JP5805361B2 - Luminescent material and method for producing light emitting element - Google Patents

Luminescent material and method for producing light emitting element Download PDF

Info

Publication number
JP5805361B2
JP5805361B2 JP2009099371A JP2009099371A JP5805361B2 JP 5805361 B2 JP5805361 B2 JP 5805361B2 JP 2009099371 A JP2009099371 A JP 2009099371A JP 2009099371 A JP2009099371 A JP 2009099371A JP 5805361 B2 JP5805361 B2 JP 5805361B2
Authority
JP
Japan
Prior art keywords
group
hydrogen
bonding
light
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009099371A
Other languages
Japanese (ja)
Other versions
JP2010222551A (en
Inventor
丈也 酒井
丈也 酒井
啓文 高塚
啓文 高塚
喜弘 川月
喜弘 川月
雄太 南
雄太 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Hyogo Prefectural Government
Original Assignee
Hayashi Telempu Corp
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp, Hyogo Prefectural Government filed Critical Hayashi Telempu Corp
Priority to JP2009099371A priority Critical patent/JP5805361B2/en
Publication of JP2010222551A publication Critical patent/JP2010222551A/en
Application granted granted Critical
Publication of JP5805361B2 publication Critical patent/JP5805361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発光波長を容易に調節することが可能で、かつ、偏光発光素子を容易に作製することが可能な新規な有機発光性材料、および、これらの材料を用いて作製した偏光発光素子に関するものである。  The present invention relates to a novel organic light-emitting material capable of easily adjusting the emission wavelength and capable of easily producing a polarized light-emitting element, and a polarized light-emitting element produced using these materials It is about.

従来技術Conventional technology

発光素子のひとつとして有機エレクトロルミネッセンス(以下ELと呼ぶ)素子が注目されている。有機EL素子は有機材料に注入された電子と正孔の再結合により生じた励起子によって発光する発光素子であり、液晶ディスプレイやプラズマディスプレイに次ぐ次世代のフラットパネルディスプレイとしてはもちろん、液晶ディスプレイの面発光光源としても注目されており活発に開発が行われている。  As one of the light emitting elements, an organic electroluminescence (hereinafter referred to as EL) element has attracted attention. An organic EL element is a light emitting element that emits light by excitons generated by recombination of electrons and holes injected into an organic material. Of course, it is a next-generation flat panel display next to liquid crystal displays and plasma displays. It is also attracting attention as a surface emitting light source and is being actively developed.

一般的な白色光は、赤色(R)、緑色(G)、青色(B)の3原色の光が含まれる。これに対して、白色LEDランプ、白色有機ELランプは、青色の光と黄色蛍光体、または青色と黄色の光によって白色光を得ている。このような白色ランプを用いると、赤色の光が含まれていないため演色性が低いという問題がある。演色性を高める方法として、光の3原色であるRGBの3つの発光材料を組み合わせて使う方法があり、材料開発が進んでいる。しかし、発光波長は材料の分子構造に大きく依存しており、各色の発光材料を自在に選定するのが大変難しく、特に有機EL材料の開発で大きな問題となっている。また、有機EL素子を液晶ディスプレイの面発光光源として用いる場合、光源側の偏光板を光が通過する時に、偏光子の吸収軸方向の光をほとんど吸収してしまうために少なくとも50%の光量の損失があり、光利用効率が悪くなるという問題があった。  General white light includes light of three primary colors of red (R), green (G), and blue (B). On the other hand, white LED lamps and white organic EL lamps obtain white light by blue light and yellow phosphor, or blue and yellow light. When such a white lamp is used, there is a problem that the color rendering property is low because red light is not included. As a method for improving color rendering, there is a method of using three light emitting materials of RGB, which are the three primary colors of light, in combination, and material development is progressing. However, the emission wavelength greatly depends on the molecular structure of the material, and it is very difficult to freely select the light emitting material of each color, which is a big problem especially in the development of organic EL materials. Further, when the organic EL element is used as a surface emitting light source of a liquid crystal display, when light passes through the polarizing plate on the light source side, most of light in the absorption axis direction of the polarizer is absorbed, so that the amount of light is at least 50%. There was a problem that there was a loss and the light utilization efficiency deteriorated.

そこで、有機発光性材料の分子配向を制御することにより偏光発光を得る試みがなされている。分子配向を制御する方法として水面展開法、LB法、摩擦転写法、配向膜を使用するラビング法などが開発されている。有機発光性材料の分子配向を制御した発光層からなる偏光発光素子では液晶パネルに直接直線偏光を供給することが可能である、または、偏光発光素子の偏光方向と光源側の偏光板の吸収軸方向を直交させることにより偏光板による光損失を大幅に改善することができる。
偏光発光の例として、特許文献1にはポリアミック酸に1軸性の有機発光性材料を混合して、それを水面展開法やLB法により作成する方法が開示されている。特許文献2には、ポリシランを透明体表面に一方向に押圧摩擦展延する方法が開示されている。非特許文献1にはラビング処理した配向膜上に成膜した有機発光性材料を含む発光層を用いた素子が偏光発光する旨が記載されている。
しかしながら、これらの有機発光性材料では有機発光性材料に特有の発光波長が決まっており、発光色の調整が困難であること、また、水面展開法やLB法では生産性が悪く、ラビング処理した配向膜ではラビング処理による静電気や塵の発生、ラビング斑が生じる、有機発光性材料が液晶性を有している必要があり、有機発光性材料の選択に制限があるという問題があった。
Thus, attempts have been made to obtain polarized light emission by controlling the molecular orientation of the organic light emitting material. As a method for controlling the molecular orientation, a water surface development method, an LB method, a friction transfer method, a rubbing method using an alignment film, and the like have been developed. In a polarized light emitting device composed of a light emitting layer in which the molecular orientation of an organic light emitting material is controlled, linearly polarized light can be directly supplied to the liquid crystal panel, or the polarization direction of the polarized light emitting device and the absorption axis of the polarizing plate on the light source side By making the directions orthogonal, the optical loss due to the polarizing plate can be greatly improved.
As an example of polarized light emission, Patent Document 1 discloses a method in which a polyamic acid is mixed with a uniaxial organic light-emitting material and is prepared by a water surface development method or an LB method. Patent Document 2 discloses a method in which polysilane is rubbed and pressed in one direction on the surface of a transparent body. Non-Patent Document 1 describes that an element using a light-emitting layer containing an organic light-emitting material formed on a rubbing-treated alignment film emits polarized light.
However, in these organic light emitting materials, the light emission wavelength peculiar to the organic light emitting material is determined, and it is difficult to adjust the emission color. In addition, the water surface development method and the LB method are not productive, and are rubbed. In the alignment film, there is a problem that static electricity and dust are generated by rubbing treatment, rubbing spots are generated, the organic light emitting material needs to have liquid crystal properties, and selection of the organic light emitting material is limited.

特開平4−040413JP-A-4-040413

特開平7−292135JP-A-7-292135

アドバンスト・マテリアルズ(Adv.Mater.)第4巻、36項(1992年)Advanced Materials (Adv. Mater.) Volume 4, Item 36 (1992)

本発明は以上の事柄を鑑みてなされたものであり、その目的は、発光性材料の発光波長が容易に調整することが可能であり、かつ、偏光発光素子の生産性を向上させることが可能な有機発光性材料を提供することである。  The present invention has been made in view of the above matters, and the object thereof is to easily adjust the emission wavelength of the luminescent material and to improve the productivity of the polarized light-emitting device. An organic light emitting material is provided.

本願発明の発明者らは、上記した課題について検討したところ、水素結合性置換基を少なくとも1つ以上有する水素結合性発光性分子と、水素結合性置換基を少なくとも1つ以上有する水素結合性化合物とからなり、前記水素結合性発光性分子と前記水素結合性化合物が分子間水素結合により自己組織化した超分子からなることを特徴とする有機発光性材料を見出し、かつ、水素結合性化合物の膜に直線偏光光を照射した後、または、直線偏光光を照射してから熱処理した後、この膜上に水素結合性発光性分子の層を形成して熱処理することを特徴とする製法で作製した偏光発光素子によって上記課題を解決することができることを見出し、本願発明を完成するに至った。  The inventors of the present invention have studied the above-described problems. As a result, a hydrogen-bonding luminescent molecule having at least one hydrogen-bonding substituent and a hydrogen-bonding compound having at least one hydrogen-bonding substituent An organic light-emitting material characterized in that the hydrogen-bonding light-emitting molecule and the hydrogen-bonding compound are composed of supramolecules that are self-assembled by intermolecular hydrogen bonding; and Prepared by a manufacturing method characterized by forming a layer of hydrogen-bonding light-emitting molecules on the film and then heat-treating it after irradiating the film with linearly polarized light or after heat treatment after irradiating with linearly polarized light It has been found that the above-mentioned problems can be solved by the polarized light emitting element, and the present invention has been completed.

本発明により、有機発光性材料の発光色が容易に調整可能となり、水素結合性化合物の膜に直線偏光光を照射する工程と膜上に水素結合性発光性分子の層を形成し熱処理する工程によって作製される偏光発光素子は、水面展開法やLB法に比べて製造工程が簡単になると共に、ラビング処理による静電気や塵の発生、ラビング斑が生じるという問題がなくなり生産性を向上できる。これにより従来技術の問題点を解決することができる。  According to the present invention, the emission color of the organic light-emitting material can be easily adjusted, and a step of irradiating the film of hydrogen bonding compound with linearly polarized light and a step of forming a layer of hydrogen bonding light-emitting molecules on the film and performing a heat treatment The polarized light-emitting device manufactured by the method can be manufactured more easily than the water surface development method and the LB method, and can be improved in productivity by eliminating problems such as generation of static electricity and dust and rubbing spots due to rubbing treatment. Thereby, the problems of the prior art can be solved.

以下に、本発明の詳細を説明する。
本発明の有機発光性材料は、水素結合性置換基を少なくとも1つ以上有する水素結合性発光性分子と、水素結合性置換基を少なくとも1つ以上有する水素結合性化合物とからなり、前記水素結合性発光性分子と前記水素結合性化合物とが分子間水素結合により自己組織化した超分子からなることを特徴とする有機発光性材料である。
Details of the present invention will be described below.
The organic light-emitting material of the present invention comprises a hydrogen-bonding light-emitting molecule having at least one hydrogen-bonding substituent and a hydrogen-bonding compound having at least one hydrogen-bonding substituent, and the hydrogen bond An organic light-emitting material, wherein the light-emitting molecule and the hydrogen bonding compound are composed of supramolecules self-assembled by intermolecular hydrogen bonding.

水素結合性発光性分子とは、フルオレン、ポリアセチレンやアントラセンなどを発光性コアとし、コアに対して水素結合性置換基を有する分子構造をした分子であり、水素結合性分子とは水素結合性置換基を有する化合物のことである。
発光性コアには分子に異方性を有している必要があればよく、ここで例示した化合物に特に限定されることはない。また、水素結合性発光性分子は液晶性を有していてもよく、有していなくてもよい。
A hydrogen-bonding light-emitting molecule is a molecule having a luminescent core of fluorene, polyacetylene, anthracene, etc., and a molecular structure having a hydrogen-bonding substituent on the core. It is a compound having a group.
The light emitting core only needs to have molecular anisotropy, and is not particularly limited to the compounds exemplified here. Further, the hydrogen-bonding light-emitting molecule may or may not have liquid crystallinity.

また、水素結合性置換基の例としてカルボキシル基、水酸基、スルホン酸基、アミノ基などがあげられるが水素結合を形成する置換基であればこれらの置換基に特に制限されることはない。
水素結合性発光性分子と水素結合性分子を混合するとお互いの水素結合性置換基により分子間に水素結合が形成され超分子構造を形成することができる。
Examples of the hydrogen bonding substituent include a carboxyl group, a hydroxyl group, a sulfonic acid group, and an amino group, but the substituent is not particularly limited as long as the substituent forms a hydrogen bond.
When a hydrogen-bonding light-emitting molecule and a hydrogen-bonding molecule are mixed, a hydrogen bond is formed between the molecules by the mutual hydrogen-bonding substituents, and a supramolecular structure can be formed.

水素結合性発光性分子は単独でも発光可能であるが、水素結合性発光性分子と水素結合性化合物が超分子を形成することで、水素結合性発光性分子の単独時と比べて発光波長が変化する性質を有していることがわかり、混合する水素結合性化合物の種類や酸性度を調節することにより発光波長を調整できることが可能となった。  A hydrogen-bonding light-emitting molecule can emit light alone, but the hydrogen-bonding light-emitting molecule and the hydrogen-bonding compound form a supramolecule, so that the emission wavelength is longer than that of a hydrogen-bonding light-emitting molecule alone. It was found that it has a changing property, and it became possible to adjust the emission wavelength by adjusting the kind and acidity of the hydrogen bonding compound to be mixed.

水素結合性化合物に高分子の水素結合性化合物を用いた場合、水素結合性化合物の膜をガラス基板上に製膜し、その膜に直線偏光光を照射後、または直線偏光光を照射して熱処理した後、膜上に水素結合性発光性分子の層を形成して加熱処理することで偏光発光素子を容易に作製することができる。
特に光反応性高分子の側鎖末端にカルボキシル基などの水素結合性置換基を有する水素結合性化合物では側鎖がカルボキシル基の分子間水素結合により擬似架橋して液晶性メソゲンコアを形成している。この水素結合性化合物に直線偏光光を照射して加熱すると、水素結合により擬似架橋している液晶性メソゲン側鎖が一軸方向に配向するという特性を有している。その際、一軸配向する方向は用いる材料によって異なり、直線偏光光の電界ベクトル方向に対して平行、または、垂直方向に配向する。
一軸配向した水素結合性化合物の膜上に水素結合性発光性分子層を形成すると、形成後、水素結合性発光性分子は配向しておらず、発光色も水素結合性発光性分子単独時の発光波長と変わらない。しかしながら、一軸配向した水素結合性化合物膜と水素結合性発光性分子層を接触させた状態で加熱することにより、一軸配向した水素結合性化合物の水素結合基間に水素結合性発光性分子が取り込まれ、水素結合性発光性分子と水素結合性化合物の間に水素結合による超分子が形成され発光波長が変化し、かつ、水素結合性発光性分子を一軸配向させることができ、偏光発光素子を容易に作製することが可能となった。
一般の配向膜では発光性分子に液晶性が必要であるが、本願発明では、発光性分子は液晶性を有していてもよいし、液晶性を有していなくても配向するのが特徴である。
When a high molecular weight hydrogen bonding compound is used as the hydrogen bonding compound, a film of the hydrogen bonding compound is formed on a glass substrate, and the film is irradiated with linearly polarized light or irradiated with linearly polarized light. After the heat treatment, a polarized light-emitting element can be easily manufactured by forming a layer of hydrogen-bonding light-emitting molecules on the film and performing heat treatment.
In particular, in the case of a hydrogen bonding compound having a hydrogen bonding substituent such as a carboxyl group at the end of the side chain of the photoreactive polymer, the side chain is pseudo-crosslinked by intermolecular hydrogen bonding of the carboxyl group to form a liquid crystalline mesogenic core. . When this hydrogen bonding compound is irradiated with linearly polarized light and heated, the liquid crystalline mesogen side chain that is pseudo-crosslinked by hydrogen bonding has a characteristic that it is aligned in a uniaxial direction. At this time, the direction of uniaxial orientation differs depending on the material used, and the orientation is parallel or perpendicular to the electric field vector direction of linearly polarized light.
When a hydrogen-bonded luminescent molecule layer is formed on a uniaxially oriented hydrogen-bonded compound film, the hydrogen-bonded luminescent molecules are not oriented after the formation, and the emission color is the same as when the hydrogen-bonded luminescent molecules are alone. Same as the emission wavelength. However, by heating the uniaxially oriented hydrogen bonding compound film and the hydrogen bonding luminescent molecule layer in contact with each other, the hydrogen bonding luminescent molecules are taken in between the hydrogen bonding groups of the uniaxially oriented hydrogen bonding compound. In addition, a supramolecule due to hydrogen bonding is formed between the hydrogen-bonding light-emitting molecule and the hydrogen-bonding compound, the emission wavelength is changed, and the hydrogen-bonding light-emitting molecule can be uniaxially oriented. It became possible to produce it easily.
In general alignment films, the light-emitting molecules must have liquid crystallinity. However, in the present invention, the light-emitting molecules may have liquid crystallinity or may be aligned even without liquid crystallinity. It is.

本発明の実施例において用いた化合物に関する合成方法を以下に示す。
(発光性分子1)
9H−フルオレンと1−ブロモヘキサンをアルカリ条件下で加熱することにより、9,9−ジヘキシル−フルオレンを合成した。9,9−ジヘキシル−フルオレンとパラホルムアルデヒドと臭化水素を酢酸中で加熱することにより2,7−ビス(ブロモメチル)−9,9−ジヘキシル−フルオレンを合成した。2,7−ビス(ブロモメチル)−9,9−ジヘキシル−フルオレンとトリメチルシリルシアニドとテトラブチルアンモニウムフルオライドをアセトニトリル中、窒素雰囲気下で反応させ、2,2‘−(9,9−ジヘキシルフルオレン−2,7−ジイル)ジアセトニトリルを合成した。2,2‘−(9,9−ジヘキシルフルオレン−2,7−ジイル)ジアセトニトリルと4−ピリジンカルボキシアルデヒド、カリウムt−ブトキシドをテトラヒドロフラン中で反応させ、発光性分子1を合成した。
A synthesis method relating to the compound used in the examples of the present invention is shown below.
(Luminescent molecule 1)
9,9-dihexyl-fluorene was synthesized by heating 9H-fluorene and 1-bromohexane under alkaline conditions. 2,7-bis (bromomethyl) -9,9-dihexyl-fluorene was synthesized by heating 9,9-dihexyl-fluorene, paraformaldehyde and hydrogen bromide in acetic acid. 2,7-bis (bromomethyl) -9,9-dihexyl-fluorene, trimethylsilylcyanide and tetrabutylammonium fluoride were reacted in acetonitrile under a nitrogen atmosphere to obtain 2,2 ′-(9,9-dihexylfluorene- 2,7-Diyl) diacetonitrile was synthesized. 2,2 ′-(9,9-dihexylfluorene-2,7-diyl) diacetonitrile was reacted with 4-pyridinecarboxaldehyde and potassium t-butoxide in tetrahydrofuran to synthesize luminescent molecule 1.

(化合物1)
4−ヒドロキシ−安息香酸と1−ブロモドデカンをアルカリ条件下で加熱することにより、4−ドデシルオキシ−安息香酸を合成した。
(Compound 1)
4-Dodecyloxy-benzoic acid was synthesized by heating 4-hydroxy-benzoic acid and 1-bromododecane under alkaline conditions.

(重合体1)
p−クマル酸と6−クロロ−1−ヘキサノールをアルカリ条件下で加熱することにより、4−(6−ヒドロキシヘキシルオキシ)桂皮酸を合成した。この生成物に、メタクリル酸を大過剰加えてエステル化反応させ、4−メタクリロイルオキシヘキシルオキシ桂皮酸を合成した。この生成物をテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリルを添加して重合することにより重合体1を得た。
以下、本発明を実施例を用いて具体的に説明する。
(Polymer 1)
4- (6-Hydroxyhexyloxy) cinnamic acid was synthesized by heating p-coumaric acid and 6-chloro-1-hexanol under alkaline conditions. A large excess of methacrylic acid was added to this product for esterification to synthesize 4-methacryloyloxyhexyloxycinnamic acid. This product was dissolved in tetrahydrofuran, polymerized by adding azobisisobutyronitrile as a reaction initiator, and polymerized.
Hereinafter, the present invention will be specifically described with reference to examples.

(実施例1)
水素結合性発光性分子として発光性分子1と、水素結合性化合物として化合物1とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは491nmであった。
(Example 1)
A light-emitting molecule 1 as a hydrogen-bonding light-emitting molecule, a compound 1 and polymethyl methacrylate as a hydrogen-bonding compound were dissolved in tetrahydrofuran, and then spin-coated on a glass substrate to produce a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 491 nm.

(実施例2)
水素結合性発光性分子として発光性分子1と、水素結合性化合物としてコハク酸とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは508nmであった。
(Example 2)
A light-emitting molecule 1 as a hydrogen-bonding light-emitting molecule and succinic acid and polymethyl methacrylate as hydrogen-bonding compounds were dissolved in tetrahydrofuran, and then spin-coated on a glass substrate to produce a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 508 nm.

(実施例3)
水素結合性発光性分子として発光性分子1と、水素結合性化合物としてテレフタル酸とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは510nmであった。
(Example 3)
A luminescent molecule 1 as a hydrogen-bonding luminescent molecule and terephthalic acid and polymethyl methacrylate as hydrogen-bonding compounds were dissolved in tetrahydrofuran, and then spin-coated on a glass substrate to produce a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 510 nm.

(実施例4)
水素結合性発光性分子として発光性分子1と、水素結合性化合物としてフタル酸とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは540nmであった。
Example 4
A light-emitting molecule 1 as a hydrogen-bonding light-emitting molecule and phthalic acid and polymethyl methacrylate as hydrogen-bonding compounds were dissolved in tetrahydrofuran, and then spin-coated on a glass substrate to produce a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 540 nm.

(実施例5)
水素結合性発光性分子として発光性分子1と、水素結合性化合物としてマロン酸とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは543nmであった。
(Example 5)
Luminescent molecule 1 as a hydrogen bonding luminescent molecule and malonic acid and polymethyl methacrylate as hydrogen bonding compounds were dissolved in tetrahydrofuran and spin coated on a glass substrate to prepare a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 543 nm.

(実施例6)
水素結合性発光性分子として発光性分子1と、水素結合性化合物としてシュウ酸とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは557nmであった。
(Example 6)
A light-emitting molecule 1 as a hydrogen-bonding light-emitting molecule and oxalic acid and polymethyl methacrylate as hydrogen-bonding compounds were dissolved in tetrahydrofuran, and then spin-coated on a glass substrate to produce a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 557 nm.

(実施例7)
水素結合性発光性分子として発光性分子1と、水素結合性化合物としてカンファースルホン酸とポリメタクリル酸メチルをテトラヒドロフランに溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは555nmであった。
(Example 7)
A light-emitting molecule 1 as a hydrogen-bonding light-emitting molecule and camphorsulfonic acid and polymethyl methacrylate as hydrogen-bonding compounds were dissolved in tetrahydrofuran and spin-coated on a glass substrate to prepare a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 555 nm.

(実施例8)
重合体1をテトラヒドロフランに溶解し、スピンコーターを用いてガラス基板上に0.3μmの厚みで塗布した。塗布面に高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して照射した。次に発光性分子1をクロロホルムに溶解し該基材上にスピンコーターを用いて塗布した。該基材を165℃に加熱して室温まで冷却した。このようにして作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは508nmであり、その光は偏光性を有していた。
(Example 8)
Polymer 1 was dissolved in tetrahydrofuran and applied to a glass substrate with a thickness of 0.3 μm using a spin coater. The coated surface was irradiated with light from a high-pressure mercury lamp converted to linear polarization by a Grand Taylor prism. Next, the luminescent molecule 1 was dissolved in chloroform and coated on the substrate using a spin coater. The substrate was heated to 165 ° C. and cooled to room temperature. When the film thus produced was irradiated with 365 nm light, the maximum wavelength λmax of the fluorescence spectrum was 508 nm, and the light had polarization.

(比較例1)
水素結合性発光性分子として発光性分子1とポリメタクリル酸メチルをテトラヒドロフラン溶解した後、ガラス基板上にスピンコートして薄膜を作製した。作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは460nmであった。
(Comparative Example 1)
A luminescent molecule 1 and polymethyl methacrylate were dissolved in tetrahydrofuran as hydrogen-bonding luminescent molecules and then spin-coated on a glass substrate to prepare a thin film. The maximum wavelength λmax of the fluorescence spectrum when the produced film was irradiated with 365 nm light was 460 nm.

(比較例2)
特許3945790に記載の水素結合性置換基を有さない直線偏光性の光と熱処理により複屈折性を示す材料をテトラヒドロフランに溶解し、スピンコーターを用いてガラス基板上に0.3μmの厚みで塗布した。塗布面に高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して照射した。次に発光性分子1をクロロホルムに溶解し該基材上にスピンコーターを用いて塗布した。該基材を120℃に加熱して室温まで冷却した。このようにして作製したフィルムに365nmの光を照射したときの蛍光スペクトルの極大波長λmaxは460nmであり、その光は偏光性を有していなかった。
(Comparative Example 2)
A material exhibiting birefringence is dissolved in tetrahydrofuran by linearly polarized light having no hydrogen bonding substituent described in Patent 3945790 and heat treatment, and applied to a glass substrate with a thickness of 0.3 μm using a spin coater. did. The coated surface was irradiated with light from a high-pressure mercury lamp converted to linear polarization by a Grand Taylor prism. Next, the luminescent molecule 1 was dissolved in chloroform and coated on the substrate using a spin coater. The substrate was heated to 120 ° C. and cooled to room temperature. When the film produced in this manner was irradiated with 365 nm light, the maximum wavelength λmax of the fluorescence spectrum was 460 nm, and the light had no polarization.

Figure 0005805361
Figure 0005805361

Claims (5)

化学式1で表される水素結合性発光性分子と、水素結合性化合物とを有し、
前記水素結合性化合物は、化学式6で表される化合物、または、化学式8で表される繰り返し単位を1種以上含む、単独重合体あるいは共重合体であり、
前記水素結合性発光性分子と前記水素結合性化合物が分子間水素結合により自己組織化した超分子からなることを特徴とする有機発光性材料。
Figure 0005805361
式中、R、Rは炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、炭
素数7〜26のフェニルアルキル基、フェニル基、フェノキシ基、およびアルキル基置換フェニル基からなる群より選ばれた1種であり、
、R、R、Rは、それぞれ単独に、水素原子およびシアノ基からなる群より選ばれた1種であり、
〜R12は、それぞれ単独に、水素原子、アルキル基、アルキルオキシ基およびハロゲン原子からなる群より選ばれた1種であり、
13〜R20は、それぞれ単独に、水素原子、アルキル基、およびアルキルオキシ基からなる群より選ばれた1種である。
Figure 0005805361
式中、Xはカルボキシル基、水酸基、スルホン酸基またはアミノ基からなる水素結合性置換基であり、
Yはアルキル基およびアルコキシル基からなる群より選ばれた1種であり、
l=0または1、k=0または1、
Z=なし,O,CH,COOまたはOCO、
〜Rは、それぞれ単独に、水素原子、アルキル基、アルコキシル基およびハロゲン原子からなる群より選ばれた1種であり、
、R10はそれぞれ、水素原子である。
Figure 0005805361
式中、Xはカルボキシル基、水酸基、スルホン酸基またはアミノ基からなる水素結合性置換基であり、
n=0〜20、m=0または1(ただし、n=0の場合、m=0)、k=0または1、c=0または1、p=2以上の整数、
Y=なし,O,CH,COOまたはOCO、
は水素原子またはメチル基であり、
〜Rは、それぞれ単独に、水素原子、アルキル基、アルコキシル基およびハロゲン原子からなる群より選ばれた1種であり、R10、R11はそれぞれ水素原子である。
A hydrogen-bonding luminescent molecule represented by Chemical Formula 1 and a hydrogen-bonding compound;
The hydrogen bonding compound is a compound represented by Chemical Formula 6 or a homopolymer or copolymer containing one or more repeating units represented by Chemical Formula 8,
An organic light-emitting material comprising the supramolecule in which the hydrogen-bonding light-emitting molecule and the hydrogen-bonding compound are self-assembled by intermolecular hydrogen bonding.
Figure 0005805361
In the formula, R 1 and R 2 are an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a phenylalkyl group having 7 to 26 carbon atoms, a phenyl group, a phenoxy group, and an alkyl group-substituted phenyl group. One kind selected from the group consisting of
R 3 , R 4 , R 5 , R 6 are each independently one type selected from the group consisting of a hydrogen atom and a cyano group,
R 7 to R 12 are each independently one type selected from the group consisting of a hydrogen atom, an alkyl group, an alkyloxy group, and a halogen atom,
R 13 to R 20 are each independently one type selected from the group consisting of a hydrogen atom, an alkyl group, and an alkyloxy group.
Figure 0005805361
In the formula, X is a hydrogen bonding substituent consisting of a carboxyl group, a hydroxyl group, a sulfonic acid group or an amino group,
Y is one selected from the group consisting of an alkyl group and an alkoxyl group,
l = 0 or 1, k = 0 or 1,
Z = none, O, CH 2 , COO or OCO,
R 1 to R 8 are each independently one type selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxyl group, and a halogen atom,
R 9 and R 10 are each a hydrogen atom.
Figure 0005805361
In the formula, X is a hydrogen bonding substituent consisting of a carboxyl group, a hydroxyl group, a sulfonic acid group or an amino group,
n = 0 to 20, m = 0 or 1 (where n = 0, m = 0), k = 0 or 1, c = 0 or 1, p = 2 or greater integer,
Y = none, O, CH 2 , COO or OCO,
R 1 is a hydrogen atom or a methyl group,
R 2 to R 9 are each independently one type selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxyl group, and a halogen atom, and R 10 and R 11 are each a hydrogen atom.
前記水素結合性発光分子は、化学式9で表される化合物であることを特徴とする請求項1に記載の有機発光性材料。
Figure 0005805361
The organic light-emitting material according to claim 1, wherein the hydrogen-bonding light-emitting molecule is a compound represented by Chemical Formula 9.
Figure 0005805361
前記水素結合性化合物が化学式10で表される化合物であることを特徴とする請求項1または2に記載の有機発光材料。
Figure 0005805361
式中、p=2以上の整数である。
The organic light-emitting material according to claim 1, wherein the hydrogen bonding compound is a compound represented by Chemical Formula 10.
Figure 0005805361
In the formula, p is an integer of 2 or more.
前記水素結合性化合物の種類により発光波長が変化することを特徴とする請求項1から3のいずれか1項に記載の有機発光性材料。   The organic light-emitting material according to any one of claims 1 to 3, wherein an emission wavelength varies depending on a type of the hydrogen bonding compound. 前記水素結合性発光性分子と前記水素結合性化合物が分子間水素結合により自己組織化した超分子であり、水素結合性発光性分子と、化学構造が異なる2種類以上の水素結合性化合物とからなる超分子であることを特徴とする請求項1から4のいずれか1項に記載の有機発光性材料。   A supramolecule in which the hydrogen-bonding luminescent molecule and the hydrogen-bonding compound are self-assembled by intermolecular hydrogen bonding, and the hydrogen-bonding luminescent molecule and two or more types of hydrogen-bonding compounds having different chemical structures The organic light-emitting material according to claim 1, wherein the organic light-emitting material is a supramolecule.
JP2009099371A 2009-03-24 2009-03-24 Luminescent material and method for producing light emitting element Expired - Fee Related JP5805361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099371A JP5805361B2 (en) 2009-03-24 2009-03-24 Luminescent material and method for producing light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099371A JP5805361B2 (en) 2009-03-24 2009-03-24 Luminescent material and method for producing light emitting element

Publications (2)

Publication Number Publication Date
JP2010222551A JP2010222551A (en) 2010-10-07
JP5805361B2 true JP5805361B2 (en) 2015-11-04

Family

ID=43040079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099371A Expired - Fee Related JP5805361B2 (en) 2009-03-24 2009-03-24 Luminescent material and method for producing light emitting element

Country Status (1)

Country Link
JP (1) JP5805361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303250B2 (en) 2012-12-21 2018-04-04 石原産業株式会社 Pest control agent

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731216B2 (en) * 1989-02-23 1998-03-25 パイオニア株式会社 EL device
JP2809473B2 (en) * 1989-03-29 1998-10-08 出光興産株式会社 Organic electroluminescence device
JP4956862B2 (en) * 2001-03-23 2012-06-20 Tdk株式会社 Polymer compounds and methods for producing and using the same
JP3926180B2 (en) * 2002-03-26 2007-06-06 シャープ株式会社 ORGANIC EL LIGHT EMITTING ELEMENT AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
CN1806026A (en) * 2003-06-13 2006-07-19 皇家飞利浦电子股份有限公司 System comprising organic or metallo-organic energy and/or charge variable moieties
JP5428147B2 (en) * 2006-12-07 2014-02-26 三菱化学株式会社 Organic phosphor material
DE102006059215A1 (en) * 2006-12-13 2008-07-10 Sensient Imaging Technologies Gmbh Arylamine-substituted divinylfluorenes and their use for electrophotographic applications and for OLEDS (Organic Light Emitting Devices)
JP2008164925A (en) * 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd Retardation film and method for producing the same
JP5075483B2 (en) * 2007-04-27 2012-11-21 林テレンプ株式会社 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
JP5154151B2 (en) * 2007-07-03 2013-02-27 学校法人北里研究所 Organic fluorescent compound

Also Published As

Publication number Publication date
JP2010222551A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
Liu et al. Polarized phosphorescent organic light-emitting devices adopting mesogenic host–guest systems
JP2974070B2 (en) Organic electroluminescent polymer for light emitting diode
JP5714379B2 (en) Material for organic electroluminescent element, organic electroluminescent element using the same, and method for producing organic electroluminescent element
Liu et al. Synthesis and optoelectronic characterization of a monochromic red-emitting europium (III) complex containing triphenylamine-functionalized phenanthroline
Liedtke et al. White-light OLEDs using liquid crystal polymer networks
Jin et al. Jacketed polymers with dendritic carbazole side groups and their applications in blue light-emitting diodes
TW201134810A (en) Orgaic electroluminescent device
Teng et al. Chiral conjugated thermally activated delayed fluorescent polymers for highly efficient circularly polarized polymer light-emitting diodes
Fan et al. High-efficiency circularly polarized emission from liquid-crystalline platinum complexes
Zhang et al. Controllable circularly polarized electroluminescence performance improved by the dihedral angle of chiral-bridged binaphthyl-type dopant inducers
Wei et al. Synthesis of novel light emitting calix [4] arene derivatives and their luminescent properties
Sakamoto et al. Highly polarized polymer-based light-emitting diodes fabricated by using very thin photoaligned polyimide layers
Lin et al. Synthesis and characterization of light-emitting H-bonded complexes and polymers containing bis (pyridyl) emitting acceptors
JP5207229B2 (en) Polarized organic electroluminescent device
JP5805361B2 (en) Luminescent material and method for producing light emitting element
JP2001244080A (en) Organic electroluminescent element
Lin et al. Synthesis and characterization of light‐emitting oligo (p‐phenylene‐vinylene) s and polymeric derivatives containing three‐and five‐conjugated phenylene rings
Tavgeniene et al. Efficient blue non-doped OLEDs with new tetraphenylethene-based aggregation-induced emission molecules
Zhao et al. Fluorene-centered, ethynylene-linked carbazole oligomers: synthesis, photoluminescence, and electroluminescence
Wu et al. H-bonded effects on novel supramolecular dendrimers containing electron-transporting donor dendrons and single/double H-bonded acceptor emitters
CN104592238B (en) Pyrene imidazole derivative, preparation method thereof and electroluminescent device
US20030064174A1 (en) Aligned emissive polymer blend, film and device based thereon
Liang et al. Study of supramolecular side‐chain and cross‐linking polymers by complexation of various H‐donor acids with H‐acceptor copolymers containing pendent carbazole and fluorescent pyridyl units
JP3272230B2 (en) Blue light emitting polymer and method of manufacturing blue light emitting diode using the same
Li et al. Synthesis and optoelectronic properties of liquid‐crystalline copolymers based on fluorene and triphenylamine‐containing oligo (p‐phenylenevinylene) derivatives for white light emission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees