JP5803136B2 - Amide-containing sulfide compound, and production method and use thereof - Google Patents

Amide-containing sulfide compound, and production method and use thereof Download PDF

Info

Publication number
JP5803136B2
JP5803136B2 JP2011037052A JP2011037052A JP5803136B2 JP 5803136 B2 JP5803136 B2 JP 5803136B2 JP 2011037052 A JP2011037052 A JP 2011037052A JP 2011037052 A JP2011037052 A JP 2011037052A JP 5803136 B2 JP5803136 B2 JP 5803136B2
Authority
JP
Japan
Prior art keywords
group
palladium
ions
carbon atoms
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011037052A
Other languages
Japanese (ja)
Other versions
JP2012171939A (en
Inventor
幸徳 須藤
幸徳 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2011037052A priority Critical patent/JP5803136B2/en
Priority to CN201180062457.XA priority patent/CN103282116B/en
Priority to US13/976,591 priority patent/US9074264B2/en
Priority to EP11854469.1A priority patent/EP2659964B1/en
Priority to PCT/JP2011/080479 priority patent/WO2012091125A1/en
Publication of JP2012171939A publication Critical patent/JP2012171939A/en
Priority to ZA2013/04377A priority patent/ZA201304377B/en
Application granted granted Critical
Publication of JP5803136B2 publication Critical patent/JP5803136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、アミド含有スルフィド化合物、並びにその製造方法及び用途に関する。さらに詳しくは、新規アミド含有スルフィド化合物、当該新規アミド含有スルフィド化合物を含んでなる抽出剤、又は当該新規アミド含有スルフィド化合物を担体に固定化してなるパラジウムイオン吸着剤、及び当該抽出剤又は吸着剤を用いたパラジウムイオンの分離回収方法に関する。   The present invention relates to an amide-containing sulfide compound, and a production method and use thereof. More specifically, a novel amide-containing sulfide compound, an extractant comprising the novel amide-containing sulfide compound, a palladium ion adsorbent obtained by immobilizing the novel amide-containing sulfide compound on a carrier, and the extractant or adsorbent. The present invention relates to a method for separating and recovering the used palladium ions.

工業用触媒若しくは自動車排ガス浄化触媒及び多くの電化製品には、パラジウム、白金、ロジウム等の貴金属が用いられている。貴金属は高価であり、資源としても有用であることから、従来から使用後に回収してリサイクルすることが行われている。最近では、資源保全の要求が高まり、貴金属の回収及びリサイクルの重要性が一層増加している。   Industrial catalysts or automobile exhaust gas purification catalysts and many electrical appliances use noble metals such as palladium, platinum and rhodium. Since noble metals are expensive and useful as resources, they are conventionally collected and recycled after use. In recent years, the demand for resource conservation has increased, and the importance of recovery and recycling of precious metals has increased.

貴金属を回収するために、沈殿分離法、イオン交換法、電解析出法、溶媒抽出法等の方法が開発されており、これらのうち溶媒抽出法が経済性及び操作性の点から広く採用されている。   In order to recover precious metals, methods such as precipitation separation, ion exchange, electrolytic deposition, and solvent extraction have been developed. Of these, solvent extraction has been widely adopted from the viewpoints of economy and operability. ing.

溶媒抽出法は、パラジウムイオンが溶解した水相と油溶性抽出剤(抽出剤が担体に固定化されたものは、一般的に吸着剤と呼ばれる)が溶解した有機相を液−液接触させることでパラジウムイオンを有機相側に抽出する抽出工程と、有機相側に抽出されたパラジウムイオンと逆抽出剤(吸着剤に適用する場合は、一般的に脱着剤と呼ばれる)が溶解した水相とを接触させることで再度水相側に逆抽出(吸着剤に適用する場合は、一般的に脱着と呼ばれる)する逆抽出工程(吸着剤に適用する場合は、一般的に脱着工程と呼ばれる)からなる。例えば、抽出剤にジアルキルスルフィド化合物を用いた有機相と逆抽出剤にアンモニア水を用いた水相を用いて、パラジウムイオンの分離回収が行われている(例えば、特許文献1参照)。   The solvent extraction method involves liquid-liquid contact between an aqueous phase in which palladium ions are dissolved and an organic phase in which an oil-soluble extractant (generally an extractant immobilized on a carrier is called an adsorbent) is dissolved. An extraction step of extracting palladium ions to the organic phase side with an aqueous phase in which the palladium ions extracted on the organic phase side and a back extractant (generally called a desorbing agent when applied to an adsorbent) are dissolved From the back extraction process (generally referred to as desorption process when applied to the adsorbent) to the aqueous phase side again by bringing the water into contact (generally referred to as desorption process when applied to the adsorbent) Become. For example, separation and recovery of palladium ions are performed using an organic phase using a dialkyl sulfide compound as an extractant and an aqueous phase using aqueous ammonia as a back extractant (see, for example, Patent Document 1).

また、抽出剤である上記ジアルキルスルフィドの欠点であった抽出速度を改善するため、ジアルキルスルフィドの硫黄近傍にアミド基を導入した抽出剤が提案されており、逆抽出剤としてアンモニア水を用いたパラジウムの分離回収方法が提案されている(例えば、特許文献2参照)。   In order to improve the extraction rate, which was a disadvantage of the dialkyl sulfide, which is an extractant, an extractant having an amide group introduced near the sulfur of the dialkyl sulfide has been proposed. Palladium using ammonia water as the back extractant is proposed. (See, for example, Patent Document 2).

特開平9−279264号公報Japanese Patent Laid-Open No. 9-279264 特開2010−59533号公報JP 2010-59533 A

近年、パラジウムイオン抽出剤又は吸着剤には、白金イオンとの高い分離性が求められている。具体的には、パラジウムに対して白金を多く含有する自動車排ガス浄化触媒や宝飾品等からのパラジウム分離回収の需要が高まっている。このような背景から、高濃度の白金イオンを含む含パラジウムイオン水溶液中から、パラジウムイオンを高選択的に抽出又は吸着するパラジウムイオン抽出剤又は吸着剤が求められている。しかし、従来公知のパラジウムイオン抽出剤又は吸着剤おいては、パラジウムイオンと白金イオンの相互分離が困難であった。したがって、高濃度の白金イオンを含有する水溶液からパラジウムイオンを短時間で選択的に抽出又は吸着でき、且つ抽出又は吸着したパラジウムイオンを容易に逆抽出又は脱着可能な抽出剤又は吸着剤の開発は重要な課題である。   In recent years, palladium ion extractants or adsorbents are required to have high separability from platinum ions. Specifically, demand for separation and recovery of palladium from automobile exhaust gas purification catalysts and jewelry that contain a large amount of platinum relative to palladium is increasing. From such a background, a palladium ion extractant or adsorbent that highly selectively extracts or adsorbs palladium ions from a palladium-containing ion aqueous solution containing a high concentration of platinum ions is required. However, in the conventionally known palladium ion extractant or adsorbent, it is difficult to separate the palladium ions from the platinum ions. Therefore, the development of an extractant or adsorbent that can selectively extract or adsorb palladium ions from an aqueous solution containing a high concentration of platinum ions in a short time, and can easily back-extract or desorb the extracted or adsorbed palladium ions. This is an important issue.

本発明は、パラジウムイオンと白金イオンの相互分離性能に優れるパラジウムイオン抽出剤又は吸着剤を提供することを目的とする。特に、高濃度の白金イオンを含有する溶液から選択的にパラジウムイオンを分離する抽出剤又は吸着剤、及び当該抽出剤又は吸着剤を用いたパラジウムイオンの分離回収方法を提供することを目的とする。   An object of the present invention is to provide a palladium ion extractant or adsorbent that is excellent in the mutual separation performance of palladium ions and platinum ions. In particular, an object is to provide an extractant or adsorbent that selectively separates palladium ions from a solution containing high-concentration platinum ions, and a method for separating and recovering palladium ions using the extractant or adsorbent. .

本発明者は、上記の課題を解決するため鋭意検討を重ねた結果、本発明の新規アミド含有スルフィド化合物を含んでなるパラジウムイオン抽出剤、又は本発明の新規アミド含有スルフィド化合物を担体に担持してなるパラジウムイオン吸着剤が、パラジウムイオンと白金イオンの相互分離性能に優れることを見出した。さらに、本発明のパラジウムイオン抽出剤又は吸着剤を用いることによって、パラジウムイオンを含む水溶液から簡便にパラジウムイオンを分離回収できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor supported a palladium ion extractant containing the novel amide-containing sulfide compound of the present invention or the novel amide-containing sulfide compound of the present invention on a carrier. It was found that the palladium ion adsorbent obtained was excellent in the mutual separation performance of palladium ions and platinum ions. Furthermore, it has been found that by using the palladium ion extractant or adsorbent of the present invention, palladium ions can be easily separated and recovered from an aqueous solution containing palladium ions, and the present invention has been completed.

すなわち本発明は、一般式(1)   That is, the present invention relates to the general formula (1)

Figure 0005803136
Figure 0005803136

(式中、Rは各々独立して、メチル基、エチル基、炭素数3〜18の鎖式炭化水素基、炭素数3〜10の脂環式炭化水素基、又は炭素数6〜14の芳香族炭化水素基を表す。nは各々独立して、1〜4の整数を表す。Lはメチレン基、エチレン基、炭素数3〜8の直鎖、分岐若しくは環状アルキレン基、又は炭素数6〜14のアリーレン基を表す。)
で示される新規アミド含有スルフィド化合物、当該新規アミド含有スルフィド化合物を含んでなるパラジウムイオン抽出剤、当該新規アミド含有スルフィド化合物を担体に固定化してなるパラジウムイオン吸着剤、並びに当該パラジウムイオン抽出剤又は吸着剤を用いたパラジウムイオンの分離及び回収方法に関する。
[1]
下記一般式(1)で示される新規アミド含有スルフィド化合物。
(In the formula, each R is independently a methyl group, an ethyl group, a chain hydrocarbon group having 3 to 18 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, or an aromatic group having 6 to 14 carbon atoms. N represents independently an integer of 1 to 4. L represents a methylene group, an ethylene group, a linear, branched or cyclic alkylene group having 3 to 8 carbon atoms, or 6 to 6 carbon atoms. 14 represents an arylene group.)
A novel amide-containing sulfide compound, a palladium ion extractant comprising the novel amide-containing sulfide compound, a palladium ion adsorbent obtained by immobilizing the novel amide-containing sulfide compound on a carrier, and the palladium ion extractant or adsorption The present invention relates to a method for separating and recovering palladium ions using an agent.
[1]
A novel amide-containing sulfide compound represented by the following general formula (1).

Figure 0005803136
Figure 0005803136

(式中、Rは各々独立して、メチル基、エチル基、炭素数3〜18の鎖式炭化水素基、炭素数3〜10の脂環式炭化水素基、又は炭素数6〜14の芳香族炭化水素基を表し、nは各々独立して、1〜4の整数を表し、Lはメチレン基、エチレン基、炭素数3〜8の直鎖、分岐若しくは環状アルキレン基、炭素数6〜14のアリーレン基を表す。)
[2]
上記一般式(1)で示されるアミド含有スルフィド化合物を含んでなるパラジウムイオン抽出剤。
[3]
上記一般式(1)で示されるアミド含有スルフィド化合物を担体に固定化したパラジウムイオン吸着剤。
[4]
担体がシリカゲルであることを特徴とする[2]に記載のパラジウムイオン吸着剤。
[5]
パラジウムイオン抽出剤又は吸着剤と、パラジウムイオンを含有する水溶液とを接触させることを特徴とするパラジウムイオンの分離方法。
[6]
パラジウムイオン抽出剤又は吸着剤とパラジウムイオンを含有する水溶液とを接触させ、次いで逆抽出剤又は脱着剤と接触させることを特徴とするパラジウムの回収方法。
(In the formula, each R is independently a methyl group, an ethyl group, a chain hydrocarbon group having 3 to 18 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, or an aromatic group having 6 to 14 carbon atoms. N represents an integer of 1 to 4, and L represents a methylene group, an ethylene group, a linear, branched or cyclic alkylene group having 3 to 8 carbon atoms, and a carbon number of 6 to 14 Represents an arylene group of
[2]
A palladium ion extractant comprising the amide-containing sulfide compound represented by the general formula (1).
[3]
A palladium ion adsorbent obtained by immobilizing an amide-containing sulfide compound represented by the general formula (1) on a carrier.
[4]
The palladium ion adsorbent according to [2], wherein the carrier is silica gel.
[5]
A method for separating palladium ions, comprising bringing a palladium ion extractant or adsorbent into contact with an aqueous solution containing palladium ions.
[6]
A method for recovering palladium, comprising bringing a palladium ion extractant or adsorbent into contact with an aqueous solution containing palladium ions and then contacting with a back extractant or desorbent.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

一般式(1)で示されるアミド含有スルフィド化合物において、Rは各々独立して、メチル基、エチル基、炭素数3〜18の鎖式炭化水素基、炭素数3〜10の脂環式炭化水素基、又は炭素数6〜14の芳香族炭化水素基を表す。   In the amide-containing sulfide compound represented by the general formula (1), each R independently represents a methyl group, an ethyl group, a chain hydrocarbon group having 3 to 18 carbon atoms, or an alicyclic hydrocarbon having 3 to 10 carbon atoms. Group or an aromatic hydrocarbon group having 6 to 14 carbon atoms.

炭素数3〜18の鎖式炭化水素基としては、特に限定されないが、例えば、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基(セチル基)、ヘプタデシル基、オクタデシル基(ステアリル基)、オレイル基、エライジル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、2−エチルヘキシル基、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、2−メチルアリル基、1−ヘプチニル基、1−ヘキセニル基、1−ヘプテニル基、1−オクテニル基、2−メチル−1−プロペニル基等が挙げられる。   Although it does not specifically limit as a C3-C18 chain hydrocarbon group, For example, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group , Tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group (cetyl group), heptadecyl group, octadecyl group (stearyl group), oleyl group, elaidyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl Group, neopentyl group, tert-pentyl group, 2-ethylhexyl group, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 2-methylallyl group, 1-heptynyl group, 1-hexenyl group, 1-heptenyl group, 1-octenyl group, 2-methyl 1-propenyl group, and the like.

炭素数3〜10の脂環式炭化水素基としては、特に限定されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロヘキセニル基、シクロヘキサジエニル基、シクロオクテニル基、シクロオクタジエニル基等が挙げられる。   The alicyclic hydrocarbon group having 3 to 10 carbon atoms is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a cyclodecyl group, and the like. A hexenyl group, a cyclohexadienyl group, a cyclooctenyl group, a cyclooctadienyl group, etc. are mentioned.

炭素数6〜14の芳香族炭化水素基としては、特に限定されないが、例えば、フェニル基、ナフチル基、アントリル基、トリル基、キシリル基、クメニル基、ベンジル基、フェネチル基、スチリル基、シンナミル基、ビフェニリル基、フェナントリル基等が挙げられる。   Although it does not specifically limit as a C6-C14 aromatic hydrocarbon group, For example, a phenyl group, a naphthyl group, an anthryl group, a tolyl group, a xylyl group, a cumenyl group, a benzyl group, a phenethyl group, a styryl group, a cinnamyl group , Biphenylyl group, phenanthryl group and the like.

一般式(1)で示されるアミド含有スルフィド化合物において、nは各々独立して、1〜4の整数を表す。   In the amide-containing sulfide compound represented by the general formula (1), each n independently represents an integer of 1 to 4.

一般式(1)で示されるアミド含有スルフィド化合物において、Lは、メチレン基、エチレン基、炭素数3〜8の直鎖、分岐若しくは環状アルキレン基、又は炭素数6〜14のアリーレン基を表す。   In the amide-containing sulfide compound represented by the general formula (1), L represents a methylene group, an ethylene group, a linear, branched or cyclic alkylene group having 3 to 8 carbon atoms, or an arylene group having 6 to 14 carbon atoms.

炭素数3〜8の直鎖又は分岐状アルキレン基としては、特に限定されないが、例えば、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等が挙げられ、これらが直鎖状又は分枝状であっても良い。置換基の位置は特に限定されない。   Although it does not specifically limit as a C3-C8 linear or branched alkylene group, For example, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group etc. are mentioned, These are linear Or it may be branched. The position of the substituent is not particularly limited.

炭素数3〜8の環状アルキレン基としては、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロヘキセニレン基、シクロヘキサジエニレン基、シクロオクテニレン基、シクロオクタジエニレン基等が挙げられる。置換基の位置は特に限定されない。   Examples of the cyclic alkylene group having 3 to 8 carbon atoms include cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cycloheptylene group, cyclooctylene group, cyclohexenylene group, cyclohexadienylene group, Examples include a cyclooctenylene group and a cyclooctadienylene group. The position of the substituent is not particularly limited.

また、炭素数6〜14のアリーレン基としては、例えば、フェニレン基、ナフチレン基、アントリレン基、トリレン基、キシリレン基、クメニレン基、ベンジレン基、フェネチレン基、スチリレン基、シンナミレン基、ビフェニリレン基、フェナントリレン基等が挙げられる。置換基の位置は特に限定されない。   Examples of the arylene group having 6 to 14 carbon atoms include a phenylene group, a naphthylene group, an anthrylene group, a tolylene group, a xylylene group, a cumenylene group, a benzylene group, a phenylene group, a styrylylene group, a cinnamylene group, a biphenylylene group, and a phenanthrylene group. Etc. The position of the substituent is not particularly limited.

これらのうち、Lとしては、1,2−エチレン基、1,3−プロピレン基、1,4−ブチレン基、1,2−シクロヘキシレン基、1,2−フェニレン基であることが好ましく、特に1,3−プロピレン基又は1,2−フェニレン基である場合に高いパラジウムイオン吸着性能を有するため、好ましい。   Among these, L is preferably 1,2-ethylene group, 1,3-propylene group, 1,4-butylene group, 1,2-cyclohexylene group, 1,2-phenylene group, A 1,3-propylene group or a 1,2-phenylene group is preferable because of high palladium ion adsorption performance.

上記一般式(1)で示されるアミド含有スルフィド化合物の製造法としては、特に限定するものではないが、例えば、以下のように製造することができる。すなわち、下記一般式(2)   Although it does not specifically limit as a manufacturing method of the amide containing sulfide compound shown by the said General formula (1), For example, it can manufacture as follows. That is, the following general formula (2)

Figure 0005803136
Figure 0005803136

(式中、Lは一般式(1)と同じ基を表す。)
で示される化合物と下記一般式(3)
(In the formula, L represents the same group as the general formula (1).)
And a compound represented by the following general formula (3)

Figure 0005803136
Figure 0005803136

(式中、nは一般式(1)と同じ整数を表す。Xは各々独立してハロゲン原子を表す。)
で示される化合物とを塩基存在下で反応させ、下記一般式(4)
(In the formula, n represents the same integer as in the general formula (1). X independently represents a halogen atom.)
And a compound represented by the following general formula (4):

Figure 0005803136
Figure 0005803136

(式中、Lは一般式(1)と同じ基を表す。nは一般式(1)と同じ整数を表す。Xはハロゲン原子を表す。)
で示される化合物を得、次に、一般式(4)で示される化合物とチオ安息香酸とを塩基存在下で反応させて、下記一般式(5)
(In the formula, L represents the same group as in general formula (1). N represents the same integer as in general formula (1). X represents a halogen atom.)
Next, the compound represented by the general formula (4) and thiobenzoic acid are reacted in the presence of a base to obtain the following general formula (5).

Figure 0005803136
Figure 0005803136

(式中、Bzはベンゾイル基を表し。Lは一般式(1)と同じ基を表す。nは一般式(1)と同じ整数を表す。)
で示される化合物を得、次に、一般式(5)で示される化合物と下記一般式(6)
(In the formula, Bz represents a benzoyl group. L represents the same group as in general formula (1). N represents the same integer as in general formula (1).)
Next, the compound represented by the general formula (5) and the following general formula (6)

Figure 0005803136
Figure 0005803136

(式中、Rは一般式(1)と同じ基を表す。Yはハロゲン原子を表す。)
で示される化合物とを塩基存在下で反応させることにより、一般式(1)で示されるアミド含有スルフィド化合物を得ることができる。
(In the formula, R represents the same group as in general formula (1). Y represents a halogen atom.)
The amide-containing sulfide compound represented by the general formula (1) can be obtained by reacting the compound represented by general formula (1) in the presence of a base.

一般式(2)で示される化合物としては、特に限定されないが、例えば、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,2−ジアミノシクロヘキサン、1,2−フェニレンジアミン等が挙げられる。   The compound represented by the general formula (2) is not particularly limited. For example, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,2 -Diaminocyclohexane, 1,2-phenylenediamine and the like.

一般式(3)で示される化合物において、Xはハロゲン原子を表す。ハロゲン原子としては、特に限定されないが、塩素、臭素、又はヨウ素が好ましい。   In the compound represented by the general formula (3), X represents a halogen atom. Although it does not specifically limit as a halogen atom, Chlorine, a bromine, or an iodine is preferable.

一般式(3)で示される化合物としては、特に限定されないが、例えば、クロロ酢酸クロリド、3−クロロプロピオン酸クロリド、4−クロロ酪酸クロリド、5−クロロ吉草酸クロリドが挙げられる。   Although it does not specifically limit as a compound shown by General formula (3), For example, chloroacetic acid chloride, 3-chloropropionic acid chloride, 4-chlorobutyric acid chloride, and 5-chlorovaleric acid chloride are mentioned.

一般式(4)で示される化合物において、Xはハロゲン原子を表す。ハロゲン原子としては、特に限定されないが、塩素、臭素、又はヨウ素が好ましい。   In the compound represented by the general formula (4), X represents a halogen atom. Although it does not specifically limit as a halogen atom, Chlorine, a bromine, or an iodine is preferable.

一般式(6)で示される化合物において、Yはハロゲン原子を表す。ハロゲン原子としては、特に限定されないが、塩素、臭素、又はヨウ素が好ましい。   In the compound represented by the general formula (6), Y represents a halogen atom. Although it does not specifically limit as a halogen atom, Chlorine, a bromine, or an iodine is preferable.

一般式(6)で示される化合物としては、特に限定されないが、例えば、ブロモエタン、ブロモプロパン、ブロモブタン、ブロモヘキサン、ブロモデカン等が挙げられる。   The compound represented by the general formula (6) is not particularly limited, and examples thereof include bromoethane, bromopropane, bromobutane, bromohexane, and bromodecane.

上述のように、一般式(1)で示されるアミド含有スルフィド化合物は、一般式(5)で示される化合物と一般式(6)で示される化合物とを塩基存在下反応させることによって合成することができる。   As described above, the amide-containing sulfide compound represented by the general formula (1) is synthesized by reacting the compound represented by the general formula (5) and the compound represented by the general formula (6) in the presence of a base. Can do.

一般式(1)で示されるアミド含有スルフィド化合物を製造する反応において、用いる塩基としては、特に限定されないが、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム、酢酸カリウム等の無機塩基類、トリエチルアミン、トリエチレンジアミン等の3級アミン類、又はリチウムジエチルアミド、リチウム(イソプロピル)シクロヘキシルアミド、リチウム−ビス(ジメチルシリル)アミド、リチウムジイソプロピルアミド、トリフェニルメタンリチウム、リチウム(2,2,6,6−テトラメチル)ピペリジンアミド等の有機金属類が挙げられる。これらの塩基は市販の試薬をそのまま使用することができる。塩基の使用量としては、特に限定されないが、例えば、一般式(5)で示される化合物1モルに対し1.8〜20倍モルの範囲から選ばれ、1.8〜10倍モルの範囲が好ましい。1.8〜20倍モルの範囲であれば反応が十分進行し、1.8〜10倍モルの範囲であれば経済的にも好ましい。   In the reaction for producing the amide-containing sulfide compound represented by the general formula (1), the base to be used is not particularly limited, but inorganic such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium acetate, potassium acetate, etc. Bases, tertiary amines such as triethylamine, triethylenediamine, or lithium diethylamide, lithium (isopropyl) cyclohexylamide, lithium-bis (dimethylsilyl) amide, lithium diisopropylamide, triphenylmethane lithium, lithium (2,2,6) , 6-tetramethyl) piperidineamide and the like. As these bases, commercially available reagents can be used as they are. The amount of the base used is not particularly limited. For example, the base is selected from a range of 1.8 to 20 times mol and 1 to 10 times mol of the compound represented by the general formula (5). preferable. If it is the range of 1.8-20 times mole, reaction will fully advance, and if it is the range of 1.8-10 times mole, it is economically preferable.

一般式(1)で示されるアミド含有スルフィド化合物の製造における反応は、通常、溶媒中で行われる。溶媒としては、反応を阻害するものでなければ特に制限は無いが、メタノール、エタノール、イソプロパノール等のアルコール系溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、又はこれらの有機溶媒と水との混合溶媒が好ましく用いられる。溶媒の使用量は、特に限定されないが、一般式(5)で示される化合物に対し、通常、2〜40重量比である。   Reaction in manufacture of the amide containing sulfide compound shown by General formula (1) is normally performed in a solvent. The solvent is not particularly limited as long as it does not inhibit the reaction, but alcohol solvents such as methanol, ethanol and isopropanol, ether solvents such as diethyl ether, tetrahydrofuran, dimethoxyethane and cyclopentyl methyl ether, benzene, toluene, An aromatic hydrocarbon solvent such as xylene or a mixed solvent of these organic solvents and water is preferably used. Although the usage-amount of a solvent is not specifically limited, It is 2-40 weight ratio normally with respect to the compound shown by General formula (5).

一般式(1)で示されるアミド含有スルフィド化合物の製造における反応温度は、−78〜100℃の範囲が好ましく、操作性及び経済性の点で−10〜50℃がより好ましい。   The reaction temperature in the production of the amide-containing sulfide compound represented by the general formula (1) is preferably in the range of −78 to 100 ° C., and more preferably −10 to 50 ° C. in terms of operability and economy.

一般式(1)で示されるアミド含有スルフィド化合物の製造における反応時間は、一般式(5)で表される化合物及び塩基の濃度、並びに反応温度等によって変化するが、通常、数分〜24時間の範囲で行われる。   The reaction time in the production of the amide-containing sulfide compound represented by the general formula (1) varies depending on the concentration of the compound represented by the general formula (5) and the base, the reaction temperature, etc., but usually several minutes to 24 hours. It is done in the range.

一般式(1)で示されるアミド含有スルフィド化合物は、分液操作によって、反応液中の他の成分から分離することができる。さらに、再結晶やシリカゲルクロマトグラフィー等を用いて高純度に精製することができる。   The amide-containing sulfide compound represented by the general formula (1) can be separated from other components in the reaction solution by a liquid separation operation. Furthermore, it can be purified with high purity using recrystallization, silica gel chromatography or the like.

一般式(1)で示されるアミド含有スルフィド化合物は、パラジウムイオン抽出剤又は吸着剤として使用することができる。例えば、アミド含有スルフィド化合物が固体の場合、そのままパラジウムイオン吸着剤として使用することができる。アミド含有スルフィド化合物が液体の場合、そのままパラジウムイオン抽出剤として使用することができる。アミド含有スルフィド化合物を溶媒に溶解して抽出剤として使用することができる。また、アミド含有スルフィド化合物を、任意の方法で、任意の担体に固定化して使用することもできる。   The amide-containing sulfide compound represented by the general formula (1) can be used as a palladium ion extractant or an adsorbent. For example, when the amide-containing sulfide compound is a solid, it can be used as it is as a palladium ion adsorbent. When the amide-containing sulfide compound is liquid, it can be used as a palladium ion extractant as it is. An amide-containing sulfide compound can be dissolved in a solvent and used as an extractant. In addition, the amide-containing sulfide compound can be used by being immobilized on an arbitrary carrier by an arbitrary method.

一般式(1)で示されるアミド含有スルフィド化合物をパラジウムイオン抽出剤として使用する場合、一般式(1)で示されるアミド含有スルフィド化合物は、有機溶媒に溶解して用いることができる。一般式(1)で示されるアミド含有スルフィド化合物の濃度としては、1〜99重量%の範囲で選ばれるが、操作性の点から、10〜50重量%の範囲が好ましい。   When the amide-containing sulfide compound represented by the general formula (1) is used as a palladium ion extractant, the amide-containing sulfide compound represented by the general formula (1) can be used after being dissolved in an organic solvent. The concentration of the amide-containing sulfide compound represented by the general formula (1) is selected in the range of 1 to 99% by weight, but is preferably in the range of 10 to 50% by weight from the viewpoint of operability.

一般式(1)で示されるアミド含有スルフィド化合物を溶解する有機溶媒としては、特に限定されないが、例えば、n−ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒、塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。   The organic solvent that dissolves the amide-containing sulfide compound represented by the general formula (1) is not particularly limited. For example, an aliphatic hydrocarbon solvent such as n-hexane or cyclohexane, or an ether solvent such as diethyl ether or diisopropyl ether. Examples of the solvent include halogenated hydrocarbon solvents such as methylene chloride and chloroform, and aromatic hydrocarbon solvents such as benzene, toluene, and xylene.

一般式(1)で示されるアミド含有スルフィド化合物をパラジウムイオン吸着剤として使用する場合、一般式(1)で示されるアミド含有スルフィド化合物を固定化する担体としては、水に不溶性のものであれば特に制限なく用いることができる。使用できる担体としては、特に限定されないが、例えば、ポリスチレン、架橋ポリスチレン等のスチレン系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化オレフィン)、ポリアクリロニトリル等のニトリル系ポリマー、ポリメタクリル酸メチル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー、セルロース、アガロース、デキストラン等の高分子量多糖類、等の高分子担体や、活性炭、シリカゲル、珪藻土、ヒドロキシアパタイト、アルミナ、酸化チタン、マグネシア、ポリシロキサン等の無機担体が挙げられる。ここで、架橋ポリスチレンとは、スチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等のモノビニル芳香族化合物とジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン、トリビニルベンゼン、ビスビニルジフェニル、ビスビニルフェニルエタン等のポリビニル芳香族化合物との架橋共重合体を主体とするものであり、これらの共重合体にグリセロールメタクリレート、エチレングリコールジメタクリレート等のメタクリル酸エステルが共重合されていてもよい。これらの担体のうち、入手容易性及び価格の点で、シリカゲルが特に好ましい。   When the amide-containing sulfide compound represented by the general formula (1) is used as a palladium ion adsorbent, the carrier for immobilizing the amide-containing sulfide compound represented by the general formula (1) may be any one that is insoluble in water. It can be used without particular limitation. Although it does not specifically limit as a support | carrier which can be used, For example, styrene-type polymers, such as polystyrene and cross-linked polystyrene, polyolefins such as polyethylene and polypropylene, poly (halogenated olefins) such as polyvinyl chloride and polytetrafluoroethylene, polyacrylonitrile, etc. Nitrile polymers, polymer supports such as (meth) acrylic polymers such as polymethyl methacrylate and polyethyl acrylate, high molecular weight polysaccharides such as cellulose, agarose and dextran, activated carbon, silica gel, diatomaceous earth, hydroxyapatite , Inorganic carriers such as alumina, titanium oxide, magnesia, and polysiloxane. Here, cross-linked polystyrene means monovinyl aromatic compounds such as styrene, vinyl toluene, vinyl xylene, vinyl naphthalene, and divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, trivinylbenzene, bisvinyldiphenyl, bisvinylphenylethane, etc. The main component is a cross-linked copolymer with a polyvinyl aromatic compound, and a methacrylic acid ester such as glycerol methacrylate or ethylene glycol dimethacrylate may be copolymerized with these copolymers. Of these carriers, silica gel is particularly preferable in view of availability and price.

本発明において用いられる担体の形状としては、球状(例えば、球状粒子等)、粒状、繊維状、顆粒状、モノリスカラム、中空糸、膜状(例えば、平膜など)等の一般的に分離基材として使用される形状が利用可能であり、特に限定するものではないが、これらのうち、球状、膜状、粒状、顆粒状、又は繊維状のものが好ましい。球状、粒状、又は顆粒状担体は、カラム法やバッチ法で使用する際、その使用体積を自由に設定できることから、特に好ましく用いられる。   As the shape of the carrier used in the present invention, it is generally a separating group such as spherical (eg, spherical particles), granular, fibrous, granular, monolithic column, hollow fiber, membrane (eg, flat membrane), etc. Although the shape used as a material can be utilized and it does not specifically limit, A spherical shape, film | membrane form, a granular form, a granular form, or a fibrous form is preferable among these. Spherical, granular, or granular carriers are particularly preferably used because their use volume can be freely set when used in a column method or a batch method.

球状、粒状、又は顆粒状担体の粒子サイズとしては、通常、平均粒径1μm〜10mmの範囲のものを用いることができるが、2μm〜1mmの範囲が好ましい。   As the particle size of the spherical, granular, or granular carrier, those having an average particle diameter in the range of 1 μm to 10 mm can be usually used, but the range of 2 μm to 1 mm is preferable.

担体は多孔質でも良いし、無孔質でも良い。多孔質担体の平均細孔径としては、通常、1nm〜1μmのものを用いることができるが、パラジウムイオン吸着量の点で1nm〜300nmの範囲が好ましい。   The carrier may be porous or nonporous. As the average pore diameter of the porous carrier, those having a diameter of 1 nm to 1 μm can be usually used, but the range of 1 nm to 300 nm is preferable in terms of the amount of palladium ion adsorption.

一般式(1)で示されるアミド含有スルフィド化合物を担体へ固定化する方法としては、特に限定するものではないが、例えば、上記一般式(1)で示されるアミド含有スルフィド化合物を担体に物理的に吸着させて固定化する方法や、上記一般式(1)で示されるアミド含有スルフィド化合物を担体に化学的に結合させて固定化する方法が挙げられる。   A method for immobilizing the amide-containing sulfide compound represented by the general formula (1) on the carrier is not particularly limited. For example, the amide-containing sulfide compound represented by the general formula (1) is physically used as a carrier. And a method of immobilizing the amide-containing sulfide compound represented by the general formula (1) by chemically bonding it to a carrier.

物理的に吸着させて固定化する方法としては、特に限定されないが、例えば、一般式(1)で示されるアミド含有スルフィド化合物をジクロロメタン等の溶媒に溶解させ、次いで上記した担体を加え、アミド含有スルフィド化合物を当該担体に含浸させて、更に溶媒を留去する方法が挙げられる。   The method of physically adsorbing and immobilizing is not particularly limited. For example, the amide-containing sulfide compound represented by the general formula (1) is dissolved in a solvent such as dichloromethane, and then the above-mentioned carrier is added to contain the amide. A method of impregnating the carrier with a sulfide compound and further distilling off the solvent can be mentioned.

化学的に結合させて固定化する方法としては、特に限定されないが、例えば、ポリクロロメチルスチレン(PCMS)と、一般式(1)で示されるアミド含有スルフィド化合物とを塩基存在下で反応させる方法が挙げられる。   The method of chemically binding and immobilizing is not particularly limited. For example, polychloromethylstyrene (PCMS) is reacted with the amide-containing sulfide compound represented by the general formula (1) in the presence of a base. Is mentioned.

担体へのアミド含有スルフィド化合物の固定化率は、目的に応じて任意に調節可能であり、特に限定するものではないが、上記一般式(1)で示されるアミド含有スルフィド化合物が1〜50重量%の範囲が好ましく、5〜30重量%の範囲がさらに好ましい。   The immobilization ratio of the amide-containing sulfide compound to the carrier can be arbitrarily adjusted according to the purpose, and is not particularly limited. However, the amide-containing sulfide compound represented by the general formula (1) is 1 to 50 weights. % Range is preferable, and the range of 5 to 30% by weight is more preferable.

最後に、本発明のパラジウムイオンの分離及び回収方法について説明する。   Finally, the method for separating and recovering palladium ions of the present invention will be described.

パラジウムイオンの分離方法は、本発明のパラジウムイオン抽出剤又は吸着剤とパラジウムイオンを含む水溶液とを接触させ、パラジウムイオンを前記パラジウムイオン抽出剤により抽出する、又はパラジウムイオン吸着剤により吸着することで行われる。   A method for separating palladium ions is to bring the palladium ion extractant or adsorbent of the present invention into contact with an aqueous solution containing palladium ions and extract the palladium ions with the palladium ion extractant or adsorb the palladium ions with the palladium ion adsorbent. Done.

本発明のパラジウムイオンの回収方法は、上記パラジウムイオンの分離に用いた、パラジウムイオン抽出剤と逆抽出剤とを接触させて、又はパラジウムイオン吸着剤と脱着剤とを接触させて、パラジウムイオンを含む水溶液を得ることで行われる。   In the method for recovering palladium ions of the present invention, a palladium ion extractant and a back extractant used for separation of the palladium ions are brought into contact with each other, or a palladium ion adsorbent and a desorbent are brought into contact with each other. It is carried out by obtaining an aqueous solution containing it.

上記したパラジウムイオンの分離方法において、本発明のパラジウムイオン抽出剤又は吸着剤と接触させるパラジウムイオンを含む水溶液としては、特に限定されないが、例えば、自動車排ガス処理触媒や宝飾品を溶解した水溶液や、白金族金属の湿式精錬工程における酸浸出後溶液が挙げられる。   In the above-described method for separating palladium ions, the aqueous solution containing palladium ions to be brought into contact with the palladium ion extractant or adsorbent of the present invention is not particularly limited, for example, an aqueous solution in which an automobile exhaust gas treatment catalyst or jewelry is dissolved, Examples include a solution after acid leaching in a platinum group metal hydrometallurgy process.

上記したパラジウムイオンを含む水溶液はパラジウムイオンの他に、白金イオン、ロジウムイオン等の白金族金属イオン、及び銅イオン、鉄イオン、ニッケルイオン、亜鉛イオン等の卑金属イオンを含有していてもよい。   The aqueous solution containing palladium ions described above may contain platinum group metal ions such as platinum ions and rhodium ions and base metal ions such as copper ions, iron ions, nickel ions and zinc ions in addition to palladium ions.

パラジウムイオンを含む水溶液の液性は、特に限定されないが、例えば、酸性であることが好ましい。ここで用いられる酸としては、特に限定されないが、例えば、塩酸、硫酸、硝酸等の無機酸が挙げられる。このうち、塩酸が特に好ましい。   The liquidity of the aqueous solution containing palladium ions is not particularly limited, but is preferably acidic, for example. Although it does not specifically limit as an acid used here, For example, inorganic acids, such as hydrochloric acid, a sulfuric acid, nitric acid, are mentioned. Of these, hydrochloric acid is particularly preferred.

パラジウムイオンを含む水溶液の酸濃度としては、特に限定するものではないが、0.1〜5mol/Lの範囲が好ましい。この範囲の酸濃度であれば、パラジウムイオンの吸着効率を損なうことなくパラジウムイオンの分離を行うことができる。   Although it does not specifically limit as acid concentration of the aqueous solution containing palladium ion, The range of 0.1-5 mol / L is preferable. When the acid concentration is within this range, palladium ions can be separated without impairing the adsorption efficiency of palladium ions.

パラジウムイオンの分離方法において、本発明のパラジウムイオン抽出剤又は吸着剤の使用量は、上記パラジウムイオンを含む水溶液中のパラジウムイオンに対し、一般式(1)で示されるアミド含有スルフィド化合物換算で、等モル量以上とすることが好ましい。   In the method for separating palladium ions, the amount of the palladium ion extractant or adsorbent of the present invention used in terms of the amide-containing sulfide compound represented by the general formula (1) with respect to the palladium ions in the aqueous solution containing the palladium ions, An equimolar amount or more is preferable.

パラジウムイオンの分離方法においては、パラジウムイオン抽出剤又は吸着剤とパラジウムイオンを含む溶液の混合物を攪拌することが好ましい。攪拌によって、パラジウムイオンの吸着が促進される。また、本発明のパラジウムイオン吸着剤を用いる場合は、カラム等の固定床に充填したパラジウムイオン吸着剤に、パラジウムイオンを含有する水溶液を流通して接触させることもできる。   In the method for separating palladium ions, it is preferable to stir a mixture of a solution containing palladium ion extractant or adsorbent and palladium ions. Agitation promotes adsorption of palladium ions. When the palladium ion adsorbent of the present invention is used, an aqueous solution containing palladium ions can be circulated and brought into contact with the palladium ion adsorbent packed in a fixed bed such as a column.

パラジウムイオンの回収方法において用いられるパラジウムイオンの逆抽出剤又は脱着剤としては、特に限定するものではないが、例えば、アンモニア、チオ尿素、メチオニン、エチレンジアミン等が挙げられる。このうち、分離性能及び後処理の容易性の点でメチオニンが好ましい。   The palladium ion back extractant or desorbent used in the palladium ion recovery method is not particularly limited, and examples thereof include ammonia, thiourea, methionine, and ethylenediamine. Among these, methionine is preferable in terms of separation performance and ease of post-treatment.

逆抽出剤又は脱着剤は、水溶液又は酸性水溶液として用いることができる。逆抽出剤又は脱着剤の濃度としては、特に限定されないが、例えば、1〜99重量%の範囲で選ばれる。また、酸性水溶液とする場合は、特に限定されないが、例えば、塩酸、硫酸、硝酸等の無機酸を用いることができる。酸性水溶液の酸濃度としては、特に限定されないが、例えば、0.1〜5mol/Lの範囲で選ばれる。   The back extractant or desorbent can be used as an aqueous solution or an acidic aqueous solution. Although it does not specifically limit as a density | concentration of a back extractant or a desorption agent, For example, it selects in the range of 1 to 99 weight%. Moreover, when setting it as acidic aqueous solution, although it does not specifically limit, For example, inorganic acids, such as hydrochloric acid, a sulfuric acid, nitric acid, can be used. Although it does not specifically limit as acid concentration of acidic aqueous solution, For example, it selects in the range of 0.1-5 mol / L.

逆抽出剤又は脱着剤の使用量は、特に限定されないが、例えば、本発明で使用した抽出剤又は吸着剤における一般式(1)で示されるアミド含有スルフィド化合物1モルに対して、2〜10000倍モルの範囲で選ばれるが、このうち5〜1000倍モルの範囲が好ましい。   Although the usage-amount of a back extractant or a desorption agent is not specifically limited, For example, it is 2-10000 with respect to 1 mol of amide containing sulfide compounds shown by General formula (1) in the extractant or adsorption agent used by this invention. Although it is selected in the range of a double mole, a range of 5 to 1000 moles is preferable.

パラジウムイオンの回収方法においては、パラジウムイオンを抽出したパラジウムイオン抽出剤と逆抽出剤の混合物、又はパラジウムイオンを吸着したパラジウムイオン吸着剤と脱着剤の混合物を攪拌することが好ましい。攪拌によって、パラジウムイオンの逆抽出又は脱着が促進されるためである。また、パラジウムイオンを吸着したパラジウムイオン吸着剤を用いる場合は、カラム等の固定床に充填したパラジウムイオン吸着剤に、脱着剤を流通して接触させることもできる。   In the method for recovering palladium ions, it is preferable to stir a mixture of a palladium ion extractant and a back extractant from which palladium ions have been extracted, or a mixture of a palladium ion adsorbent and a desorbent that have adsorbed palladium ions. This is because the back extraction or desorption of palladium ions is promoted by stirring. Moreover, when using the palladium ion adsorption agent which adsorb | sucked the palladium ion, a desorption agent can be distribute | circulated and made to contact with the palladium ion adsorption agent with which the fixed beds, such as the column, were filled.

以上のように、本発明のパラジウムイオン抽出剤又は吸着剤を用いて、パラジウムイオンの分離回収が行われる。   As described above, separation and recovery of palladium ions are performed using the palladium ion extractant or adsorbent of the present invention.

本発明のパラジウムイオン抽出剤及び吸着剤は、パラジウムイオンに対して高い親和性を有するため、パラジウムイオン以外に白金イオン、ロジウムイオン等の複数の白金族金属イオンに加え、銅イオン、鉄イオン、ニッケルイオン、亜鉛イオン等の卑金属イオンが混在する場合にも、パラジウムイオンを高選択的に吸着するという特長を有する。特に、高濃度の白金イオンを含有する溶液からパラジウムを短時間で相互分離する事を最大の特長とする。   Since the palladium ion extractant and adsorbent of the present invention have high affinity for palladium ions, in addition to palladium ions, in addition to a plurality of platinum group metal ions such as platinum ions and rhodium ions, copper ions, iron ions, Even when base metal ions such as nickel ions and zinc ions coexist, palladium ions are adsorbed with high selectivity. In particular, the greatest feature is that palladium is separated from a solution containing a high concentration of platinum ions in a short time.

したがって、本発明のパラジウムの分離及び回収方法を用いれば、パラジウムイオンを含む水溶液中からパラジウムイオンを、簡便に効率よく分離回収することができる。   Therefore, by using the method for separating and recovering palladium of the present invention, palladium ions can be easily and efficiently separated and recovered from an aqueous solution containing palladium ions.

以下に、本発明を具体的に説明するが、本発明はこれらの実施例によって限定して解釈されるものではない。   The present invention will be specifically described below, but the present invention is not construed as being limited by these examples.

H−NMR(核磁気共鳴)はGemini−200(Varian社製)で測定した。 1 H-NMR (nuclear magnetic resonance) was measured by Gemini-200 (manufactured by Varian).

水溶液中のパラジウムイオン濃度はICP発光分光分析装置(OPTIMA3300DV、Perkin Elmaer社製)で測定した。   The palladium ion concentration in the aqueous solution was measured with an ICP emission spectroscopic analyzer (OPTIMA 3300 DV, manufactured by Perkin Elmaer).

実施例1 化合物(11)の合成
アミド含有スルフィド化合物の合成例として、N,N’−ビス−(3−チアウンデカニル)−1,3−プロパンジアミン(以下、化合物(11)と称する)の合成例を以下に記す。
Example 1 Synthesis of Compound (11) As a synthesis example of an amide-containing sulfide compound, a synthesis example of N, N′-bis- (3-thiaundecanyl) -1,3-propanediamine (hereinafter referred to as compound (11)). Is described below.

Figure 0005803136
Figure 0005803136

ジアシル化体(9)の合成
200mLナス型フラスコに1,3−プロパンジアミン(7) 3.71g(50mmol)、水50g、ジエチルエ−テル 20gを量り取り、これに20重量%水酸化ナトリウム水溶液24.00g(120mmol)を加えた。この混合物に対し、クロロ塩化アセチル(8) 13.55g(120mmol)を0℃にて1時間かけて滴下し、更に0℃で1時間攪拌した。生じた白色固体をろ取した後、水、ジエチルエ−テルで順次洗浄し、上記式(9)で示されるジアシル化体(以下、ジアシル化体(9)と称する)を収量10.41g、収率91.7%で得た。
Synthesis of Diacylated Compound (9) In a 200 mL eggplant-shaped flask, 3.71 g (50 mmol) of 1,3-propanediamine (7), 50 g of water and 20 g of diethyl ether were weighed, and 20 wt% aqueous sodium hydroxide solution 24 was added thereto. 0.000 g (120 mmol) was added. To this mixture, 13.55 g (120 mmol) of chloroacetyl chloride (8) was added dropwise at 0 ° C. over 1 hour, and the mixture was further stirred at 0 ° C. for 1 hour. The resulting white solid was collected by filtration and washed successively with water and diethyl ether to obtain 10.41 g of a diacylated product represented by the above formula (9) (hereinafter referred to as diacylated product (9)). Obtained at a rate of 91.7%.

H−NMR(DMSO−d)δ(ppm):1.55(2H,quintet,J=7.0Hz),3.03−3.10(4H,m),4.03(4H,s),8.22(2H,brs)
ジチオエステル化体(10)の合成
100mLナス型フラスコに炭酸カリウム 2.65g(19.2mmol)、水40gを量り取り、これにチオ安息香酸2.65g(19.2mmol)を加えて40℃で30分間攪拌した。これに上記ジアシル化体(9) 1.82g(8mmol)及びテトラヒドロフラン(THF) 10gを加え、40℃で3時間攪拌した。その後更に0℃で1時間攪拌し、生じた白色固体をろ取した後、水で洗浄し、上記式(10)で示されるジチオエステル化体(以下、ジチオエステル化体(10)と称する。)を収量3.51g、収率95.6%で得た。
1 H-NMR (DMSO-d 6 ) δ (ppm): 1.55 (2H, quintet, J = 7.0 Hz), 3.03-3.10 (4H, m), 4.03 (4H, s ), 8.22 (2H, brs)
Synthesis of dithioesterified product (10) 2.65 g (19.2 mmol) of potassium carbonate and 40 g of water were weighed into a 100 mL eggplant-shaped flask, and 2.65 g (19.2 mmol) of thiobenzoic acid was added thereto at 40 ° C. Stir for 30 minutes. 1.82 g (8 mmol) of the diacylated product (9) and 10 g of tetrahydrofuran (THF) were added thereto, and the mixture was stirred at 40 ° C. for 3 hours. Thereafter, the mixture is further stirred at 0 ° C. for 1 hour, and the resulting white solid is collected by filtration, washed with water, and referred to as a dithioesterified product represented by the above formula (10) (hereinafter referred to as dithioesterified product (10)). ) Was obtained in a yield of 3.51 g and a yield of 95.6%.

H−NMR(CDCl)δ(ppm):1.65(2H,quintet,J=6.2Hz),3.23−3.32(4H,m),3.74(4H,s),6.88(2H,brs),7.43−7.52(4H,m),7.57−7.66(2H,m),7.95−8.00(4H,m)
化合物(11)の合成
100mLナス型フラスコに上記ジチオエステル化体(10) 2.15g(5mmol)、メタノ−ル 20gを量り取り、これに20重量%水酸化ナトリウム水溶液2.00g(10mmol)を加え、窒素気流下室温で2時間攪拌した。これに1−ブロモオクタン 1.93g(10mmol)を加え、室温で20時間攪拌した。溶媒を減圧下留去した後、テトラヒドロフラン 10g、水10g、20%水酸化ナトリウム水溶液2.00g(10mmol)を加え、40℃で1時間撹拌した。反応液を分液ロートに移し、酢酸エチルで抽出した(10mL×2)。有機層を合わせ、飽和重曹水10mL、水10mL、飽和食塩水10mLで順次洗浄した。硫酸ナトリウムで脱水した後、溶媒を減圧下留去し、化合物(11)を収量2.12g、収率95.1%で得た。
1 H-NMR (CDCl 3 ) δ (ppm): 1.65 (2H, quintet, J = 6.2 Hz), 3.23-3.32 (4H, m), 3.74 (4H, s), 6.88 (2H, brs), 7.43-7.52 (4H, m), 7.57-7.66 (2H, m), 7.95-8.00 (4H, m)
Synthesis of Compound (11) 2.15 g (5 mmol) of the dithioester compound (10) and 20 g of methanol were weighed into a 100 mL eggplant-shaped flask, and 2.00 g (10 mmol) of 20 wt% aqueous sodium hydroxide solution was added thereto. In addition, the mixture was stirred at room temperature for 2 hours under a nitrogen stream. To this was added 1.93 g (10 mmol) of 1-bromooctane, and the mixture was stirred at room temperature for 20 hours. After the solvent was distilled off under reduced pressure, 10 g of tetrahydrofuran, 10 g of water, and 2.00 g (10 mmol) of 20% aqueous sodium hydroxide solution were added, and the mixture was stirred at 40 ° C. for 1 hour. The reaction solution was transferred to a separatory funnel and extracted with ethyl acetate (10 mL × 2). The organic layers were combined and washed successively with 10 mL of saturated aqueous sodium bicarbonate, 10 mL of water, and 10 mL of saturated brine. After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure to obtain Compound (11) in a yield of 2.12 g and a yield of 95.1%.

H−NMR(CDCl)δ(ppm):0.88(6H,t,J=7.0Hz),1.27−1.38(20H,m),1.52−1.79(6H,m),2.54(4H,t,J=7.0Hz),3.23(4H,s),3.29−3.83(4H,m),7.32(2H,brs)
実施例2 吸着剤Aの調製
50mLナス型フラスコに実施例1で合成した化合物(11) 0.25gをジクロロメタン 5mLに溶解させ、これにシリカゲル(富士シリシア化学製、商品名:MB5D 200−350)0.75gを加え、更に40℃で30分間攪拌した。溶媒を減圧下にて留去した後、得られた白色粉末を室温で減圧乾燥することにより化合物(11)を25重量%の割合で含浸担持させたシリカゲルを調製した(吸着剤Aとする)。
1 H-NMR (CDCl 3 ) δ (ppm): 0.88 (6H, t, J = 7.0 Hz), 1.27-1.38 (20H, m), 1.52-1.79 (6H) M), 2.54 (4H, t, J = 7.0 Hz), 3.23 (4H, s), 3.29-3.83 (4H, m), 7.32 (2H, brs)
Example 2 Preparation of Adsorbent A Compound (11) 0.25 g synthesized in Example 1 was dissolved in 5 mL of dichloromethane in a 50 mL eggplant-shaped flask, and silica gel (trade name: MB5D 200-350, manufactured by Fuji Silysia Chemical) was dissolved therein. 0.75 g was added and the mixture was further stirred at 40 ° C. for 30 minutes. After the solvent was distilled off under reduced pressure, the resulting white powder was dried under reduced pressure at room temperature to prepare silica gel impregnated and supported at a ratio of 25% by weight of compound (11) (referred to as adsorbent A). .

実施例3 化合物(12)の合成
実施例1において、1,3−プロパンジアミン 3.71gの代わりに1,2−フェニレンジアミン 5.41gを用いる以外は、実施例1と同様にして、下記式(12)
Example 3 Synthesis of Compound (12) In Example 1, the following formula was used, except that 5.41 g of 1,2-phenylenediamine was used instead of 3.71 g of 1,3-propanediamine. (12)

Figure 0005803136
Figure 0005803136

で示されるアミド含有環状スルフィド化合物を調製した(収量1.22g、1,2−フェニレンジアミンからの収率89.7%)。 An amide-containing cyclic sulfide compound represented by the following formula was prepared (yield: 1.22 g, yield from 1,2-phenylenediamine: 89.7%).

H−NMR(CDCl)δ(ppm):0.88(6H,t,J=7.0Hz),1.26−1.41(20H,m),1.56−1.66(4H,m),2.62(4H,t,J=7.2Hz),3.39(4H,s),7.22−7.27(2H,m),7.53−7.58(2H,m),8.97(2H,brs)
実施例4 吸着剤Bの調製
実施例2において、化合物(11)の代わりに化合物(12)を用いた以外は実施例2と同様に行い、化合物(12)を25重量%の割合で含浸担持させたシリカゲルを調製した(吸着剤Bとする)。
1 H-NMR (CDCl 3 ) δ (ppm): 0.88 (6H, t, J = 7.0 Hz), 1.26 to 1.41 (20 H, m), 1.56 to 1.66 (4H) M), 2.62 (4H, t, J = 7.2 Hz), 3.39 (4H, s), 7.22-7.27 (2H, m), 7.53-7.58 (2H) , M), 8.97 (2H, brs)
Example 4 Preparation of adsorbent B The same procedure as in Example 2 was performed except that compound (12) was used instead of compound (11) in Example 2, and compound (12) was impregnated and supported at a ratio of 25% by weight. Silica gel was prepared (referred to as adsorbent B).

実施例5 吸着剤Cの調製
実施例2において、化合物(11)の代わりに化合物(12)を用い、シリカゲルとして、MB5D 200−350の代わりにMB4B 30−50(富士シリシア化学製)を用いた以外は、実施例2と同様に行い、化合物(12)を25重量%の割合で含浸担持させたシリカゲルを調製した(吸着剤Cとする)。
Example 5 Preparation of Adsorbent C In Example 2, the compound (12) was used instead of the compound (11), and MB4B 30-50 (manufactured by Fuji Silysia Chemical) was used as the silica gel instead of MB5D 200-350. Except for the above, it was carried out in the same manner as in Example 2, and a silica gel impregnated and supported with 25% by weight of compound (12) was prepared (referred to as adsorbent C).

合成例1 化合物(15)の合成
比較例の特許文献2の請求項範囲に該当するパラジウム抽出剤の合成例として、N,N−ジエチル−3−チアウンデカンアミド(以下、化合物(15)と称する。)の合成例を以下に記す。
Synthesis Example 1 Synthesis of Compound (15) N, N-diethyl-3-thiaundecanamide (hereinafter referred to as Compound (15)) is a synthesis example of a palladium extractant that falls within the scope of claims of Patent Document 2 as a comparative example. )) Is described below.

Figure 0005803136
Figure 0005803136

チオエステル化体(14)の合成
200mLナス型フラスコに炭酸カリウム 15.20g(110mmol)、水80gを量り取り、これにチオ安息香酸15.20g(110mmol)を加えて室温で30分間攪拌した。これに2−クロロ−N,N−ジエチルアセタミド(13) 14.96g(100mmol)、及びテトラヒドロフラン 20gを加え、室温で3時間攪拌した。反応液を分液ロートに移し、酢酸エチルで抽出した(10mL×2)。有機層を合わせ、水10mL、飽和食塩水10mLで順次洗浄した。硫酸ナトリウムで脱水した後、溶媒を減圧下留去し、化合物(14)を収量25.67g、収率100%で得た。
Synthesis of Thioesterified Compound (14) In a 200 mL eggplant-shaped flask, 15.20 g (110 mmol) of potassium carbonate and 80 g of water were weighed, and 15.20 g (110 mmol) of thiobenzoic acid was added thereto, followed by stirring at room temperature for 30 minutes. To this was added 14.96 g (100 mmol) of 2-chloro-N, N-diethylacetamide (13) and 20 g of tetrahydrofuran, and the mixture was stirred at room temperature for 3 hours. The reaction solution was transferred to a separatory funnel and extracted with ethyl acetate (10 mL × 2). The organic layers were combined and washed sequentially with 10 mL of water and 10 mL of saturated brine. After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure to obtain Compound (14) in a yield of 25.67 g and a yield of 100%.

H−NMR(CDCl)δ(ppm):1.15(3H,t,J=7.2Hz),1.28(3H,t,J=7.2Hz),3.27(2H,S),3.37−3.50(4H,m),7.41−7.49(2H,m),7.55−7.63(1H,m),7.97−8.01(2H,m)
化合物(15)の合成
100mLナス型フラスコに上記チオエステル化体(14) 1.26g(5mmol)、メタノ−ル 20gを量り取り、これに20重量%水酸化ナトリウム水溶液1.00g(5mmol)を加え、窒素気流下室温で2時間攪拌した。これに1−ブロモオクタン 0.97g(5mmol)を加え、室温で20時間攪拌した。溶媒を減圧下留去した後、テトラヒドロフラン 10g、水10g、20%水酸化ナトリウム水溶液1.00g(5mmol)を加え、40℃で1時間撹拌した。反応液を分液ロートに移し、酢酸エチルで抽出した(10mL×2)。有機層を合わせ、飽和重曹水10mL、水10mL、飽和食塩水10mLで順次洗浄した。硫酸ナトリウムで脱水した後、溶媒を減圧下留去し、化合物(15)を収量1.28g、収率98.5%で得た。
1 H-NMR (CDCl 3 ) δ (ppm): 1.15 (3H, t, J = 7.2 Hz), 1.28 (3H, t, J = 7.2 Hz), 3.27 (2H, S ), 3.37-3.50 (4H, m), 7.41-7.49 (2H, m), 7.55-7.63 (1H, m), 7.97-8.01 (2H) , M)
Synthesis of Compound (15) 1.26 g (5 mmol) of the thioester compound (14) and 20 g of methanol were weighed into a 100 mL eggplant type flask, and 1.00 g (5 mmol) of 20 wt% aqueous sodium hydroxide solution was added thereto. The mixture was stirred at room temperature for 2 hours under a nitrogen stream. To this, 0.97 g (5 mmol) of 1-bromooctane was added and stirred at room temperature for 20 hours. After the solvent was distilled off under reduced pressure, 10 g of tetrahydrofuran, 10 g of water, and 1.00 g (5 mmol) of 20% aqueous sodium hydroxide solution were added, and the mixture was stirred at 40 ° C. for 1 hour. The reaction solution was transferred to a separatory funnel and extracted with ethyl acetate (10 mL × 2). The organic layers were combined and washed successively with 10 mL of saturated aqueous sodium bicarbonate, 10 mL of water, and 10 mL of saturated brine. After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure to obtain Compound (15) in a yield of 1.28 g and a yield of 98.5%.

H−NMR(CDCl)δ(ppm):0.87(3H,t,J=7.0Hz),1.09−1.43(16H,m),1.54−1.68(2H,m),2.65(2H,t,J=7.2Hz),3.27(2H,s),3.37(4H,q,J=7.0Hz)
調製例1 吸着剤Dの調製
実施例2において、化合物(11)の代わりに化合物(15)を用いた以外は実施例2と同様に行い、化合物(15)を25重量%の割合で含浸担持させたシリカゲルを調製した(吸着剤Dとする)。
1 H-NMR (CDCl 3 ) δ (ppm): 0.87 (3H, t, J = 7.0 Hz), 1.09-1.43 (16H, m), 1.54-1.68 (2H) M), 2.65 (2H, t, J = 7.2 Hz), 3.27 (2H, s), 3.37 (4H, q, J = 7.0 Hz)
Preparation Example 1 Preparation of Adsorbent D Example 2 was carried out in the same manner as in Example 2 except that compound (15) was used instead of compound (11), and compound (15) was impregnated and supported at a ratio of 25% by weight. Silica gel was prepared (referred to as adsorbent D).

合成例2 化合物(18)の合成   Synthesis Example 2 Synthesis of Compound (18)

Figure 0005803136
Figure 0005803136

(式(16)、(17)、(18)中、Rで示される置換基は、牛脂由来の長鎖アルキル基(例えば、セチル基、ステアリル基、オレイル基等(存在比は不明)を含む。)を表す。Bzはベンゾイル基を表す。)
ジアシル化体(17)の合成
200mLナス型フラスコに牛脂プロピレンジアミン(16)(花王製、商品名:ジアミン RRT)9.51g(30mmol)、10重量%水酸化ナトリウム水溶液30.00g(75mmol)、ジエチルエーテル 40gを加えた。この混合物に対し、クロロ塩化アセチル(8) 8.47g(75mmol)を室温にて2時間かけて滴下し、更に室温で30分間攪拌した。反応液を分液ロートに移し、酢酸エチルで抽出した(15mL×2)。有機層を合わせ、飽和重曹水15mL、飽和食塩水15mLで順次洗浄した。硫酸ナトリウムで脱水した後、溶媒を減圧下留去し、上記式(17)で示されるジアシル化体(以下、ジアシル化体(17)と称する。)を収量12.59g、収率89.3%で得た。
(In the formulas (16), (17), and (18), the substituent represented by R includes a beef tallow-derived long-chain alkyl group (for example, cetyl group, stearyl group, oleyl group, etc. (the abundance ratio is unknown)). Bz represents a benzoyl group.)
Synthesis of diacylated product (17) In a 200 mL eggplant-shaped flask, beef tallow propylenediamine (16) (trade name: Diamine RRT, manufactured by Kao) 9.51 g (30 mmol), 30.00 g (75 mmol) of 10 wt% aqueous sodium hydroxide solution, 40 g of diethyl ether was added. To this mixture, 8.47 g (75 mmol) of chloroacetyl chloride (8) was added dropwise at room temperature over 2 hours, and the mixture was further stirred at room temperature for 30 minutes. The reaction solution was transferred to a separatory funnel and extracted with ethyl acetate (15 mL × 2). The organic layers were combined and washed sequentially with saturated aqueous sodium bicarbonate (15 mL) and saturated brine (15 mL). After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure, and the diacylated product represented by the above formula (17) (hereinafter referred to as diacylated product (17)) was obtained in a yield of 12.59 g and a yield of 89.3. %.

H−NMR(CDCl)δ(ppm):0.85−0.91(m,牛脂アルキル基由来ピーク),1.25−1.31(m,牛脂アルキル基由来ピーク),1.52−1.80(m,牛脂アルキル基由来ピーク),1.96−2.05(m,牛脂アルキル基由来ピーク),3.22−3.48(m,6H),4.04(s,2H),4.08(s,2H),5.32−5.38(m,牛脂アルキル基由来ピーク),7.59(1H,brs),2H未検出(牛脂アルキル基由来ピークとオーバーラップしていると推定)
化合物(18)の合成
300mLナス型フラスコに実施例1で合成したジチオエステル化体(10) 11.53g(26.8mmol)、メタノ−ル 100gを量り取り、これに20重量%水酸化ナトリウム水溶液10.71g(53.5mmol)を加え、窒素気流下室温で2時間攪拌した。これに上記ジアシル化体(17) 1.14g(5mmol)を加え、室温で20時間攪拌した。溶媒を減圧下留去した後、テトラヒドロフラン 30g、水30g、20重量%水酸化ナトリウム水溶液10.71g(53.5mmol)を加え、40℃で1時間撹拌した。反応液を分液ロートに移し、酢酸エチルで抽出した(20mL×3)。有機層を合わせ、飽和重曹水20mL、飽和食塩水20mLで順次洗浄した。硫酸ナトリウムで脱水した後、溶媒を減圧下留去し、化合物(18)を収量15.40g、収率92.9%で得た。
1 H-NMR (CDCl 3 ) δ (ppm): 0.85-0.91 (m, beef tallow alkyl group-derived peak), 1.25-1.31 (m, tallow alkyl group-derived peak), 1.52 -1.80 (m, peak from beef tallow alkyl group), 1.96-2.05 (m, peak from beef tallow alkyl group), 3.22-3.48 (m, 6H), 4.04 (s, 2H), 4.08 (s, 2H), 5.32-5.38 (m, peak from beef tallow alkyl group), 7.59 (1H, brs), 2H not detected (overlap from tallow alkyl group-derived peak) Estimated)
Synthesis of Compound (18) 11.53 g (26.8 mmol) of dithioester compound (10) synthesized in Example 1 and 100 g of methanol were weighed into a 300 mL eggplant type flask, and 20% by weight aqueous sodium hydroxide solution was weighed. 10.71 g (53.5 mmol) was added, and the mixture was stirred at room temperature for 2 hours under a nitrogen stream. To this was added 1.14 g (5 mmol) of the diacylated product (17), and the mixture was stirred at room temperature for 20 hours. After the solvent was distilled off under reduced pressure, 30 g of tetrahydrofuran, 30 g of water, and 10.71 g (53.5 mmol) of a 20 wt% aqueous sodium hydroxide solution were added, and the mixture was stirred at 40 ° C. for 1 hour. The reaction solution was transferred to a separatory funnel and extracted with ethyl acetate (20 mL × 3). The organic layers were combined and washed sequentially with 20 mL of saturated aqueous sodium bicarbonate and 20 mL of saturated brine. After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure to obtain Compound (18) in a yield of 15.40 g and a yield of 92.9%.

H−NMR(CDCl)δ(ppm):0.85−0.91(m,牛脂アルキル基由来ピーク),1.25−1.31(m,牛脂アルキル基由来ピーク),1.50−2.03(m,牛脂アルキル基由来ピーク),3.26−3.52(m,18H),5.32−5.38(m,牛脂アルキル基由来ピーク),7.36(1H,brs),7.58(1H,brs),7.70(1H,brs),4H未検出(牛脂アルキル基由来ピークとオーバーラップしていると推定)
調製例2 吸着剤Eの調製
実施例2において、化合物(11)の代わりに化合物(18)を用いた以外は実施例2と同様に行い、化合物(18)を25重量%の割合で含浸担持させたシリカゲルを調製した(吸着剤Eとする)。
1 H-NMR (CDCl 3 ) δ (ppm): 0.85-0.91 (m, beef tallow alkyl group-derived peak), 1.25-1.31 (m, tallow alkyl group-derived peak), 1.50 -2.03 (m, tallow alkyl group-derived peak), 3.26-3.52 (m, 18H), 5.32-5.38 (m, tallow alkyl group-derived peak), 7.36 (1H, brs), 7.58 (1H, brs), 7.70 (1H, brs), 4H not detected (estimated to overlap with tallow alkyl group-derived peak)
Preparation Example 2 Preparation of Adsorbent E The same procedure as in Example 2 was carried out except that Compound (18) was used instead of Compound (11) in Example 2, and Compound (18) was impregnated and supported at a ratio of 25% by weight. Silica gel was prepared (referred to as adsorbent E).

実施例6 吸着剤Aを用いたパラジウムイオンの分離
パラジウムイオンを50mg/Lと白金イオンを150mg/L含む1mol/L塩酸溶液10mLに、実施例2で調製した吸着剤Aを20mg添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルタ−を用いてろ過し、ろ液中の残存金属濃度を測定した。残存金属濃度と初濃度とから、各金属イオンの吸着率を求めた結果、パラジウムイオン吸着率は87.6%、白金イオン吸着率は0%であった。この時のパラジウムイオン吸着量は吸着剤A 1g当たり21.9mg、白金イオン吸着量は吸着剤A 1g当たり0mgであり、パラジウムイオンが高選択的に吸着された。
Example 6 Separation of palladium ions using adsorbent A 20 mg of adsorbent A prepared in Example 2 was added to 10 mL of 1 mol / L hydrochloric acid solution containing 50 mg / L of palladium ions and 150 mg / L of platinum ions at room temperature. For 1 hour. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and the residual metal density | concentration in a filtrate was measured. As a result of obtaining the adsorption rate of each metal ion from the residual metal concentration and the initial concentration, the palladium ion adsorption rate was 87.6% and the platinum ion adsorption rate was 0%. At this time, the palladium ion adsorption amount was 21.9 mg per 1 g of the adsorbent A, and the platinum ion adsorption amount was 0 mg per 1 g of the adsorbent A, so that the palladium ions were adsorbed with high selectivity.

実施例7 吸着剤Bを用いたパラジウムイオンの分離
実施例6において、吸着剤Aの代わりに、実施例4で調製した吸着剤Bを20mg用いた以外は実施例6と同様に行った結果、パラジウムイオン吸着率は99.7%、白金イオン吸着率は0%であった。この時のパラジウムイオン吸着量は吸着剤B 1g当たり24.9mg、白金イオン吸着量は吸着剤B 1g当たり0mgであり、パラジウムイオンが高選択的に吸着された。
Example 7 Separation of palladium ions using adsorbent B As a result of performing in the same manner as in Example 6 except that 20 mg of the adsorbent B prepared in Example 4 was used instead of the adsorbent A in Example 6. The palladium ion adsorption rate was 99.7%, and the platinum ion adsorption rate was 0%. The adsorption amount of palladium ions at this time was 24.9 mg per 1 g of the adsorbent B, and the adsorption amount of platinum ions was 0 mg per 1 g of the adsorbent B. Thus, palladium ions were adsorbed with high selectivity.

実施例8 吸着剤Cを用いたパラジウムイオンの分離回収
実施例5で調製した吸着剤C 0.2gを水に分散させた後、ガラス製の内径5mm、長さ100mmのカラムに充填した。金属標準液及び塩酸水溶液を用いて調製した、表1に示す濃度の各種金属イオンを含有する1mol/L塩酸溶液(以下、移動相と称する)をカラム上部から36mL/Hrの流速で50mL通液して金属イオンの吸着を行った。水20mLを通液してカラムを洗浄した後、5重量%の濃度のDL−メチオニンを含む3mol/L塩酸溶液をカラム上部から36mL/Hrの流速で50mL通液して金属イオンの脱着を行い、カラム下部から流出液(以下、回収液と称する)を得た。流出液中の金属濃度を測定した結果を表2に示す。以上の操作により、パラジウムイオンが高選択的に分離回収された。なお、回収液中のパラジウム濃度からパラジウムイオン吸着量を算出したところ、吸着剤C 1g当たり38.0mgであった。
Example 8 Separation and Recovery of Palladium Ion Using Adsorbent C After 0.2 g of the adsorbent C prepared in Example 5 was dispersed in water, it was packed into a glass column having an inner diameter of 5 mm and a length of 100 mm. 50 mL of a 1 mol / L hydrochloric acid solution (hereinafter referred to as a mobile phase) prepared using a metal standard solution and an aqueous hydrochloric acid solution and containing various metal ions having the concentrations shown in Table 1 at a flow rate of 36 mL / Hr from the top of the column. Then, adsorption of metal ions was performed. After washing the column with 20 mL of water, 50 mL of 3 mol / L hydrochloric acid solution containing DL-methionine at a concentration of 5% by weight was passed through the column at a flow rate of 36 mL / Hr to desorb metal ions. An effluent (hereinafter referred to as a recovered liquid) was obtained from the lower part of the column. The results of measuring the metal concentration in the effluent are shown in Table 2. Through the above operation, palladium ions were separated and recovered with high selectivity. In addition, when the palladium ion adsorption amount was calculated from the palladium concentration in the recovered liquid, it was 38.0 mg per 1 g of the adsorbent C.

Figure 0005803136
Figure 0005803136

比較例1 吸着剤Dを用いたパラジウムイオンの分離
実施例6において、吸着剤Aの代わりに、調製例1で調製した吸着剤Dを20mg用いた以外は実施例6と同様に行った結果、パラジウムイオン吸着率は99.2%、白金イオン吸着率は45.7%であった。この時のパラジウムイオン吸着量は吸着剤D 1g当たり24.8mg、白金イオン吸着量は吸着剤D 1g当たり34.3mgであり、パラジウムイオンを高選択的に吸着する事は出来なかった。
Comparative Example 1 Separation of Palladium Ion Using Adsorbent D As a result of performing in the same manner as in Example 6 except that 20 mg of the adsorbent D prepared in Preparation Example 1 was used instead of the adsorbent A in Example 6. The palladium ion adsorption rate was 99.2%, and the platinum ion adsorption rate was 45.7%. The palladium ion adsorption amount at this time was 24.8 mg per 1 g of the adsorbent D, and the platinum ion adsorption amount was 34.3 mg per 1 g of the adsorbent D. Thus, palladium ions could not be adsorbed with high selectivity.

比較例2 吸着剤Eを用いたパラジウムイオンの分離
実施例6において、吸着剤Aの代わりに、調製例2で調製した吸着剤Eを20mg用いた以外は実施例6と同様に行った結果、パラジウムイオン吸着率は99.0%、白金イオン吸着率は7.3%であった。この時のパラジウムイオン吸着量は吸着剤E 1g当たり24.8mg、白金イオン吸着量は吸着剤E 1g当たり5.5mgであり、パラジウムイオンを高選択的に吸着する事は出来なかった。
Comparative Example 2 Separation of Palladium Ion Using Adsorbent E As a result of performing in the same manner as in Example 6 except that 20 mg of the adsorbent E prepared in Preparation Example 2 was used instead of the adsorbent A in Example 6. The palladium ion adsorption rate was 99.0%, and the platinum ion adsorption rate was 7.3%. The adsorption amount of palladium ions at this time was 24.8 mg per 1 g of the adsorbent E, and the adsorption amount of platinum ions was 5.5 mg per 1 g of the adsorbent E. Thus, palladium ions could not be adsorbed with high selectivity.

Claims (7)

一般式(1)で示されるアミド含有スルフィド化合物を含んでなるパラジウムイオン抽出剤。
Figure 0005803136
(式中、Rは各々独立して、メチル基、エチル基、炭素数3〜18の鎖式炭化水素基、炭素数3〜10の脂環式炭化水素基、又は炭素数6〜14の芳香族炭化水素基を表す。nは各々独立して、1〜4の整数を表す。Lはメチレン基、エチレン基、炭素数3〜8の直鎖、分岐若しくは環状アルキレン基、又は炭素数6〜14のアリーレン基を表す。)
A palladium ion extractant comprising an amide-containing sulfide compound represented by the general formula (1).
Figure 0005803136
(In the formula, each R is independently a methyl group, an ethyl group, a chain hydrocarbon group having 3 to 18 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, or an aromatic group having 6 to 14 carbon atoms. N represents independently an integer of 1 to 4. L represents a methylene group, an ethylene group, a linear, branched or cyclic alkylene group having 3 to 8 carbon atoms, or 6 to 6 carbon atoms. 14 represents an arylene group.)
一般式(1)で示されるアミド含有スルフィド化合物を担体に固定化してなるパラジウムイオン吸着剤。
Figure 0005803136
(式中、Rは各々独立して、メチル基、エチル基、炭素数3〜18の鎖式炭化水素基、炭素数3〜10の脂環式炭化水素基、又は炭素数6〜14の芳香族炭化水素基を表す。nは各々独立して、1〜4の整数を表す。Lはメチレン基、エチレン基、炭素数3〜8の直鎖、分岐若しくは環状アルキレン基、又は炭素数6〜14のアリーレン基を表す。)
A palladium ion adsorbent obtained by immobilizing an amide-containing sulfide compound represented by the general formula (1) on a carrier.
Figure 0005803136
(In the formula, each R is independently a methyl group, an ethyl group, a chain hydrocarbon group having 3 to 18 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, or an aromatic group having 6 to 14 carbon atoms. N represents independently an integer of 1 to 4. L represents a methylene group, an ethylene group, a linear, branched or cyclic alkylene group having 3 to 8 carbon atoms, or 6 to 6 carbon atoms. 14 represents an arylene group.)
担体がシリカゲルであることを特徴とする請求項に記載のパラジウムイオン吸着剤。 The palladium ion adsorbent according to claim 2 , wherein the carrier is silica gel. 請求項に記載のパラジウムイオン抽出剤と、パラジウムイオンを含有する水溶液とを接触させて、パラジウムイオンを抽出することを特徴とするパラジウムイオンの分離方法。 A method for separating palladium ions, wherein the palladium ion extractant according to claim 1 is brought into contact with an aqueous solution containing palladium ions to extract palladium ions. 請求項に記載のパラジウムイオン抽出剤とパラジウムイオンを含有する水溶液とを接触させてパラジウムイオンを抽出した抽出剤と、逆抽出剤を接触させてパラジウムイオンを含む水溶液を得ることを特徴とするパラジウムの回収方法。 A palladium ion extractant according to claim 1 and an aqueous solution containing palladium ions are brought into contact with each other, and an extractant obtained by extracting palladium ions and a back extractant are brought into contact with each other to obtain an aqueous solution containing palladium ions. How to recover palladium. 請求項又は請求項に記載のパラジウムイオン吸着剤と、パラジウムイオンを含有する水溶液とを接触させて、パラジウムイオンを吸着することを特徴とするパラジウムイオンの分離方法。 A method for separating palladium ions, comprising bringing the palladium ion adsorbent according to claim 2 or 3 into contact with an aqueous solution containing palladium ions to adsorb palladium ions. 請求項又は請求項に記載のパラジウムイオン吸着剤とパラジウムイオンを含有する水溶液と接触させてパラジウムイオンを吸着した吸着剤と、脱着剤を接触させてパラジウムイオンを含む水溶液を得ることを特徴とするパラジウムの回収方法。 A palladium ion adsorbent according to claim 2 or claim 3 is contacted with an aqueous solution containing palladium ions, and an adsorbent that adsorbs palladium ions is contacted with a desorbing agent to obtain an aqueous solution containing palladium ions. And a method for recovering palladium.
JP2011037052A 2010-12-28 2011-02-23 Amide-containing sulfide compound, and production method and use thereof Active JP5803136B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011037052A JP5803136B2 (en) 2011-02-23 2011-02-23 Amide-containing sulfide compound, and production method and use thereof
CN201180062457.XA CN103282116B (en) 2010-12-28 2011-12-28 Method for collecting precious metals from solution containing precious metal ions, extractant or adsorbent used therefor, and back extractant or desorbent
US13/976,591 US9074264B2 (en) 2010-12-28 2011-12-28 Method for recovering precious metal from solution containing precious metal ions, extracting agent or adsorbent used therefor, and back-extracting agent or desorbent
EP11854469.1A EP2659964B1 (en) 2010-12-28 2011-12-28 METHOD FOR Recovering PRECIOUS METALS FROM SOLUTION CONTAINING PRECIOUS METAL IONS
PCT/JP2011/080479 WO2012091125A1 (en) 2010-12-28 2011-12-28 Method for collecting precious metals from solution containing precious metal ions, extractant or adsorbent used therefor, and back extractant or desorbent
ZA2013/04377A ZA201304377B (en) 2010-12-28 2013-06-13 "method for recovering precious metal from solution containing precious metal ions,extracting agent or adsorbent used therefor and back-extracting agent or desorbent"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037052A JP5803136B2 (en) 2011-02-23 2011-02-23 Amide-containing sulfide compound, and production method and use thereof

Publications (2)

Publication Number Publication Date
JP2012171939A JP2012171939A (en) 2012-09-10
JP5803136B2 true JP5803136B2 (en) 2015-11-04

Family

ID=46975159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037052A Active JP5803136B2 (en) 2010-12-28 2011-02-23 Amide-containing sulfide compound, and production method and use thereof

Country Status (1)

Country Link
JP (1) JP5803136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202010885D0 (en) * 2020-07-15 2020-08-26 Johnson Matthey Plc Methods for the separation and/or purification of metals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910373A (en) * 1956-12-24 1959-10-27 Universal Oil Prod Co Stabilization of petroleum waxes
JPS5594944A (en) * 1979-01-10 1980-07-18 Adeka Argus Chem Co Ltd Stabilized polymer composition
JP3133375B2 (en) * 1991-06-11 2001-02-05 旭電化工業株式会社 Polyolefin resin composition
JPH08253483A (en) * 1995-03-17 1996-10-01 Dai Ichi Seiyaku Co Ltd Bicyclic heterocyclic compound
SE527131C2 (en) * 2004-02-13 2005-12-27 Innoventus Project Ab Steroids for cancer treatment
JP5277949B2 (en) * 2008-12-24 2013-08-28 住友化学株式会社 Pest control composition

Also Published As

Publication number Publication date
JP2012171939A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
EP2659964B1 (en) METHOD FOR Recovering PRECIOUS METALS FROM SOLUTION CONTAINING PRECIOUS METAL IONS
JP5617430B2 (en) Palladium ion adsorbent and method for separating and recovering palladium using the same
JP6079113B2 (en) Palladium separating agent, and production method and use thereof
JP5619238B1 (en) Scandium recovery method
Van Roosendael et al. Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP)
JP6083077B2 (en) Metal ion adsorbent
JP5387228B2 (en) Method for removing dissolved palladium
JP5344607B2 (en) Separation and recovery of palladium ion adsorbent and palladium
JP5803136B2 (en) Amide-containing sulfide compound, and production method and use thereof
JP5251786B2 (en) Platinum group metal adsorbent and method for separating and recovering platinum group metal using the same
JP5818315B2 (en) Metal selective extractant
Feng et al. Highly selective extraction of Pd (II) using functionalized molecule of 2-[(2-ethylhexyl) thio] benzoxazole and its Pd (II) extraction mechanism
JP5927912B2 (en) Method for recovering noble metal from solution containing noble metal ions, back extractant and desorbent used therefor
JP2006328468A (en) Method for separating and recovering metal
CN108569690B (en) Method for removing radioactive elements in nuclear power waste water by using functionalized graphene material
JP2016011456A (en) Platinum group metal separation agent and platinum group metal ion separation method
WO2014092133A1 (en) Separating agents and separating methods
JP2014133227A (en) Platinum separating agents and platinum ion separating methods
JP2000351834A (en) Calix[4]arene polymer, its production, and separation of divalent lead ion using same
JP2015158004A (en) Method of recovering precious metal
JP6123294B2 (en) Method for producing palladium separating agent
JP6123284B2 (en) Noble metal ion desorbing agent and noble metal recovery method
EP1504129A1 (en) Separation of platinum group metals
CN116731247A (en) Crosslinked polystyrene-vinylpyridine copolymer, preparation thereof and application thereof in metal-catalyzed organic reaction
JP2016113650A (en) Selective separation recovery method for gold and palladium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151