JP5798050B2 - Secondary battery, storage battery system using the secondary battery, and maintenance method - Google Patents

Secondary battery, storage battery system using the secondary battery, and maintenance method Download PDF

Info

Publication number
JP5798050B2
JP5798050B2 JP2012016173A JP2012016173A JP5798050B2 JP 5798050 B2 JP5798050 B2 JP 5798050B2 JP 2012016173 A JP2012016173 A JP 2012016173A JP 2012016173 A JP2012016173 A JP 2012016173A JP 5798050 B2 JP5798050 B2 JP 5798050B2
Authority
JP
Japan
Prior art keywords
electrode group
secondary battery
pressing member
storage battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012016173A
Other languages
Japanese (ja)
Other versions
JP2013157167A (en
Inventor
佑樹 渡辺
佑樹 渡辺
西村 直人
直人 西村
和也 坂下
和也 坂下
大谷 拓也
拓也 大谷
宏志 岡本
宏志 岡本
伸彦 岡
伸彦 岡
紀 根本
紀 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012016173A priority Critical patent/JP5798050B2/en
Publication of JP2013157167A publication Critical patent/JP2013157167A/en
Application granted granted Critical
Publication of JP5798050B2 publication Critical patent/JP5798050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極板と負極板を交互に積層した積層型の電極群を備えた二次電池、この二次電池を用いた蓄電池システムおよびメンテナンス方法に関する。   The present invention relates to a secondary battery including a stacked electrode group in which positive plates and negative plates are alternately stacked, a storage battery system using the secondary battery, and a maintenance method.

近年、高エネルギー密度を有し小型軽量化が可能であることからリチウム二次電池が、携帯電話やノート型パソコン等の携帯型電子機器の電源用電池として用いられている。また、大容量化が可能であることから、電気自動車(EV)やハイブリッド電気自動車(HEV)等のモータ駆動電源や、電力貯蔵用蓄電池としても注目されてきている。   In recent years, lithium secondary batteries have been used as power source batteries for portable electronic devices such as mobile phones and notebook computers because they have a high energy density and can be reduced in size and weight. Further, since the capacity can be increased, it has been attracting attention as a motor drive power source for electric vehicles (EV) and hybrid electric vehicles (HEV), and a storage battery for power storage.

上記リチウム二次電池は、電池缶を構成する外装ケース内部に正極板と負極板とをセパレータを挟んで対向配置した電極群を収納し、電解液を充填し、複数の正極板の正極集電タブに連結される正極集電端子と、この正極集電端子と電気的に接続される正極外部端子と、複数の負極板の負極集電タブに連結される負極集電端子と、この負極集電端子と電気的に接続される負極外部端子を備えた構成とされる。   In the lithium secondary battery, an electrode group in which a positive electrode plate and a negative electrode plate are arranged opposite to each other with a separator interposed therebetween is housed in an outer case constituting a battery can, filled with an electrolyte, and positive electrode current collectors of a plurality of positive electrode plates A positive current collecting terminal coupled to the tab; a positive external terminal electrically connected to the positive current collecting terminal; a negative current collecting terminal coupled to the negative current collecting tabs of the plurality of negative electrode plates; and the negative current collecting terminal. It is set as the structure provided with the negative electrode external terminal electrically connected with an electrical terminal.

また、電極群としては、巻回型と積層型が知られている。巻回型の電極群は、正極板と負極板との間にセパレータを介装して一体に巻回した構成であり、積層型の電極群は、正極板と負極板とをセパレータを介して複数層積層した構成である。   As the electrode group, a wound type and a laminated type are known. The wound electrode group has a configuration in which a separator is interposed between a positive electrode plate and a negative electrode plate, and is integrally wound. The laminated electrode group has a positive electrode plate and a negative electrode plate interposed via a separator. It is the structure which laminated | stacked multiple layers.

積層型の電極群を備えるリチウム二次電池においては、正極板と負極板とをセパレータを介して複数層積層した電極群を外装ケースに収容し、非水電解液で充填した構成とされ、それぞれの正極板の正極集電タブに連結される正極集電端子と、この正極集電端子と電気的に接続される外部端子、および、負極板の負極集電タブに連結される負極集電端子と、この負極集電端子と電気的に接続される外部端子がそれぞれ設けられている。   In a lithium secondary battery including a stacked electrode group, an electrode group in which a plurality of layers of a positive electrode plate and a negative electrode plate are stacked via a separator is housed in an outer case and filled with a non-aqueous electrolyte, respectively. A positive current collecting terminal coupled to the positive current collecting tab of the positive electrode plate, an external terminal electrically connected to the positive current collecting terminal, and a negative current collecting terminal coupled to the negative current collecting tab of the negative electrode plate And an external terminal electrically connected to the negative electrode current collecting terminal.

正極板と負極板と電解液とを有する二次電池の容量を大きくし、電池寿命を長くするためには、発電面積を大きくし、充填する電解液の量を増量することが好ましいので、それぞれの極板の面積を大きくし、積層する層数も増加すると共に、充填する電解液量を増量する傾向にある。また、電極群の内部まで、電解液を十分浸透させておくことが求められる。   In order to increase the capacity of the secondary battery having the positive electrode plate, the negative electrode plate, and the electrolyte and to extend the battery life, it is preferable to increase the power generation area and increase the amount of the electrolyte to be filled. The area of the electrode plate is increased, the number of layers to be stacked is increased, and the amount of electrolyte solution to be filled tends to be increased. Further, it is required that the electrolyte solution is sufficiently permeated into the electrode group.

そのために、巻回形成された電極群および積層形成された電極群に電解液を浸透させるために、電池缶内を真空にして電解液を注液する真空注液法が採用されている。また、高容量化につれて、活物質の高密度化、正極板と負極板とセパレータの緊迫度の上昇に伴い、低下する非水電解液注液工程の生産性向上と電池品質の向上を図るために、缶内を真空にする第一工程と、電解液に溶解し得る気体を注入する第二工程と、電解液を注入する第三工程と、さらに、一定時間減圧する第四工程とを備えた二次電池の製造方法が既に公開されている(例えば、特許文献1参照)。   Therefore, in order to infiltrate the electrolyte solution into the wound electrode group and the stacked electrode group, a vacuum injection method is adopted in which the inside of the battery can is evacuated and the electrolyte solution is injected. To increase the density of the active material and increase the tightness of the positive electrode plate, the negative electrode plate, and the separator as the capacity increases, to improve the productivity of the non-aqueous electrolyte injection process that decreases, and to improve the battery quality A first step of evacuating the inside of the can, a second step of injecting a gas that can be dissolved in the electrolytic solution, a third step of injecting the electrolytic solution, and a fourth step of reducing the pressure for a certain time. In addition, a method for manufacturing a secondary battery has already been disclosed (for example, see Patent Document 1).

また、電極群の内部まで電解液を十分浸透させるために、遠心力を利用して注液する方法も知られている。さらに、遠心注液方法により注液した後減圧処理してさらに電解液を注入する注液方法も既に公開されている(例えば、特許文献2参照)。   A method of injecting liquid using centrifugal force is also known in order to sufficiently infiltrate the electrolyte into the electrode group. Furthermore, a liquid injection method in which an electrolytic solution is injected by performing a vacuum treatment after injecting by a centrifugal liquid injection method has already been disclosed (for example, see Patent Document 2).

特開2007−335181号公報JP 2007-335181 A 特開2000−260463号公報JP 2000-260463 A

積層型の電極群を備えるリチウム二次電池を長時間使用すると、電極間にガスが発生する。そのために、静置した状態では電極間にガスが溜まってしまい、電極反応が不均一になって、充放電容量が低下したり電池寿命が短くなったりして問題となる。   When a lithium secondary battery including a stacked electrode group is used for a long time, gas is generated between the electrodes. For this reason, in the state of standing, gas accumulates between the electrodes, the electrode reaction becomes non-uniform, and the charge / discharge capacity is reduced and the battery life is shortened.

所望の充放電容量を発揮して、安定した電池寿命を得るためには、積層される電極間に電解液が十分充填されていることが望ましく、電池缶を封止した状態であっても積層体内部の電極間に溜まるガスを十分排出できる構成であることが望ましい。   In order to achieve the desired charge / discharge capacity and to obtain a stable battery life, it is desirable that the electrolyte is sufficiently filled between the stacked electrodes, and even if the battery can is sealed, It is desirable that the gas can be sufficiently discharged between the electrodes inside the body.

しかし、特許文献1および2に記載された二次電池や注液方法は、二次電池の製造時に、電極間内に電解液を充填することを目的としており、長時間使用後に電極間内に電解液を再び充填させるものでもなく、電極間に発生するガスを抜くものでもない。   However, the secondary battery and the liquid injection method described in Patent Documents 1 and 2 are intended to fill the electrolyte between the electrodes at the time of manufacturing the secondary battery. It does not refill the electrolyte, nor does it remove the gas generated between the electrodes.

そのために、多数(例えば、数十層)の正極板と負極板とセパレータとを積層した電極群を備える積層型の二次電池においては、電極群内部に発生するガスを抜くことができる構成が望ましく、このような二次電池を用いて、長期間に亘って安定した電池寿命を発揮する蓄電池システムであることが望ましく、電極群内にガスが溜まって、所定の充放電容量を発揮しなくなった二次電池を、容易にガス抜きを行って、所望の充放電容量を発揮する状態に復元できるメンテナンス方法であることが望ましい。   Therefore, in a stacked secondary battery including an electrode group in which a large number (for example, several tens of layers) of a positive electrode plate, a negative electrode plate, and a separator are stacked, a configuration in which gas generated inside the electrode group can be removed. Desirably, it is desirable to be a storage battery system that uses such a secondary battery to exhibit a stable battery life over a long period of time, and gas accumulates in the electrode group, so that a predetermined charge / discharge capacity is not exhibited. It is desirable that the maintenance method be such that the secondary battery can be easily degassed and restored to a state in which a desired charge / discharge capacity is exhibited.

そこで本発明は、上記問題点に鑑み、積層型の電極群内部に溜まるガスを容易に排出できる構成の二次電池を提供し、この二次電池を用いて、長期間に亘って安定した充放電容量を発揮する蓄電池システムを提供し、積層型の電極群内部に溜まるガスを容易に排出するメンテナンス方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention provides a secondary battery having a configuration capable of easily discharging the gas accumulated in the stacked electrode group, and using this secondary battery, stable charging over a long period of time. It is an object of the present invention to provide a storage battery system that exhibits a discharge capacity and to provide a maintenance method that easily discharges gas accumulated in a stacked electrode group.

上記目的を達成するために本発明は、正極板と負極板とをセパレータを介して複数層積層した電極群と、この電極群を収容し電解液が充填される外装ケースと、前記外装ケースに設ける外部端子と、前記正負の極板と前記外部端子とを電気的に接続する正負の集電端子と、前記外装ケースに装着される蓋部材と、を備える二次電池であって、前記外装ケースと前記蓋部材とで密閉構成される電池缶内に、所定の駆動力を受けて前記電極群を、その積層方向に押圧して前記電極群内部のガスを抜くガス抜き機能を発揮する電極群押圧部材を備えたことを特徴としている。   In order to achieve the above object, the present invention provides an electrode group in which a plurality of positive and negative electrode plates are laminated via a separator, an outer case that contains the electrode group and is filled with an electrolyte, and the outer case. A secondary battery comprising: an external terminal to be provided; a positive / negative current collecting terminal that electrically connects the positive / negative electrode plate and the external terminal; and a lid member attached to the outer case. An electrode that exhibits a degassing function in which a predetermined driving force is received in a battery can that is hermetically sealed by a case and the lid member, and the electrode group is pressed in the stacking direction to degas the electrode group. A group pressing member is provided.

この構成によると、二次電池を長時間駆動して電極群内部にガスが溜まっても、所定の駆動力を付加することで、電極群押圧部材を介して電極群内部のガス抜きを行うことが可能となる。そのために、電池缶を封止した状態であっても積層型の電極群内部に溜まるガスを容易に排出できる構成の二次電池を得ることができる。   According to this configuration, even if the secondary battery is driven for a long time and gas accumulates inside the electrode group, the inside of the electrode group is vented through the electrode group pressing member by applying a predetermined driving force. Is possible. Therefore, even when the battery can is sealed, a secondary battery having a configuration that can easily discharge the gas accumulated inside the stacked electrode group can be obtained.

また本発明は上記構成の二次電池において、前記電極群は積層面を前記外装ケースの底面と平行に設置され、前記電極群押圧部材は、前記電極群の上面部に当接して前記底面に向けて押圧することを特徴としている。この構成によると、大きな面積の積層型の電極群であっても、電極群をその積層方向に押圧して、電極群内部で発生して溜まるガスを効果的に排出することができる。   In the secondary battery having the above-described configuration, the electrode group is provided with a laminated surface parallel to the bottom surface of the outer case, and the electrode group pressing member is in contact with the upper surface portion of the electrode group and contacts the bottom surface. It is characterized by pressing toward. According to this configuration, even in a stacked electrode group having a large area, the electrode group can be pressed in the stacking direction, and the gas generated and accumulated inside the electrode group can be effectively discharged.

また本発明は上記構成の二次電池において、前記電極群押圧部材は、前記上面部の全面を押圧する大きさを有することを特徴としている。この構成によると、積層方向の投影面積が大きい電極群であっても、全面を押圧して、電極群内部で発生して溜まるガスを効果的に排出することができる。   According to the present invention, in the secondary battery configured as described above, the electrode group pressing member has a size that presses the entire upper surface portion. According to this configuration, even if the electrode group has a large projected area in the stacking direction, the entire surface can be pressed and the gas generated and accumulated inside the electrode group can be effectively discharged.

また本発明は上記構成の二次電池において、前記電極群は、前記外装ケースの底面側に載置される下面部と、前記蓋部材に対向する上面部と、これらの間の側面部を備え、当該側面部の少なくとも対向する二側面に、前記電極群の位置ずれと前記電極群押圧部材の位置ずれを共に抑制するガイド部材を設けたことを特徴としている。この構成によると、外装ケースに収容される電極群と電極群押圧部材の位置ずれを効果的に抑制して、積層型の電極群と電極群押圧部材を一体に位置固定することが可能となる。   In the secondary battery having the above structure according to the present invention, the electrode group includes a lower surface portion placed on the bottom surface side of the exterior case, an upper surface portion facing the lid member, and a side surface portion therebetween. In addition, a guide member that suppresses both the positional deviation of the electrode group and the positional deviation of the electrode group pressing member is provided on at least two opposing side surfaces of the side surface portion. According to this configuration, it is possible to effectively suppress the positional deviation between the electrode group housed in the outer case and the electrode group pressing member, and to fix the position of the stacked electrode group and the electrode group pressing member integrally. .

また本発明は上記構成の二次電池において、前記集電端子を設ける側面と該側面に対向する前記外装ケースの内面との間に、前記ガイド部材を設けたことを特徴としている。この構成によると、ガイド部材を介して集電端子と外部端子との接続部が変位しないように確実に位置固定することができる。   The secondary battery of the present invention is characterized in that the guide member is provided between a side surface on which the current collecting terminal is provided and an inner surface of the outer case facing the side surface. According to this configuration, the position can be surely fixed so that the connecting portion between the current collecting terminal and the external terminal is not displaced via the guide member.

また本発明は上記構成の二次電池において、前記電極群押圧部材は、伸縮性部材を介して前記蓋部材と接続されることを特徴としている。この構成によると、蓋部材と電極群押圧部材を介して電極群を押圧して、電極群内部で発生して溜まるガスを効果的に排出することができる。   In the secondary battery having the above-described configuration, the electrode group pressing member is connected to the lid member via a stretchable member. According to this configuration, the electrode group is pressed through the lid member and the electrode group pressing member, and the gas generated and accumulated inside the electrode group can be effectively discharged.

また本発明は上記構成の二次電池において、前記電極群押圧部材は、前記電極群に当接し前記所定の駆動力を付加されても容易に変形しない高剛性部と、前記蓋部材に当接し機械的剛性が低く伸縮性を有する高伸縮部を備えた複構造とされることを特徴としている。この構成によると、所定の駆動力が付加されて電極群押圧部材が変形し変位して電極群上面と蓋部材との間の距離が変化しても、高伸縮部を備えているので、容易に対応して電極群を押圧することができる。   According to the present invention, in the secondary battery having the above-described configuration, the electrode group pressing member is in contact with the electrode group and a high-rigidity portion that is not easily deformed even when the predetermined driving force is applied, and the lid member. It is characterized by having a double structure including a high stretchable part having low mechanical rigidity and stretchability. According to this configuration, even if a predetermined driving force is applied and the electrode group pressing member is deformed and displaced to change the distance between the upper surface of the electrode group and the lid member, the high expansion and contraction portion is provided. It is possible to press the electrode group correspondingly.

また本発明は上記構成の二次電池において、前記高伸縮部は、バネまたはゴム状の弾性体からなることを特徴としている。この構成によると、電極群上面部に電極群押圧部材を載置して蓋部材を用いて固定すると、適度な圧で上面部を押圧して、電極群の正極板と負極板とが適度な圧で密着する構成となり、極板同士の剥離が生じず、所定の充放電容量を発揮することができる。   According to the present invention, in the secondary battery having the above-described configuration, the high stretchable part is formed of a spring or a rubber-like elastic body. According to this configuration, when the electrode group pressing member is placed on the upper surface portion of the electrode group and fixed using the lid member, the upper surface portion is pressed with an appropriate pressure so that the positive electrode plate and the negative electrode plate of the electrode group are appropriate. It becomes the structure which closely_contact | adheres by pressure, peeling of electrode plates does not arise, but a predetermined charge / discharge capacity can be exhibited.

また本発明は上記構成の二次電池において、前記高剛性部は、電解液不透過層または難透過層を少なくとも一層有し、前記高伸縮部は多孔性部材からなることを特徴としている。この構成によると、高剛性部として、電解液透過性を有していない剛性の高い材質を選択できる。また、高剛性部が電解液透過性を有していなくても、その上の高伸縮部が電解液透過性を有する多孔性部材からなるので、電解液は電極群の上面を通り四方の側面部に充填され、電極群の内部まで電解液を確実に浸透させることができる。   According to the present invention, in the secondary battery configured as described above, the high-rigidity portion includes at least one electrolyte-impermeable layer or a hardly-permeable layer, and the high-stretchable portion is formed of a porous member. According to this configuration, a highly rigid material that does not have electrolyte permeability can be selected as the highly rigid portion. In addition, even if the high rigidity portion does not have electrolyte permeability, the high stretchable portion on the high rigidity portion is made of a porous member having electrolyte permeability. The electrolyte solution can be reliably infiltrated into the electrode group.

また本発明は上記構成の二次電池において、前記高剛性部は、露出面に絶縁膜を有することを特徴としている。この構成によると、絶縁膜を介して電極群と当接するので、この高剛性部を備える電極群押圧部材により、電極群と短絡することはない。   According to the present invention, in the secondary battery having the above structure, the high-rigidity portion has an insulating film on an exposed surface. According to this configuration, the electrode group is brought into contact with the insulating film via the insulating film, so that the electrode group pressing member including the highly rigid portion is not short-circuited with the electrode group.

また本発明は上記構成の二次電池において、前記電極群押圧部材は、周縁部が薄く、中央部が厚い形状であることを特徴としている。この構成によると、電極群の中央部をより効果的に押圧できるので、電極群内部で発生して溜まるガスを効果的に排出できる。   In the secondary battery having the above structure according to the present invention, the electrode group pressing member has a thin peripheral portion and a thick central portion. According to this structure, since the center part of an electrode group can be pressed more effectively, the gas which generate | occur | produces and accumulates inside an electrode group can be discharged | emitted effectively.

また本発明は上記構成の二次電池において、前記電極群押圧部材は、その質量分布が周縁部で小さく中央部で高い構成とされることを特徴としている。この構成によると、電極群の中央部をより効果的に押圧できるので、電極群内部で発生して溜まるガスを効果的に排出できる。   In the secondary battery having the above-described configuration, the electrode group pressing member has a mass distribution that is small at the peripheral portion and high at the central portion. According to this structure, since the center part of an electrode group can be pressed more effectively, the gas which generate | occur | produces and accumulates inside an electrode group can be discharged | emitted effectively.

また本発明は上記構成の二次電池を用いた蓄電池システムであって、所定のメンテナンスプログラムを有し、該メンテナンスプログラムの信号を確認したときに、所定の駆動力を受けて前記電極群を押圧して前記電極群内部のガス抜き機能を発揮する前記電極群押圧部材に前記駆動力を付与する所定の装置を用いて前記電極群内部のガス抜きを行うことを特徴としている。この構成によると、所定のメンテナンスプログラムを介して、必要なタイミングで所定の装置を介して電極群押圧部材を駆動して電極群内部のガス抜きを行うので、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができる。   The present invention also provides a storage battery system using the secondary battery having the above-described configuration, which has a predetermined maintenance program and receives the predetermined driving force to press the electrode group when checking the signal of the maintenance program. Then, the inside of the electrode group is degassed by using a predetermined device that applies the driving force to the electrode group pressing member that exhibits a gas venting function inside the electrode group. According to this configuration, the electrode group pressing member is driven via a predetermined device at a required timing via a predetermined maintenance program to degas the inside of the electrode group, so that stable charging and discharging over a long period of time is possible. A storage battery system that exhibits capacity can be obtained.

また本発明は上記構成の蓄電池システムにおいて、前記所定の装置は、前記電解群の積層方向に振動を与える振動付加装置、もしくは、前記電解群の積層方向に遠心力を与える遠心力付加装置のいずれかであることを特徴としている。この構成によると、電極群内部にガスが溜まると、振動付加装置、もしくは、遠心力付加装置を介して所定の二次電池の電極群押圧部材を駆動して電極群内部に溜まったガス抜きを行うことができる。   In the storage battery system according to the present invention, the predetermined device is either a vibration applying device that applies vibration in the stacking direction of the electrolytic group or a centrifugal force applying device that applies centrifugal force in the stacking direction of the electrolytic group. It is characterized by being. According to this configuration, when gas accumulates inside the electrode group, the electrode group pressing member of a predetermined secondary battery is driven via a vibration applying device or a centrifugal force adding device to remove the gas accumulated inside the electrode group. It can be carried out.

また本発明は上記構成の蓄電池システムにおいて、タイマー手段と電池特性を計測する計測手段と温度検出手段と各種の計測結果と各種の情報を表示する表示部とを備え、前記メンテナンスプログラムは、前記タイマー手段による設置後の一定期間経過後と、前記計測手段による特性低下を確認した後と、のいずれかに応じて前記表示部にメンテナンス要求信号を出力する機能を有することを特徴としている。この構成によると、電極群内部にガスが発生して溜まりだすことが想定される一定期間経過後に、または、実際に電池特性が低下したときに、それらの計測結果とメンテナンス要求信号を表示部に出力して、電極群内部に溜まったガスを排出する操作を要求する蓄電池システムとなって、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができる。   In the storage battery system having the above-described configuration, the present invention includes a timer unit, a measurement unit that measures battery characteristics, a temperature detection unit, a display unit that displays various measurement results and various types of information, and the maintenance program includes the timer It is characterized in that it has a function of outputting a maintenance request signal to the display unit in accordance with either after a certain period of time after installation by the means or after confirming the characteristic deterioration by the measuring means. According to this configuration, the measurement results and maintenance request signal are displayed on the display unit after a certain period of time when gas is expected to start to accumulate inside the electrode group, or when battery characteristics actually deteriorate. It becomes a storage battery system that requires an operation to output and discharge gas accumulated in the electrode group, and a storage battery system that exhibits stable charge / discharge capacity over a long period of time can be obtained.

また本発明は上記構成の二次電池を用いた蓄電池システムのメンテナンス方法であって、前記蓄電池システムの設置後の一定期間経過後、または、特性低下を確認した後、のいずれかにメンテナンス要求信号を出力することを特徴としている。この構成によると、電極群内部にガスが発生して溜まりだすことが想定される一定期間経過後、実際に電池特性が低下したとき、のいずれかのタイミングでメンテナンス要求信号を出力して、電極群内部に溜まったガスを排出する操作を行う蓄電池システムのメンテナンス方法となる。すなわち、電極群内部にガスが溜まった頃を見計らってガス抜き操作を行うことで、長期間に亘って安定した充放電容量を発揮する二次電池のメンテナンス方法を得ることができる。   Further, the present invention is a maintenance method of a storage battery system using the secondary battery having the above-described configuration, wherein a maintenance request signal is sent either after a certain period of time has elapsed after the installation of the storage battery system or after a characteristic deterioration has been confirmed. Is output. According to this configuration, a maintenance request signal is output at any timing when the battery characteristics actually deteriorate after a certain period of time when gas is expected to be generated and accumulated inside the electrode group. It becomes the maintenance method of the storage battery system which performs operation which discharges | emits the gas accumulated in the inside of a group. That is, a maintenance method for a secondary battery that exhibits a stable charge / discharge capacity over a long period of time can be obtained by performing a degassing operation in anticipation of gas accumulation inside the electrode group.

また本発明は上記構成のメンテナンス方法において、前記メンテナンス要求信号を受信後、当該二次電池を回収し、電極群の積層方向を中心に前記二次電池に遠心力を付加する操作を実施して、前記電極群押圧部材に所定の駆動力を付加し前記電極群を押圧して前記電極群内部のガス抜きを行うことを特徴としている。この構成によると、メンテナンス信号を受けて所定の駆動力を付加する操作を行うことで、積層型の電極群内部に溜まるガスを容易に排出できる構成の二次電池のメンテナンス方法を得ることができる。   In the maintenance method of the above configuration, the secondary battery is collected after receiving the maintenance request signal, and an operation of applying a centrifugal force to the secondary battery around the stacking direction of the electrode group is performed. A predetermined driving force is applied to the electrode group pressing member to press the electrode group to degas the inside of the electrode group. According to this configuration, it is possible to obtain a maintenance method for a secondary battery having a configuration in which the gas accumulated in the stacked electrode group can be easily discharged by performing an operation of receiving a maintenance signal and applying a predetermined driving force. .

また本発明は上記構成のメンテナンス方法において、メンテナンス要求信号を受信後、当該二次電池を回収し、電極群の積層方向を中心に前記二次電池に振動力を付加する操作を実施することを特徴としている。この構成によると、メンテナンス信号を受けて所定の駆動力を付加する操作を行うことで、積層型の電極群内部に溜まるガスを容易に排出できる構成の二次電池のメンテナンス方法を得ることができる。   In the maintenance method of the above configuration, after receiving the maintenance request signal, the secondary battery is collected, and an operation of applying a vibration force to the secondary battery around the stacking direction of the electrode group is performed. It is a feature. According to this configuration, it is possible to obtain a maintenance method for a secondary battery having a configuration in which the gas accumulated in the stacked electrode group can be easily discharged by performing an operation of receiving a maintenance signal and applying a predetermined driving force. .

また本発明は上記構成のメンテナンス方法において、前記一定期間は、車両等により前記二次電池を搬送することで当該二次電池に振動力を付加した状態に応じた延長時間を加算した時間であることを特徴としている。この構成によると、車両等により搬送する際に、二次電池に振動力が付加されるので、二次電池が内蔵している電極群押圧部材を介して、所定のガス抜き操作を行っていることになる。そのために、この振動付加状態に応じた延長時間を予めメンテナンス信号を発信するまでの一定期間に加算することで、二次電池の稼働期間を長くすることができ、効率の良い二次電池のメンテナンス方法となる。   In the maintenance method according to the present invention, the predetermined period is a time obtained by adding an extension time corresponding to a state in which a vibration force is applied to the secondary battery by transporting the secondary battery by a vehicle or the like. It is characterized by that. According to this configuration, since vibration force is applied to the secondary battery when transported by a vehicle or the like, a predetermined degassing operation is performed via the electrode group pressing member built in the secondary battery. It will be. Therefore, by adding the extended time according to this vibration added state to a certain period until the maintenance signal is transmitted in advance, the operating period of the secondary battery can be extended, and efficient maintenance of the secondary battery can be performed. Become a method.

また本発明は上記構成のメンテナンス方法において、前記搬送の際、前記二次電池の積層方向が水平に対して傾いた状態の場合に、前記加算する時間をさらに長くすることを特徴としている。この構成によると、車両等により搬送する際に、二次電池に付加される振動力の方向により電極群内部のガス抜き効果が変化するので、よりガス抜き効果を発揮する二次電池の積層方向が水平に対して傾いた状態で搬送した場合には、メンテナンス信号を発信するまでの時間をさらに長くして、二次電池の稼働期間をさらに長くすることが可能になる。   Further, the present invention is characterized in that, in the maintenance method having the above-described configuration, the addition time is further increased when the stacking direction of the secondary batteries is inclined with respect to the horizontal during the transport. According to this configuration, when transported by a vehicle or the like, the degassing effect inside the electrode group changes depending on the direction of the vibration force applied to the secondary battery. When the sheet is conveyed in a state inclined with respect to the horizontal, it is possible to further increase the time until the maintenance signal is transmitted and further increase the operation period of the secondary battery.

本発明によれば、積層型の電極群を収容する電池缶内に、所定の駆動力を受けて電極群を押圧して電極群内部のガス抜きを行う機能を発揮する電極群押圧部材を設け、電極群内部にガスが溜まった頃を見計らって当該電極群押圧部材を介してガス抜き操作を行う構成としたので、積層型の電極群内部に溜まるガスを容易に排出できる二次電池を得ることができる。また、この二次電池を用いて、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができ、積層型の電極群内部に溜まるガスを容易に排出するメンテナンス方法を得ることができる。   According to the present invention, an electrode group pressing member is provided in a battery can that accommodates a stacked electrode group, which receives a predetermined driving force and presses the electrode group to degas the inside of the electrode group. Since the configuration is such that the gas venting operation is performed through the electrode group pressing member in anticipation of gas accumulation inside the electrode group, a secondary battery capable of easily discharging the gas accumulated inside the stacked electrode group is obtained. be able to. In addition, by using this secondary battery, it is possible to obtain a storage battery system that exhibits a stable charge / discharge capacity over a long period of time, and to obtain a maintenance method that easily discharges gas accumulated inside the stacked electrode group. Can do.

本発明に係る二次電池の第一実施形態例を示す概略断面図である。1 is a schematic cross-sectional view showing a first embodiment of a secondary battery according to the present invention. 本発明に係る二次電池の第二実施形態例を示す概略断面図である。It is a schematic sectional drawing which shows the example of 2nd embodiment of the secondary battery which concerns on this invention. 図2に示す二次電池の概略平面図である。FIG. 3 is a schematic plan view of the secondary battery shown in FIG. 2. 電極群の幅と電極群押圧部材の幅との関係を示す概略断面図である。It is a schematic sectional drawing which shows the relationship between the width | variety of an electrode group, and the width | variety of an electrode group press member. 電極群押圧部材の第一の例を示す概略断面図である。It is a schematic sectional drawing which shows the 1st example of an electrode group press member. 電極群押圧部材の第二の例を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd example of an electrode group press member. 電極群押圧部材の第三の例を示す概略断面図である。It is a schematic sectional drawing which shows the 3rd example of an electrode group press member. 電極群押圧部材の第四の例を示す概略断面図である。It is a schematic sectional drawing which shows the 4th example of an electrode group press member. 電極群押圧部材の第五の例を示す概略断面図である。It is a schematic sectional drawing which shows the 5th example of an electrode group press member. 電極群押圧部材の第六の例を示す概略断面図である。It is a schematic sectional drawing which shows the 6th example of an electrode group press member. 電極群押圧部材の第七の例を示す概略断面図である。It is a schematic sectional drawing which shows the 7th example of an electrode group press member. 電極群押圧部材の第八の例を示す概略断面図である。It is a schematic sectional drawing which shows the 8th example of an electrode group press member. 電極群押圧部材の第九の例を示す概略断面図である。It is a schematic sectional drawing which shows the 9th example of an electrode group press member. 外力として振動力を付加したときの状態を示す概略説明図である。It is a schematic explanatory drawing which shows a state when a vibration force is added as an external force. 遠心分離機を用いたガス抜き工程を説明する概略斜視図である。It is a schematic perspective view explaining the degassing process using a centrifuge. 外力として遠心力を付加したときの状態を示す概略説明図である。It is a schematic explanatory drawing which shows a state when centrifugal force is added as external force. 二次電池の分解斜視図である。It is a disassembled perspective view of a secondary battery. 二次電池が備える電極群の分解斜視図である。It is a disassembled perspective view of the electrode group with which a secondary battery is provided. 二次電池の完成品を示す斜視図である。It is a perspective view which shows the completed product of a secondary battery. 電極群の断面図である。It is sectional drawing of an electrode group.

以下に本発明の実施形態を図面を参照して説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。   Embodiments of the present invention will be described below with reference to the drawings. Moreover, the same code | symbol is used about the same structural member, and detailed description is abbreviate | omitted suitably.

本発明に係る二次電池としてリチウム二次電池について説明する。図1に示す本実施形態に係るリチウム二次電池RB1は、積層型のリチウム二次電池であって、正極板と負極板とをセパレータを介して複数層積層した積層型の電極群1を備えている。また、極板の面積を大きくし、積層数を増やすことで比較的大容量の二次電池となり、電気自動車用蓄電池や電力貯蔵用蓄電池などに適用可能なものである。   A lithium secondary battery will be described as the secondary battery according to the present invention. A lithium secondary battery RB1 according to this embodiment shown in FIG. 1 is a stacked lithium secondary battery, and includes a stacked electrode group 1 in which a plurality of positive electrode plates and negative electrode plates are stacked via a separator. ing. Further, by increasing the area of the electrode plate and increasing the number of stacked layers, it becomes a secondary battery having a relatively large capacity, and can be applied to a storage battery for electric vehicles or a storage battery for power storage.

極板の面積を大きくして積層数を増やしていくと、電極群1に内部で発生して溜まっていくガスが段々抜けにくくなってしまう。特に、定置型の蓄電池システムにこの積層型の二次電池を用いると、長時間の使用により電極間にガスが発生して、静置した状態の電極群1内にガスが溜まってしまう。そのために、本実施形態では、電極群1が大きく厚みが厚くなっても所定のタイミングで、積層型の電極群1の内部に溜まったガスを容易に抜くことが可能な構成としたものである。   As the area of the electrode plate is increased to increase the number of stacked layers, the gas generated and accumulated inside the electrode group 1 becomes difficult to escape gradually. In particular, when this stacked secondary battery is used in a stationary storage battery system, gas is generated between the electrodes due to long-term use, and the gas accumulates in the electrode group 1 in a stationary state. For this reason, in this embodiment, even when the electrode group 1 is large and thick, the gas accumulated in the stacked electrode group 1 can be easily removed at a predetermined timing. .

図1に示す本実施形態に係る二次電池RB1は、正極板と負極板とをセパレータを介して複数層積層した電極群1と、この電極群1を収容し電解液が充填される外装ケース11と、外装ケース11に設ける外部端子11fと、正負の極板と外部端子11fとを電気的に接続する正負の集電端子5と、外装ケース11に装着される蓋部材12と、を備える。また、外装ケース11と蓋部材12とで密閉構成される電池缶10が形成され、この電池缶10内に、電池缶10が封止された状態であっても、所定の駆動力を受けて電極群1を、その積層方向に押圧して電極群1内部のガスを抜くガス抜き機能を発揮する電極群押圧部材6を備えている。   A secondary battery RB1 according to this embodiment shown in FIG. 1 includes an electrode group 1 in which a plurality of layers of a positive electrode plate and a negative electrode plate are stacked via a separator, and an exterior case that contains the electrode group 1 and is filled with an electrolyte. 11, an external terminal 11 f provided on the outer case 11, a positive / negative current collecting terminal 5 that electrically connects the positive and negative electrode plates and the external terminal 11 f, and a lid member 12 attached to the outer case 11. . In addition, a battery can 10 that is hermetically constituted by the outer case 11 and the lid member 12 is formed, and even when the battery can 10 is sealed in the battery can 10, it receives a predetermined driving force. There is provided an electrode group pressing member 6 that exerts a degassing function of pressing the electrode group 1 in the stacking direction and extracting gas inside the electrode group 1.

電極群押圧部材6を駆動する所定の駆動力は、例えば、遠心力や振動力を用いることができる。すなわち、電極群押圧部材6は、遠心力や振動力を受けて、電極群1をその積層方向に押圧してガス抜き機能を発揮するように構成される。このような構成であれば、二次電池RB1を長時間駆動して電極群1内部にガスが溜まっても、所定の駆動力を付加することで、電極群押圧部材6を介して電極群1内部のガス抜きを行うことが可能となる。そのために、積層型の電極群1内部に溜まるガスを容易に排出できる構成の二次電池RB1を得ることができる。   As the predetermined driving force for driving the electrode group pressing member 6, for example, centrifugal force or vibration force can be used. That is, the electrode group pressing member 6 is configured to receive a centrifugal force or a vibration force and press the electrode group 1 in the stacking direction to exert a gas venting function. With such a configuration, even when the secondary battery RB1 is driven for a long time and gas accumulates in the electrode group 1, a predetermined driving force is applied to the electrode group 1 via the electrode group pressing member 6. It is possible to vent the inside. Therefore, it is possible to obtain the secondary battery RB1 having a configuration in which the gas accumulated in the stacked electrode group 1 can be easily discharged.

電極群押圧部材6が電極群1内部のガス抜き機能を発揮するには、遠心力や振動力などの所定の駆動力を受けて、電極群1をその積層方向に押圧できる構成であればよい。すなわち、電極群1は積層面を外装ケース11の底面11aと平行に設置され、電極群押圧部材6は、電極群1の上面部に当接して底面11aに向けて押圧することが好ましい。この構成であれば、積層方向の投影面積が大きい積層型の電極群1であっても、電極群1をその積層方向に押圧して、電極群内部で発生して溜まるガスを効果的に排出することができる。   In order for the electrode group pressing member 6 to exhibit a gas venting function inside the electrode group 1, the electrode group pressing member 6 may be configured to receive a predetermined driving force such as centrifugal force or vibration force and press the electrode group 1 in the stacking direction. . That is, it is preferable that the electrode group 1 has a laminated surface parallel to the bottom surface 11 a of the outer case 11, and the electrode group pressing member 6 abuts on the upper surface portion of the electrode group 1 and presses it toward the bottom surface 11 a. With this configuration, even in the stacked electrode group 1 having a large projected area in the stacking direction, the electrode group 1 is pressed in the stacking direction, and the gas generated and accumulated inside the electrode group is effectively discharged. can do.

また、電極群押圧部材6が電極群1をその積層方向に正しく押圧するには、電極群押圧部材6が電極群1の上面(積層面)に対向して正しく当接していることが好ましい。例えば、電極群押圧部材6は、遠心力や振動力などの所定の駆動力を受けた状態のときに上面部の全面を押圧する大きさを有することが望ましい。この構成であれば、積層方向の投影面積が大きい電極群1であっても、全面を押圧して、電極群内部で発生して溜まるガスを効果的に排出することができる。   In order for the electrode group pressing member 6 to correctly press the electrode group 1 in the stacking direction, it is preferable that the electrode group pressing member 6 is correctly in contact with the upper surface (stacked surface) of the electrode group 1. For example, it is desirable that the electrode group pressing member 6 has a size that presses the entire upper surface when receiving a predetermined driving force such as centrifugal force or vibration force. With this configuration, even when the electrode group 1 has a large projected area in the stacking direction, the entire surface can be pressed and the gas generated and accumulated inside the electrode group can be effectively discharged.

遠心力や振動力などの所定の駆動力を受けて、電極群押圧部材6が電極群1を積層方向に押圧する際に、電極群押圧部材6が変位せず、電極群1の上面(積層面)に対向して正しく当接させておくには、電極群押圧部材6を、バネやゴム体などの伸縮性部材8を介して蓋部材12と接続しておくことが好ましい。また、この伸縮性部材8は、電極群押圧部材6を均一に押圧する所定の複数箇所に設けておくことが好ましい。このような構成あれば、蓋部材12と電極群押圧部材6を介して電極群1を均一に押圧して、電極群1内部で発生して溜まるガスを効果的に排出することができる。   When the electrode group pressing member 6 receives a predetermined driving force such as centrifugal force or vibration force and presses the electrode group 1 in the stacking direction, the electrode group pressing member 6 is not displaced, and the upper surface of the electrode group 1 (stacking) The electrode group pressing member 6 is preferably connected to the lid member 12 via a stretchable member 8 such as a spring or a rubber body. The stretchable member 8 is preferably provided at a plurality of predetermined locations where the electrode group pressing member 6 is uniformly pressed. With such a configuration, the electrode group 1 can be uniformly pressed through the lid member 12 and the electrode group pressing member 6, and the gas generated and accumulated inside the electrode group 1 can be effectively discharged.

このバネやゴム体などの伸縮性部材8は、蓋部材12側に取付けた状態でも、電極群押圧部材6側に取付けた状態でもよい。また、蓋部材12と電極群押圧部材6の両方にそれぞれ取付部を設けて、これらの間に位置固定する構成であってもよい。   The elastic member 8 such as a spring or a rubber body may be attached to the lid member 12 side or may be attached to the electrode group pressing member 6 side. Moreover, the structure which provides an attaching part in both the cover member 12 and the electrode group press member 6, respectively, and fixes the position between these may be sufficient.

また、バネやゴム体などの伸縮性部材8を用いることに替えて、電極群押圧部材6を、電極群1に当接し所定の駆動力を付加されても容易に変形しない高剛性部61と、蓋部材12に当接し機械的剛性が低く伸縮性を有する高伸縮部62を備えた複構造(図2参照)とすることでも、電極群押圧部材6が変位せず、電極群1の上面(積層面)に対向して正しく当接させておくことができる。この構成であれば、所定の駆動力が付加されて電極群押圧部材6が変形し変位して電極群1上面と蓋部材12との間の距離が変化しても、高伸縮部を備えているので、容易に対応して電極群1を押圧することができる。   Further, instead of using the elastic member 8 such as a spring or a rubber body, the electrode group pressing member 6 and the high-rigidity portion 61 that abuts the electrode group 1 and does not easily deform even when a predetermined driving force is applied. The electrode group pressing member 6 is not displaced, and the upper surface of the electrode group 1 can also be formed by using a double structure (see FIG. 2) having a high expansion / contraction portion 62 that contacts the lid member 12 and has low mechanical rigidity and elasticity. It can be made to abut correctly on the (laminated surface). With this configuration, even when a predetermined driving force is applied and the electrode group pressing member 6 is deformed and displaced to change the distance between the upper surface of the electrode group 1 and the lid member 12, the high stretchable portion is provided. Therefore, the electrode group 1 can be pressed easily correspondingly.

高伸縮部62は、バネまたはゴム状の弾性体から形成することができる。この構成であれば、電極群1上面部に電極群押圧部材6を載置して蓋部材12を用いて固定すると、適度な圧で上面部を押圧して、電極群1の正極板と負極板とが適度な圧で密着する構成となり、極板同士の剥離が生じず、所定の充放電容量を発揮することができる。   The high stretchable part 62 can be formed from a spring or a rubber-like elastic body. With this configuration, when the electrode group pressing member 6 is placed on the upper surface portion of the electrode group 1 and fixed using the lid member 12, the upper surface portion is pressed with an appropriate pressure, and the positive electrode plate and the negative electrode of the electrode group 1 are pressed. The plate is in close contact with the plate at an appropriate pressure, and the plates are not separated from each other, and a predetermined charge / discharge capacity can be exhibited.

また、高剛性部61は、電解液不透過層または難透過層を少なくとも一層有し、高伸縮部62は多孔性部材からなる構成であってもよい。この構成あれば、高剛性部61として、電解液透過性を有していない剛性の高い材質を選択できる。また、高剛性部61が電解液透過性を有していなくても、その上の高伸縮部62が電解液透過性を有する多孔性部材からなるので、電解液は電極群1の上面を通り四方の側面部に充填され、電極群の内部まで電解液を確実に浸透させることができる。   Further, the high-rigidity portion 61 may have at least one electrolyte-impermeable layer or a hardly-permeable layer, and the high stretchable portion 62 may be configured of a porous member. With this configuration, a highly rigid material that does not have electrolyte permeability can be selected as the highly rigid portion 61. Even if the high rigidity portion 61 does not have electrolyte permeability, the high stretchable portion 62 on the upper portion is made of a porous member having electrolyte permeability, so that the electrolyte passes through the upper surface of the electrode group 1. Filled in the four side surfaces, the electrolyte can surely permeate into the electrode group.

高剛性部61は、露出面に絶縁膜を有することが好ましい。この構成であれば、金属製の板材を用いても、絶縁膜を介して電極群1と当接するので、この高剛性部61を備える電極群押圧部材6により、電極群1と短絡することはない。また、所定の駆動力が付加されたときに、外装ケース11内部と接触して金属粒子が発生する可能性を減らすことができる。   The high rigidity portion 61 preferably has an insulating film on the exposed surface. If it is this structure, even if it uses a metal plate material, since it contacts with the electrode group 1 through the insulating film, the electrode group pressing member 6 including the high-rigidity portion 61 is short-circuited with the electrode group 1. Absent. In addition, when a predetermined driving force is applied, the possibility that metal particles are generated in contact with the inside of the outer case 11 can be reduced.

また、電極群押圧部材6がずれないように位置決めできる構成であれば、その大きさは特には限定されず、押圧したい領域を押圧できる大きさでよい。例えば、図2に示す第二実施形態の二次電池RB2のように、ガイド部材7を用いて電極群押圧部材6の位置ずれを抑制することで、任意の大きさの電極群押圧部材6がずれないように良好に位置決めできる。このガイド部材7は、電極群押圧部材6に当接する面と電極群1に当接する面とを段違いに設けた形状であって、このような形状とすることで、電極群押圧部材6だけでなく電極群1の位置ずれも同時に抑制することが可能である。   Further, the size of the electrode group pressing member 6 is not particularly limited as long as the electrode group pressing member 6 can be positioned so as not to be displaced, and may be a size capable of pressing an area to be pressed. For example, like the secondary battery RB2 of the second embodiment shown in FIG. 2, the electrode group pressing member 6 having an arbitrary size can be obtained by suppressing the displacement of the electrode group pressing member 6 using the guide member 7. It can be positioned well so as not to shift. The guide member 7 has a shape in which a surface that abuts on the electrode group pressing member 6 and a surface that abuts on the electrode group 1 are provided in steps, and by using such a shape, only the electrode group pressing member 6 is used. In addition, the positional deviation of the electrode group 1 can be suppressed at the same time.

例えば、電極群1は、外装ケース11の底面側に載置される下面部1aと、蓋部材12に対向する上面部1bと、これらの間の側面部1cを備え、当該側面部1cの少なくとも対向する二側面に、電極群1の位置ずれと電極群押圧部材6の位置ずれを共に抑制するガイド部材7を設ける。この構成であれば、外装ケース11に収容される電極群1と電極群押圧部材6の位置ずれを効果的に抑制して、積層型の電極群1と電極群押圧部材6を一体に位置固定することが可能となる。   For example, the electrode group 1 includes a lower surface portion 1 a placed on the bottom surface side of the outer case 11, an upper surface portion 1 b facing the lid member 12, and a side surface portion 1 c therebetween, and at least the side surface portion 1 c A guide member 7 that suppresses both the positional deviation of the electrode group 1 and the positional deviation of the electrode group pressing member 6 is provided on two opposing side surfaces. With this configuration, the positional deviation between the electrode group 1 and the electrode group pressing member 6 accommodated in the exterior case 11 is effectively suppressed, and the position of the stacked electrode group 1 and the electrode group pressing member 6 is fixed integrally. It becomes possible to do.

例えば、図2に示すように、電極群押圧部材6の長手方向の幅が電極群1の幅より小さくても、この側面部の両側を一対のガイド部材7で挟持する構成であれば、遠心力や振動力などの駆動力が付加されても電極群押圧部材6がずれずに、電極群1の所定部位を常に押圧可能な構成となる。   For example, as shown in FIG. 2, even if the width of the electrode group pressing member 6 in the longitudinal direction is smaller than the width of the electrode group 1, if the both sides of the side surface portion are sandwiched between a pair of guide members 7, Even when a driving force such as a force or a vibration force is applied, the electrode group pressing member 6 is not displaced, and a predetermined portion of the electrode group 1 can be always pressed.

ガイド部材7を設ける側面は集電端子を設ける側面であることが好ましい。このように、集電端子を設ける側面と該側面に対向する外装ケースの内面との間に、ガイド部材7を設けた構成であれば、ガイド部材7を介して集電端子と外部端子との接続部が変位しないように確実に位置固定することができる。   The side surface on which the guide member 7 is provided is preferably the side surface on which the current collecting terminal is provided. As described above, if the guide member 7 is provided between the side surface on which the current collecting terminal is provided and the inner surface of the outer case facing the side surface, the current collecting terminal and the external terminal are connected via the guide member 7. The position can be reliably fixed so that the connecting portion is not displaced.

ガイド部材7を集電端子のある側面に設ける場合には、この集電端子を挿通可能な開口部を設けるか、図3Aの平面図に示すように集電端子5を挟む二部材に分割する。例えば、集電端子5を挟む図中の上下のガイド部材7aとガイド部材7bとでガイド部材7を構成し、このガイド部材7を図中の左右に一対配設する。   When the guide member 7 is provided on the side surface where the current collecting terminal is provided, an opening through which the current collecting terminal can be inserted is provided or divided into two members sandwiching the current collecting terminal 5 as shown in the plan view of FIG. 3A. . For example, the upper and lower guide members 7a and 7b in the figure sandwiching the current collecting terminals 5 constitute a guide member 7, and a pair of guide members 7 are arranged on the left and right in the figure.

ガイド部材7を介して電極群1と電極群押圧部材6の位置ずれを抑制できるので、遠心力や振動力などの駆動力を付加しても、集電端子5と外部端子11f、およびこれらの接続部が変位したり破損したりしない。また、電極群押圧部材6は、図2の矢印D1に示すように、上下すなわち電極群1に積層方向に可動とされ、遠心力や振動力などの駆動力を受けて、電極群1を押圧可能となる。   Since the displacement of the electrode group 1 and the electrode group pressing member 6 can be suppressed via the guide member 7, even if a driving force such as a centrifugal force or a vibration force is applied, the current collecting terminal 5, the external terminal 11f, and these Connections are not displaced or damaged. Further, as shown by an arrow D1 in FIG. 2, the electrode group pressing member 6 is movable up and down, that is, in the electrode group 1, in the stacking direction, and receives the driving force such as centrifugal force and vibration force to press the electrode group 1. It becomes possible.

ガイド部材7は、電解液浸透性を有する素材(微多孔性の発泡体)製であることが好ましい。この構成であれば、ガイド部材7が電極群1を覆う構成であっても、このガイド部材7を介して電解液の浸透が可能となる。そのために、電極群1と電極群押圧部材6とガイド部材7を外装ケース11に組み込んだ後で、電解液を注液する構成であっても、電解液を電極群1の内部まで浸透させることができる。   The guide member 7 is preferably made of a material (microporous foam) having electrolyte permeability. With this configuration, even when the guide member 7 is configured to cover the electrode group 1, the electrolyte solution can permeate through the guide member 7. Therefore, even when the electrode group 1, the electrode group pressing member 6, and the guide member 7 are assembled in the outer case 11, the electrolyte solution is allowed to penetrate into the electrode group 1 even when the electrolyte solution is injected. Can do.

また、このガイド部材7を介して電極群押圧部材6の長手方向の移動を抑制できるが、位置決め用の伸縮性部材8などを装着していない場合には、短手方向の移動は効率よく抑制できない。そのために、図3Bに示すように、電極群押圧部材6の短手方向の幅X6は、電極群1の幅X1と大きい方の隙間Xa(Xa≧Xb)の合計と等しいか大きいことが好ましい。すなわち、X6≧X1+Xaとすることで、電極群押圧部材6がずれても、電極群1の上面から外れない構成となる。   Further, the movement of the electrode group pressing member 6 in the longitudinal direction can be suppressed via the guide member 7, but the movement in the short direction is efficiently suppressed when the elastic member 8 for positioning is not mounted. Can not. Therefore, as shown in FIG. 3B, the width X6 in the short direction of the electrode group pressing member 6 is preferably equal to or larger than the sum of the width X1 of the electrode group 1 and the larger gap Xa (Xa ≧ Xb). . That is, by satisfying X6 ≧ X1 + Xa, even if the electrode group pressing member 6 is displaced, it is configured not to be detached from the upper surface of the electrode group 1.

次に、電極群押圧部材6の各種形態について説明していく。その前に、まず、リチウム二次電池RBと電極群1の具体的な構成について、図9〜図12を用いて説明する。   Next, various forms of the electrode group pressing member 6 will be described. Before that, first, specific configurations of the lithium secondary battery RB and the electrode group 1 will be described with reference to FIGS.

図9に示すように、本実施形態に係るリチウム二次電池RBは平面視矩形とされ、それぞれが矩形とされる正極板と負極板とセパレータとを積層した電極群1を備えている。また、底部11aと側部11b〜11eを備えて箱型とされる外装ケース11と蓋部材12とから構成される電池缶10に収容して、外装ケース11の側面(例えば、側部11b、11cの対向する二側面)に設ける外部端子11fから充放電を行う構成としている。   As shown in FIG. 9, the lithium secondary battery RB according to the present embodiment has a rectangular shape in plan view, and includes an electrode group 1 in which a positive electrode plate, a negative electrode plate, and a separator, each of which is rectangular, are stacked. Moreover, it accommodates in the battery can 10 comprised from the exterior case 11 and the cover member 12 which are provided with the bottom part 11a and the side parts 11b-11e, and is made into a box shape, and the side surface (for example, side part 11b, The charging / discharging is performed from an external terminal 11f provided on two opposing side surfaces of 11c.

電極群1は、正極板と負極板とをセパレータを介して複数層積層した構成であって、図10に示すように、正極集電体2b(例えば、アルミニウム箔)の両面に正極活物質からなる正極活物質層2aが形成された正極板2と、負極集電体3b(例えば、銅箔)の両面に負極活物質からなる負極活物質層3aが形成された負極板3とがセパレータ4を介して積層されている。   The electrode group 1 has a structure in which a plurality of layers of a positive electrode plate and a negative electrode plate are laminated via a separator. As shown in FIG. 10, the positive electrode current collector 2b (for example, an aluminum foil) is coated with a positive electrode active material on both surfaces. The positive electrode plate 2 having the positive electrode active material layer 2a formed thereon and the negative electrode plate 3 having the negative electrode active material layer 3a formed of the negative electrode active material formed on both surfaces of the negative electrode current collector 3b (for example, copper foil) It is laminated through.

セパレータ4により、正極板2と負極板3との絶縁が図られているが、外装ケース11内に充填される電解液を介して正極板2と負極板3との間でリチウムイオンの移動が可能となっている。   The separator 4 insulates the positive electrode plate 2 and the negative electrode plate 3 from each other. However, lithium ions move between the positive electrode plate 2 and the negative electrode plate 3 through the electrolyte filled in the outer case 11. It is possible.

ここで、正極板2の正極活物質としては、リチウムが含有された酸化物(LiCoO,LiNiO,LiFeO,LiMnO,LiMnなど)や、その酸化物の遷移金属の一部を他の金属元素で置換した化合物などが挙げられる。なかでも、通常の使用において、正極板2が保有するリチウムの80%以上を電池反応に利用し得るものを正極活物質として用いれば、過充電などの事故に対する安全性を高めることができる。 Here, as the positive electrode active material of the positive electrode plate 2, oxides of lithium is contained (such as LiCoO 2, LiNiO 2, LiFeO 2 , LiMnO 2, LiMn 2 O 4) or a part of the transition metal in the oxide And a compound in which is substituted with other metal elements. Among these, in a normal use, if a material that can use 80% or more of lithium held in the positive electrode plate 2 for the battery reaction is used as the positive electrode active material, safety against accidents such as overcharge can be improved.

また、負極板3の負極活物質としては、リチウムが含有された物質やリチウムの挿入/離脱が可能な物質が用いられる。特に、高いエネルギー密度を持たせるためには、リチウムの挿入/離脱電位が金属リチウムの析出/溶解電位に近いものを用いるのが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状および粉砕粒子状など)の天然黒鉛もしくは人造黒鉛である。   Further, as the negative electrode active material of the negative electrode plate 3, a material containing lithium or a material capable of inserting / removing lithium is used. In particular, in order to have a high energy density, it is preferable to use a lithium insertion / extraction potential close to the deposition / dissolution potential of metallic lithium. A typical example is natural graphite or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical and pulverized particles).

なお、正極板2の正極活物質に加えて、また、負極板3の負極活物質に加えて、導電材、増粘材および結着材などが含有されていてもよい。導電材は、正極板2や負極板3の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト(天然黒鉛、人造黒鉛)、炭素繊維などの炭素質材料や導電性金属酸化物などを用いることができる。   In addition to the positive electrode active material of the positive electrode plate 2, and in addition to the negative electrode active material of the negative electrode plate 3, a conductive material, a thickener, a binder, and the like may be contained. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode plate 2 or the negative electrode plate 3. For example, carbon black, acetylene black, ketjen black, graphite (natural graphite, artificial graphite) ), Carbonaceous materials such as carbon fibers, conductive metal oxides, and the like can be used.

増粘材としては、例えば、ポリエチレングリコール類、セルロース類、ポリアクリルアミド類、ポリN−ビニルアミド類、ポリN−ビニルピロリドン類などを用いることができる。結着材は、活物質粒子および導電材粒子を繋ぎとめる役割を果たすものであり、ポリフッ化ビニリデン、ポリビニルピリジン、ポリテトラフルオロエチレンなどのフッ素系ポリマーや、ポリエチレン、ポリプロピレンなどのポリオレフィン系ポリマーや、スチレンブタジエンゴムなどを用いることができる。   As the thickener, for example, polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like can be used. The binder serves to hold the active material particles and the conductive material particles together, and includes a fluorine-based polymer such as polyvinylidene fluoride, polyvinyl pyridine and polytetrafluoroethylene, a polyolefin polymer such as polyethylene and polypropylene, Styrene butadiene rubber or the like can be used.

また、セパレータ4としては、微多孔性の高分子フィルムを用いることが好ましい。具体的には、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテンなどのポリオレフィン高分子からなるフィルムが使用可能である。   Moreover, as the separator 4, it is preferable to use a microporous polymer film. Specifically, films made of a polyolefin polymer such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene can be used.

また、電解液としては、有機電解液を用いることが好ましい。具体的には、有機電解液の有機溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ―ブチロラクトンなどのエステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタンなどのエーテル類、さらに、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチルなどが使用可能である。なお、これらの有機溶媒は、単独で使用してもよいし、2種類以上を混合して使用してもよい。   Moreover, it is preferable to use an organic electrolytic solution as the electrolytic solution. Specifically, as an organic solvent of the organic electrolyte, esters such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, dioxolane , Diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, and other ethers, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate can be used. These organic solvents may be used alone or in combination of two or more.

さらに、有機溶媒には電解質塩が含まれていてもよい。この電解質塩としては、過塩素酸リチウム(LiClO)、ホウフッ化リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸(LiCFSO)、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムおよび四塩化アルミン酸リチウムなどのリチウム塩が挙げられる。なお、これらの電解質塩は、単独で使用してもよいし、2種類以上を混合して使用してもよい。 Further, the organic solvent may contain an electrolyte salt. Examples of the electrolyte salt include lithium perchlorate (LiClO 4 ), lithium borofluoride, lithium hexafluorophosphate, trifluoromethanesulfonic acid (LiCF 3 SO 3 ), lithium fluoride, lithium chloride, lithium bromide, and iodide. And lithium salts such as lithium and lithium tetrachloroaluminate. In addition, these electrolyte salts may be used independently and may be used in mixture of 2 or more types.

電解質塩の濃度は特に限定されないが、約0.5〜約2.5mol/Lであれば好ましく、約1.0〜2.2mol/Lであればより好ましい。なお、電解質塩の濃度が約0.5mol/L未満の場合には、電解液中においてキャリア濃度が低くなり、電解液の抵抗が高くなる虞がある。一方、電解質塩の濃度が約2.5mol/Lよりも高い場合には、塩自体の解離度が低くなり、電解液中のキャリア濃度が上がらない虞がある。   The concentration of the electrolyte salt is not particularly limited, but is preferably about 0.5 to about 2.5 mol / L, and more preferably about 1.0 to 2.2 mol / L. When the concentration of the electrolyte salt is less than about 0.5 mol / L, the carrier concentration in the electrolytic solution is lowered, and the resistance of the electrolytic solution may be increased. On the other hand, when the concentration of the electrolyte salt is higher than about 2.5 mol / L, the dissociation degree of the salt itself is lowered, and there is a possibility that the carrier concentration in the electrolytic solution does not increase.

電池缶10は、外装ケース11と蓋部材12とを備え、鉄、ニッケルメッキされた鉄、ステンレススチール、およびアルミニウムなどからなる。また、本実施形態では、図11に示すように、電池缶10は、外装ケース11と蓋部材12とが組み合わされたときに、外形形状が実質的に扁平角型形状となるように形成されている。   The battery can 10 includes an outer case 11 and a lid member 12, and is made of iron, nickel-plated iron, stainless steel, aluminum, or the like. In the present embodiment, as shown in FIG. 11, the battery can 10 is formed so that the outer shape is substantially a flat rectangular shape when the outer case 11 and the lid member 12 are combined. ing.

外装ケース11は、略長方形状の底面を持つ底部11aと、この底部11aから立設した4面の側部11b〜11eを有する箱型状とされ、この箱型状内部に電極群1を収容する。電極群1は、正極板の集電タブに連結される正極集電端子と、負極板の集電タブに連結される負極集電端子を備え、これらの集電タブと電気的に接続される外部端子11fが外装ケース11の側部にそれぞれ設けられている。外部端子11fは、例えば、対向する二側部11b、11cの二箇所に設けられる。また、10aは注液口であって、ここから電解液を注液する。   The outer case 11 is a box shape having a bottom portion 11a having a substantially rectangular bottom surface and four side portions 11b to 11e erected from the bottom portion 11a, and the electrode group 1 is accommodated inside the box shape. To do. The electrode group 1 includes a positive electrode current collecting terminal connected to a current collecting tab of the positive electrode plate and a negative electrode current collecting terminal connected to the current collecting tab of the negative electrode plate, and is electrically connected to these current collecting tabs. External terminals 11 f are provided on the sides of the outer case 11. The external terminal 11f is provided, for example, at two locations on the opposite two side portions 11b and 11c. Reference numeral 10a denotes a liquid injection port from which an electrolytic solution is injected.

外装ケース11に電極群1を収容し、それぞれの集電端子を外部端子に接続した後、もしくは、電極群1の集電端子にそれぞれの外部端子を接続して外装ケース11に収容し、外部端子を外装ケースの所定部位に固着した後、蓋部材12を外装ケース11の開口縁に固定する。すると、外装ケース11の底部11aと蓋部材12との間に電極群1が挟持され、電池缶10の内部において電極群1が保持される。なお、外装ケース11に対する蓋部材12の固定は、例えば、レーザ溶接などによってなされる。また、集電端子と外部端子との接続は、レーザ溶接以外に超音波溶接や、抵抗溶接などを用いてもよい。   After the electrode group 1 is accommodated in the outer case 11 and each current collecting terminal is connected to the external terminal, or each external terminal is connected to the current collecting terminal of the electrode group 1 and accommodated in the outer case 11, After fixing the terminal to a predetermined portion of the outer case, the lid member 12 is fixed to the opening edge of the outer case 11. Then, the electrode group 1 is sandwiched between the bottom portion 11 a of the outer case 11 and the lid member 12, and the electrode group 1 is held inside the battery can 10. The lid member 12 is fixed to the exterior case 11 by, for example, laser welding. Further, for the connection between the current collecting terminal and the external terminal, ultrasonic welding or resistance welding may be used in addition to laser welding.

上記したように、本実施形態に係る二次電池RBは、正極板2と負極板3とをセパレータ4を介して複数層積層した電極群1と、この電極群1を収容し電解液が充填される外装ケース11と、外装ケース11に設ける外部端子11fと、正負の極板と外部端子11fとを電気的に接続する正負の集電端子と、外装ケース11に装着される蓋部材12と、を備えた構成である。   As described above, the secondary battery RB according to this embodiment includes the electrode group 1 in which a plurality of layers of the positive electrode plate 2 and the negative electrode plate 3 are stacked via the separator 4, and the electrode group 1 is accommodated and filled with an electrolyte solution. An outer case 11 to be provided, an external terminal 11f provided in the outer case 11, a positive and negative current collecting terminal for electrically connecting the positive and negative electrode plates and the external terminal 11f, and a lid member 12 attached to the outer case 11 It is the structure provided with.

外装ケース11に収容された電極群1は、例えば、図12に示すように、正極集電体2bの両面に正極活物質層2aが形成された正極板2と、負極集電体3bの両面に負極活物質層3aが形成された負極板3とがセパレータ4を介して積層され、さらに両端面にセパレータ4を配設している。また、両端面のセパレータ4に替えて、このセパレータ4と同じ材質の樹脂フィルムを巻回して、電極群1を絶縁性を有する樹脂フィルムで被覆する構成としてもよい。いずれにしても、積層電極群1の上面は、電解液浸透性および絶縁性を有する部材が積層される構成となる。そのために、この面に直接蓋部材12を当接させることができ、蓋部材を介して所定の圧で押さえ付けることも可能である。しかし、電池缶10が大型になり、電極群1の厚みも大きくなると、製造誤差によって圧接力にばらつきが生じてしまうので、所定の圧接力を得るためには、所定厚みの押圧部材を介して圧接することが好ましい。   For example, as shown in FIG. 12, the electrode group 1 accommodated in the outer case 11 includes a positive electrode plate 2 in which a positive electrode active material layer 2a is formed on both surfaces of a positive electrode current collector 2b, and both surfaces of a negative electrode current collector 3b. The negative electrode plate 3 on which the negative electrode active material layer 3a is formed is laminated via the separator 4, and the separator 4 is disposed on both end faces. Moreover, it is good also as a structure which replaces with the separator 4 of both end surfaces, and winds the resin film of the same material as this separator 4, and coat | covers the electrode group 1 with the resin film which has insulation. In any case, the upper surface of the laminated electrode group 1 has a configuration in which members having electrolyte permeability and insulating properties are laminated. Therefore, the lid member 12 can be brought into direct contact with this surface, and can be pressed with a predetermined pressure via the lid member. However, when the battery can 10 becomes large and the thickness of the electrode group 1 increases, the pressure contact force varies due to manufacturing errors. Therefore, in order to obtain a predetermined pressure contact force, a press member having a predetermined thickness is used. It is preferable to press contact.

また、積層型の電極群1を備える二次電池RBを長時間使用すると、電極間にガスが発生して溜まってしまうので、本実施形態では、電池缶10を封止した状態であっても所定の駆動力を受けて電極群1を押圧してガス抜きを行う電極群押圧部材6を介装する構成とした。すなわち、外装ケース11と蓋部材12とで密閉構成される電池缶10内に、所定の駆動力を受けて電極群1を、その積層方向に押圧して電極群内部のガスを抜くガス抜き機能を発揮する電極群押圧部材6を備えた構成とした。   Further, when the secondary battery RB including the stacked electrode group 1 is used for a long time, gas is generated and collected between the electrodes. Therefore, in the present embodiment, even when the battery can 10 is sealed. An electrode group pressing member 6 that receives a predetermined driving force and presses the electrode group 1 to perform degassing is interposed. That is, a gas venting function that releases a gas inside the electrode group by pressing the electrode group 1 in the stacking direction by receiving a predetermined driving force in the battery can 10 that is hermetically constituted by the outer case 11 and the lid member 12. It was set as the structure provided with the electrode group press member 6 which exhibits.

次に、電極群押圧部材6の具体的な実施形態(第一の例〜第九の例)について、図4A〜図6Dを用いて説明する。   Next, specific embodiments (first example to ninth example) of the electrode group pressing member 6 will be described with reference to FIGS. 4A to 6D.

図4Aに示す第一の例の電極群押圧部材6Aは、比較的軽量の単一部材(高剛性部)からなり、電極群1と略同等な面積を有する電極群押圧部材であって、例えば、アルミニウム板(板厚1〜10mmのA1050)を用いる。また、電極群1と接する面や側面などの露出部(金属露出部)となる面は、絶縁性に加えて耐熱性と耐薬品性と耐摩耗性を有する樹脂膜(0.1〜1mm)で被覆する。この樹脂膜は、例えば、PEEK(ポリエーテルエーテルケトン)を用いる。また、PEEK以外にも、PTFE、PFA、FEP、ETFEなどの樹脂を用いてもよい。本実施例は、板厚3mmのA1050製の平板状本体61Aの、電極群との接触面および側面に厚み0.5mmのPEEK膜を被膜したものを用いている。   The electrode group pressing member 6A of the first example shown in FIG. 4A is an electrode group pressing member that is composed of a relatively lightweight single member (high rigidity portion) and has an area substantially equal to that of the electrode group 1, An aluminum plate (A1050 having a thickness of 1 to 10 mm) is used. Further, the exposed surface (metal exposed portion) such as a surface or side surface in contact with the electrode group 1 is a resin film (0.1 to 1 mm) having heat resistance, chemical resistance, and wear resistance in addition to insulation. Cover with. For example, PEEK (polyether ether ketone) is used for this resin film. In addition to PEEK, resins such as PTFE, PFA, FEP, and ETFE may be used. In the present example, a plate-like main body 61A made of A1050 having a thickness of 3 mm and having a PEEK film with a thickness of 0.5 mm coated on the contact surface and the side surface with the electrode group is used.

図4Bに示す第二の例の電極群押圧部材6Bは、比較的重量のある単一部材からなり、電極群1と略同等な面積を有する電極群押圧部材であって、例えば、ステンレス板(板厚1〜10mmのSUS304)を用いる。本実施例は、板厚3mmのSUS304製の平板状本体61Bに、電極群との接触面および側面に厚み0.5mmのPEEK膜を被膜したものを用いている。   The electrode group pressing member 6B of the second example shown in FIG. 4B is an electrode group pressing member made of a relatively heavy single member and having an area substantially equal to that of the electrode group 1, for example, a stainless steel plate ( SUS304) having a thickness of 1 to 10 mm is used. In this example, a SUS304 flat plate body 61B having a thickness of 3 mm is coated with a PEEK film having a thickness of 0.5 mm on the contact surface and side surface with the electrode group.

また、前述した平板状の電極群押圧部材6A(タイプ1)、6B(タイプ2)に替えて、中央部が厚く外周部が薄い台形状あるいは円盤状の押圧部材(タイプ3)を用いてもよい。例えば、図5Aに示す第三の例の電極群押圧部材6Cは、SUS304製の台形状本体61Cを有する例であり、図5Bに示す第四の例の電極群押圧部材6Dは、SUS304製で下方が湾曲した半円盤状本体61Dを有する例であり、図5Cに示す第五の例の電極群押圧部材6Eは、同じくSUS304製で円盤状本体61Eを有する例である。   Further, instead of the above-described flat electrode group pressing members 6A (type 1) and 6B (type 2), a trapezoidal or disk-shaped pressing member (type 3) having a thick central portion and a thin outer peripheral portion may be used. Good. For example, the electrode group pressing member 6C of the third example shown in FIG. 5A is an example having a trapezoidal body 61C made of SUS304, and the electrode group pressing member 6D of the fourth example shown in FIG. 5B is made of SUS304. In this example, the electrode group pressing member 6E of the fifth example shown in FIG. 5C is made of SUS304 and has a disk-shaped main body 61E.

上記の電極群押圧部材6C、6D、6Eは、いずれも、その中心部の最厚部が3mmのものを用いた。この厚みは、押圧する電極群のサイズや厚みにより適宜変更される。このように周縁部が薄く、中央部が厚い形状のタイプ3の電極群押圧部材6C、6D、6Eを用いることで、電極群1の中央部分をより効果的に押圧して電極群内部のガス抜きを行うことが可能となる。そのために、積層型の電極群内部で発生して溜まるガスを容易に排出することができる。   As the electrode group pressing members 6C, 6D, and 6E, the thickest part at the center was 3 mm. This thickness is appropriately changed depending on the size and thickness of the electrode group to be pressed. Thus, by using the type 3 electrode group pressing members 6C, 6D, and 6E having a thin peripheral portion and a thick central portion, the central portion of the electrode group 1 can be more effectively pressed and the gas inside the electrode group can be pressed. It is possible to perform the removal. Therefore, the gas generated and accumulated inside the stacked electrode group can be easily discharged.

また、単一の部材製ではなく複数の部材を積層した構成の電極群押圧部材であってもよい。例えば、図6Aには、比較的軽量な平板状部材61Aaと比較的重量な平板状部材61Baとを上下に積層した電極群押圧部材6F(タイプ4)を用いる。また、図6Bに示すように、比較的軽量な平板状部材61Abの中央下部に凹部を設け、この凹部に比較的重量な平板状部材61Bbを装着した電極群押圧部材6Gでも、図6Cに示す、中央部に位置する比較的重量な平板状部材61Bcの周囲を比較的軽量な枠板状部材61Acで囲んだ構成の電極群押圧部材6Hを用いることができる。   Moreover, the electrode group pressing member of the structure which laminated | stacked the some member instead of the product made from a single member may be sufficient. For example, in FIG. 6A, an electrode group pressing member 6F (type 4) in which a relatively light flat plate member 61Aa and a relatively heavy flat plate member 61Ba are vertically stacked is used. Further, as shown in FIG. 6B, the electrode group pressing member 6G in which a recess is provided in the lower center portion of the relatively light flat plate member 61Ab and the relatively heavy flat plate member 61Bb is mounted in the recess is also shown in FIG. 6C. The electrode group pressing member 6H having a configuration in which the periphery of the relatively heavy flat plate member 61Bc located in the center is surrounded by the relatively light frame plate member 61Ac can be used.

このように、その質量分布が周縁部で小さく中央部で高い構成とされるタイプ5の電極群押圧部材であれば、電極群1の中央部をより効果的に押圧できるので、電極群内部で発生して溜まるガスを効果的に排出できる。   In this way, if the mass distribution is a type 5 electrode group pressing member whose mass distribution is small at the peripheral portion and high at the central portion, the central portion of the electrode group 1 can be more effectively pressed. The generated and accumulated gas can be effectively discharged.

また、図6Dに示すように、面積の小さな比較的重量な平板状部材61Bdからなる電極群押圧部材6J(タイプ6)のみを用いることも可能である。上記したこれらの電極群押圧部材6(6A〜6J)を電極群1の上部に設置した構成であれば、振動力や遠心力などの所定の駆動力を付加することで、電極群押圧部材6(6A〜6J)を介して電極群1の中央部分を押圧することができる。すなわち、図7に示すように、所定の駆動力を付加して電極群押圧部材6(6A〜6J)を図中の矢印D1方向に駆動して電極群1を図中に示す押圧力F1で押圧して、電極群1内部のガス抜きを行うことが可能となる。   Further, as shown in FIG. 6D, it is also possible to use only the electrode group pressing member 6J (type 6) made of a relatively heavy flat plate member 61Bd having a small area. If these electrode group pressing members 6 (6 </ b> A to 6 </ b> J) are installed on the upper portion of the electrode group 1, the electrode group pressing member 6 can be obtained by applying a predetermined driving force such as a vibration force or a centrifugal force. The center part of the electrode group 1 can be pressed via (6A-6J). That is, as shown in FIG. 7, a predetermined driving force is applied to drive the electrode group pressing member 6 (6A to 6J) in the direction of the arrow D1 in the drawing, thereby pressing the electrode group 1 with the pressing force F1 shown in the drawing. It is possible to perform degassing inside the electrode group 1 by pressing.

上記したように、本実施形態に係る電極群押圧部材6(6A〜6J)を備えた二次電池であれば、二次電池を長時間駆動して電極群内部にガスが溜まっても、所定の駆動力を付加することで、電極群押圧部材6(6A〜6J)を介して電極群内部のガス抜きを行うことが可能となる。   As described above, if the secondary battery includes the electrode group pressing member 6 (6A to 6J) according to the present embodiment, even if the secondary battery is driven for a long time and gas accumulates inside the electrode group, a predetermined value is obtained. By adding this driving force, it becomes possible to degas the inside of the electrode group via the electrode group pressing member 6 (6A to 6J).

つぎに、電極群押圧部材6(6A〜6J)を図中の矢印D1方向に駆動する所定の駆動力について説明する。この駆動力として、例えば、振動力と遠心力を用いる。   Next, a predetermined driving force for driving the electrode group pressing member 6 (6A to 6J) in the direction of the arrow D1 in the drawing will be described. As this driving force, for example, vibration force and centrifugal force are used.

振動力は、所定の周波数範囲を強弱を付けて繰り返し振動することで付加することができる。例えば、実施した振動力付加は、1軸方向(電極群の積層方向)に、周波数5Hz〜200Hz〜5Hzで加速度が1G〜8G〜1Gの変動幅で、1セット15分を15回繰り返して行った。   The vibration force can be added by repeatedly vibrating a predetermined frequency range with strength. For example, the applied vibration force is performed by repeating 15 times for 15 minutes in one set with a fluctuation range of 1 G to 8 G to 1 G at a frequency of 5 Hz to 200 Hz in one axis direction (electrode group stacking direction). It was.

遠心力は、例えば、図8Aに示すような遠心力付加装置CFを用いて行う。二次電池RB1、RB2を遠心力付加装置CF内に設置して、所定の周波数範囲内で繰り返し回転駆動することで、所定の駆動力となる遠心力を付加することができる。   The centrifugal force is performed using, for example, a centrifugal force application device CF as shown in FIG. 8A. By installing the secondary batteries RB1 and RB2 in the centrifugal force application device CF and repeatedly driving them to rotate within a predetermined frequency range, it is possible to apply a centrifugal force as a predetermined driving force.

例えば、図中に示すように、二次電池RB1、RB2を、その長辺部を下にして円周方向に平行に取付固定して、図中の矢印R1方向に回転駆動することで、電池内部の電極群をその積層方向に押圧することができる。また、電極群押圧部材を介して電極群をより効果的に押圧するには、電極群押圧部材が半径方向内側に、電極群が外側に位置するようにして二次電池RB1、RB2を配置固定することが好ましい。   For example, as shown in the figure, the secondary batteries RB1 and RB2 are mounted and fixed in parallel in the circumferential direction with their long side portions down, and the batteries are driven to rotate in the direction of arrow R1 in the figure. The internal electrode group can be pressed in the stacking direction. Further, in order to more effectively press the electrode group through the electrode group pressing member, the secondary batteries RB1 and RB2 are arranged and fixed so that the electrode group pressing member is positioned radially inside and the electrode group is positioned outside. It is preferable to do.

例えば、遠心力操作方法は、回転半径を600mmとし、1分かけて400rpmまで徐々に上げ、次いで、0.5分かけて800rpmまで徐々に上げ0.5分かけて200rpmまで徐々に下げる増減操作を5回繰り返し、その後5分かけて徐々に停止させる方法(遠心力操作A)を採用する。また、1分かけて400rpmまで徐々に上げた後、0.5分かけて800rpmまで上げて、この状態を5分維持した後5分かけて停止させてもよい(遠心力操作B)。   For example, in the centrifugal force operation method, the rotation radius is set to 600 mm, and gradually increased to 400 rpm over 1 minute, then gradually increased to 800 rpm over 0.5 minutes and gradually decreased to 200 rpm over 0.5 minutes. Is repeated 5 times, and then a method of gradually stopping over 5 minutes (centrifugal force operation A) is adopted. Alternatively, after gradually increasing to 400 rpm over 1 minute, it may be increased to 800 rpm over 0.5 minutes, and this state may be maintained for 5 minutes and then stopped over 5 minutes (centrifugal force operation B).

例えば、図8Bに示すように、一方の長辺部11e´を下側にして設置固定した後、図中の矢印R1方向に回転駆動すると、高剛性部61と高伸縮部62を備えた構成の電極群押圧部材6が、図中の矢印F2方向に遠心力を受けて電極群1を押圧する。   For example, as shown in FIG. 8B, after the one long side portion 11e 'is set and fixed on the lower side, when it is rotationally driven in the direction of the arrow R1 in the drawing, a configuration including a high rigidity portion 61 and a high expansion and contraction portion 62 The electrode group pressing member 6 receives a centrifugal force in the direction of arrow F2 in the drawing to press the electrode group 1.

また、一方の長辺部11e´を下側にして二次電池を設置固定しているので、電池缶内部の上部には、ガス移動部11gが存在する。そのために、電極群1が押圧されて内部から押し出されるガスや電解液は、電極群1の外周、すなわち電極群1と外装ケースとの空隙に移動する。また、この遠心力を増減させると、電極群1が圧縮膨張を繰り返すポンピング効果が発生して、一旦押し出されて電極群1と外装ケースとの空隙に移動した電解液が再度電極群1内部に浸透し、ガスはガス移動部11gに移動する。   In addition, since the secondary battery is installed and fixed with the one long side portion 11e ′ on the lower side, the gas moving portion 11g is present in the upper portion inside the battery can. For this reason, the gas or the electrolyte that is pushed out from the inside when the electrode group 1 is pressed moves to the outer periphery of the electrode group 1, that is, the gap between the electrode group 1 and the outer case. Further, when this centrifugal force is increased or decreased, a pumping effect in which the electrode group 1 repeats compression and expansion occurs, and the electrolyte once pushed into the gap between the electrode group 1 and the outer case again enters the electrode group 1 again. The gas permeates and moves to the gas moving part 11g.

そのために、図8Aに示す遠心力付加装置CFに図8Bに示す姿勢で二次電池を設置して、遠心力を強弱を付けて繰り返し付加すると、電極群内部のガスを抜いて、電解液を再び充填させることができる。これは、電極群の積層方向に振動力を繰り返し強弱を付けて付加することでも、同様の結果を得ることができる。   For this purpose, when the secondary battery is installed in the centrifugal force applying device CF shown in FIG. 8A in the posture shown in FIG. 8B and the centrifugal force is repeatedly applied with increasing or decreasing strength, the gas inside the electrode group is extracted, and the electrolytic solution is removed. It can be refilled. The same result can be obtained by repeatedly applying a vibration force to the stacking direction of the electrode group.

そのために、上記構成の二次電池を用いて、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができる。すなわち、所定のメンテナンスプログラムを有し、該メンテナンスプログラムの信号を確認したときに、所定の駆動力を受けて電極群を押圧して電極群内部のガス抜き機能を発揮する電極群押圧部材に駆動力を付与する所定の装置を用いて電極群内部のガス抜きを行う蓄電池システムであれば、所定のメンテナンスプログラムを介して、必要なタイミングで所定の装置を介して電極群押圧部材を駆動して電極群内部のガス抜きを行うことができ、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができる。   Therefore, a storage battery system that exhibits stable charge / discharge capacity over a long period of time can be obtained using the secondary battery having the above-described configuration. That is, when having a predetermined maintenance program and confirming the signal of the maintenance program, the electrode group is pressed by receiving a predetermined driving force to drive the electrode group pressing member that exerts a gas venting function inside the electrode group If it is a storage battery system that degass the inside of the electrode group using a predetermined device that applies force, the electrode group pressing member is driven via the predetermined device at a required timing via a predetermined maintenance program. The storage battery system which can degas inside an electrode group and exhibits stable charge / discharge capacity over a long period of time can be obtained.

また、所定の駆動力を付加する所定の装置は、電極群の積層方向に振動を与える振動付加装置、もしくは、電解群の積層方向に遠心力を与える遠心力付加装置のいずれかである。この構成であれば、電極群内部にガスが溜まると、振動付加装置、もしくは、遠心力付加装置を介して所定の二次電池の電極群押圧部材を駆動して電極群内部に溜まったガス抜きを行うことができる。   The predetermined device for applying the predetermined driving force is either a vibration applying device that applies vibration in the stacking direction of the electrode group or a centrifugal force applying device that applies centrifugal force in the stacking direction of the electrolytic group. With this configuration, when gas accumulates inside the electrode group, the gas group accumulated in the electrode group is driven by driving the electrode group pressing member of a predetermined secondary battery via the vibration applying device or the centrifugal force adding device. It can be performed.

また、前記蓄電池システムは、タイマー手段と電池特性を計測する計測手段と温度検出手段と各種の計測結果と各種の情報を表示する表示部とを備え、前記メンテナンスプログラムは、タイマー手段による設置後の一定期間経過後と、計測手段による特性低下を確認した後と、のいずれかに応じて、表示部にメンテナンス要求信号を出力する機能を有することが好ましい。この構成であれば、電極群内部にガスが発生して溜まりだすことが想定される一定期間経過後に、または、実際に電池特性が低下したときに、それらの計測結果とメンテナンス要求信号を表示部に出力して、電極群内部に溜まったガスを排出する操作を要求する蓄電池システムとなって、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができる。   The storage battery system includes a timer unit, a measurement unit that measures battery characteristics, a temperature detection unit, a display unit that displays various measurement results and various types of information, and the maintenance program is installed after the timer unit is installed. It is preferable to have a function of outputting a maintenance request signal to the display unit in accordance with either after a certain period of time or after confirming the characteristic deterioration by the measuring means. With this configuration, after a certain period of time when gas is expected to start to accumulate inside the electrode group, or when battery characteristics actually deteriorate, the measurement results and maintenance request signals are displayed on the display unit. Thus, a storage battery system that requires an operation of discharging the gas accumulated in the electrode group and requiring stable operation over a long period of time can be obtained.

また上記構成の二次電池を用いた蓄電池システムのメンテナンス方法であれば、電極群内部にガスが溜まった頃を見計らってガス抜き操作を行うことで、長期間に亘って安定した充放電容量を発揮する二次電池のメンテナンス方法を得ることができて好ましい。すなわち、蓄電池システムの設置後の一定期間経過後、または、特性低下を確認した後、のいずれかにメンテナンス要求信号を出力する蓄電池システムのメンテナンス方法であれば、電極群内部にガスが発生して溜まりだすことが想定される一定期間経過後、実際に電池特性が低下したとき、のいずれかのタイミングでメンテナンス要求信号を出力して、電極群内部に溜まったガスを排出する操作を行う蓄電池システムのメンテナンス方法となる。すなわち、電極群内部にガスが溜まった頃を見計らってガス抜き操作を行うことで、長期間に亘って安定した充放電容量を発揮する二次電池のメンテナンス方法を得ることができる。   In addition, if the maintenance method of the storage battery system using the secondary battery having the above-described configuration is used, a stable charge / discharge capacity can be obtained over a long period of time by performing a degassing operation in anticipation of gas accumulation inside the electrode group. The maintenance method of the secondary battery which exhibits can be obtained and it is preferable. That is, if a maintenance method for a storage battery system that outputs a maintenance request signal after a certain period of time has elapsed since the installation of the storage battery system or after confirming a deterioration in characteristics, gas is generated inside the electrode group. A storage battery system that outputs a maintenance request signal at any timing when the battery characteristics actually deteriorate after a certain period of time that is expected to start accumulating, and discharges the gas accumulated in the electrode group This is the maintenance method. That is, a maintenance method for a secondary battery that exhibits a stable charge / discharge capacity over a long period of time can be obtained by performing a degassing operation in anticipation of gas accumulation inside the electrode group.

また、メンテナンス要求信号を受信後、当該二次電池を回収し、電極群の積層方向を中心に二次電池に遠心力を付加する操作を実施して、電極群押圧部材に所定の駆動力を付加し電極群を押圧して電極群内部のガス抜きを行うことが好ましい。この構成であれば、メンテナンス信号を受けて所定の駆動力を付加する操作を行うことで、積層型の電極群内部に溜まるガスを容易に排出できる二次電池のメンテナンス方法を得ることができる。   In addition, after receiving the maintenance request signal, the secondary battery is recovered, and an operation of adding a centrifugal force to the secondary battery centering on the stacking direction of the electrode group is performed, and a predetermined driving force is applied to the electrode group pressing member. It is preferable to degas the inside of the electrode group by adding and pressing the electrode group. If it is this structure, the maintenance method of a secondary battery which can discharge | emit easily the gas which accumulates inside a laminated type electrode group can be obtained by performing operation which receives a maintenance signal and adds predetermined driving force.

また、メンテナンス要求信号を受信後、当該二次電池を回収し、電極群の積層方向を中心に二次電池に振動力を付加する操作を実施することでも、メンテナンス信号を受けて所定の駆動力を付加する操作を行うことで、積層型の電極群内部に溜まるガスを容易に排出できる二次電池のメンテナンス方法を得ることができる。   In addition, after receiving the maintenance request signal, the secondary battery is recovered, and an operation for applying a vibration force to the secondary battery centering on the stacking direction of the electrode group can be performed in response to the maintenance signal. By performing the operation of adding, it is possible to obtain a maintenance method for a secondary battery that can easily discharge the gas accumulated in the stacked electrode group.

また、前記一定期間は、車両等により二次電池を搬送することで当該二次電池に振動力を付加した状態に応じた延長時間を加算した時間であってもよい。この構成であれば、車両等により搬送する際に、二次電池に振動力が付加されるので、二次電池が内蔵している電極群押圧部材を介して、所定のガス抜き操作を行うことができる。特に、長期間保管されていた二次電池を搬送する場合には、その搬送の際の振動力に応じて電極群内部のガス抜きの効果が異なることになる。そのために、この振動付加状態に応じた延長時間を予めメンテナンス信号を発信するまでの一定期間に加算することで、二次電池の稼働期間を長くすることができ、効率の良い二次電池のメンテナンス方法となる。   Further, the certain period may be a time obtained by adding an extension time corresponding to a state in which a vibration force is applied to the secondary battery by transporting the secondary battery by a vehicle or the like. With this configuration, since vibration force is applied to the secondary battery when transported by a vehicle or the like, a predetermined degassing operation is performed via the electrode group pressing member built in the secondary battery. Can do. In particular, when a secondary battery that has been stored for a long period of time is transported, the effect of degassing inside the electrode group differs depending on the vibration force during the transport. Therefore, by adding the extended time according to this vibration added state to a certain period until the maintenance signal is transmitted in advance, the operating period of the secondary battery can be extended, and efficient maintenance of the secondary battery can be performed. Become a method.

また、搬送の際、二次電池の積層方向が水平に対して傾いた状態の場合に、加算する時間をさらに長くすることができる。この構成であれば、車両等により搬送する際に、二次電池に付加される振動力の方向により電極群内部のガス抜き効果が変化するので、よりガス抜き効果を発揮する二次電池の積層方向が水平に対して傾いた状態で搬送した場合には、メンテナンス信号を発信するまでの時間をさらに長くして、二次電池の稼働期間をさらに長くすることが可能になる。   In addition, the time for addition can be further increased when the stacking direction of the secondary batteries is inclined with respect to the horizontal during transport. With this configuration, the degassing effect inside the electrode group changes depending on the direction of the vibration force applied to the secondary battery when transported by a vehicle or the like. When transported in a state where the direction is inclined with respect to the horizontal, it is possible to further increase the time until the maintenance signal is transmitted and further increase the operation period of the secondary battery.

次に、実際に作製したリチウム二次電池について説明する。   Next, the actually produced lithium secondary battery will be described.

(実施例)
[正極板の作製]
正極活物質としてのLiFePO4(90重量部)と、導電材としてのアセチレンブラック(5重量部)と、結着材としてのポリフッ化ビニリデン(5重量部)と、を混合し、溶媒としてのN−メチル−2−ピロリドンを適宜加えてスラリーを調製し、このスラリーを正極集電体としてのアルミニウム箔(厚み20μm)の両面上に均一に塗布して乾燥させた後、ロールプレスで圧縮し、所定のサイズで切断して板状の正極板2を作製した。
(Example)
[Preparation of positive electrode plate]
LiFePO4 (90 parts by weight) as a positive electrode active material, acetylene black (5 parts by weight) as a conductive material, and polyvinylidene fluoride (5 parts by weight) as a binder are mixed, and N- Methyl-2-pyrrolidone is appropriately added to prepare a slurry. The slurry is uniformly applied on both sides of an aluminum foil (thickness 20 μm) as a positive electrode current collector and dried, and then compressed with a roll press, The plate-shaped positive electrode plate 2 was produced by cutting at a size of 2 mm.

また、作製した正極板のサイズは、185mm×105mm(未塗工部15mm×105mm含む)で、厚みは230μmであって、この正極板2を32枚用いた。   Moreover, the size of the produced positive electrode plate was 185 mm × 105 mm (including an uncoated part 15 mm × 105 mm), the thickness was 230 μm, and 32 positive electrode plates 2 were used.

[負極板の作製]
負極活物質としての天然黒鉛(90重量部)と、結着材としてのポリフッ化ビニリデン(10重量部)と、を混合し、溶媒としてのN−メチル−2−ピロリドンを適宜加えて各材料を分散させてスラリーを調製した。このスラリーを負極集電体としての銅箔(厚み16μm)の両面上に均一に塗布して乾燥させた後、ロールプレスで圧縮し、所定のサイズで切断して板状の負極板3を作製した。
[Preparation of negative electrode plate]
Natural graphite (90 parts by weight) as a negative electrode active material and polyvinylidene fluoride (10 parts by weight) as a binder are mixed, and N-methyl-2-pyrrolidone as a solvent is appropriately added to each material. A slurry was prepared by dispersing. The slurry was uniformly applied on both sides of a copper foil (thickness 16 μm) as a negative electrode current collector and dried, then compressed with a roll press and cut into a predetermined size to produce a plate-like negative electrode plate 3. did.

また、作製した負極板のサイズは、187mm×110mm(未塗工部14mm×110mm含む)で、厚みは146μmであって、この負極板3を33枚用いた。   Moreover, the size of the produced negative electrode plate was 187 mm × 110 mm (including an uncoated part 14 mm × 110 mm), the thickness was 146 μm, and 33 negative electrode plates 3 were used.

また、セパレータとして、サイズ177mm×110mmで、厚み25μmのポリエチレンフィルムを64枚作製した。   In addition, as a separator, 64 polyethylene films having a size of 177 mm × 110 mm and a thickness of 25 μm were produced.

[非水電解液の作製]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、30:70の容積比で混合した混合液(溶媒)に、1mol/LとなるようにLiPFを溶解して非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
LiPF 6 was dissolved in a mixed solution (solvent) obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 30:70 so as to be 1 mol / L to prepare a nonaqueous electrolytic solution. .

[電池缶の作製]
電池缶を構成する外装ケースおよび蓋部材の材料としては、厚み0.8mmのSUS304板を用いてそれぞれ作製した。また、外装ケースの長手方向×短手方向×深さ、がそれぞれ内寸で、320mm×165mm×25mmの電池缶サイズとした。また、蓋部材は平板状ではなく、缶の内部に嵌まり込む皿型状の蓋部材を用いる構成とした。皿型状の蓋部材を用いると、蓋部材を溶接する際に動くのを防止できて、溶接作業が容易となる。また、皿型状の落ち込み量を変更することで、収容する電極群の厚みの変化に容易に対応できる。さらに、皿型状であれば、蓋部材の強度、および電池缶の強度を向上することが可能となって好ましい。
[Production of battery cans]
As materials for the outer case and the lid member constituting the battery can, SUS304 plates having a thickness of 0.8 mm were used. Moreover, the length of the exterior case × the width direction × the depth are internal dimensions, and the battery can size is 320 mm × 165 mm × 25 mm. In addition, the lid member is not a flat plate, but a dish-shaped lid member that fits inside the can. When the dish-shaped lid member is used, it is possible to prevent the lid member from moving when welding the lid member, and the welding operation is facilitated. Moreover, it can respond easily to the change of the thickness of the electrode group to accommodate by changing the amount of depressions of a dish shape. Furthermore, a dish shape is preferable because the strength of the lid member and the strength of the battery can can be improved.

[二次電池の組立]
正極板と負極板とをセパレータを介して交互に積層する。その際に、正極板に対して負極板が外側に位置するように、正極板32枚、負極板33枚、セパレータ64枚を積層し、この積層体をセパレータと同じ厚み25μmのポリエチレンフィルムを用いて巻回する構成として、電極群(積層体)を構築した。
[Assembly of secondary battery]
A positive electrode plate and a negative electrode plate are alternately laminated via a separator. At that time, 32 positive electrode plates, 33 negative electrode plates, and 64 separators were laminated so that the negative electrode plate was positioned outside the positive electrode plate, and this laminate was used a polyethylene film having the same thickness as the separator of 25 μm. An electrode group (laminated body) was constructed as a structure to be wound.

正負の極板間に介装するセパレータの大きさは前述したように、サイズ177mm×110mmであり、正極板(185mm×105mm)、負極板(187mm×110mm)の活物質塗工部よりも少し大きなサイズである。これにより、正極板および負極板に形成された活物質層を確実に被覆することができる。また、正極の集電体露出部および負極の集電体露出部に、集電部材(集電端子)の接続片を接続した。   As described above, the size of the separator interposed between the positive and negative electrode plates is 177 mm × 110 mm, which is slightly larger than the active material coating portion of the positive electrode plate (185 mm × 105 mm) and the negative electrode plate (187 mm × 110 mm). Big size. Thereby, the active material layer formed on the positive electrode plate and the negative electrode plate can be reliably coated. Moreover, the connection piece of the current collection member (current collection terminal) was connected to the current collector exposed portion of the positive electrode and the current collector exposed portion of the negative electrode.

また、電極群押圧部材6として、タイプ1からタイプ6の電極群押圧部材6を用い、この電極群押圧部材6の位置ズレを抑制するためにバネ部材とガイド部材とをそれぞれ使用した。また、ガイド部材7として、絶縁性を有するポリエチレンの成型材を用いた。このポリエチレン発泡体は、機械的強度と耐薬品性に優れ、さらに耐熱性にも優れているので、二次電池に用いるガイド部材として好適である。この電極群押圧部材6とバネ部材、および電極群押圧部材6とガイド部材7を所定配置に組み付けて、外装ケース内に電極群1を収容し、集電端子と外部端子とを接続し、蓋部材を取り付け固着した。また、注液孔から非水電解液を真空注液し、注液後に、注液孔を封口して、それぞれの実施形態の二次電池(実施例1〜7、比較例1〜4)を作製した。   Moreover, as the electrode group pressing member 6, the electrode group pressing member 6 of type 1 to type 6 was used, and a spring member and a guide member were used to suppress the positional deviation of the electrode group pressing member 6. Further, as the guide member 7, a polyethylene molding material having insulating properties was used. This polyethylene foam is suitable as a guide member for use in a secondary battery because it is excellent in mechanical strength and chemical resistance and also in heat resistance. The electrode group pressing member 6 and the spring member, and the electrode group pressing member 6 and the guide member 7 are assembled in a predetermined arrangement, the electrode group 1 is accommodated in the outer case, the current collecting terminal and the external terminal are connected, and the lid The member was attached and secured. Moreover, the nonaqueous electrolyte solution was vacuum-injected from the injection hole, and after the injection, the injection hole was sealed, and the secondary batteries (Examples 1 to 7, Comparative Examples 1 to 4) of the respective embodiments were sealed. Produced.

実施例1は、電極群押圧部材6としてタイプ1の電極群押圧部材6Aを用い、ガイド部材7を用いてズレ防止を図った二次電池である。実施例2は、電極群押圧部材6としてタイプ2の電極群押圧部材6Bを用い、ガイド部材7を用いてズレ防止を図った二次電池である。実施例3は、電極群押圧部材6としてタイプ2の電極群押圧部材6Bを用い、ガイド部材7を用いずにバネ部材を用いてズレ防止を図った二次電池である。また、これらの第1〜第3実施例は、いずれも、充放電試験を1000回繰り返した後、遠心力操作Aにより駆動力を付加してガス抜きを行った。   Example 1 is a secondary battery in which a type 1 electrode group pressing member 6A is used as the electrode group pressing member 6 and a guide member 7 is used to prevent displacement. Example 2 is a secondary battery in which an electrode group pressing member 6B of type 2 is used as the electrode group pressing member 6 and the guide member 7 is used to prevent misalignment. Example 3 is a secondary battery in which an electrode group pressing member 6B of type 2 is used as the electrode group pressing member 6 and a spring member is used instead of the guide member 7 to prevent displacement. In each of the first to third examples, the charge / discharge test was repeated 1000 times, and then degassing was performed by adding a driving force by centrifugal force operation A.

実施例4は、電極群押圧部材6としてタイプ2の電極群押圧部材6Bを用い、ガイド部材7を用いずにバネ部材を用いてズレ防止を図った二次電池であり、充放電試験を1000回繰り返した後、振動力を付加してガス抜きを行った。   Example 4 is a secondary battery in which a type 2 electrode group pressing member 6B is used as the electrode group pressing member 6 and a spring member is used instead of the guide member 7 to prevent misalignment. After repeating several times, degassing was performed by applying a vibration force.

実施例5は、電極群押圧部材6としてタイプ3の電極群押圧部材6Dを用い、ガイド部材7を用いずにバネ部材を用いてズレ防止を図った二次電池である。実施例6は、電極群押圧部材6としてタイプ4の電極群押圧部材6Fを用い、ガイド部材7を用いてズレ防止を図った二次電池である。これらの第5、第6実施例は、いずれも充放電試験を1000回繰り返した後、遠心力操作Aにより駆動力を付加してガス抜きを行った。   Example 5 is a secondary battery in which a type 3 electrode group pressing member 6D is used as the electrode group pressing member 6 and a spring member is used instead of the guide member 7 to prevent displacement. Example 6 is a secondary battery in which a type 4 electrode group pressing member 6F is used as the electrode group pressing member 6 and a guide member 7 is used to prevent displacement. In each of the fifth and sixth examples, the charge / discharge test was repeated 1000 times, and then the driving force was applied by the centrifugal force operation A to perform degassing.

また、実施例7は、電極群押圧部材6としてタイプ5の電極群押圧部材6Gを用い、ガイド部材7を用いてズレ防止を図った二次電池である。また、充放電試験を1000回繰り返した後、振動力を付加してガス抜きを行った。   Example 7 is a secondary battery in which an electrode group pressing member 6G of type 5 is used as the electrode group pressing member 6 and the guide member 7 is used to prevent displacement. Further, the charge / discharge test was repeated 1000 times, and then degassing was performed by applying a vibration force.

[比較例の作製]
比較例1は、電極群押圧部材6は用いず、ガイド部材7を用い、遠心力操作Aにより駆動力を付加してガス抜きを行った例である。比較例2は、電極群押圧部材6としてタイプ1の電極群押圧部材6Aを用い、ガイド部材7を用いてズレ防止を図った二次電池で、充放電試験を1000回繰り返した後、所定の駆動力を付加していない例である。
[Production of Comparative Example]
Comparative Example 1 is an example in which the electrode group pressing member 6 is not used, the guide member 7 is used, and the driving force is applied by the centrifugal force operation A to perform gas venting. Comparative Example 2 is a secondary battery in which a type 1 electrode group pressing member 6A is used as the electrode group pressing member 6 and the guide member 7 is used to prevent misalignment. After a charge / discharge test is repeated 1000 times, a predetermined battery is used. This is an example in which no driving force is added.

比較例3は、電極群押圧部材6としてタイプ6の電極群押圧部材6Jを用い、ガイド部材7を用いずにバネ部材を用いてズレ防止を図った二次電池であり、充放電試験を1000回繰り返した後、遠心力操作Aにより駆動力を付加してガス抜きを行った例である。比較例4は、電極群押圧部材6としてタイプ1の電極群押圧部材6Aを用い、ガイド部材7を用いてズレ防止を図った二次電池で、充放電試験を1000回繰り返した後、遠心力操作Bにより駆動力を付加してガス抜きを行った例である。   Comparative Example 3 is a secondary battery in which a type 6 electrode group pressing member 6J is used as the electrode group pressing member 6 and a spring member is used instead of the guide member 7 to prevent misalignment. This is an example of degassing after repeating the operation by adding a driving force by centrifugal force operation A. Comparative Example 4 is a secondary battery in which a type 1 electrode group pressing member 6A is used as the electrode group pressing member 6 and the guide member 7 is used to prevent misalignment. After repeating the charge / discharge test 1000 times, centrifugal force This is an example in which a driving force is applied by operation B to perform degassing.

実施例1〜7と比較例1〜4の二次電池を作製し、初期の5回の中で最も放電容量の高い数値(例えば、150Ah)を初期放電容量(容量維持率100%)とし、充放電試験を1000回繰り返した後、所定のガス抜き操作を行い、ガス抜き後の充放電試験5回の中で最も放電容量の高い数値をガス抜き後放電容量として、容量維持率を算出した。すなわち、容量維持率が高いと、電極群内部のガス抜きが良好に行われたと判断できる。この実験結果を表1に示す。   The secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4 were manufactured, and the numerical value with the highest discharge capacity (for example, 150 Ah) in the initial five times was set as the initial discharge capacity (capacity maintenance rate 100%), After repeating the charge / discharge test 1000 times, a predetermined degassing operation was performed, and the capacity retention rate was calculated using the highest discharge capacity value among the five charge / discharge tests after degassing as the discharge capacity after degassing. . In other words, if the capacity retention rate is high, it can be determined that the gas degassing inside the electrode group has been performed satisfactorily. The experimental results are shown in Table 1.

また、実施例1〜7と比較例1〜4では、その正極面積は170mm×105mmであるが、この正極面積を290mm×145mmまで大きくした大型サイズの二次電池(実施例8、9および比較例5、6)を作製し同様な実験を行った結果も表1に示す。この際の電池缶サイズは、極板面積の拡大割合に応じて、長手方向が+120mm、短手方向が+40mmであり、深さは、積層数が32×33枚の実施例8と比較例5が同じ25mmであり、積層数が72×73枚の実施例9と比較例6が45mmである。   Further, in Examples 1 to 7 and Comparative Examples 1 to 4, the positive electrode area is 170 mm × 105 mm, but a large-sized secondary battery in which the positive electrode area is increased to 290 mm × 145 mm (Examples 8 and 9 and the comparison). The results of producing Examples 5 and 6) and conducting similar experiments are also shown in Table 1. In this case, the battery can size is +120 mm in the longitudinal direction and +40 mm in the short direction according to the expansion ratio of the electrode plate area, and the depth is Example 8 and Comparative Example 5 in which the number of layers is 32 × 33. Is the same 25 mm, and the number of stacked layers is 72 × 73 in Example 9 and Comparative Example 6 is 45 mm.

Figure 0005798050
Figure 0005798050

電極群内部のガス抜きの効果は、積層方向の投影面積(電極面積)とその積層数により異なるので、それぞれ異なるタイプの電極面積と積層数の二次電池を作製して、それぞれにおけるガス抜き効果を確認した。   The effect of degassing inside the electrode group differs depending on the projected area (electrode area) in the stacking direction and the number of stacked layers. Therefore, by producing secondary batteries with different types of electrode areas and stacking numbers, the degassing effect in each. It was confirmed.

実施例1では、ガス抜き後の容量維持率が80.7%であるのに対して、実施例2では、86.0%と高くなっている。これは、比較的軽量なタイプ1の電極群押圧部材6Aよりも、比較的重量なタイプ2の電極群押圧部材6Bを用いた方が、ガス抜き効果が高いことを示している。   In Example 1, the capacity retention rate after degassing is 80.7%, whereas in Example 2, it is as high as 86.0%. This indicates that the degassing effect is higher when the relatively heavy type 2 electrode group pressing member 6B is used than when the relatively light type 1 electrode group pressing member 6A is used.

また、実施例2と実施例3とでは、荷重部材タイプ(電極群押圧部材6のタイプ)が同じで、この荷重部材の固定方法が、ガイドによるものかバネによるものかが相違している。バネによる固定では容量維持率が84.0%であり、ガイドによる固定では、86.0%であるので、ガイドにより電極群押圧部材6を固定した方が、若干好ましいといえる。   Further, in Example 2 and Example 3, the load member type (type of electrode group pressing member 6) is the same, and the fixing method of the load member is different depending on whether it is a guide or a spring. Since the capacity retention rate is 84.0% in the case of fixing with a spring and 86.0% in the case of fixing with a guide, it can be said that fixing the electrode group pressing member 6 with a guide is slightly preferable.

また、実施例3と実施例4とでは、ガス抜き方法が異なり、実施例3では遠心力操作Aであるが、実施例4では振動力付加である。この結果から、振動力付加方式では容量維持率は80.0%であるが遠心力操作A方式では84.0%であるので、遠心力操作方式の方が好ましいといえる。   Further, the gas venting method is different between the third embodiment and the fourth embodiment, and the centrifugal force operation A is performed in the third embodiment, but the vibration force is added in the fourth embodiment. From this result, it can be said that the centrifugal force operation method is preferable because the capacity maintenance rate is 80.0% in the vibration force addition method but 84.0% in the centrifugal force operation method A.

また、実施例5では、容量維持率が90.0%と高い数値を示している。これは、中央部が湾曲したタイプ3の電極群押圧部材6Dを用いた効果を示している。すなわち、中央部が厚くなるように湾曲したタイプ3の電極群押圧部材6は、電極群の中央部を効果的に押圧してガス抜きを良好に行うことができることを示している。また、バネを用いて固定しているので、電極側面側に電解液貯留空間が大きく存在することで、気液交換がスムーズに行えているものと想定される。   In Example 5, the capacity retention rate is a high value of 90.0%. This shows the effect of using a type 3 electrode group pressing member 6D having a curved central portion. That is, the type 3 electrode group pressing member 6 that is curved so that the central portion is thick indicates that the central portion of the electrode group can be effectively pressed to perform degassing satisfactorily. Moreover, since it fixes using the spring, it is assumed that gas-liquid replacement | exchange can be performed smoothly because electrolyte solution storage space exists large in the electrode side surface side.

実施例6で容量維持率は84.7%であり、実施例7でも84.0%と十分高い値を示している。すなわち、比重が異なる部材を積層したタイプ4およびタイプ5の電極群押圧部材6を用いた構成であっても、一番ガスが抜けにくい電極群中央部を効果的に押圧して所定のガス抜き効果により容量が維持されているといえる。   In Example 6, the capacity retention rate was 84.7%, and Example 7 also shows a sufficiently high value of 84.0%. That is, even in the configuration using the type 4 and type 5 electrode group pressing members 6 in which members having different specific gravities are laminated, it is possible to effectively press the central portion of the electrode group where gas is most difficult to escape and to release a predetermined gas. It can be said that the capacity is maintained by the effect.

比較例1は、電極群押圧部材6を用いていないので、遠心力操作Aを実施しても、容量維持率は73.3%まで低下している。すなわち、電極群内部のガス抜きが十分行われていないことを示している。また、比較例2は、荷重部材(電極群押圧部材6)とガイドを用いているが、所定の駆動力を付加するガス抜き工程を実施していないので、その容量維持率は66.7%と最も低い値を示している。   Since the comparative example 1 does not use the electrode group pressing member 6, even when the centrifugal force operation A is performed, the capacity retention rate is reduced to 73.3%. That is, it indicates that the gas inside the electrode group is not sufficiently vented. Moreover, although the comparative example 2 uses the load member (electrode group pressing member 6) and the guide, since the degassing step for applying a predetermined driving force is not performed, the capacity maintenance rate is 66.7%. And shows the lowest value.

比較例3は、実施例3および実施例5とは、荷重部材のタイプが異なり、その他の構成およびガス抜き方法も同じである。すなわち、実施例3は、電極群の積層方向の投影面積と略同じ面積のタイプ2の荷重部材を用いており、実施例5は、電極群の投影面積と略同じ面積であるが、その中央部が突出するように湾曲したタイプ3の荷重部材を用いていることに対して、比較例3は、投影面積が小さい平板状のタイプ6の荷重部材を用いている。   Comparative Example 3 is different from Example 3 and Example 5 in the type of load member, and the other configurations and gas venting methods are the same. That is, Example 3 uses a type 2 load member having approximately the same area as the projected area of the electrode group in the stacking direction, and Example 5 has approximately the same area as the projected area of the electrode group. In contrast to using a type 3 load member that is curved so that the portion protrudes, comparative example 3 uses a flat type 6 load member having a small projected area.

実施例3の容量維持率が84.0%であり、実施例5の容量維持率が90.0%であり、比較例3の容量維持率が75.3%であることから、投影面積が小さな、電極群の中央部のみを押圧する電極群押圧部材6よりも、電極群の全表面を押圧する程度に投影面積の大きな平板状の電極群押圧部材6が好ましく、さらに、電極群の全表面を押圧するとともに中央部をさらに押圧する中央部が湾曲したタイプの電極群押圧部材6がより好ましいことが判る。   The capacity maintenance rate of Example 3 is 84.0%, the capacity maintenance rate of Example 5 is 90.0%, and the capacity maintenance rate of Comparative Example 3 is 75.3%. Rather than the small electrode group pressing member 6 that presses only the central part of the electrode group, a flat plate-like electrode group pressing member 6 having a projection area large enough to press the entire surface of the electrode group is preferable. It can be seen that the electrode group pressing member 6 of the type in which the central portion that presses the surface and further presses the central portion is curved is more preferable.

比較例4は、実施例1と同じ構成であるが、遠心力操作Aではなく遠心力操作Bを用いている点が異なる。このことから、800rpm⇔200rpmと繰り返し回転数を変動させる遠心力操作Aの方が、より効果的なガス抜き効果を発揮することが判る。   Comparative Example 4 has the same configuration as that of Example 1, except that centrifugal force operation B is used instead of centrifugal force operation A. From this, it can be seen that the centrifugal force operation A in which the rotational speed is repeatedly changed from 800 rpm to 200 rpm exhibits a more effective degassing effect.

極板面積を大きくした実施例8と比較例5を比較すると、遠心力操作Aを用いた実施例8の容量維持率が74.6%であり、遠心力操作を実施しない比較例5の容量維持率が30.6%である。すなわち、電極面積が大きくても、遠心力操作を実施することにより、電極群内部のガス抜きを行い、比較的高い容量維持率を維持することが可能になる。   Comparing Example 8 and Comparative Example 5 in which the electrode plate area was increased, the capacity retention rate of Example 8 using centrifugal force operation A was 74.6%, and the capacity of Comparative Example 5 in which centrifugal force operation was not performed The maintenance rate is 30.6%. That is, even when the electrode area is large, by performing the centrifugal force operation, it is possible to vent the gas inside the electrode group and maintain a relatively high capacity maintenance rate.

また、極板面積の大型化と共に積層数を増加した実施例9と比較例6を比較すると、遠心力操作Aを用いた実施例9の容量維持率が76.8%であり、遠心力操作を実施しない比較例6の容量維持率が45.8%である。すなわち、電極面積が大きく積層数が多くても、遠心力操作を実施することにより、電極群内部のガス抜きを行い、比較的高い容量維持率を維持することが可能になる。   Further, comparing Example 9 and Comparative Example 6 in which the number of layers was increased as the electrode plate area was increased, the capacity retention rate of Example 9 using centrifugal force operation A was 76.8%, and centrifugal force operation was The capacity retention rate of Comparative Example 6 in which no operation is performed is 45.8%. That is, even if the electrode area is large and the number of stacked layers is large, by performing the centrifugal force operation, it is possible to degas the inside of the electrode group and maintain a relatively high capacity maintenance rate.

上記したように、本発明に係る二次電池は、所定の駆動力を受けて電極群を、その積層方向に押圧して電極群内部のガスを抜くガス抜き機能を発揮する電極群押圧部材を備えた構成としたので、二次電池を長時間駆動して電極群内部にガスが溜まっても、所定の駆動力を付加することで、電極群押圧部材を介して電極群内部のガス抜きを行うことが可能となる。そのために、電池缶を封止した状態であっても積層型の電極群内部に溜まるガスを容易に排出できる構成の二次電池を得ることができる。   As described above, the secondary battery according to the present invention includes an electrode group pressing member that exhibits a degassing function of receiving a predetermined driving force and pressing the electrode group in the stacking direction to release the gas inside the electrode group. Even if the secondary battery is driven for a long time and gas accumulates inside the electrode group, it is possible to vent the gas inside the electrode group via the electrode group pressing member by applying a predetermined driving force. Can be done. Therefore, even when the battery can is sealed, a secondary battery having a configuration that can easily discharge the gas accumulated inside the stacked electrode group can be obtained.

また、電極群の上面に当接する電極群押圧部材が位置ずれしないように、バネやゴム体などの伸縮性部材を介装したり、電極群押圧部材自体を高剛性部と高伸縮部との複構造としたり、さらにはガイド部材を介して位置固定したりすることで、電極群押圧部材の位置ずれを効果的に抑制しながら、電極群押圧部材を介して電極群内部のガス抜きを行うことが可能となる。   In addition, an elastic member such as a spring or a rubber body is interposed so that the electrode group pressing member in contact with the upper surface of the electrode group is not displaced, or the electrode group pressing member itself is connected between the high rigidity portion and the high expansion portion. Degassing the inside of the electrode group through the electrode group pressing member while effectively suppressing the positional deviation of the electrode group pressing member by using a multiple structure or by fixing the position through the guide member. It becomes possible.

また本発明に係る蓄電池システムによれば、所定の駆動力を受けて電極群を押圧して電極群内部のガス抜き機能を発揮する電極群押圧部材に駆動力を付与する所定の装置と、当該装置を駆動制御する所定のプログラムを備えているので、所定のプログラムを介して、必要なタイミングで所定の装置を介して電極群押圧部材を駆動して電極群内部のガス抜きを行うことができるので、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができる。   Further, according to the storage battery system of the present invention, the predetermined device for applying the driving force to the electrode group pressing member that receives the predetermined driving force and presses the electrode group to exert the gas venting function inside the electrode group; Since a predetermined program for driving and controlling the apparatus is provided, the electrode group pressing member can be driven through the predetermined apparatus at a necessary timing through the predetermined program to degas the electrode group. Therefore, a storage battery system that exhibits stable charge / discharge capacity over a long period of time can be obtained.

さらに、本発明に係る蓄電池システムのメンテナンス方法によれば、前記蓄電池システムの設置後の一定期間経過後、または、特性低下を確認した後、のいずれかにメンテナンス要求信号を出力する構成にしているので、電極群内部にガスが発生して溜まりだすことが想定される一定期間経過後、実際に電池特性が低下したとき、のいずれかのタイミングでメンテナンス要求信号を出力して、電極群内部に溜まったガスを排出する操作を行う蓄電池システムのメンテナンス方法となる。すなわち、電極群内部にガスが溜まった頃を見計らってガス抜き操作を行うことで、長期間に亘って安定した充放電容量を発揮する二次電池のメンテナンス方法を得ることができる。   Furthermore, according to the maintenance method of the storage battery system according to the present invention, the maintenance request signal is output either after a certain period of time has elapsed after the installation of the storage battery system or after confirming the characteristic deterioration. Therefore, after a certain period of time when gas is expected to start to accumulate inside the electrode group, when the battery characteristics actually deteriorate, a maintenance request signal is output at any timing of This is a maintenance method for a storage battery system that performs an operation of discharging the accumulated gas. That is, a maintenance method for a secondary battery that exhibits a stable charge / discharge capacity over a long period of time can be obtained by performing a degassing operation in anticipation of gas accumulation inside the electrode group.

上記したように、本発明によれば、積層型の電極群を収容する電池缶内に、所定の駆動力を受けて電極群を押圧して電極群内部のガス抜きを行う機能を発揮する電極群押圧部材を設け、電極群内部にガスが溜まった頃を見計らって当該電極群押圧部材を介してガス抜き操作を行う構成としたので、電池缶を封止した状態であっても積層型の電極群内部に溜まるガスを容易に排出できる二次電池を得ることができる。また、この二次電池を用いて、長期間に亘って安定した充放電容量を発揮する蓄電池システムを得ることができ、積層型の電極群内部に溜まるガスを容易に排出するメンテナンス方法を得ることができる。   As described above, according to the present invention, an electrode that exhibits a function of degassing the electrode group by receiving a predetermined driving force and pressing the electrode group in the battery can that houses the stacked electrode group. A group pressing member is provided, and when the gas is accumulated inside the electrode group, the gas venting operation is performed via the electrode group pressing member. Therefore, even when the battery can is sealed, the laminated type A secondary battery that can easily discharge the gas accumulated inside the electrode group can be obtained. In addition, by using this secondary battery, it is possible to obtain a storage battery system that exhibits a stable charge / discharge capacity over a long period of time, and to obtain a maintenance method that easily discharges gas accumulated inside the stacked electrode group. Can do.

そのために、本発明に係る二次電池、この二次電池を用いた蓄電池システムおよびメンテナンス方法は、大型化および性能安定化が求められる大容量の蓄電池に好適に利用可能となる。   Therefore, the secondary battery according to the present invention, the storage battery system using the secondary battery, and the maintenance method can be suitably used for a large-capacity storage battery that is required to be increased in size and stabilized in performance.

1 電極群
2 正極板
3 負極板
4 セパレータ
5 集電端子
6、6A〜6J 電極群押圧部材
61 高剛性部
62 高伸縮部
7 ガイド部材
8 伸縮性部材
10 電池缶
11 外装ケース
11f 外部端子
12 蓋部材
RB、RB1、RB2 二次電池
DESCRIPTION OF SYMBOLS 1 Electrode group 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Current collection terminal 6, 6A-6J Electrode group press member 61 High rigidity part 62 High elastic part 7 Guide member 8 Elastic member 10 Battery can 11 Exterior case 11f External terminal 12 Lid Member RB, RB1, RB2 Secondary battery

Claims (8)

正極板と負極板とをセパレータを介して複数層積層した電極群と、この電極群を収容し電解液が充填される外装ケースと、前記外装ケースに設ける外部端子と、前記正負の極板と前記外部端子とを電気的に接続する正負の集電端子と、前記外装ケースに装着される蓋部材と、を備え、前記外装ケースと前記蓋部材とで密閉構成される電池缶内に、所定の駆動力を受けて前記電極群を、その積層方向に押圧して前記電極群内部のガスを抜くガス抜き機能を発揮する電極群押圧部材を備えた二次電池を用いた蓄電池システムであって、
所定のメンテナンスプログラムを有し、該メンテナンスプログラムの信号を確認したときに、所定の駆動力を受けて前記電極群を押圧して前記電極群内部のガス抜き機能を発揮する前記電極群押圧部材に前記駆動力を付与する所定の装置を用いて前記電極群内部のガス抜きを行うことを特徴とする蓄電池システム。
An electrode group in which a plurality of positive and negative electrode plates are laminated via a separator, an exterior case containing the electrode group and filled with an electrolyte, an external terminal provided in the exterior case, and the positive and negative electrode plates, A positive and negative current collecting terminal that electrically connects the external terminal and a lid member attached to the exterior case, and a battery can that is hermetically sealed by the exterior case and the lid member, A storage battery system using a secondary battery including an electrode group pressing member that exerts a degassing function of receiving the driving force of the electrode group and pressing the electrode group in the stacking direction to extract the gas inside the electrode group. ,
The electrode group pressing member that has a predetermined maintenance program and receives a predetermined driving force to press the electrode group and exert a gas venting function inside the electrode group when the maintenance program signal is confirmed. A storage battery system, wherein a predetermined device for applying the driving force is used to degas the inside of the electrode group.
前記所定の装置は、前記電解群の積層方向に振動を与える振動付加装置、もしくは、前記電解群の積層方向に遠心力を与える遠心力付加装置のいずれかであることを特徴とする請求項に記載の蓄電池システム。 Said predetermined apparatus, the vibration applying device for vibrating the stacking direction of said electrolyte group, or claim 1, characterized in that the stacking direction of said electrolyte group is either centrifugal force applying device which gives the centrifugal force The storage battery system described in 1. タイマー手段と電池特性を計測する計測手段と温度検出手段と各種の計測結果と各種の情報を表示する表示部とを備え、前記メンテナンスプログラムは、前記タイマー手段による設置後の一定期間経過後と、前記計測手段による特性低下を確認した後と、のいずれかに応じて前記表示部にメンテナンス要求信号を出力する機能を有することを特徴とする請求項1または2に記載の蓄電池システム。 A timer means, a measuring means for measuring battery characteristics, a temperature detecting means, a display unit for displaying various measurement results and various information, and the maintenance program, after a certain period of time after installation by the timer means, 3. The storage battery system according to claim 1 , wherein the storage battery system has a function of outputting a maintenance request signal to the display unit in accordance with either after confirming the characteristic deterioration by the measuring unit. 4. 請求項1から3のいずれかに記載された蓄電池システムのメンテナンス方法であって、前記蓄電池システムの設置後の一定期間経過後、または、特性低下を確認した後、のいずれかにメンテナンス要求信号を出力することを特徴とする蓄電池システムのメンテナンス方法。 A maintenance method for a storage battery system according to any one of claims 1 to 3 , wherein a maintenance request signal is sent either after a certain period of time has elapsed since the installation of the storage battery system or after a characteristic deterioration has been confirmed. A maintenance method of a storage battery system, characterized in that output. 前記メンテナンス要求信号を受信後、当該二次電池を回収し、電極群の積層方向を中心に前記二次電池に遠心力を付加する操作を実施して、前記電極群押圧部材に所定の駆動力を付加し前記電極群を押圧して前記電極群内部のガス抜きを行うことを特徴とする請求項に記載の蓄電池システムのメンテナンス方法。 After receiving the maintenance request signal, the secondary battery is recovered, and an operation of applying a centrifugal force to the secondary battery around the stacking direction of the electrode group is performed, and a predetermined driving force is applied to the electrode group pressing member. 5. The maintenance method for a storage battery system according to claim 4 , wherein the electrode group is pressed to degas the inside of the electrode group. メンテナンス要求信号を受信後、当該二次電池を回収し、電極群の積層方向を中心に前記二次電池に振動力を付加する操作を実施することを特徴とする請求項に記載の蓄電池システムのメンテナンス方法。 5. The storage battery system according to claim 4 , wherein after receiving the maintenance request signal, the secondary battery is recovered, and an operation of applying a vibration force to the secondary battery around the stacking direction of the electrode group is performed. Maintenance method. 前記一定期間は、車両等により前記二次電池を搬送することで当該二次電池に振動力を付加した状態に応じた延長時間を加算した時間であることを特徴とする請求項4から6のいずれかに記載の蓄電池システムのメンテナンス方法。 The predetermined period is from claim 4 characterized in that it is a time obtained by adding the extension time according to the state obtained by adding a vibration force to the secondary cell by conveying the secondary battery by a vehicle 6, etc. The maintenance method of the storage battery system in any one. 前記搬送の際、前記二次電池の積層方向が水平に対して傾いた状態の場合に、前記加算する時間をさらに長くすることを特徴とする請求項に記載の蓄電池システムのメンテナンス方法。 8. The maintenance method for a storage battery system according to claim 7 , wherein, in the transporting, the adding time is further increased when the stacking direction of the secondary batteries is inclined with respect to the horizontal.
JP2012016173A 2012-01-30 2012-01-30 Secondary battery, storage battery system using the secondary battery, and maintenance method Expired - Fee Related JP5798050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016173A JP5798050B2 (en) 2012-01-30 2012-01-30 Secondary battery, storage battery system using the secondary battery, and maintenance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016173A JP5798050B2 (en) 2012-01-30 2012-01-30 Secondary battery, storage battery system using the secondary battery, and maintenance method

Publications (2)

Publication Number Publication Date
JP2013157167A JP2013157167A (en) 2013-08-15
JP5798050B2 true JP5798050B2 (en) 2015-10-21

Family

ID=49052151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016173A Expired - Fee Related JP5798050B2 (en) 2012-01-30 2012-01-30 Secondary battery, storage battery system using the secondary battery, and maintenance method

Country Status (1)

Country Link
JP (1) JP5798050B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031832B2 (en) * 2012-05-31 2016-11-24 株式会社豊田自動織機 Power storage device
JP2016139528A (en) * 2015-01-28 2016-08-04 株式会社豊田自動織機 Power storage device, power storage module and method for manufacturing power storage device
JP6842889B2 (en) * 2016-11-16 2021-03-17 日産自動車株式会社 battery
JP6731159B2 (en) * 2017-03-06 2020-07-29 トヨタ自動車株式会社 Battery control device
JP7188090B2 (en) * 2019-01-08 2022-12-13 トヨタ自動車株式会社 Battery manufacturing method
JP7062728B2 (en) * 2020-08-06 2022-05-06 本田技研工業株式会社 Manufacturing method and manufacturing equipment for power generation cell laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403858B2 (en) * 2004-03-30 2010-01-27 Tdk株式会社 Manufacturing method and manufacturing apparatus for secondary battery or electric double layer capacitor
JP2008097940A (en) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd Bipolar type secondary battery
JP5157354B2 (en) * 2006-11-30 2013-03-06 日産自動車株式会社 Bipolar battery and manufacturing method thereof
JP2011165565A (en) * 2010-02-12 2011-08-25 Sumitomo Electric Ind Ltd Molten salt battery
KR101451044B1 (en) * 2010-07-26 2014-10-15 닛산 지도우샤 가부시키가이샤 Bipolar battery

Also Published As

Publication number Publication date
JP2013157167A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
US5741609A (en) Electrochemical cell and method of making same
US10468729B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101334623B1 (en) Degassing Method of Secondary Battery Using Centrifugal Force
US20120328917A1 (en) Secondary battery and method for producing same
JP2012252888A (en) Secondary battery and assembled battery
JP5798050B2 (en) Secondary battery, storage battery system using the secondary battery, and maintenance method
US20160133885A1 (en) Secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP2006310033A (en) Storage battery
JP6618352B2 (en) Multilayer battery manufacturing equipment
JP2012248465A (en) Secondary battery and method of manufacturing the same
KR20130126365A (en) Manufacturing method of lithium secondary battery
KR20170045564A (en) Battery Cell Comprising Inner Surface Coated with Electrical Insulating Material
KR20140144843A (en) Process for Preparation of Pouch-typed Battery Cell having Sealing Part Insulated with Curing Material
KR101519372B1 (en) Manufacture Device of Battery Cell
JP5623073B2 (en) Secondary battery
JP6113972B2 (en) Secondary battery
KR20160074209A (en) Can Type Curved Battery and Method for Manufacturing the Same
JP2012142099A (en) Secondary battery and manufacturing method thereof
JP2011096485A (en) Secondary battery
KR101726767B1 (en) Battery Pack Having Elastic Rib for Fixing Battery Cell
JP5709517B2 (en) Secondary battery, secondary battery control system, secondary battery leasing system
JP2004095333A (en) Laminate film for battery and non-aqueous electrolyte secondary battery
KR20160066202A (en) Battery Cell Having Fixing Member Installed on Outer Surface of Battery Case and Method for Manufacturing the Same
JP2016122635A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5798050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees