the above-described methods. As a result, the average particle diameter was 2 nm, the specific surface area was 273 m 2 / g, and the contact angle was 56 degrees. It was confirmed by observation with a scanning electron microscope that the Pd particles were spherical.
Next, 1 g of 1% by volume hydrochloric acid was added to 100 g of the obtained Pd dispersion, and after stirring for 1 hour, 10 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation, SANUPC) was added for desalting. After desalting, coarse particles were cut using a centrifuge (G = 8000), and the dispersion medium was replaced from water to methanol using an ultrafiltration membrane to obtain a colloidal solution of Pd. .
Thereafter, the Pd concentration was measured using an ICP inductively coupled plasma optical emission spectrometer SPS1200A (manufactured by Seiko Electronics Co., Ltd.). And the Pd colloidal solution adjusted so that Pd density | concentration might be 2.5 mass% was obtained.
The physical properties and the like of the obtained colloid solution are shown in Table 1.

<実施例1>
メチルエチルケトン1000gに1,1,1,3,3,3−ヘキサメチルジシラザン(和光純薬工業社製)4gを添加し、混合して、シラザン溶液を得た。
次に、このシラザン溶液へ、合成例1で得たPdコロイド溶液40gを少しずつ、10時間かけて添加してシラザン被覆粒子が分散した分散液(X)を得た。ここでPdコロイド溶液の少なくとも一部をシラザン溶液へ添加した溶液を反応液ともいう。シラザン溶液を添加している間、反応液は50℃に保持した。
そして、得られた分散液(X)の一部を1000倍程度希釈し、コロジオン膜にのせ、105℃で24時間、減圧乾燥させて分離し、前述の方法で、多孔質シラザン被覆粒子における多孔質シラザン層の厚さ、細孔の径の平均値(平均細孔径)および細孔容積、比表面積、接触角ならびに金属コア粒子の平均粒子径を測定した。
測定結果を第1表に示す。
<Example 1>
To 1000 g of methyl ethyl ketone, 4 g of 1,1,1,3,3,3-hexamethyldisilazane (manufactured by Wako Pure Chemical Industries, Ltd.) was added and mixed to obtain a silazane solution.
Next, 40 g of the Pd colloid solution obtained in Synthesis Example 1 was added to the silazane solution little by little over 10 hours to obtain a dispersion (X) in which silazane-coated particles were dispersed. Here, a solution obtained by adding at least a part of the Pd colloid solution to the silazane solution is also referred to as a reaction solution. The reaction solution was kept at 50 ° C. while the silazane solution was added.
Then, a part of the obtained dispersion (X) is diluted about 1000 times, placed on a collodion membrane, separated by drying under reduced pressure at 105 ° C. for 24 hours, and the porous silazane-coated particles are separated by the method described above. The thickness of the porous silazane layer, the average value of the pore diameter (average pore diameter), the pore volume, the specific surface area, the contact angle, and the average particle diameter of the metal core particles were measured.
The measurement results are shown in Table 1.

次に、分散液(X)へ、活性炭(味の素ファインテクノ株式会社製、商品名:CL−K、粒度:0.5mm〜1.7mm、ヨウ素吸着量1,550mg/g)を添加し、10分間、攪拌した。そして得られた分散液(Y)を105℃で24時間、減圧乾燥を行い、担持触媒を得た。担持触媒は、多孔質シラザン被覆粒子が活性炭に担持しているものである。なお、分散液(X)への活性炭の添加量は、担持触媒における金属コア粒子の担持量(含有量)が1.0質量%となるように調整した。
また、前述の触媒性能評価方法に基づいて、得られた担持触媒の性能を評価した。また、担持触媒を500℃で3時間、焼成したものについても、同様に性能を評価した。さらに、担持触媒を500℃で3時間、焼成したものについて、金属コア粒子の平均粒子径を測定した。
測定結果を第1表に示す。
Next, activated carbon (manufactured by Ajinomoto Fine Techno Co., Ltd., trade name: CL-K, particle size: 0.5 mm to 1.7 mm, iodine adsorption amount 1,550 mg / g) is added to the dispersion (X), and 10 Stir for minutes. And the obtained dispersion liquid (Y) was dried under reduced pressure at 105 degreeC for 24 hours, and the supported catalyst was obtained. The supported catalyst is one in which porous silazane-coated particles are supported on activated carbon. The amount of activated carbon added to the dispersion (X) was adjusted so that the supported amount (content) of the metal core particles in the supported catalyst was 1.0% by mass.
Further, the performance of the obtained supported catalyst was evaluated based on the above-described catalyst performance evaluation method. Further, the performance of the supported catalyst calcined at 500 ° C. for 3 hours was similarly evaluated. Further, the average particle diameter of the metal core particles was measured for the supported catalyst calcined at 500 ° C. for 3 hours.
The measurement results are shown in Table 1.

<実施例2>
実施例1では、メチルエチルケトン1000gに1,1,1,3,3,3−ヘキサメチルジシラザン4gを添加し、混合して、シラザン溶液を得たが、実施例2では、1,1,1,3,3,3−ヘキサメチルジシラザンを14g添加し、混合して、シラザン溶液を得た。
そして、その他については実施例1と同様に操作し、同様の測定を行った。
測定結果を第1表に示す。
<Example 2>
In Example 1, 4 g of 1,1,1,3,3,3-hexamethyldisilazane was added to 1000 g of methyl ethyl ketone and mixed to obtain a silazane solution. In Example 2, 1,1,1 , 3,3,3-hexamethyldisilazane was added and mixed to obtain a silazane solution.
The other operations were performed in the same manner as in Example 1 and the same measurement was performed.
The measurement results are shown in Table 1.

<実施例3>
実施例1では、メチルエチルケトン1000gに1,1,1,3,3,3−ヘキサメチルジシラザン4gを添加し、混合して、シラザン溶液を得たが、実施例3では、1,1,1,3,3,3−ヘキサメチルジシラザンを33g添加し、混合して、シラザン溶液を得た。
そして、その他については実施例1と同様に操作し、同様の測定を行った。
測定結果を第1表に示す。
<Example 3>
In Example 1, 4 g of 1,1,1,3,3,3-hexamethyldisilazane was added to 1000 g of methyl ethyl ketone and mixed to obtain a silazane solution. In Example 3, 1,1,1 33 g of 3,3,3-hexamethyldisilazane was added and mixed to obtain a silazane solution.
The other operations were performed in the same manner as in Example 1 and the same measurement was performed.
The measurement results are shown in Table 1.

<実施例4>
実施例1では、分散液(X)へ活性炭を99g添加し、攪拌して得た分散液(Y)を105℃で減圧乾燥を行って担持触媒を得たが、実施例4では分散液(Y)を400℃で減圧乾燥を行って担持触媒を得た。
そして、その他については実施例1と同様に操作し、同様の測定を行った。
測定結果を第1表に示す。
<Example 4>
In Example 1, 99 g of activated carbon was added to dispersion (X), and the dispersion (Y) obtained by stirring was dried under reduced pressure at 105 ° C. to obtain a supported catalyst. In Example 4, the dispersion ( Y) was dried under reduced pressure at 400 ° C. to obtain a supported catalyst.
The other operations were performed in the same manner as in Example 1 and the same measurement was performed.
The measurement results are shown in Table 1.

<実施例5>
実施例1では、分散液(X)へ活性炭を99g添加し、攪拌して得た分散液(Y)を105℃で減圧乾燥を行って担持触媒を得たが、実施例5では分散液(Y)を50℃で減圧乾燥を行って担持触媒を得た。
そして、その他については実施例1と同様に操作し、同様の測定を行った。
測定結果を第1表に示す。
<Example 5>
In Example 1, 99 g of activated carbon was added to the dispersion (X), and the dispersion (Y) obtained by stirring was dried under reduced pressure at 105 ° C. to obtain a supported catalyst. In Example 5, the dispersion ( Y) was dried under reduced pressure at 50 ° C. to obtain a supported catalyst.
The other operations were performed in the same manner as in Example 1 and the same measurement was performed.
The measurement results are shown in Table 1.

<比較例1>
実施例1で用いたものと同一の活性炭99gと、合成例1で得たPdコロイド溶液40gとを、純水1000gへ添加し、10分間、攪拌した。ここで活性炭の添加量は、担持触媒における金属コア粒子の担持量(含有量)が1.0質量%となる量である。
そして得られた分散液(Y)を105℃で24時間、減圧乾燥を行い、担持触媒を得た。担持触媒は、Pd粒子が活性炭に担持しているものである。
そして、このようにして得られた担持触媒について、実施例1と同様の測定を行った。
測定結果を第1表に示す。
<Comparative Example 1>
99 g of the same activated carbon as used in Example 1 and 40 g of the Pd colloid solution obtained in Synthesis Example 1 were added to 1000 g of pure water and stirred for 10 minutes. Here, the amount of activated carbon added is such that the supported amount (content) of the metal core particles in the supported catalyst is 1.0% by mass.
And the obtained dispersion liquid (Y) was dried under reduced pressure at 105 degreeC for 24 hours, and the supported catalyst was obtained. The supported catalyst is one in which Pd particles are supported on activated carbon.
And about the supported catalyst obtained in this way, the same measurement as Example 1 was performed.
The measurement results are shown in Table 1.

Figure 0005806100
Figure 0005806100

第1表の触媒性能評価結果より、すべての実施例における担持触媒は、500℃焼成後であっても活性が高く、寿命も長いことがわかる。また、500℃焼成の前後における金属コア粒子の平均粒子径を対比すると、変化がないことがわかる。
これに対して、比較例1における担持触媒は、500℃焼成前の活性は高いものの、500℃焼成後の活性は低くなった。また、寿命については、500℃焼成前であっても短く、500℃焼成後の場合は極端に短くなった。また、比較例1の場合、500℃焼成後の金属コア粒子の平均粒子径は、500℃焼成前に比べると75倍にまで大きくなった。これは比較例1が実施例1〜5の担持触媒が備える多孔質シラザン層を有さないため、金属コア粒子同士が凝集したためと考えられる。
From the results of the catalyst performance evaluation in Table 1, it can be seen that the supported catalysts in all Examples have high activity and long life even after calcination at 500 ° C. Moreover, when the average particle diameter of the metal core particle before and behind 500 degreeC baking is contrasted, it turns out that there is no change.
In contrast, the supported catalyst in Comparative Example 1 had high activity before calcination at 500 ° C., but the activity after calcination at 500 ° C. was low. Further, the lifetime was short even before baking at 500 ° C., and extremely short after baking at 500 ° C. Moreover, in the case of the comparative example 1, the average particle diameter of the metal core particle after 500 degreeC baking became large 75 times compared with before 500 degreeC baking. This is presumably because the metal core particles aggregated because Comparative Example 1 does not have the porous silazane layer provided in the supported catalysts of Examples 1 to 5.

Claims (9)

金属コア粒子と、その表面の少なくとも一部についた多孔質シラザン層とを有し、
前記多孔質シラザン層がポリシラザンを含み、
多孔質シラザン層が有する細孔の平均細孔径が0.2nm超8nm未満であり、
疎水性を備える、多孔質シラザン被覆粒子。
Having a metal core particle and a porous silazane layer on at least a part of the surface thereof,
The porous silazane layer comprises polysilazane;
The average pore diameter of the pores of the porous silazane layer is more than 0.2 nm and less than 8 nm,
Porous silazane-coated particles with hydrophobic properties.
前記多孔質シラザン層の厚さの平均値が2nm超である、請求項1に記載の多孔質シラザン被覆粒子。 The porous silazane-coated particles according to claim 1, wherein the average thickness of the porous silazane layer is more than 2 nm. 前記細孔の容積が0.05〜0.5ml/gである、請求項1または2に記載の多孔質シラザン被覆粒子。 The porous silazane-coated particle according to claim 1 or 2, wherein the pore volume is 0.05 to 0.5 ml / g. 比表面積が100〜1000m2/gである、請求項1〜のいずれかに記載の多孔質シラザン被覆粒子。 The porous silazane-coated particle according to any one of claims 1 to 3 , having a specific surface area of 100 to 1000 m 2 / g. 前記金属コア粒子が、第4周期遷移元素、第5周期遷移元素、白金、金、オスミウムおよびイリジウムからなる群から選ばれる少なくとも1つを主成分とする、請求項1〜のいずれかに記載の多孔質シラザン被覆粒子。 Wherein the metal core particles, fourth period transition elements, 5th period transition elements, platinum, gold, as a main component at least one selected from the group consisting of osmium, and iridium, according to any one of claims 1 to 4 Porous silazane coated particles. 請求項1〜のいずれかに記載の多孔質シラザン被覆粒子が担体の表面に担持している担持触媒。 Supported catalyst porous silazane coated particles according to any one of claims 1 to 5 is carried on the surface of the carrier. 金属コア粒子が分散したコロイド溶液を得るコロイド調整工程と、
前記コロイド溶液と、下記式(I)に示す繰り返し単位を少なくとも1つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合して、シラザン被覆粒子を含む分散液(X)を得る被覆工程と、
前記分散液(X)に含まれる溶媒と固形分とを分離して、多孔質シラザン被覆粒子を得る細孔形成工程と
を備える、多孔質シラザン被覆粒子の製造方法。
Figure 0005806100
ここで、R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表す。
A colloid preparation step for obtaining a colloidal solution in which metal core particles are dispersed;
A coating step of mixing the colloidal solution and a silazane solution containing a silazane compound containing at least one repeating unit represented by the following formula (I) while heating to obtain a dispersion (X) containing silazane-coated particles; ,
A method for producing porous silazane-coated particles, comprising: a pore forming step of obtaining a porous silazane-coated particle by separating a solvent and a solid content contained in the dispersion (X).
Figure 0005806100
Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylsilyl group, alkylamino group, alkoxy group Represents a group.
請求項1〜のいずれかに記載の多孔質シラザン被覆粒子が得られる、請求項に記載の多孔質シラザン被覆粒子の製造方法。 The method for producing porous silazane-coated particles according to claim 7 , wherein the porous silazane-coated particles according to any one of claims 1 to 5 are obtained. 金属コア粒子が分散したコロイド溶液を得るコロイド調整工程と、
前記コロイド溶液と下記式(I)に示す繰り返し単位を少なくとも一つ含むシラザン化合物を含むシラザン溶液とを加温しながら混合して、シラザン被覆粒子を含む分散液(X)を得る被覆工程と、
前記分散液(X)に担体を添加して分散液(Y)を得る添加工程と、
前記分散液(Y)に含まれる溶媒と固形分とを分離して、多孔質シラザン被覆粒子が担体に担持した担持触媒を得る担持工程と
を備える、担持触媒の製造方法。
Figure 0005806100
ここで、R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表す。
A colloid preparation step for obtaining a colloidal solution in which metal core particles are dispersed;
A coating step of mixing the colloid solution and a silazane solution containing a silazane compound containing at least one repeating unit represented by the following formula (I) while heating to obtain a dispersion (X) containing silazane-coated particles;
An addition step of adding a carrier to the dispersion (X) to obtain a dispersion (Y);
A supported catalyst manufacturing method comprising: a supporting step of separating a solvent and solid content contained in the dispersion (Y) to obtain a supported catalyst in which porous silazane-coated particles are supported on a support.
Figure 0005806100
Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylsilyl group, alkylamino group, alkoxy group Represents a group.
JP2011275616A 2011-12-16 2011-12-16 Porous silazane-coated particles, supported catalyst, and production method thereof Active JP5806100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275616A JP5806100B2 (en) 2011-12-16 2011-12-16 Porous silazane-coated particles, supported catalyst, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275616A JP5806100B2 (en) 2011-12-16 2011-12-16 Porous silazane-coated particles, supported catalyst, and production method thereof

Publications (2)

Publication Number Publication Date
JP2013123697A JP2013123697A (en) 2013-06-24
JP5806100B2 true JP5806100B2 (en) 2015-11-10

Family

ID=48775279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275616A Active JP5806100B2 (en) 2011-12-16 2011-12-16 Porous silazane-coated particles, supported catalyst, and production method thereof

Country Status (1)

Country Link
JP (1) JP5806100B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778497A (en) * 2016-03-11 2018-11-09 东洋合成工业株式会社 Load type metal catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997505A (en) * 1982-11-27 1984-06-05 Matsushita Electric Ind Co Ltd Method for reducing nitrogen dioxide
JP2630993B2 (en) * 1988-06-23 1997-07-16 東レ・ダウコーニング・シリコーン株式会社 Granules containing platinum-based catalyst for hydrosilylation reaction and method for producing the same
JPH04180837A (en) * 1990-11-15 1992-06-29 Fuji Davison Chem Ltd Solid acid catalyst
JP3829361B2 (en) * 1996-06-07 2006-10-04 住友化学株式会社 Propylene oxide production method
JPH10337473A (en) * 1997-04-09 1998-12-22 Sumitomo Chem Co Ltd Titanium-containing solid catalyst and production of oxirane compound
JP3867232B2 (en) * 2004-03-25 2007-01-10 株式会社 東北テクノアーチ Catalyst nanoparticles
JP5358433B2 (en) * 2007-05-25 2013-12-04 石原産業株式会社 Composite, method for producing the same, and composition containing the same

Also Published As

Publication number Publication date
JP2013123697A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
Prati et al. New gold catalysts for liquid phase oxidation
JP5389660B2 (en) High metallic siliceous composition and method for producing the same
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
JP5840475B2 (en) Porous oxide-coated particles, supported catalyst, and production method thereof
WO2012035637A1 (en) Silica-based material, manufacturing process therefor, noble metal carrying material, and carboxylic acid manufacturing process using same as catalyst
US8222173B2 (en) Catalyst and method of manufacturing the same
JP5794294B2 (en) Metal particles, exhaust gas purifying catalyst containing the same, and method for producing them
WO2014070116A1 (en) Encapsulated Nanoparticles
JP4646077B2 (en) Nanoparticle catalyst embedded in porous carbon support and method for producing the same
JP2010089031A (en) Metal-particle supporting catalyst, and method of producing the same
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP4777891B2 (en) Catalyst and process for producing cycloolefin
JP2013027869A (en) Method for manufacturing metal particle carrying catalyst
Mori et al. Synthesis of Pd nanoparticles on heteropolyacid-supported silica by a photo-assisted deposition method: an active catalyst for the direct synthesis of hydrogen peroxide
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP6737435B2 (en) Method for producing fine particles carrying a noble metal solid solution
KR102407233B1 (en) Composite Body in which Nanoparticles are uniformly dispersed in nanosized Pores of a Support and Method of manufacturing the same
JP5806101B2 (en) Porous silica oligomer-coated particles, supported catalyst, and production method thereof
JP5806100B2 (en) Porous silazane-coated particles, supported catalyst, and production method thereof
JP2010089032A (en) Metal-particle supporting catalyst, and method of producing the same
JP5758228B2 (en) Supported catalysts containing rhodium and gold
JP2017095303A (en) Layering silicon composite material, manufacturing method therefor and precipitation method of metal
WO2023090303A1 (en) Catalyst carrier, catalyst, and methods respectively for producing those products
JP7198646B2 (en) TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME
JP2004237215A (en) Method for manufacturing ruthenium oxide-deposited catalyst and method for producing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250