JP5796883B2 - Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus - Google Patents

Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus Download PDF

Info

Publication number
JP5796883B2
JP5796883B2 JP2011090072A JP2011090072A JP5796883B2 JP 5796883 B2 JP5796883 B2 JP 5796883B2 JP 2011090072 A JP2011090072 A JP 2011090072A JP 2011090072 A JP2011090072 A JP 2011090072A JP 5796883 B2 JP5796883 B2 JP 5796883B2
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
layer
magnetic
additive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011090072A
Other languages
Japanese (ja)
Other versions
JP2012221543A (en
Inventor
和也 丹羽
和也 丹羽
神邊 哲也
哲也 神邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011090072A priority Critical patent/JP5796883B2/en
Publication of JP2012221543A publication Critical patent/JP2012221543A/en
Application granted granted Critical
Publication of JP5796883B2 publication Critical patent/JP5796883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、ハードディスク装置(HDD)等に用いられる熱アシスト磁気記録媒体及び磁気記録再生装置に関する。   The present invention relates to a heat-assisted magnetic recording medium and a magnetic recording / reproducing apparatus used for a hard disk device (HDD) or the like.

近年の情報のデジタル化の発展により、大容量の情報を記録できるハードディスク装置には更なる大容量化が求められている。このハードディスクの大容量化を実現するには、磁気記録媒体のノイズを低減する必要がある。このノイズ低減には、磁化遷移幅を狭くすることが求められ、それには媒体中の磁性層の磁性結晶粒子サイズを小さくすることが必要である。しかし、ノイズ低減のために磁性粒子サイズを小さくすると、磁性層の磁化を容易軸方向へ向けようとするエネルギーである磁気異方性エネルギーKuVが減少するため、KuV/kT(Ku:磁気異方性定数、V:粒子体積、k:ボルツマン定数、T:温度)で表される熱ゆらぎが悪化する。   With the recent development of digitalization of information, a further increase in capacity is required for a hard disk device capable of recording a large amount of information. In order to realize the large capacity of the hard disk, it is necessary to reduce the noise of the magnetic recording medium. In order to reduce this noise, it is required to narrow the magnetization transition width, and it is necessary to reduce the magnetic crystal grain size of the magnetic layer in the medium. However, if the magnetic particle size is reduced to reduce noise, the magnetic anisotropy energy KuV, which is the energy for directing the magnetization of the magnetic layer in the direction of the easy axis, decreases, so KuV / kT (Ku: magnetic anisotropy) The thermal fluctuation expressed by the sex constant, V: particle volume, k: Boltzmann constant, T: temperature) deteriorates.

一方、熱ゆらぎを向上させるには、Kuの高い材料の選択が考えられるが、Kuの高い材料は一般的にHcも高くなるため、飽和記録が困難となる。つまり、ノイズ低減と熱ゆらぎ、飽和記録の3つを同時に改善することができない。   On the other hand, in order to improve the thermal fluctuation, it is conceivable to select a material having a high Ku. However, since a material having a high Ku generally has a high Hc, saturation recording becomes difficult. That is, noise reduction, thermal fluctuation, and saturation recording cannot be improved at the same time.

この問題に対して、熱アシスト磁気記録が着目、研究されている。熱アシスト磁気記録は、記録時に一時的に記録領域を局所加熱し、その領域の磁気異方性エネルギー定数Kuを下げて、書き込みしやすい状態を作り出し記録する方式である。この場合、室温ではKuが十分に高いため、熱ゆらぎの問題がない。   In view of this problem, heat-assisted magnetic recording has been paid attention to and researched. Thermally assisted magnetic recording is a system in which a recording area is locally heated temporarily at the time of recording, and the magnetic anisotropy energy constant Ku of the area is lowered to create and record an easily writable state. In this case, since Ku is sufficiently high at room temperature, there is no problem of thermal fluctuation.

しかし、熱アシスト磁気記録では媒体表面の加熱時、記録領域だけでなくその隣接領域も同時に加熱されてしまうため、それらの領域のKuが低下し、熱ゆらぎが起こりやすくなる。また、記録後、記録領域が熱を保持したままであると熱ゆらぎが発生する可能性がある。そのため、この記録方式では記録後、磁気記録媒体の磁性層に溜まった熱を速やかに散逸させる必要がある。熱散逸性を高めるためには、記録媒体中にヒートシンク層を導入することが有効である。ヒートシンク層は熱伝導率の高い材料で構成されており、磁気ヘッドでの記録後、磁性層の熱をすばやく吸収し冷却することができる。   However, in the heat-assisted magnetic recording, when the medium surface is heated, not only the recording area but also its adjacent area is heated at the same time, so the Ku of these areas is lowered and thermal fluctuation is likely to occur. Further, if the recording area keeps heat after recording, thermal fluctuation may occur. Therefore, in this recording method, it is necessary to quickly dissipate the heat accumulated in the magnetic layer of the magnetic recording medium after recording. In order to improve heat dissipation, it is effective to introduce a heat sink layer in the recording medium. The heat sink layer is made of a material having high thermal conductivity, and can quickly absorb and cool the heat of the magnetic layer after recording by the magnetic head.

また、このヒートシンク層の位置であるが、熱を速やかに散逸させるという点を考慮すると磁性層直下或いは近傍が望ましい。しかし、この場合にはヒートシンク層の結晶配向や表面形状が、磁性層の結晶配向や結晶粒径、更にはヘッド飛行安定性に大きく影響するため、ヒートシンク層材料の選定や成膜条件の最適化などが重要である。   Further, regarding the position of the heat sink layer, it is desirable to be directly under or near the magnetic layer in consideration of the fact that heat is quickly dissipated. However, in this case, the crystal orientation and surface shape of the heat sink layer greatly affect the crystal orientation and crystal grain size of the magnetic layer, as well as the head flight stability. Etc. are important.

ヒートシンク層の組成について、例えば、特許文献1には、磁気記録媒体にCuZrとAgPdから成るヒートシンク層を用いることで高い熱伝導率と良好な機械特性を両立できるとしている。また、特許文献2には、磁気記録媒体にCu、Au、Ag、Pt、AuCu、PtAu、AuAg、Au3Cuなどを適用することができると記載されている。そして、特許文献3には磁気記録ヘッドに形成するヒートシンク層として、Ag、Au、Cu、Al、CuAl、AgPdCu、AlTi、AlMoなどが列挙されている。   Regarding the composition of the heat sink layer, for example, Patent Document 1 states that both high thermal conductivity and good mechanical properties can be achieved by using a heat sink layer made of CuZr and AgPd for a magnetic recording medium. Patent Document 2 describes that Cu, Au, Ag, Pt, AuCu, PtAu, AuAg, Au3Cu, and the like can be applied to the magnetic recording medium. Patent Document 3 lists Ag, Au, Cu, Al, CuAl, AgPdCu, AlTi, AlMo, and the like as heat sink layers formed on the magnetic recording head.

米国特許公開公報第2007−0026263号US Patent Publication No. 2007-0026263 特開2008−52869号公報JP 2008-52869 A 特開2001−283403号公報JP 2001-283403 A

このようにヒートシンク層の材料選択が磁気記録媒体の特性に大きな影響力を持つが、一般に、ヒートシンク層には高い熱散逸性が求められるため、Au、Ag、Cuのような熱伝導率の高い材料が主に使用されている。しかし、これらの金属は薄膜において、加熱などにより凝集しやすく、磁気記録媒体の表面形状やその磁性層の結晶配向、腐食耐性を悪化させる。   As described above, the material selection of the heat sink layer has a great influence on the characteristics of the magnetic recording medium, but generally, since the heat sink layer is required to have high heat dissipation, it has a high thermal conductivity such as Au, Ag, and Cu. The material is mainly used. However, these metals tend to aggregate in the thin film due to heating or the like, and deteriorate the surface shape of the magnetic recording medium, the crystal orientation of the magnetic layer, and the corrosion resistance.

一方、特許文献1に記載されているAgPdのような合金からなるヒートシンク層は、ある程度Agの凝集を抑えることが可能だが、1Tbit/inch2クラスの面記録密度を有する媒体を達成するには、ヘッドの浮上特性や表面平坦性、磁性層の結晶配向の改善が不十分である。   On the other hand, the heat sink layer made of an alloy such as AgPd described in Patent Document 1 can suppress aggregation of Ag to some extent, but in order to achieve a medium having a surface recording density of 1 Tbit / inch 2 class, The floating characteristics, surface flatness, and crystal orientation of the magnetic layer are insufficiently improved.

本発明は、このような従来の事情に鑑みて提案されたものであり、表面平坦性が高く、磁性層の配向が良く、かつヘッド浮上性が良好な熱アシスト記録媒体、並びに、そのような熱アシスト磁気記録媒体を備えた大容量の磁気記録再生装置を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, a heat-assisted recording medium having high surface flatness, good orientation of the magnetic layer, and good head flying characteristics, and such An object of the present invention is to provide a large-capacity magnetic recording / reproducing apparatus including a heat-assisted magnetic recording medium.

上記目的を達成するために、本発明は、以下の特徴を有する磁気記録媒体を提供する。   In order to achieve the above object, the present invention provides a magnetic recording medium having the following characteristics.

(1) 基板と、前記基板上に形成された複数の下地層と、前記下地層上に形成された磁性層と、基板と磁性層の間の任意の位置に形成されたヒートシンク層を少なくとも有する磁気記録媒体であって、前記ヒートシンク層はAgを主成分として含み、かつ、Bi、Nd、Cu、Crから成る第一添加元素群から選択された元素を1つ以上含み、さらにZn、La、Ga、Ge、Sm、Gd、Sn、Inから成る第二添加元素群から選択された元素を少なくとも1つ以上含むことを特徴とする磁気記録媒体。
(2) 第一添加元素としてBiとNdを含み、第二添加元素としてGeを含むことを特徴とする前項(1)の磁気記録媒体。
(3) 第一添加元素としてBiとNdを含み、第二添加元素としてLaを含むことを特徴とする前項(1)の磁気記録媒体。
(4) 第一添加元素群の元素を0.1〜20at%含むことを特徴とする前項(1)の磁気記録媒体。
(5) 第二添加元素群の元素を0.1〜15at%含むことを特徴とする前項(1)の磁気記録媒体。
(6) 第一添加元素群と第二添加元素群から選ばれた元素の総和が0.2〜25at%となることを特徴とする前項(1)の磁気記録媒体。
(7) 複数の下地層のうち、少なくとも1層がCr、Pt、MgO、MnO、TiC、TiNからなる群から選択された物質であることを特徴とする前項(1)〜(6)の何れか1項に記載の磁気記録媒体。
(8) 磁性層が、L10構造を有する合金を主成分として含むことを特徴とする前項(1)〜(7)の何れか1項に記載の磁気記録媒体。
(9) 磁気記録媒体と、前記磁気記録媒体を記録方向に駆動する媒体駆動部と、前記磁気記録媒体を加熱するレーザー発生部と、前記レーザー発生部から発生したレーザー光を先端部へと導く導波路とを有して、前記磁気記録媒体に対する記録動作と再生動作とを行う磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体に対して相対移動させるヘッド移動部と、前記磁気ヘッドへの信号入力と前記磁気ヘッドから出力信号の再生とを行うための記録再生信号処理系とを備える磁気記録再生装置において、前記磁気記録媒体が前項(1)〜(8)の何れか1項に記載の磁気記録媒体であることを特徴とする磁気記録再生装置。
(1) At least a substrate, a plurality of underlayers formed on the substrate, a magnetic layer formed on the underlayer, and a heat sink layer formed at an arbitrary position between the substrate and the magnetic layer In the magnetic recording medium, the heat sink layer contains Ag as a main component, and contains one or more elements selected from the first additive element group consisting of Bi, Nd, Cu, Cr, and further Zn, La, A magnetic recording medium comprising at least one element selected from a second additive element group consisting of Ga, Ge, Sm, Gd, Sn, and In.
(2) The magnetic recording medium according to item (1), wherein Bi and Nd are included as the first additive element and Ge is included as the second additive element.
(3) The magnetic recording medium according to (1), wherein Bi and Nd are included as the first additive element, and La is included as the second additive element.
(4) The magnetic recording medium according to item (1) above, containing 0.1 to 20 at% of an element of the first additive element group.
(5) The magnetic recording medium according to item (1) above, containing 0.1 to 15 at% of an element of the second additive element group.
(6) The magnetic recording medium according to item (1), wherein the sum of elements selected from the first additive element group and the second additive element group is 0.2 to 25 at%.
(7) Any one of (1) to (6) above, wherein at least one of the plurality of underlayers is a material selected from the group consisting of Cr, Pt, MgO, MnO, TiC, and TiN. 2. A magnetic recording medium according to claim 1.
(8) The magnetic recording medium as described in any one of (1) to (7) above, wherein the magnetic layer contains an alloy having an L10 structure as a main component.
(9) A magnetic recording medium, a medium driving unit that drives the magnetic recording medium in a recording direction, a laser generating unit that heats the magnetic recording medium, and a laser beam generated from the laser generating unit is guided to the tip. A magnetic head having a waveguide for performing a recording operation and a reproducing operation on the magnetic recording medium, a head moving unit for moving the magnetic head relative to the magnetic recording medium, and a signal to the magnetic head 9. A magnetic recording / reproducing apparatus including an input and a recording / reproducing signal processing system for reproducing an output signal from the magnetic head, wherein the magnetic recording medium is any one of items (1) to (8). A magnetic recording / reproducing apparatus which is a magnetic recording medium.

以上の説明のように、本発明により、表面平坦性が高く、磁性層の配向が良く、かつヘッド浮上性が良好な熱アシスト記録媒体を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a heat-assisted recording medium having high surface flatness, good orientation of the magnetic layer, and good head flying characteristics.

実施例1、比較例1において作製した磁気記録媒体の層構成を示す断面図である。3 is a cross-sectional view showing a layer structure of a magnetic recording medium manufactured in Example 1 and Comparative Example 1. FIG. 実施例2、比較例2において作製した磁気記録媒体の層構成を示す断面図である。6 is a cross-sectional view showing a layer structure of a magnetic recording medium manufactured in Example 2 and Comparative Example 2. FIG. 実施例3において作製した磁気記録媒体の層構成を示す断面図である。6 is a cross-sectional view showing a layer structure of a magnetic recording medium manufactured in Example 3. FIG. 実施例4において作製した磁気記録媒体の層構成を示す断面図である。6 is a cross-sectional view showing a layer structure of a magnetic recording medium manufactured in Example 4. FIG.

以下に本発明を、図面を参照しながら詳細に説明する。しかしながら本発明はこれらの例のみに限定されるものではない。特に制限の無い限り、数量、構成、位置、材料などを必要に応じて変更してもよい。   Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to only these examples. As long as there is no restriction | limiting in particular, you may change a quantity, a structure, a position, material, etc. as needed.

熱アシスト磁気記録媒体の基板は、円形非磁性基板を用いることができる。材料は、ガラス、アルミ、セラミックスなどを用いることができる。ガラス基板は結晶化ガラスや非晶質ガラスなどがあるが、どちらも使用できる。その際、その表面粗さや熱容量、結晶化状態などを考慮して選択することが必要である。
媒体の加熱温度を調整することで、下地層やヒートシンク層、さらには磁性層の配向を制御することができる。
A circular non-magnetic substrate can be used as the substrate of the heat-assisted magnetic recording medium. As the material, glass, aluminum, ceramics, or the like can be used. Glass substrates include crystallized glass and amorphous glass, but both can be used. At that time, it is necessary to select in consideration of the surface roughness, heat capacity, crystallization state, and the like.
By adjusting the heating temperature of the medium, the orientation of the underlayer, the heat sink layer, and further the magnetic layer can be controlled.

下地層は、Cr、Pt、MgO、MnO、TiC、TiNなどを用いることができる。例えば、下地層に(100)配向面を作れば、その上部がL10−FePtやL10−CoPtのような磁性層である場合、エピタキシャル成長により、磁性層に(001)配向をとらせることができる。   For the underlayer, Cr, Pt, MgO, MnO, TiC, TiN, or the like can be used. For example, if a (100) orientation plane is formed in the underlayer, and the upper portion is a magnetic layer such as L10-FePt or L10-CoPt, the magnetic layer can be (001) oriented by epitaxial growth.

本発明を適用した磁気記録媒体のヒートシンク層は、Agを主成分として含み、かつ、Bi、Nd、Cu、Crから成る第一添加元素群から選択された元素を1つ以上含み、さらにZn、La、Ga、Ge、Sm、Gd、Sn、Inから成る第二添加元素群から選択された元素を少なくとも1つ以上含むことを特徴とする。   The heat sink layer of the magnetic recording medium to which the present invention is applied contains Ag as a main component, and contains one or more elements selected from the first additive element group consisting of Bi, Nd, Cu, and Cr, and Zn, It contains at least one element selected from the second additive element group consisting of La, Ga, Ge, Sm, Gd, Sn, and In.

Agに第一添加元素群と第二添加元素群から選択される元素を添加したヒートシンク層を形成することで、Agの凝集を抑制することができ、その結果、磁気記録媒体の表面平坦性やヘッドの浮上特性を高めることが可能で、また磁性層の結晶配向を制御しやすくできる。   By forming a heat sink layer in which an element selected from the first additive element group and the second additive element group is added to Ag, aggregation of Ag can be suppressed. As a result, surface flatness of the magnetic recording medium and The flying characteristics of the head can be improved, and the crystal orientation of the magnetic layer can be easily controlled.

Agを主成分とする上記のヒートシンク層は、その熱伝導率を大幅に減少させない範囲であれば、他の添加元素を含有しても良い。例えば、AgBiZn−Ta、AgBiZn−Co、AgBiGa−Ta、AgBiLa−Mn、AgBiSm−Ni、AgNdZn−Zr、AgNdZn−Mn、AgNdGe−W、AgNdSm−Ru、AgNdGd−V、AgCuGa−Zr、AgCuGa−Ta、AgCuSn−Ta、AgCuGd−W、AgCrLa−Ta、AgCrGe−V、AgCrIn−Coなどを用いることができる。   The heat sink layer containing Ag as a main component may contain other additive elements as long as the thermal conductivity is not significantly reduced. For example, AgBiZn-Ta, AgBiZn-Co, AgBiGa-Ta, AgBiLa-Mn, AgBiSm-Ni, AgNdZn-Zr, AgNdZn-Mn, AgNdGe-W, AgNdSm-Ru, AgNdGd-V, AgCuGa-Zr, Ag AgCuSn-Ta, AgCuGd-W, AgCrLa-Ta, AgCrGe-V, AgCrIn-Co, or the like can be used.

Agヒートシンク層に添加される第一添加元素群から選ばれた元素の含有量は、0.1〜20at%であることが望ましい。また、第二添加元素群から選ばれた元素の含有量は、0.1〜15at%が望ましい。さらに、第一添加元素群と第二添加元素群から選ばれた元素の総和は、0.2〜25at%となることが望ましい。Agヒートシンク層への添加元素数や量が少なすぎるとAgの凝集抑制効果が不十分となる。一方、添加元素数や量が多すぎるとAgの凝集を抑制することはできるが、ヒートシンク層の熱伝導率を著しく損なう可能性がある。このことから、第一添加元素群と第二添加元素群から選ばれた元素の原子数の総和は、上記の範囲の中でも特に0.2〜8at%が好ましい。   The content of the element selected from the first additive element group added to the Ag heat sink layer is preferably 0.1 to 20 at%. Further, the content of an element selected from the second additive element group is preferably 0.1 to 15 at%. Furthermore, the total sum of elements selected from the first additive element group and the second additive element group is preferably 0.2 to 25 at%. If the number and amount of elements added to the Ag heat sink layer are too small, the Ag aggregation suppressing effect is insufficient. On the other hand, if the number and amount of added elements are too large, Ag aggregation can be suppressed, but the thermal conductivity of the heat sink layer may be significantly impaired. Therefore, the total number of atoms of the elements selected from the first additive element group and the second additive element group is particularly preferably 0.2 to 8 at% in the above range.

Agヒートシンク層の導入位置は、設計に応じて選択できる。Agヒートシンク層を下地の下に配置した場合は、磁性層との距離が離れるため熱散逸性は不利となるが、下地層或いは中間層が磁性層の直下に置かれるため磁性層の配向を制御しやすくなる。また、Agヒートシンク層を磁性層直下に配置すれば、記録時に加熱された媒体表面を効果的に冷却できる。   The introduction position of the Ag heat sink layer can be selected according to the design. When the Ag heat sink layer is placed under the base, the heat dissipation is disadvantageous because the distance from the magnetic layer is large, but the orientation of the magnetic layer is controlled because the base layer or intermediate layer is placed directly under the magnetic layer. It becomes easy to do. Further, if the Ag heat sink layer is disposed immediately below the magnetic layer, the surface of the medium heated during recording can be effectively cooled.

磁性層の配向制御及び粒径制御のため、必要に応じて下地層と磁性層の間に中間層を導入してもよい。また、本発明を適用した磁気記録媒体にはSUL(軟磁性下地層)を追加してもよい。SULをヒートシンク層と磁性層の間に形成すれば、磁性層に印加される磁界の勾配を高めることができ、ヘッドからの磁界を効率よく磁性層に印加することができる。この場合、SULと磁性層に磁気的結合が生じるので、その調節のために中間層を置いてもよい。さらに、SULはヒートシンク層の下側に配置してもよい。SULの具体例としては、CoFeTa、CoFeTaB、CoFeNi、CoTaZr、CoNbZr、CoNiZrなどが挙げられる。   An intermediate layer may be introduced between the underlayer and the magnetic layer as necessary for controlling the orientation and the particle size of the magnetic layer. Further, a SUL (soft magnetic underlayer) may be added to the magnetic recording medium to which the present invention is applied. If the SUL is formed between the heat sink layer and the magnetic layer, the gradient of the magnetic field applied to the magnetic layer can be increased, and the magnetic field from the head can be efficiently applied to the magnetic layer. In this case, since magnetic coupling occurs between the SUL and the magnetic layer, an intermediate layer may be provided for the adjustment. Further, the SUL may be disposed below the heat sink layer. Specific examples of SUL include CoFeTa, CoFeTaB, CoFeNi, CoTaZr, CoNbZr, and CoNiZr.

磁性層には、FePt、FePtNiのようなL10構造を有する合金を用いることができる。また、このL10構造の合金に酸化物、窒化物、炭化物やAg、Auなどを添加することができる。例えば、FePt−SiO2を用いた場合、この合金は(001)配向をとることが望ましい。そのために下地として、(100)配向をとるMgO層を置くことができる。(100)配向したMgO層上に磁性層FePt−SiO2を成膜すればエピタキシャル成長により、この磁性層は(001)配向をとる。   For the magnetic layer, an alloy having an L10 structure such as FePt or FePtNi can be used. Further, oxides, nitrides, carbides, Ag, Au, and the like can be added to the L10 structure alloy. For example, when FePt—SiO 2 is used, it is desirable that this alloy has a (001) orientation. Therefore, an MgO layer having a (100) orientation can be placed as a base. If the magnetic layer FePt—SiO 2 is formed on the (100) oriented MgO layer, this magnetic layer assumes the (001) orientation by epitaxial growth.

さらに、このMgO下地層と磁性層の間にAgヒートシンク層を導入することも可能で、Agヒートシンク層にMgO層と同じ(100)配向をとらせて、磁性層を(001)配向に導くことができる。   Furthermore, an Ag heat sink layer can be introduced between the MgO underlayer and the magnetic layer, and the same (100) orientation as that of the MgO layer is taken for the Ag heat sink layer to lead the magnetic layer to the (001) orientation. Can do.

以上のように本発明によれば、表面平坦性が高く、磁性層の配向が良く、かつヘッド浮上性が良好な熱アシスト記録媒体を実現し、そのような熱アシスト磁気記録媒体を備えた大容量の磁気記録再生装置を提供することが可能である。   As described above, according to the present invention, a heat-assisted recording medium having high surface flatness, good orientation of the magnetic layer, and good head flying property is realized, and a large-scale equipped with such a heat-assisted magnetic recording medium is provided. It is possible to provide a magnetic recording / reproducing apparatus having a capacity.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
実施例1において作製した熱アシスト磁気記録媒体の層構成を図1に示す。この熱アシスト磁気記録媒体は、2.5インチガラス基板101にCr−50at%Tiから成る下地層102を成膜して、500度までランプヒーターにより加熱した後、0.5PaのArガス雰囲気下でDCマグネトロンスパッタリング法により層厚30nmのCrからなる下地層103を成膜した。下地層103に連続して、層厚100nmのAg合金からなるヒートシンク層104と、層厚10nmの90mol%(Fe−50at%Pt−10at%Cu)−10mol%SiO2合金からなる磁性層105を順次積層したものであり、磁性層105の上には、更に、層厚3nmのカーボンからなる保護膜106と、フッ素系のパーフルオロポリエーテル(PFPE)からなる潤滑膜107とが順に形成されている。
Example 1
The layer structure of the heat-assisted magnetic recording medium manufactured in Example 1 is shown in FIG. In this heat-assisted magnetic recording medium, a base layer 102 made of Cr-50 at% Ti is formed on a 2.5 inch glass substrate 101, heated to 500 degrees by a lamp heater, and then placed in an Ar gas atmosphere of 0.5 Pa. Then, an underlayer 103 made of Cr having a layer thickness of 30 nm was formed by DC magnetron sputtering. In succession to the underlayer 103, a heat sink layer 104 made of an Ag alloy with a layer thickness of 100 nm and a magnetic layer 105 made of 90 mol% (Fe-50 at% Pt-10 at% Cu) -10 mol% SiO 2 alloy with a layer thickness of 10 nm are sequentially formed. On the magnetic layer 105, a protective film 106 made of carbon having a layer thickness of 3 nm and a lubricating film 107 made of fluorine-based perfluoropolyether (PFPE) are sequentially formed on the magnetic layer 105. .

ヒートシンク層104としては、Ag−0.4at%Bi−1.5at%Zn、Ag−0.4at%Bi−2.5at%Ge、Ag−0.2at%Nd−1.5at%Zn、Ag−0.2at%Nd−1.8at%La、Ag−0.4at%Bi−0.2at%Nd−2.5at%Ge、Ag−0.4at%Bi−0.2at%Nd−1.8at%Laを用いた。   As the heat sink layer 104, Ag-0.4at% Bi-1.5at% Zn, Ag-0.4at% Bi-2.5at% Ge, Ag-0.2at% Nd-1.5at% Zn, Ag- 0.2 at% Nd-1.8 at% La, Ag-0.4 at% Bi-0.2 at% Nd-2.5 at% Ge, Ag-0.4 at% Bi-0.2 at% Nd-1.8 at% La was used.

実施例1の熱アシスト磁気記録媒体について、X線回折で測定を行ったところ、加熱された基板上に形成されたCr下地層103は、(100)配向をとっており、その上に形成されたヒートシンク層104も、エピタキシャル成長により(100)配向をとっていることがわかった。   When the heat-assisted magnetic recording medium of Example 1 was measured by X-ray diffraction, the Cr underlayer 103 formed on the heated substrate had a (100) orientation and was formed thereon. It was also found that the heat sink layer 104 had the (100) orientation by epitaxial growth.

そして、この実施例1の熱アシスト磁気記録媒体のTEM観察を行ったところ、金属結晶相が非晶質相によって囲まれたグラニュラー構造をとっていることがわかった。また、結晶相の平均粒径は、6.0nmであった。   Then, when the TEM observation of the thermally assisted magnetic recording medium of Example 1 was performed, it was found that the metal crystal phase had a granular structure surrounded by an amorphous phase. The average grain size of the crystal phase was 6.0 nm.

表1に、上記熱アシスト磁気記録媒体の表面粗さRaと、X線回折から求めた磁性層FePt(001)ピーク強度の相対値、及びグライド試験の結果を示す。表面粗さRaは、Veeco社製AFMタッピングモードを用いて測定した。また、これらの熱アシスト磁気記録媒体の磁性層FePt(001)ピーク強度は、Ag−0.4at%Biヒートシンク層を有する実施例1の媒体のFePt(001)ピーク強度の値を1.00としたときの相対値として示した。さらに、グライド試験では、フェムトスライダ上にピエゾ素子を有するヘッドで、グライドハイトを0.3μinch(約7.6nm)として該熱アシスト磁気記録媒体を数十枚検査した。このとき、ピエゾ素子からの出力電圧が高くなる、つまりヘッドが飛行不安定になった回数(ヒット数)、この総和を評価した媒体面数で割って、媒体1面当たりのヒット回数として算出した。   Table 1 shows the surface roughness Ra of the heat-assisted magnetic recording medium, the relative value of the magnetic layer FePt (001) peak intensity obtained from X-ray diffraction, and the results of the glide test. The surface roughness Ra was measured using an AFM tapping mode manufactured by Veeco. The magnetic layer FePt (001) peak intensity of these heat-assisted magnetic recording media is 1.00, which is the value of the FePt (001) peak intensity of the medium of Example 1 having the Ag-0.4 at% Bi heat sink layer. It was shown as a relative value. Further, in the glide test, several tens of the thermally assisted magnetic recording media were inspected with a head having a piezo element on a femto slider and a glide height of 0.3 μinch (about 7.6 nm). At this time, the output voltage from the piezo element increased, that is, the number of times the head became unstable in flight (number of hits), and this sum was divided by the number of media surfaces evaluated to calculate the number of hits per media surface. .

Figure 0005796883
Figure 0005796883

Agに2元素を添加したヒートシンク層を有する実施例1−1〜1−4の熱アシスト磁気記録媒体では、表面粗さRaが6.8〜7.1Åであることがわかった。また、それらの媒体のX線回折から求めたFePt(001)の相対ピーク強度は、1.03〜1.13であった。対して、実施例1−5のAg−0.4at%Bi−0.2at%Nd−2.5at%Geと、実施例1−6のAg−0.4at%Bi−0.2at%Nd−1.8at%Laから成るヒートシンク層を有する磁気記録媒体では、実施例1−1〜1−4の2元素添加のヒートシンク層を有する媒体よりも表面粗さRaが小さく、FePt(001)の相対ピーク強度が大きいことがわかった。   It was found that in the heat-assisted magnetic recording media of Examples 1-1 to 1-4 having the heat sink layer in which two elements were added to Ag, the surface roughness Ra was 6.8 to 7.1 mm. Further, the relative peak intensity of FePt (001) determined from the X-ray diffraction of these media was 1.03 to 1.13. On the other hand, Ag-0.4 at% Bi-0.2 at% Nd-2.5 at% Ge in Example 1-5 and Ag-0.4 at% Bi-0.2 at% Nd- in Example 1-6 In the magnetic recording medium having the heat sink layer composed of 1.8 at% La, the surface roughness Ra is smaller than that of the medium having the two-element-added heat sink layer of Examples 1-1 to 1-4, and FePt (001) relative It was found that the peak intensity was large.

Agに2元素を添加したヒートシンク層を有する実施例1−1〜1−4の磁気記録媒体では、グライド試験での媒体1面当たりのヒット数が0.19〜0.30回であった。一方、実施例1−5のAg−0.4at%Bi−0.2at%Nd−2.5at%Geと、実施例1−6のAg−0.4at%Bi−0.2at%Nd−1.8at%Laから成るヒートシンク層を有する磁気記録媒体では、ヒット数が0.06回、0.03回であり、前記2元素添加のヒートシンクから成る媒体よりも少ないヒット数を示したことから、ヘッド浮上性が良好なことが明らかとなった。   In the magnetic recording media of Examples 1-1 to 1-4 having the heat sink layer in which two elements were added to Ag, the number of hits per medium surface in the glide test was 0.19 to 0.30. On the other hand, Ag-0.4 at% Bi-0.2 at% Nd-2.5 at% Ge of Example 1-5 and Ag-0.4 at% Bi-0.2 at% Nd-1 of Example 1-6 In the magnetic recording medium having a heat sink layer composed of .8 at% La, the number of hits was 0.06 times and 0.03 times, indicating that the number of hits was smaller than that of the medium composed of the two-element-added heat sink. It was revealed that the head flying property was good.

(比較例1)
実施例1と同様の方法で比較例1に係る熱アシスト磁気記録媒体を作製した。ただし、ヒートシンク層104としてAg、Ag−12at%Pd、Ag−0.4at%Bi、及びAg−0.2at%Ndを用いた。表2にこれらのAgヒートシンク層を用いたときの表面粗さRa、X線回折から求めたFePt(001)の相対ピーク強度と、グライド試験における媒体1面当たりのヒット数を示す。
(Comparative Example 1)
A heat-assisted magnetic recording medium according to Comparative Example 1 was produced in the same manner as in Example 1. However, Ag, Ag-12 at% Pd, Ag-0.4 at% Bi, and Ag-0.2 at% Nd were used as the heat sink layer 104. Table 2 shows the surface roughness Ra when using these Ag heat sink layers, the relative peak intensity of FePt (001) determined from X-ray diffraction, and the number of hits per medium surface in the glide test.

Figure 0005796883
Figure 0005796883

比較例1のヒートシンク層を含む媒体の表面粗さRaは8.2Å〜9.0Åで、実施例1のヒートシンク層を有する媒体の表面粗さRa=6.4〜7.1Åよりも粗く、表面平坦性が悪い。さらに、比較例1の磁気記録媒体のFePt(001)の相対ピーク強度は1.00以下で、実施例1の媒体に比較して強度が小さい。一方、AgとAg−12at%Pdから成るヒートシンク層の媒体のグライド試験における1面当たりのヒット数は6.4回、2.4回であり、AgにBiやNdを添加したヒートシンク層を適用した媒体でも1.1回、1.4回であり、実施例1の媒体に比べてヒット数が多いことがわかる。以上のことから、本発明を適用して作製された実施例1の磁気記録媒体は、表面平坦性が高く、磁性層FePt(001)配向が良く、さらにヘッド浮上性が良好であることが確認された。   The surface roughness Ra of the medium including the heat sink layer of Comparative Example 1 is 8.2 to 9.0 mm, which is rougher than the surface roughness Ra of the medium having the heat sink layer of Example 1 = 6.4 to 7.1 mm. The surface flatness is poor. Further, the relative peak intensity of FePt (001) of the magnetic recording medium of Comparative Example 1 is 1.00 or less, which is lower than that of the medium of Example 1. On the other hand, the number of hits per surface in the glide test of the medium of the heat sink layer composed of Ag and Ag-12 at% Pd is 6.4 times and 2.4 times, and a heat sink layer in which Bi or Nd is added to Ag is applied. The number of hits is 1.1 times and 1.4 times, and it is clear that the hit number is larger than that of the medium of Example 1. From the above, it was confirmed that the magnetic recording medium of Example 1 manufactured by applying the present invention had high surface flatness, good magnetic layer FePt (001) orientation, and good head flying characteristics. It was done.

(実施例2)
実施例2において作製した熱アシスト磁気記録媒体の構成を図2に示す。この媒体は、2.5インチガラス基板201上に、層厚100nmのAg合金からなるヒートシンク層202を成膜し、ランプヒーターを用いて500度まで加熱した後、層厚25nmのCrから成る下地層203と層厚20nmMgO層204を成膜し、さらに層厚10nmの88mol%(Fe−45at%Pt−10at%Ni)−10mol%SiO2−2mol%TiO2合金からなる磁性層205を順次積層したものであり、カーボンから成る保護膜206を3nm、続けてフッ素系のパーフルオロポリエーテル(PFPE)からなる潤滑膜207を塗布して作製した。
(Example 2)
The configuration of the heat-assisted magnetic recording medium manufactured in Example 2 is shown in FIG. In this medium, a heat sink layer 202 made of an Ag alloy having a layer thickness of 100 nm is formed on a 2.5-inch glass substrate 201, heated to 500 degrees using a lamp heater, and then made of Cr having a layer thickness of 25 nm. A base layer 203 and a MgO layer 204 having a thickness of 20 nm are formed, and a magnetic layer 205 made of 88 mol% (Fe-45 at% Pt-10 at% Ni) -10 mol% SiO2-2 mol% TiO2 alloy having a thickness of 10 nm is sequentially laminated. The protective film 206 made of carbon was formed to 3 nm, and then the lubricating film 207 made of fluorine-based perfluoropolyether (PFPE) was applied.

(比較例2)
実施例2と同様の方法で比較例2に係る熱アシスト磁気記録媒体を作製した。
(Comparative Example 2)
A heat-assisted magnetic recording medium according to Comparative Example 2 was produced in the same manner as in Example 2.

表3に実施例2及び比較例2で作製したAgヒートシンク層を有する媒体の表面粗さRa、磁性層FePt(001)の相対ピーク強度、グライド試験の結果を示す。ここで、FePt(001)の相対ピーク強度は、Ag−0.4at%Biのヒートシンク層を用いて実施例2の方法で作製した媒体のFePt(001)ピーク強度の値を1.00としたときの相対値として示した。比較例2−2、2−3に示すAg−Mn−Ge、Ag−Mn−Tiから成るヒートシンク層を持つ磁気記録媒体に比較して、比較例2−1のAg−Bi−Tiから成るヒートシンク層の媒体はRaが低くなり、グライド試験における媒体1面当たりのヒット数も少なくなる。しかし、比較例2−2のヒートシンク層のTiをGeに置換した実施例2−1のヒートシンク層を有する媒体では、Raはさらに低くなり、FePt(001)相対強度が大きくなり、グライド試験におけるヒット数が大きく減少した。   Table 3 shows the surface roughness Ra of the medium having the Ag heat sink layer produced in Example 2 and Comparative Example 2, the relative peak intensity of the magnetic layer FePt (001), and the results of the glide test. Here, the relative peak intensity of FePt (001) was set to 1.00 with the value of FePt (001) peak intensity of the medium produced by the method of Example 2 using a heat sink layer of Ag-0.4 at% Bi. When shown as a relative value. Compared to the magnetic recording medium having the heat sink layer made of Ag-Mn-Ge and Ag-Mn-Ti shown in Comparative Examples 2-2 and 2-3, the heat sink made of Ag-Bi-Ti in Comparative Example 2-1 The medium of the layer has a low Ra, and the number of hits per side of the medium in the glide test also decreases. However, in the medium having the heat sink layer of Example 2-1 in which Ti of the heat sink layer of Comparative Example 2-2 is replaced with Ge, Ra is further reduced, the FePt (001) relative strength is increased, and hit in the glide test. The number has greatly decreased.

Figure 0005796883
Figure 0005796883

(実施例3)
実施例3において作製した熱アシスト磁気記録媒体の層構成を図3に示す。この熱アシスト磁気記録媒体は、以下の方法により作製した。まず、2.5インチガラス基板301に層厚100nmのAg合金から成るヒートシンク層302を成膜し、続けて92.5at%(Co−50at%Fe)−4.5at%Zr−3at%B合金から成る層厚30nmの軟磁性層303を成膜した。この媒体をランプヒーターにより500度まで加熱した後、層厚20nmのMgO層304と層厚10nmの90mol%(Fe−50at%Pt)−10mol%TiO2合金からなる磁性層305を成膜した。次に、層厚3nmのカーボンからなる保護膜306と、フッ素系のパーフルオロポリエーテル(PFPE)からなる潤滑膜307を順次形成した。
(Example 3)
The layer structure of the heat-assisted magnetic recording medium produced in Example 3 is shown in FIG. This heat-assisted magnetic recording medium was produced by the following method. First, a heat sink layer 302 made of an Ag alloy having a layer thickness of 100 nm is formed on a 2.5 inch glass substrate 301, and then 92.5 at% (Co-50 at% Fe) -4.5 at% Zr-3 at% B alloy. A soft magnetic layer 303 having a layer thickness of 30 nm was formed. This medium was heated to 500 degrees with a lamp heater, and then a magnetic layer 305 made of a 20 nm thick MgO layer 304 and a 10 nm thick 90 mol% (Fe-50 at% Pt) -10 mol% TiO2 alloy was formed. Next, a protective film 306 made of carbon having a layer thickness of 3 nm and a lubricating film 307 made of fluorine-based perfluoropolyether (PFPE) were sequentially formed.

表4に実施例3で作製した熱アシスト媒体のグライド結果を示す。実施例3のヒートシンク層を有する磁気記録媒体は、どれもグライド試験における媒体1面当たりのヒット数が0.4回以下と少なく、本発明を適用することでヘッドの浮上特性を改善できることがわかった。この中でも実施例3−9と3−10で示すAg−Cu−Znのヒートシンク層にさらにBiまたはNdを添加した4元素から成る磁気記録媒体は、特にヒット数が少ないことが見出せた。   Table 4 shows the glide results of the heat-assisted medium produced in Example 3. All of the magnetic recording media having the heat sink layer of Example 3 had a hit count of 0.4 or less per surface in the glide test, and it was found that the flying characteristics of the head can be improved by applying the present invention. It was. Among these, it was found that the magnetic recording medium composed of four elements in which Bi or Nd was further added to the Ag—Cu—Zn heat sink layer shown in Examples 3-9 and 3-10 had a particularly small number of hits.

Figure 0005796883
Figure 0005796883

(実施例4)
実施例4において作製した熱アシスト磁気記録媒体の層構成を図4に示す。ガラス基板401にCr−50at%Taから成る下地層402を25nm、続けてAg合金から成るヒートシンク層403を100nm成膜し、ランプヒーターで250度まで加熱した。この基板上に層厚10nmのCr−10at%Ru下地層404、層厚20nmのMgO層405を積層した後、ランプヒーターで基板を500度まで加熱した。次いで、86mol%(Fe−55at%Pt)−14mol%SiO2合金からなる磁性層406を10nm成膜した。最後に層厚3nmのカーボンからなる保護膜407と、フッ素系のパーフルオロポリエーテル(PFPE)からなる潤滑膜408を順次形成して、実施例4−1〜4−23のヒートシンク層を持つ媒体を作製した。
Example 4
The layer structure of the heat-assisted magnetic recording medium produced in Example 4 is shown in FIG. An underlayer 402 made of Cr-50 at% Ta was formed on a glass substrate 401 to a thickness of 25 nm, and subsequently a heat sink layer 403 made of an Ag alloy was formed to a thickness of 100 nm, and heated to 250 degrees with a lamp heater. A Cr-10 at% Ru underlayer 404 having a layer thickness of 10 nm and a MgO layer 405 having a layer thickness of 20 nm were laminated on this substrate, and then the substrate was heated to 500 degrees with a lamp heater. Next, a magnetic layer 406 made of 86 mol% (Fe-55 at% Pt) -14 mol% SiO2 alloy was formed to a thickness of 10 nm. Finally, a protective film 407 made of carbon having a layer thickness of 3 nm and a lubricating film 408 made of fluorine-based perfluoropolyether (PFPE) are sequentially formed, and the medium having the heat sink layer of Examples 4-1 to 4-23 Was made.

表5に実施例4で準備した熱アシスト磁気記録媒体の表面粗さRa、磁性層のFePt(001)相対ピーク強度、グライド試験から算出した媒体1面当たりのヒット数を示す。ここで、FePt(001)の相対ピーク強度は、Ag−0.4at%Biのヒートシンク層を用いて実施例4の方法で作製した媒体のFePt(001)ピーク強度の値を1.00としたときの相対値として示した。   Table 5 shows the surface roughness Ra of the heat-assisted magnetic recording medium prepared in Example 4, the FePt (001) relative peak intensity of the magnetic layer, and the number of hits per medium surface calculated from the glide test. Here, the relative peak intensity of FePt (001) was set to 1.00 as the value of FePt (001) peak intensity of the medium produced by the method of Example 4 using an Ag-0.4 at% Bi heat sink layer. When shown as a relative value.

実施例4−1〜4−7では、Agヒートシンク層の第一添加元素量を変化させ、実施例4−8〜4−14は、Agヒートシンク層の第二添加元素量を変化させてその磁気記録媒体の各種特性を評価した。さらに、実施例4−15〜4−23では、第一添加元素と第二添加元素の総和を変化させた。実施例4のどのAgヒートシンク層もAgに第一添加元素と第二添加元素を含んでおり、表面粗さRaは低く、グライド試験のヒット数は少ないことがわかる。一方、本実施例では、ヒートシンク層と磁性層の間に複数の下地層を挟んでいるので、ヒートシンク層がFePt磁性層の配向に与える影響は大きくなく、FePt(001)の相対ピーク強度がほとんど変わらないものと考えられる。 In Examples 4-1 to 4-7, the amount of the first additive element of the Ag heat sink layer was changed, and in Examples 4-8 to 4-14, the amount of the second additive element of the Ag heat sink layer was changed to change its magnetic properties. Various characteristics of the recording medium were evaluated. Furthermore, in Examples 4-15 to 4-23, the sum of the first additive element and the second additive element was changed. It can be seen that any Ag heat sink layer of Example 4 contains the first additive element and the second additive element in Ag, the surface roughness Ra is low, and the number of hits in the glide test is small. On the other hand, in this example, since a plurality of underlayers are sandwiched between the heat sink layer and the magnetic layer, the heat sink layer does not significantly affect the orientation of the FePt magnetic layer, and the relative peak intensity of FePt (001) is almost not. It is thought that it does not change.

実施例4−1〜4−7の結果より、Agヒートシンク層への第一添加元素が0.1〜20at%の範囲で特に表面粗さRaが低く、グライド試験の媒体1面当たりのヒット数が少ないため望ましい。また、実施例4−8〜4−14の結果から、第二添加元素が0.1〜15at%の場合に表面粗さRaとグライド試験の特性が特に良くなるため望ましい。実施例4−15〜4−23における結果より、第一添加元素と第二添加元素の総和は、0.2〜25at%で表面粗さRaとグライド試験による媒体1面当たりのヒット数がさらに改善されるため、この範囲が好ましい。 From the results of Examples 4-1 to 4-7, the surface roughness Ra is particularly low when the first additive element to the Ag heat sink layer is in the range of 0.1 to 20 at%, and the number of hits per medium surface in the glide test. This is desirable because there are few. From the results of Examples 4-8 to 4-14, it is desirable that the surface roughness Ra and the characteristics of the glide test are particularly improved when the second additive element is 0.1 to 15 at%. From the results in Examples 4-15 to 4-23, the sum of the first additive element and the second additive element is 0.2 to 25 at%, and the surface roughness Ra and the number of hits per one surface by the glide test are further increased. This range is preferred because it improves.

Figure 0005796883
Figure 0005796883

101…ガラス基板
102…下地層
103…下地層
104…ヒートシンク層
105…磁性層
106…保護膜
107…潤滑膜
201…ガラス基板
202…ヒートシンク層
203…下地層
204…MgO層
205…磁性層
206…保護膜
207…潤滑膜
301…ガラス基板
302…ヒートシンク層
303…軟磁性層
304…MgO層
305…磁性層
306…保護膜
307…潤滑膜
401…ガラス基板
402…下地層
403…ヒートシンク層
404…下地層
405…MgO層
406…磁性層
407…保護膜
408…潤滑膜
DESCRIPTION OF SYMBOLS 101 ... Glass substrate 102 ... Underlayer 103 ... Underlayer 104 ... Heat sink layer 105 ... Magnetic layer 106 ... Protective film 107 ... Lubricating film 201 ... Glass substrate 202 ... Heat sink layer 203 ... Underlayer 204 ... MgO layer 205 ... Magnetic layer 206 ... Protective film 207 ... Lubricating film 301 ... Glass substrate 302 ... Heat sink layer 303 ... Soft magnetic layer 304 ... MgO layer 305 ... Magnetic layer 306 ... Protective film 307 ... Lubricating film 401 ... Glass substrate 402 ... Underlayer 403 ... Heat sink layer 404 ... Bottom Base layer 405 ... MgO layer 406 ... magnetic layer 407 ... protective film 408 ... lubricating film

Claims (9)

基板と、前記基板上に形成された複数の下地層と、前記下地層上に形成された磁性層と、基板と磁性層の間の任意の位置に形成されたヒートシンク層(酸化物を含むグラニュラー構造を除く)を少なくとも有する磁気記録媒体であって、前記ヒートシンク層はAgを主成分として含み、かつ、Bi、Nd、Cu、Crから成る第一添加元素群から選択された元素を1つ以上含み、さらにZn、La、Ga、Ge、Sm、Gd、Sn、Inから成る第二添加元素群から選択された元素を少なくとも1つ以上含むことを特徴とする磁気記録媒体。 A substrate, a plurality of underlayers formed on the substrate, a magnetic layer formed on the underlayer, and a heat sink layer (a granular layer including an oxide) formed at an arbitrary position between the substrate and the magnetic layer The heat sink layer contains Ag as a main component, and contains at least one element selected from the first additive element group consisting of Bi, Nd, Cu, and Cr. And a magnetic recording medium further comprising at least one element selected from a second additive element group consisting of Zn, La, Ga, Ge, Sm, Gd, Sn, and In. 第一添加元素としてBiとNdを含み、第二添加元素としてGeを含むことを特徴とする請求項1の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein Bi and Nd are contained as the first additive element, and Ge is contained as the second additive element. 第一添加元素としてBiとNdを含み、第二添加元素としてLaを含むことを特徴とする請求項1の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein Bi and Nd are contained as the first additive element, and La is contained as the second additive element. 第一添加元素群の元素を0.1〜20at%含むことを特徴とする請求項1の磁気記録媒体。 2. The magnetic recording medium according to claim 1, comprising 0.1 to 20 at% of an element of the first additive element group. 第二添加元素群の元素を0.1〜15at%含むことを特徴とする請求項1の磁気記録媒体。 2. The magnetic recording medium according to claim 1, comprising 0.1 to 15 at% of an element of the second additive element group. 第一添加元素群と第二添加元素群から選ばれた元素の総和が0.2〜25at%となることを特徴とする請求項1の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the sum of elements selected from the first additive element group and the second additive element group is 0.2 to 25 at%. 複数の下地層のうち、少なくとも1層がCr、Pt、MgO、MnO、TiC、TiNからなる群から選択された物質であることを特徴とする請求項1〜6の何れか1項に記載の磁気記録媒体。 The at least 1 layer is a substance selected from the group which consists of Cr, Pt, MgO, MnO, TiC, TiN among several base layers, The any one of Claims 1-6 characterized by the above-mentioned. Magnetic recording medium. 磁性層が、L1構造を有する合金を主成分として含むことを特徴とする請求項1〜7の何れか1項に記載の磁気記録媒体。 Magnetic layer, a magnetic recording medium according to any one of claims 1 to 7, characterized in that it comprises as a main component an alloy having an L1 0 structure. 磁気記録媒体と、前記磁気記録媒体を記録方向に駆動する媒体駆動部と、前記磁気記録媒体を加熱するレーザー発生部と、前記レーザー発生部から発生したレーザー光を先端部へと導く導波路とを有して、前記磁気記録媒体に対する記録動作と再生動作とを行う磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体に対して相対移動させるヘッド移動部と、前記磁気ヘッドへの信号入力と前記磁気ヘッドから出力信号の再生とを行うための記録再生信号処理系とを備える磁気記録再生装置において、前記磁気記録媒体が請求項1〜8の何れか1項に記載の磁気記録媒体であることを特徴とする磁気記録再生装置。 A magnetic recording medium; a medium driving unit that drives the magnetic recording medium in a recording direction; a laser generation unit that heats the magnetic recording medium; and a waveguide that guides laser light generated from the laser generation unit to a tip end part. A magnetic head that performs a recording operation and a reproducing operation on the magnetic recording medium, a head moving unit that moves the magnetic head relative to the magnetic recording medium, a signal input to the magnetic head, and the A magnetic recording / reproducing apparatus including a recording / reproducing signal processing system for reproducing an output signal from a magnetic head, wherein the magnetic recording medium is the magnetic recording medium according to any one of claims 1 to 8. A magnetic recording / reproducing apparatus characterized by the above.
JP2011090072A 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus Active JP5796883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090072A JP5796883B2 (en) 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090072A JP5796883B2 (en) 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JP2012221543A JP2012221543A (en) 2012-11-12
JP5796883B2 true JP5796883B2 (en) 2015-10-21

Family

ID=47272887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090072A Active JP5796883B2 (en) 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JP5796883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803045B2 (en) 2017-06-08 2020-12-23 昭和電工株式会社 Magnetic recording medium and magnetic storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130663B2 (en) * 1992-07-28 2001-01-31 日立マクセル株式会社 Drive device for information recording medium
JPH11176022A (en) * 1997-12-15 1999-07-02 Ricoh Co Ltd Phase transition optical recording medium
TWI325134B (en) * 2004-04-21 2010-05-21 Kobe Steel Ltd Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
JP4320000B2 (en) * 2004-04-21 2009-08-26 株式会社神戸製鋼所 Transflective reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2006351114A (en) * 2005-06-16 2006-12-28 Toshiba Corp Storage medium, reproducing method, and recording method
JP5015901B2 (en) * 2008-12-01 2012-09-05 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5567000B2 (en) * 2009-03-23 2014-08-06 昭和電工株式会社 Thermally assisted magnetic recording medium

Also Published As

Publication number Publication date
JP2012221543A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5561766B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
US8792313B2 (en) Magnetic recording medium having multiple under layers for heat-assisted magnetic recording apparatus
JP6014385B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP6317896B2 (en) Magnetic recording medium and magnetic storage device
WO2011093233A1 (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP6145350B2 (en) Magnetic recording medium, magnetic storage device
JP5567000B2 (en) Thermally assisted magnetic recording medium
JP6073194B2 (en) Magnetic recording medium, magnetic storage device
JP5561773B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP6832189B2 (en) Magnetic recording medium and magnetic recording / playback device
JP5938224B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP6887814B2 (en) Magnetic recording medium and magnetic storage device
JP5786347B2 (en) Magnetic recording medium for thermally assisted recording apparatus and method for manufacturing the same
JP6914663B2 (en) Magnetic recording medium and magnetic storage device
JP5961439B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP2018106774A (en) Magnetic recording medium and magnetic memory device
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP7279563B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5693345B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP2021106067A (en) Magnetic recording medium and magnetic storage device
JP5796883B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP6887810B2 (en) Magnetic recording medium and magnetic storage device
JP5685983B2 (en) Magnetic recording medium
JP2013149316A (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP2013149315A (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5796883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350