JP5796369B2 - Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof - Google Patents

Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof Download PDF

Info

Publication number
JP5796369B2
JP5796369B2 JP2011139386A JP2011139386A JP5796369B2 JP 5796369 B2 JP5796369 B2 JP 5796369B2 JP 2011139386 A JP2011139386 A JP 2011139386A JP 2011139386 A JP2011139386 A JP 2011139386A JP 5796369 B2 JP5796369 B2 JP 5796369B2
Authority
JP
Japan
Prior art keywords
less
steel plate
hardness
hic
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139386A
Other languages
Japanese (ja)
Other versions
JP2013007080A (en
Inventor
彰彦 谷澤
彰彦 谷澤
浩文 大坪
浩文 大坪
義紀 大迫
義紀 大迫
岡津 光浩
光浩 岡津
石川 信行
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011139386A priority Critical patent/JP5796369B2/en
Publication of JP2013007080A publication Critical patent/JP2013007080A/en
Application granted granted Critical
Publication of JP5796369B2 publication Critical patent/JP5796369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、湿潤硫化水素腐食環境下にある石油精製プラントの圧力容器などに使用される厚鋼板およびその製造方法に関し、特に耐サワー性能と低降伏比を両立した350〜550MPa級厚鋼板およびその製造方法に関する。   The present invention relates to a thick steel plate used for a pressure vessel of an oil refinery plant in a wet hydrogen sulfide corrosive environment and a method for producing the same, and in particular, a 350 to 550 MPa class thick steel plate having both a sour resistance performance and a low yield ratio, and its production method. It relates to a manufacturing method.

原油の品質は年々低下し、硫化水素濃度が高くなってきている。そのため、石油精製プラントの圧力容器にも湿潤硫化水素腐食応力下に対する抵抗力、すなわち優れた耐水素誘起割れ(HIC)性および耐硫化物応力腐食割れ(SSC)性(これら両者を合せて耐サワー性という)が求められている。また、圧力容器は一般に冷間、熱間加工により作製されるため、それに用いられる厚鋼板は加工時のスプリングバックを抑制するために低降伏比(降伏応力/引張強さ×100)である方が望ましく、さらに、構造部材として用いる際に溶接によって接合される周囲の部材に対して著しく降伏応力が高いと、地震などの振動を受けた際に周囲の部材の塑性化を助長することになるため、破壊安全性を確保するためにも低降伏比であることが望ましい。一般的に降伏比が85%以下の厚鋼板であれば、これらの特性に優れるとされている。   The quality of crude oil is decreasing year by year, and the hydrogen sulfide concentration is increasing. Therefore, the pressure vessel of an oil refinery plant is also resistant to wet hydrogen sulfide corrosion stress, that is, excellent resistance to hydrogen induced cracking (HIC) and sulfide stress corrosion cracking (SSC). Called sex). In addition, since pressure vessels are generally manufactured by cold and hot working, the thick steel plate used for them has a low yield ratio (yield stress / tensile strength x 100) in order to suppress springback during processing. Furthermore, when the yield stress is extremely high with respect to the surrounding members to be joined by welding when used as a structural member, it promotes plasticization of the surrounding members when subjected to vibration such as an earthquake. Therefore, a low yield ratio is desirable in order to ensure fracture safety. Generally, a thick steel plate having a yield ratio of 85% or less is considered to be excellent in these characteristics.

耐サワー性能の確保のための検討は、主にラインパイプ分野で数多くなされており、HIC特性の改善のためには、低C化による第2相組織の生成量低減、低Mn−低S化による伸長MnSの低減、低Mn−低P化による中央偏析の低減、Ca添加量の最適化によるMnSの球状化およびCaクラスタの生成抑制などの手法が一般的に用いられる。一方、SSC特性の改善のためには、母材、HAZ、溶接金属の表層硬さを低減することが有効とされ、合金元素の低減による焼入性の低下や加速冷却や焼入条件の最適化、焼戻による表層硬さの低減などが一般的に行われる。   Many studies have been made to ensure sour-resistant performance mainly in the line pipe field. To improve HIC characteristics, the amount of second-phase structure is reduced by lowering C, and Mn-S is lower. Generally, techniques such as reduction of elongation MnS due to reduction, reduction of central segregation due to low Mn-P reduction, spheroidization of MnS by optimization of Ca addition amount, and suppression of Ca cluster formation are generally used. On the other hand, in order to improve SSC characteristics, it is effective to reduce the surface layer hardness of the base metal, HAZ, and weld metal, and the hardenability is reduced due to the reduction of alloy elements and the optimum cooling and quenching conditions are optimized. Generally, reduction of surface hardness by tempering and tempering is performed.

また、圧力容器分野においても様々な検討が行われている。例えば、特許文献1および2では母材強度の低下を少なくしつつ、HAZ硬さを効果的に低減する成分系として低C−Bフリー系を選択し、またNbを添加し制御圧延後ただちに加速冷却もしくは、直接焼入+焼戻を行うことによって、析出強化により強度の不足を補う方法が開示されている。   Various studies have also been conducted in the field of pressure vessels. For example, in Patent Documents 1 and 2, a low CB-free system is selected as a component system that effectively reduces the HAZ hardness while reducing a decrease in the strength of the base material, and Nb is added to accelerate immediately after controlled rolling. A method is disclosed in which the lack of strength is compensated for by precipitation strengthening by performing cooling or direct quenching + tempering.

また、特許文献3および4では、制御圧延で組織を均一微細化させた厚鋼板に焼準を行うことによって、耐サワー性能と熱間加工性を両立させる方法が開示されている。また、特許文献5では、B添加鋼の圧延加熱温度を最適化することによって焼入焼戻処理後の表層硬さを低減することにより、耐SSC特性を向上させる方法が開示されている。また、特許文献6では制御圧延後に2相域焼入+焼戻処理を行うことにより、優れた靱性と耐HIC性能を確保している。   Patent Documents 3 and 4 disclose a method for achieving both sour resistance performance and hot workability by performing normalization on a thick steel plate whose structure is uniformly refined by controlled rolling. Patent Document 5 discloses a method of improving the SSC resistance by reducing the surface hardness after quenching and tempering by optimizing the rolling heating temperature of the B-added steel. Moreover, in patent document 6, the outstanding toughness and HIC-proof performance are ensured by performing 2 phase area hardening + tempering process after control rolling.

特開平2−8322号公報Japanese Patent Laid-Open No. 2-8322 特開平2−263918号公報JP-A-2-263918 特開平8−283839号公報Japanese Patent Laid-Open No. 8-283839 特開平8−283840号公報JP-A-8-283840 特開昭59−74219号公報JP 59-74219 特開昭56−90921号公報JP 56-90921 A

しかしながら、特許文献1および2で開示されている直接焼入やTMCPによって作製される厚鋼板は熱間加工を行った際に、圧延により微細化させた組織が再変態してしまうため、熱間加工後に熱処理を行っても、当初得られていた強度−靱性バランスが得られないこと、および制御圧延により形成された伸展組織はHICのき裂伝播経路となるため、HIC特性を確保することが難しいという問題がある。   However, the thick steel plate produced by direct quenching or TMCP disclosed in Patent Documents 1 and 2 undergoes hot transformation because the microstructure refined by rolling is retransformed when hot working is performed. Even if heat treatment is performed after processing, the originally obtained strength-toughness balance cannot be obtained, and the stretch structure formed by controlled rolling serves as a crack propagation path of HIC, so that HIC characteristics can be secured. There is a problem that it is difficult.

特許文献3および4では、焼準処理により全厚に渡って微細均一組織にすることで耐HIC性能と熱間加工性能を両立しているが、強度の確保がし難い製造方法であり、強度確保のためには多量の合金添加を必要とし、コストの増大を招くばかりでなく、HAZ硬さの増大により耐SSC性能の劣化が問題となる。   In Patent Documents 3 and 4, the HIC resistance performance and the hot working performance are compatible by making a fine uniform structure over the entire thickness by the normalization process, but the manufacturing method is difficult to ensure the strength. In order to ensure, a large amount of alloy is required, which not only increases the cost, but also increases the HAZ hardness, which causes a problem of deterioration in SSC resistance.

特許文献5では母材の表層硬さを効果的に低減することができるが、最適とするC量が高くまたB添加を必須としているため、この範囲ではHAZ硬さを低減することが困難であり、HAZを起点としたSSCの発生をさけることができない。   In Patent Document 5, the surface layer hardness of the base material can be effectively reduced, but since the optimum amount of C is high and B addition is essential, it is difficult to reduce the HAZ hardness in this range. Yes, the generation of SSC starting from HAZ cannot be avoided.

特許文献6の製造方法や成分範囲では、人工海水、100%HS(通称、BPサワー条件)では所望の特性が得られるとされるが、本発明で課題とするCHCOOH+5%NaCl、100%HS(通称、NACEサワー条件)では、成分をさらに厳格に制御し、第2相分率や介在物の量や形態を制御しなれけば割れを防ぐことができない。 In the production method and component range of Patent Document 6, it is said that desired characteristics can be obtained with artificial seawater and 100% H 2 S (commonly referred to as BP sour conditions), but CH 3 COOH + 5% NaCl, which is a problem in the present invention, With 100% H 2 S (commonly known as NACE sour conditions), cracking cannot be prevented unless the components are controlled more strictly and the second phase fraction and the amount and form of inclusions are controlled.

また、降伏比の低い厚鋼板は主に建築分野を対象とした検討で多く開示されているが、これらの検討では耐サワー性能を確保するための方策が開示されていない。   In addition, many steel plates having a low yield ratio have been disclosed mainly in studies aimed at the construction field, but these studies do not disclose measures for ensuring sour-resistant performance.

このように、これまでの発明では、耐サワー性能を低下させることなく、降伏比が低く冷間〜熱間における加工性に優れた厚鋼板を製造することは難しかった。   As described above, in the inventions so far, it has been difficult to produce a thick steel plate having a low yield ratio and excellent cold-to-hot workability without reducing sour resistance performance.

そこで、本発明では、耐サワー性能を低下させることなく、降伏比が低く冷間〜熱間における加工性に優れた厚鋼板およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a thick steel plate having a low yield ratio and excellent workability between cold and hot without decreasing the sour resistance performance and a method for producing the same.

発明者らは、熱間加工性に優れるとされる焼準および焼入焼戻処理を行う厚鋼板を対象に、前記の課題を解決するために鋼材の化学成分、製造方法および組織形態について鋭意検討し、以下の知見を得た。   In order to solve the above-mentioned problems, the inventors diligently studied the chemical composition, manufacturing method, and structure of steel materials for thick steel plates that are subjected to normalization and quenching and tempering treatment, which are considered to have excellent hot workability. The following findings were obtained.

まず、優れた耐HIC性能を得るためには、従来からいわれているように低C−低Mn−低S−低P−Ca添加量の最適化を行うことが有効であると確認した。とくに、Caの最適添加量については、式(3)で規定されるACRを1.0〜4.0に制御することにより伸長MnSの球状化による板厚中央部(以下1/2tと呼ぶ)でのHIC割れおよびCaクラスタの生成による板厚の1/4部(以下1/4tと呼ぶ)でのHIC割れを抑制することができることが分かった。   First, in order to obtain excellent HIC resistance performance, it has been confirmed that it is effective to optimize the addition amount of low C-low Mn-low S-low P-Ca as is conventionally known. In particular, with regard to the optimum addition amount of Ca, by controlling the ACR defined by the formula (3) to 1.0 to 4.0, the central portion of the plate thickness due to the spheroidization of the elongated MnS (hereinafter referred to as 1 / 2t) It was found that the HIC cracking at ¼ and the HIC cracking at 1/4 part of the plate thickness (hereinafter referred to as ¼t) due to the generation of Ca clusters can be suppressed.

また、伸長MnSがほとんどなくなった場合においても1/2tでは中央偏析部の硬さが高い場合にNbCなどの微細析出物や気包などの欠陥を起点にHIC割れが発生することがわかった。   It was also found that even when the elongation MnS almost disappeared, HIC cracks occurred starting from fine precipitates such as NbC and defects such as air bubbles when the hardness of the central segregation part was high at 1/2 t.

本発明では中心偏析の硬さに及ぼす成分の影響を合理的に評価する指標として式(2)で規定されるPHICを用いることで中央偏析部に起因する1/2tのHIC割れに及ぼす合金成分の影響を評価することを可能にした。PHICが大きくなるほど中央偏析部の硬さが増大し、割れが発生しやすくなるが、焼入焼戻処理を行うことにより、(1)等軸組織化によるHIC割れの伝播抑制、(2)焼戻処理による中央偏析部の硬さ低減を行うことができ、ラインパイプのようなTMCPによって作製される厚鋼板に比べてHIC割れ限界の上限値が大きくなることがわかった。   In the present invention, by using PHIC defined by the formula (2) as an index for rationally evaluating the influence of the component on the hardness of the center segregation, the alloy component affecting the 1/2 t HIC crack caused by the center segregation part. Made it possible to evaluate the impact of As the PHIC increases, the hardness of the central segregation part increases and cracking is likely to occur. However, by performing quenching and tempering treatment, (1) suppression of propagation of HIC cracks by equiaxed organization, (2) firing It was found that the hardness of the central segregation part can be reduced by the reversion process, and the upper limit value of the HIC crack limit becomes larger than that of a thick steel plate produced by TMCP such as a line pipe.

また、焼入焼戻処理は、焼準処理に比べて低成分で母材強度を確保することができるため、HAZ硬さを低減でき、耐SSC特性に優れていることが分かった。また、成分の影響としては従来からいわれているように低C−Bフリー化が望ましいことをあらためて確認した。   Further, it was found that the quenching and tempering treatment can secure the base material strength with a lower component than the normalizing treatment, so that the HAZ hardness can be reduced and the SSC resistance is excellent. Moreover, as the influence of a component, it confirmed again that low CB freeness would be desirable as said conventionally.

一方、焼入焼戻鋼の降伏比は、Cを低減するほど高くなることが知られており、耐サワー性能との両立が困難とされている。そこで、本発明では、焼入焼戻によって得られた組織の形態と降伏比の関係を調査した。   On the other hand, it is known that the yield ratio of quenched and tempered steel increases as C decreases, and it is difficult to achieve both sour resistance performance. Therefore, in the present invention, the relationship between the form of the structure obtained by quenching and tempering and the yield ratio was investigated.

その結果、焼入れ温度を(Ac+Ac)/2以上Ac点以下、焼入れ冷却速度を15℃/s以上とすることによって、逆変態によってオーステナイト化した部分が焼入れにより硬質なベイナイトやマルテンサイトとなり、逆変態しなかった残部が等軸の焼戻されたポリゴナルフェライトおよび擬ポリゴナルフェライトとなることによって、耐サワー性能を劣化させることなく、降伏比を下げることができることがわかった。 As a result, by setting the quenching temperature to (Ac 1 + Ac 3 ) / 2 or more and Ac 3 points or less and the quenching cooling rate to 15 ° C./s or more, the portion austenitized by reverse transformation becomes hard bainite or martensite by quenching. Thus, it was found that the yield ratio can be lowered without deteriorating the sour-resistant performance by making the remainder that has not undergone reverse transformation become equiaxed tempered polygonal ferrite and pseudopolygonal ferrite.

また、ポリゴナルフェライトおよび擬ポリゴナルフェライト(以下軟質フェライトと呼ぶ)と硬質なベイナイトやマルテンサイト(以下硬質第2相と呼ぶ)との硬さの差が大きいほど降伏比が低下するが、硬さの差が大きくなりすぎると耐HIC性および靱性が劣化することもわかった。一方、焼戻温度をAc〜(Ac+Ac)/4にすることで、Cがより濃化し、より硬度の高い硬質第2相を軟質フェライト中に分散させることができ、降伏比が著しく低下することも分かったが、この焼入温度範囲では、耐サワー性能を確保することが不可能であった。 The yield ratio decreases as the difference in hardness between polygonal ferrite and pseudopolygonal ferrite (hereinafter referred to as soft ferrite) and hard bainite or martensite (hereinafter referred to as hard second phase) decreases. It was also found that if the difference in thickness becomes too large, the HIC resistance and toughness deteriorate. On the other hand, by setting the tempering temperature to Ac 1 to (Ac 1 + Ac 3 ) / 4, C is concentrated, and the hard second phase having higher hardness can be dispersed in the soft ferrite, and the yield ratio is Although it was also found that the temperature dropped significantly, it was impossible to ensure sour resistance performance within this quenching temperature range.

本発明は、上記した知見にさらに検討を加えてなされたもので、本発明の要旨は以下の通りである。   The present invention has been made by further studying the above knowledge, and the gist of the present invention is as follows.

第一の発明は、C:0.03%以上0.08%未満、Si:0.5%以下、Mn:0.5〜1.5%、P:0.010%以下、S:0.0030%以下、Al:0.005〜0.050%、Ti:0.005〜0.025%、B:0.0003%以下、Ca:0.0005〜0.0050%、O:0.0030%以下を含有し、さらにCu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.10%以下、V:0.10%以下の中から選ばれる1種または2種以上を含有し、式(1)で規定されるCeqを0.28以上、式(2)で規定されるPHICを1.00以下、式(3)で規定されるACRを1.0〜4.0とし、残部Feおよび不可避的不純物からなる厚鋼板であり、板厚中央部の組織が平均アスペクト比2.0以下、平均粒径40μm以下のポリゴナルフェライトおよび擬ポリゴナルフェライトを10〜60vol%含む組織で、硬質第2相との硬度(Hv)差が20〜100であることを特徴とする耐サワー性能に優れた調質型低降伏比厚鋼板である。   In the first invention, C: 0.03% or more and less than 0.08%, Si: 0.5% or less, Mn: 0.5 to 1.5%, P: 0.010% or less, S: 0.00. 0030% or less, Al: 0.005 to 0.050%, Ti: 0.005 to 0.025%, B: 0.0003% or less, Ca: 0.0005 to 0.0050%, O: 0.0030 In addition, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.10% or less, V: 0 1 or 2 or more types selected from 10% or less, Ceq defined by formula (1) is 0.28 or more, PHIC defined by formula (2) is 1.00 or less, formula The ACR defined in (3) is 1.0 to 4.0, and is a thick steel plate composed of the remaining Fe and inevitable impurities. It is a structure containing 10 to 60 vol% of polygonal ferrite and pseudopolygonal ferrite having an average aspect ratio of 2.0 or less and an average particle size of 40 μm or less, and the hardness (Hv) difference from the hard second phase is 20 to 100. It is a tempered low-yield specific thickness steel plate with excellent sour-resistant performance.

Figure 0005796369
Figure 0005796369

Figure 0005796369
Figure 0005796369

Figure 0005796369
Figure 0005796369

第二の発明は、第一の発明に記載の成分組成を有する連続鋳造鋳片を再加熱し熱間圧延した後、室温から(Ac1+Ac3)/2以上Ac点以下の温度まで加熱、保持した後、800〜500℃の冷却速度を15℃/s以上80℃/s以下で水冷し、再び室温から550℃以上Ac点以下の温度に再加熱、保持した後に空冷することを特徴とする耐サワー性能に優れた調質型低降伏比厚鋼板の製造方法である。 The second invention is, after re-heating and hot rolling continuously cast slab having the component composition according to the first aspect of the present invention, heated from room temperature to (Ac1 + Ac3) / 2 or more Ac 3 point or less of the temperature was held Then, it is water-cooled at a cooling rate of 800 to 500 ° C. at 15 ° C./s or more and 80 ° C./s or less, reheated from room temperature to a temperature of 550 ° C. or more and Ac 1 point or less, and then air cooled. This is a method for producing a tempered low-yield-thickness steel plate with excellent sour resistance.

本発明により、湿潤硫化水素腐食環境下にある石油精製プラントの圧力容器などに使用される厚鋼板およびその製造方法に関し、特に耐サワー性能と低降伏比を両立した350〜550MPa級厚鋼板の製造が可能となり、産業上極めて有効である。   The present invention relates to a thick steel plate used for a pressure vessel of an oil refinery plant in a wet hydrogen sulfide corrosive environment and a method for producing the same, and in particular, production of a 350 to 550 MPa class thick steel plate having both a sour resistance performance and a low yield ratio. Is possible and is extremely effective in the industry.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel of this invention is demonstrated. In addition, all component% means the mass%.

C:0.03%以上0.08%未満
Cは、焼入処理時の焼入性を高め母材強度を高めるのに最も有効な元素である。Cが0.03%未満では十分な強度を確保できず、0.08%以上では第2相組織の分率や硬さが上昇しHIC性能が劣化する。また、HAZ硬さも上昇するため、C量は0.03%以上0.08%未満の範囲とする。好ましくは、0.03%以上0.05%未満の範囲である。
C: 0.03% or more and less than 0.08% C is the most effective element for increasing the hardenability during the quenching process and increasing the strength of the base material. If C is less than 0.03%, sufficient strength cannot be ensured, and if it is 0.08% or more, the fraction and hardness of the second phase structure increase and the HIC performance deteriorates. Further, since the HAZ hardness also increases, the C content is set to a range of 0.03% or more and less than 0.08%. Preferably, it is 0.03% or more and less than 0.05% of range.

Si:0.5%以下
Siは脱酸のために添加するがSi量が0.5%を超えて添加すると靱性や溶接性が劣化するため、Si量は0.5%以下とする。好ましくは0.3%以下である。
Si: 0.5% or less Si is added for deoxidation, but if the Si content exceeds 0.5%, toughness and weldability deteriorate, so the Si content is 0.5% or less. Preferably it is 0.3% or less.

Mn:0.5〜1.5%
Mnは母材の強度、靱性の向上のために添加するが、0.5%未満では効果が十分でなく、1.5%を超えて添加すると中央偏析部の硬さの上昇やMnSの生成に起因してHIC性能が劣化するためよりMn量は0.5〜1.5%の範囲とする。好ましくは、1.0〜1.4%の範囲である。
Mn: 0.5 to 1.5%
Mn is added to improve the strength and toughness of the base metal. However, if less than 0.5%, the effect is not sufficient, and if added over 1.5%, the hardness of the central segregation part increases and MnS is generated. Because of this, the HIC performance deteriorates, so the Mn content is made 0.5 to 1.5%. Preferably, it is 1.0 to 1.4% in range.

P:0.010%以下
Pは不可避的不純物であり、中心偏析部の硬さを顕著に上昇させ、その結果HIC性能を劣化させる。この傾向は0.010%を超えると顕著になるため、P量は0.010%以下とする。好ましくは、0.008%以下である。
P: 0.010% or less P is an unavoidable impurity and remarkably increases the hardness of the central segregation part, and as a result, deteriorates the HIC performance. Since this tendency becomes remarkable when it exceeds 0.010%, the amount of P is made 0.010% or less. Preferably, it is 0.008% or less.

S:0.0030%以下
Sは鋼中においては一般にMnS系介在物となるが、Ca添加によりMnSから球状のCa(O、S)系介在物に形態制御される。しかしながら、S量が多いとCa(O、S)系介在物の総量が増加し、HIC割れの起点となるため、S量は0.0030%以下とする。好ましくは、0.0010%以下である。
S: 0.0030% or less S is generally an MnS inclusion in steel, but the form is controlled from MnS to a spherical Ca (O, S) inclusion by addition of Ca. However, if the amount of S is large, the total amount of Ca (O, S) inclusions increases and becomes the starting point of HIC cracking, so the amount of S is made 0.0030% or less. Preferably, it is 0.0010% or less.

Al:0.005〜0.050%
Alは脱酸剤として添加され、酸化物を固定するために0.005%以上の含有を必要とするが、0.050%を超えると清浄度が低下して延性が低下するためAl量は、0.005〜0.050%の範囲とする。
Al: 0.005 to 0.050%
Al is added as a deoxidizer and needs to contain 0.005% or more in order to fix the oxide. However, if it exceeds 0.050%, the cleanliness decreases and the ductility decreases. , 0.005 to 0.050% of range.

Ti:0.005〜0.025%
TiはTiNを形成して焼入前の加熱保持中のγ粒の粗大化を抑制して、母材靱性を確保するために必須の元素である。また、TiNは高温でも安定であるため溶接を行った際に形成されるCGHAZを微細化し、靱性の向上とHAZ硬さの低減が実現される。これらの効果を得るためには、0.005%以上の添加が必要であるが、0.025%超える添加によりTiNが粗大化しピンニング力が飽和し、また、熱間加工やSRなどの処理中にTiCとして析出し靱性を劣化させるため、Ti量は0.005〜0.025%の範囲とする。好ましくは、0.005〜0.015%の範囲である。
Ti: 0.005-0.025%
Ti is an essential element for forming TiN and suppressing coarsening of γ grains during heating and holding before quenching to ensure the toughness of the base material. Further, since TiN is stable even at high temperatures, CGHAZ formed when welding is refined to improve toughness and reduce HAZ hardness. In order to obtain these effects, addition of 0.005% or more is necessary, but addition of 0.025% causes TiN to become coarse and the pinning force is saturated, and during hot working and SR processing. Therefore, the Ti content is in the range of 0.005 to 0.025%. Preferably, it is 0.005 to 0.015% of range.

B:0.0003%以下
Bは耐SSC性に有害な元素であり、本発明においてはBの混入を極力抑えるため製鋼原料を吟味して、0.0003%以下とする。
B: 0.0003% or less B is an element harmful to the SSC resistance. In the present invention, in order to suppress the mixing of B as much as possible, the steelmaking raw materials are examined and the content is made 0.0003% or less.

Ca:0.0005〜0.0050%
Caは酸硫化物系介在物の形態を制御して、延性の改善と耐HIC性能の向上に有効な元素であるが、0.0005%未満ではその効果は小さく、0.0050%を越える添加ではCaクラスタの生成によりHIC割れの発生起点や変形時の延性き裂の発生起点となるため、Ca量は0.0005〜0.0050%の範囲とする。
Ca: 0.0005 to 0.0050%
Ca is an element effective for controlling ductility and improving HIC resistance by controlling the form of oxysulfide inclusions. However, if it is less than 0.0005%, the effect is small, and the addition exceeds 0.0050%. In this case, since the generation of Ca clusters serves as the starting point of HIC cracking and the starting point of ductile cracks during deformation, the Ca content is in the range of 0.0005 to 0.0050%.

O:0.0030%以下
Oは、AlやCaなどと酸化物を形成し鋼中に不可避的介在物として存在する。Oが0.0030%を超えるほどの酸化物が生成するとHICの割れの発生起点や延性き裂の発生起点となるため、O量は0.0030%以下とする。
O: 0.0030% or less O forms an oxide with Al, Ca, etc., and exists as an inevitable inclusion in the steel. If an oxide with an O content exceeding 0.0030% is generated, it becomes the starting point of cracking of HIC and the starting point of ductile cracks, so the amount of O is made 0.0030% or less.

以上が本発明の基本成分であるが、所望の強度、靭性を得るために以下に示すCu、Ni、Cr、Mo、Nb、Vの中から選ばれる1種または2種以上を含有してもよい。   Although the above is the basic component of the present invention, in order to obtain desired strength and toughness, one or more selected from Cu, Ni, Cr, Mo, Nb, and V shown below may be contained. Good.

Cu:0.5%以下
Cuは、靱性の改善と強度の上昇のために有効な元素であるが、0.5%を超えて添加すると溶接性が劣化するため、Cuを添加する場合は、Cu量は0.5%以下とすることが好ましい。
Cu: 0.5% or less Cu is an effective element for improving toughness and increasing strength. However, when Cu is added in excess of 0.5%, weldability deteriorates. The amount of Cu is preferably 0.5% or less.

Ni:0.5%以下
Niは、靱性の改善と強度の上昇のために有効な元素であるが、0.5%を超えて添加すると溶接性が劣化するため、Niを添加する場合は、Ni量は0.5%以下とすることが好ましい。
Ni: 0.5% or less Ni is an effective element for improving toughness and increasing strength. However, when Ni is added in excess of 0.5%, weldability deteriorates. The amount of Ni is preferably 0.5% or less.

Cr:0.5%以下
Crは焼入性を高め、また焼戻軟化抵抗を向上させるため焼戻後の強度低下を小さくする両方の効果から、焼入焼戻処理鋼の強度確保のために有効な元素であるが、0.5%を超える添加により溶接性が劣化するため、Crを添加する場合は、Cr量は0.5%以下とすることが好ましい。
Cr: 0.5% or less Cr increases the hardenability and improves the resistance to temper softening. In order to secure the strength of the quenched and tempered steel, both reduce the strength drop after tempering. Although it is an effective element, weldability deteriorates when added over 0.5%. Therefore, when Cr is added, the Cr content is preferably 0.5% or less.

Mo:0.5%以下
Moは焼入性を高め、また焼戻軟化抵抗を向上させるため焼戻後の強度低下を小さくする両方の効果があり、その効果はCrよりも大きく、焼入焼戻処理鋼の強度確保のためには最も有効な元素であるが、0.5%を超える添加により溶接性が劣化するため、Moを添加する場合は、Mo量は0.5%以下とすることが好ましい。
Mo: 0.5% or less Mo increases both hardenability and improves temper softening resistance, and thus has both the effects of reducing strength reduction after tempering. Although it is the most effective element for securing the strength of the return-treated steel, the weldability deteriorates due to the addition exceeding 0.5%. Therefore, when adding Mo, the amount of Mo should be 0.5% or less. It is preferable.

Nb:0.10%以下
Nbは焼入性を高める効果及び焼戻処理時のNbCの析出の両方の効果により、強度上昇に有効であるが、0.10%を超える添加により析出脆化を引き起こし靱性が劣化することおよび、HAZ硬さを上昇させることによるSSC性能の劣化を引き起こすため、Nbを添加する場合は、Nb量は0.10%以下とすることが好ましい。
Nb: 0.10% or less Nb is effective in increasing the strength due to both the effect of increasing hardenability and the effect of precipitation of NbC during tempering treatment, but the addition of over 0.10% causes precipitation embrittlement. Therefore, when Nb is added, the Nb content is preferably 0.10% or less in order to cause deterioration in toughness and deterioration in SSC performance by increasing HAZ hardness.

また、Nbは焼入れ温度で析出状態で存在するものは強度上昇へほとんど付与しないため、溶接部靱性を向上させる必要がある場合は、0.010%未満とすることが望ましい。本発明の焼入れ条件ではさらに好ましくは、0.004%以上0.010%未満である。   Further, since Nb present in a precipitated state at the quenching temperature hardly gives an increase in strength, when it is necessary to improve the toughness of the welded portion, Nb is preferably less than 0.010%. More preferably, the quenching condition of the present invention is 0.004% or more and less than 0.010%.

本発明では、さらに、式(1)〜(3)に規定するCeq、PHIC、ACRの範囲を定める。   In the present invention, the ranges of Ceq, PHIC and ACR defined in the formulas (1) to (3) are further defined.

Ceq:0.28以上
Ceqは値が高いほど焼入性が高まり高強度が得られる。本発明で対象とする350〜550MPa級の強度を得るためにCeqは0.28以上とする。
Ceq: 0.28 or higher The higher the value of Ceq, the higher the hardenability and the higher the strength. Ceq is set to 0.28 or more in order to obtain the strength of 350 to 550 MPa class targeted in the present invention.

Figure 0005796369
Figure 0005796369

PHIC:1.00以下
PHICは各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、PHICが高いほど中心偏析部の濃度が高くなり、中心偏析部硬度が上昇する。本発明では焼戻処理を行うことにより中心偏析部硬さの低減を図っているが、PHICが1.00を超えると中心偏析部の硬化に起因したHIC割れが発生するため、PHICは1.00以下とする。
PHIC: 1.00 or less PHIC is an equation devised to estimate the material of the central segregation part from the content of each alloy element. The higher the PHIC, the higher the concentration of the central segregation part, and the central segregation part hardness becomes higher. To rise. In the present invention, the hardness of the center segregation part is reduced by performing the tempering treatment. However, if the PHIC exceeds 1.00, HIC cracking due to the hardening of the center segregation part occurs. 00 or less.

Figure 0005796369
Figure 0005796369

ACR:1.0〜4.0
CaはOとの親和性が高く、まずCaOを生成し、残ったCaがSと結合しCaSを形成する。ACRはこれらの鋼中のOとSとCaの存在形態を表す指標であり、ACRが1.0未満の場合は、Caに対して、OとSが過剰に存在するため、SがMnSとなり1/2tのHIC割れを助長する。一方、4.0を超えると過剰に添加されたCaがクラスタ状になり1/4tのHIC割れを助長する、よって、ACRは1.0〜4.0の範囲とする。好ましくは、1.5〜3.5の範囲である。
ACR: 1.0-4.0
Ca has a high affinity with O. First, CaO is generated, and the remaining Ca binds to S to form CaS. ACR is an index representing the existence form of O, S and Ca in these steels. When ACR is less than 1.0, O and S exist excessively with respect to Ca, so S becomes MnS. Contributes to 1 / 2t HIC cracking. On the other hand, if it exceeds 4.0, excessively added Ca becomes a cluster and promotes HIC cracking of ¼ t. Therefore, ACR is set in the range of 1.0 to 4.0. Preferably, it is the range of 1.5-3.5.

Figure 0005796369
Figure 0005796369

2.組織について
本発明では、厚鋼板の1/2tでの金属組織の体積分率、粒径、アスペクト比を規定する。
2. About structure | tissue In this invention, the volume fraction of a metal structure in 1 / 2t of a thick steel plate, a particle size, and an aspect ratio are prescribed | regulated.

ポリゴナルフェライトおよび擬ポリゴナルフェライトの体積分率:10〜60vol%
降伏比は体積分率が40vol%で最も低くなり、体積分率が60vol%を超えると強度の低下が著しいため上限を60vol%とした。また、10vol%未満になると降伏比の上昇が大きいため、ポリゴナルフェライトおよび擬ポリゴナルフェライトの体積分立は、10〜60vol%の範囲とする。より好ましくは、20〜50vol%の範囲である。
Volume fraction of polygonal ferrite and pseudopolygonal ferrite: 10 to 60 vol%
The yield ratio was lowest when the volume fraction was 40 vol%, and when the volume fraction exceeded 60 vol%, the strength decreased significantly, so the upper limit was set to 60 vol%. In addition, since the yield ratio increases greatly when it is less than 10 vol%, the volume fraction of polygonal ferrite and pseudopolygonal ferrite is set in the range of 10 to 60 vol%. More preferably, it is the range of 20-50 vol%.

ポリゴナルフェライトおよび擬ポリゴナルフェライトの平均粒径:40μm以下
ポリゴナルフェライトおよび擬ポリゴナルフェライトの平均粒径が大きいほど降伏比は低下するが、平均粒径が40μmを超えると靱性が劣化するため、40μm以下以下とする。より好ましくは、25μm以下である。一方、前記平均粒径が細かいほど靱性は向上するが、降伏比の増加はそれほど大きくないため、平均粒径の下限は特に規定しない。
Average grain size of polygonal ferrite and pseudo-polygonal ferrite: 40 μm or less The larger the average grain size of polygonal ferrite and pseudo-polygonal ferrite, the lower the yield ratio. However, if the average grain size exceeds 40 μm, the toughness deteriorates. , 40 μm or less. More preferably, it is 25 μm or less. On the other hand, the finer the average particle size, the better the toughness, but the increase in the yield ratio is not so large, so the lower limit of the average particle size is not particularly specified.

ポリゴナルフェライト、擬ポリゴナルフェライトおよび硬質第2相の平均アスペクト比:2.0以下
ポリゴナルフェライトおよび擬ポリゴナルフェライトは等軸であるほど、HIC割れに対する伝播抵抗が高まるため好ましいが、アスペクト比が2.0を超えると伝播抵抗が弱まりHIC特性が劣化するため、ポリゴナルフェライトおよび擬ポリゴナルフェライトの平均アスペクト比は2.0以下とする。
Polygonal ferrite, pseudopolygonal ferrite, and hard second phase average aspect ratio: 2.0 or less Polygonal ferrite and pseudopolygonal ferrite are more preferable as they are equiaxed because propagation resistance to HIC cracking increases. When the value exceeds 2.0, the propagation resistance becomes weak and the HIC characteristics deteriorate, so the average aspect ratio of polygonal ferrite and pseudopolygonal ferrite is 2.0 or less.

第2相の組織
第2相が硬質であると軟質フェライト(ポリゴナルフェライトおよび擬ポリゴナルフェライト)との硬度(Hv)差に起因したひずみ集中が起こり、降伏比が低下するので、軟質フェライトとの硬度差をつけるには、第2相の組織は焼戻しベイナイトもしくは焼戻しマルテンサイトおよびその混合組織とするのが良い。硬度差が大きいほど降伏比を低減できるからである。一方、焼入れままのベイナイトおよびマルテンサイトは母材靱性を劣化させ、軟質フェライトとの硬度差が大きくなり過ぎてHIC割れの伝播経路となる。よって、第2相の組織は焼戻しベイナイトもしくは焼戻しマルテンサイトおよびその混合組織とする。
Structure of the second phase If the second phase is hard, strain concentration occurs due to the difference in hardness (Hv) from soft ferrite (polygonal ferrite and pseudopolygonal ferrite), and the yield ratio decreases. In order to give a hardness difference of, the structure of the second phase is preferably tempered bainite or tempered martensite and a mixed structure thereof. This is because the yield ratio can be reduced as the hardness difference increases. On the other hand, as-quenched bainite and martensite deteriorate the toughness of the base metal, and the hardness difference from the soft ferrite becomes too large and becomes a propagation path of HIC cracks. Therefore, the structure of the second phase is tempered bainite or tempered martensite and a mixed structure thereof.

ポリゴナルフェライトおよび擬ポリゴナルフェライトと第2相とのの硬度(Hv)差:
20〜100
ポリゴナルフェライトおよび擬ポリゴナルフェライトと第2相との硬度(Hv)差が大きいほど降伏比が低下するが、硬度(Hv)差が大きすぎると母材靱性が劣化し、HIC割れの伝播経路となることでHIC特性が劣化する。硬度(Hv)差が100を超えるとその影響が顕著なため、上限を100とする。一方、硬度(Hv)差が20未満では降伏比が低下しないため、ポリゴナルフェライトおよび擬ポリゴナルフェライトと硬質第2相との硬度(Hv)差を20〜100の範囲とする。より好ましくは、20〜60の範囲である。
Hardness (Hv) difference between polygonal ferrite and pseudo-polygonal ferrite and the second phase:
20-100
The yield ratio decreases as the hardness (Hv) difference between the polygonal ferrite and pseudopolygonal ferrite and the second phase increases, but if the hardness (Hv) difference is too large, the toughness of the base metal deteriorates and the propagation path of the HIC crack As a result, the HIC characteristics deteriorate. When the hardness (Hv) difference exceeds 100, the effect is significant, so the upper limit is set to 100. On the other hand, since the yield ratio does not decrease when the hardness (Hv) difference is less than 20, the hardness (Hv) difference between polygonal ferrite and pseudopolygonal ferrite and the hard second phase is set in the range of 20-100. More preferably, it is the range of 20-60.

3.製造方法について
連続鋳造
本発明で規定したACRは連続鋳造で最適とされる範囲であり、造塊法ではMnSやCaクラスタの生成を適切に抑制できないため、連続鋳造に限定する。
3. Production Method Continuous Casting ACR defined in the present invention is an optimum range for continuous casting. Since the ingot forming method cannot appropriately suppress the formation of MnS and Ca clusters, it is limited to continuous casting.

焼入温度:(Ac+Ac)/2以上Ac点以下
焼入れ温度がAc以上になると未変態のポリゴナルフェライトおよび擬ポリゴナルフェライトが残存せずに、降伏比を低くすることができない。また、焼入れ温度が(Ac+Ac)/2よりも低くなると、逆変態オーステナイトへのCの濃縮が著しくなり、焼入れ時に非常に硬質のマルテンサイトや島状マルテンサイト(MA)が生成してしまい、HICの割れの起点になるため、焼入温度は、(Ac+Ac)/2以上Ac点以下とする。なお、Ac、Ac点はフォーマスタ試験などで求めることが望ましいが、式(4)、式(5)で求めてもさしつかえない。
Quenching temperature: (Ac 1 + Ac 3 ) / 2 or more and Ac 3 points or less When the quenching temperature is Ac 3 or more, untransformed polygonal ferrite and pseudopolygonal ferrite do not remain and the yield ratio cannot be lowered. . In addition, when the quenching temperature is lower than (Ac 1 + Ac 3 ) / 2, the concentration of C into the reverse transformed austenite becomes remarkable, and very hard martensite and island martensite (MA) are generated during quenching. Therefore, the quenching temperature is set to (Ac 1 + Ac 3 ) / 2 or more and Ac 3 points or less in order to become a starting point of HIC cracking. The Ac 1 and Ac 3 points are preferably obtained by a four master test or the like, but may be obtained by the equations (4) and (5).

Figure 0005796369
Figure 0005796369

Figure 0005796369
Figure 0005796369

焼入冷却速度:15℃/s以上80℃/s以下
焼入時の800℃から500℃までの冷却速度は15℃/s以上とする。焼入れ時の冷却速度が速いほど逆変態オーステナイトが再び変態するときに生じる組織が硬質となり高強度化が図れるとともに、降伏比を下げることができる。焼入冷却速度が15℃/s未満の場合、十分な硬度をもつ第2相を得られないため、所望の強度および降伏比が得られず、反対に80℃/sを超えると硬質なマルテンサイトを多量に生成し、HIC割れ起点になり靱性も劣化するため、焼入冷却速度は15℃/s以上80℃/s以下とする。
Quenching cooling rate: 15 ° C./s or more and 80 ° C./s or less The cooling rate from 800 ° C. to 500 ° C. during quenching is 15 ° C./s or more. The faster the quenching cooling rate, the harder the structure produced when the reverse transformed austenite transforms again, and the strength can be increased, and the yield ratio can be lowered. When the quenching cooling rate is less than 15 ° C./s, the second phase having sufficient hardness cannot be obtained, so that the desired strength and yield ratio cannot be obtained. Since a large amount of sites are generated, becoming the starting point of HIC cracking and toughness is deteriorated, the quenching cooling rate is set to 15 ° C./s or more and 80 ° C./s or less.

焼戻温度:550℃以上Ac点以下
焼戻処理を行うことで、中央偏析部の硬さが低下しHIC性能が向上する。また、表層硬さも低減し、SSC特性が向上する。この効果は550℃未満では得られず、また、Ac点を超えると逆変態を起こし、高Cの逆変態組織が靱性を劣化させるため、焼戻温度は550℃以上Ac点以下とする。
Tempering temperature: 550 ° C. or more and Ac 1 point or less By performing the tempering treatment, the hardness of the central segregation part is lowered and the HIC performance is improved. Also, the surface layer hardness is reduced, and the SSC characteristics are improved. This effect cannot be obtained at temperatures lower than 550 ° C., and reverse transformation occurs when Ac exceeds 1 point, and the reverse transformation structure of high C deteriorates toughness. Therefore, the tempering temperature is 550 ° C. or more and Ac 1 point or less. .

表1に示す化学成分の鋼(A〜J)を連続鋳造法によりスラブとし、再加熱して板厚が15〜120mmになるように高温(950℃以上)で熱間圧延して、その後室温まで空冷した。続いて、ショットブラストで表面スケールを除去後、表2に示す条件で焼入焼戻処理を行い、厚鋼板No.1〜No.14を製作した。焼入および焼戻の保持温度は炉の保持温度を、保持時間は、炉温度が目標温度−20℃に達してから炉から厚鋼板を取り出すまでの時間を採用した。焼入時の冷却速度は、厚鋼板No.1を作製する際に、焼入まま(焼戻処理前)の厚鋼板から一部サンプルを採取し、1/2tの硬さと930℃10min保持のCCT線図の硬さを比較することで各板厚毎の冷却速度を推定した。焼戻の冷却は、空冷によって行った。   Steels (A to J) having chemical components shown in Table 1 are made into slabs by a continuous casting method, re-heated and hot-rolled at a high temperature (950 ° C. or higher) so that the plate thickness becomes 15 to 120 mm, and then room temperature. Air-cooled until. Subsequently, after removing the surface scale by shot blasting, a quenching and tempering treatment was performed under the conditions shown in Table 2 to obtain a thick steel plate No. 1-No. 14 was produced. The holding temperature of quenching and tempering was the holding temperature of the furnace, and the holding time was the time from when the furnace temperature reached the target temperature of −20 ° C. until the thick steel plate was taken out from the furnace. The cooling rate at the time of quenching is as follows. 1 is produced, a part sample is taken from a thick steel plate as-quenched (before tempering), and each hardness is compared by comparing the hardness of 1 / 2t with the hardness of a CCT diagram held at 930 ° C. for 10 minutes. The cooling rate for each plate thickness was estimated. The tempering was cooled by air cooling.

また、比較として厚鋼板No.15は、連続鋳造スラブを1150℃に再加熱して、950℃以下50%の圧下圧延を行い、760℃で圧延を終了し、板厚30mmとした後、720℃から400℃まで10℃/sで水冷し、室温まで空冷することによって作製した(TMCPと呼ぶ)。   As a comparison, thick steel plate No. No. 15, reheating the continuous cast slab to 1150 ° C., performing rolling reduction at 950 ° C. or less to 50%, finishing the rolling at 760 ° C., and setting the sheet thickness to 30 mm, and then increasing the sheet thickness from 720 ° C. to 400 ° C. It was prepared by cooling with water and cooling to room temperature (referred to as TMCP).

Figure 0005796369
Figure 0005796369

Figure 0005796369
Figure 0005796369

これらの鋼板について以下に示す方法で特性評価試験およびミクロ組織の定量化を行った。引張試験は、ASTMA370−07aに準拠した直径12.7mmの丸棒引張試験片を1/2t位置で圧延直角方向から採取して行った。板厚が12.7mmに満たないものは、6.4mmΦの丸棒引張試験片を用いた。のこのとき、引張強度が415MPa(A516−Gr.60の下限値相当)を超えるものおよび降伏比(0.5%降伏応力/引張強さ×100)が85%以下のものを合格とした。     These steel plates were subjected to characteristic evaluation tests and microstructure quantification by the following methods. The tensile test was performed by collecting a round bar tensile test piece having a diameter of 12.7 mm in accordance with ASTMA370-07a from the direction perpendicular to the rolling at the 1 / 2t position. When the plate thickness was less than 12.7 mm, a 6.4 mmφ round bar tensile test piece was used. At this time, those having a tensile strength exceeding 415 MPa (corresponding to the lower limit of A516-Gr.60) and those having a yield ratio (0.5% yield stress / tensile strength × 100) of 85% or less were regarded as acceptable.

シャルピー試験は、1/2t位置で圧延直角方向から採取した2mmV切欠き試験片を−50℃で各3本試験しその平均値を用い、27J以上を合格とした。   In the Charpy test, three 2 mm V notch specimens taken from the direction perpendicular to the rolling at the 1/2 t position were tested at −50 ° C., and the average value was used.

HIC特性は、NACE Standard TM0284−2003に基づいて、各3個のサンプルを採取して、pHが約3の硫化水素を飽和させた5%NaCl+0.5%CHCOOH水溶液中に試験片を96時間浸漬した後、超音波探傷により試験片全面の割れの有無を調査し、割れ面積率(CLR)で評価した。ここで、それぞれの鋼板の最大値をその鋼板のCLRとしてCLR≦6%を合格とした。 Based on NACE Standard TM0284-2003, the HIC characteristics were determined by taking three samples each and placing 96 specimens in a 5% NaCl + 0.5% CH 3 COOH aqueous solution saturated with hydrogen sulfide having a pH of about 3. After immersion for a period of time, the presence or absence of cracks on the entire surface of the test piece was investigated by ultrasonic flaw detection, and evaluated by the crack area ratio (CLR). Here, the maximum value of each steel plate was set as CLR of the steel plate, and CLR ≦ 6% was regarded as acceptable.

SSC特性は、NACE Standard TM0177に基づいて、各2個の丸棒引張型サンプルを採取して、負荷応力を母材の80%かけて、pHが約3の硫化水素を飽和させた5%NaCl+0.5%CHCOOH水溶液中に試験片を720時間浸漬して破断するか否か評価した。このとき2本とも破断しなかった場合は、No cack、1本でも破断した場合は、Crackと評価した。 Based on NACE Standard TM0177, the SSC characteristics were obtained by taking two round bar tensile samples, applying a load stress of 80% of the base material, and saturating hydrogen sulfide having a pH of about 3 with 5% NaCl + 0. It was evaluated whether or not the test piece was immersed in a 5% CH 3 COOH aqueous solution for 720 hours to break. At this time, when neither of them was broken, it was evaluated as “No crack”, and when even one piece was broken, it was evaluated as “Crac”.

ミクロ組織の体積分率およびアスペクトはそれぞれの厚鋼板の1/2t位置から採取したL面観察サンプルを鏡面研磨後、3%ナイタールエッチングして、光学顕微鏡で400倍の写真を3枚撮影して、画像解析を行うことで求めた。このとき、ポリゴナルフェライトおよび擬ポリゴナルフェライトの体積分率は、面積率が体積率と同じと仮定して、全視野と当該組織部との比をとることで求めた。   The volume fraction and aspect of the microstructure were mirror-polished from an L-plane observation sample taken from the 1 / 2t position of each thick steel plate, 3% nital etched, and three 400x photographs were taken with an optical microscope. And obtained by performing image analysis. At this time, the volume fractions of polygonal ferrite and pseudo-polygonal ferrite were determined by taking the ratio between the entire visual field and the tissue part, assuming that the area ratio was the same as the volume ratio.

また、ポリゴナルフェライトおよび擬ポリゴナルフェライトの平均粒径は各結晶粒の円相当径の平均値を、アスペクト比は各結晶粒の長辺/短辺の平均値を採用した。ポリゴナルフェライトおよび擬ポリゴナルフェライトと第2相との硬さの差は、マイクロビッカースで組織中央を10gで各20点ずつ測定し、その平均値を用いた。   Further, the average grain diameter of polygonal ferrite and pseudopolygonal ferrite is the average value of the equivalent circle diameter of each crystal grain, and the aspect ratio is the average value of the long side / short side of each crystal grain. The difference in hardness between the polygonal ferrite and pseudo-polygonal ferrite and the second phase was measured by 20 points each at 10 g in the center of the structure with micro Vickers, and the average value was used.

表3に得られた試験結果を示す。   Table 3 shows the test results obtained.

Figure 0005796369
Figure 0005796369

厚鋼板No.1〜6はいずれも本発明の成分範囲、組織形態範囲、製造方法範囲を満たすため、所望の強度、靱性、耐HICおよび耐SSC特性が得られている。一方、厚鋼板No.7〜No.16は比較例で本発明の範囲外であるため、強度、靭性等のいずれかの特性を満たしていない。No.7は、焼入保持温度が高いため軟質フェライトが得られず、降伏比が高い。No.8は、焼入れ温度が低いために、フェライト分率が多すぎることによりフェライト中に硬質第2相が分散する組織形態となりHIC特性が劣化している。No.9は、焼入れ冷却速度が遅く、硬質第2相の硬さが低いため、所望の強度が得られていない。No.10は、焼戻しを行っていないため、第2相との硬さ差が大きく、HICで割れが発生している。No.11は、MnおよびPHICが上限を超えているため、HICで多くの割れがみられる。No.12は、ACRが低いため、HICで多くの割れがみられる。No.13は、Cが上限を超えているため、HICで多くの割れがみられ、SSCでも割れが発生している。No.14は、Tiが添加されていないため、フェライト粒が粗大化し靱性が劣化している。No.15は、Bが添加されているため、SSCで割れが発生している。No.16は、TMPCで製造されており、軟質フェライトおよび第2相のアスペクト比が大きいため、HICで割れが多くみられる。   Thick steel plate No. Since all of Nos. 1 to 6 satisfy the component range, structure form range, and production method range of the present invention, desired strength, toughness, HIC resistance and SSC resistance are obtained. On the other hand, thick steel plate No. 7-No. Since 16 is a comparative example and is outside the scope of the present invention, it does not satisfy any characteristics such as strength and toughness. No. No. 7 has a high quenching holding temperature, so that soft ferrite cannot be obtained and the yield ratio is high. No. In No. 8, the quenching temperature is low, so that the ferrite fraction is too high, and thus the hard second phase is dispersed in the ferrite and the HIC characteristics are deteriorated. No. No. 9 has a low quenching cooling rate and the hardness of the hard second phase is low, so that the desired strength is not obtained. No. Since No. 10 has not been tempered, the hardness difference from the second phase is large, and cracking occurs in HIC. No. In No. 11, since Mn and PHIC exceed the upper limit, many cracks are observed in HIC. No. Since No. 12 has a low ACR, many cracks are observed in the HIC. No. In No. 13, since C exceeds the upper limit, many cracks are observed in HIC, and cracks are also generated in SSC. No. No. 14 has no addition of Ti, so the ferrite grains are coarsened and the toughness is deteriorated. No. No. 15 is cracked by SSC because B is added. No. No. 16 is manufactured by TMPC and has a large aspect ratio of soft ferrite and second phase, so that many cracks are observed in HIC.

Claims (2)

質量%で、C:0.03%以上0.08%未満、Si:0.5%以下、Mn:0.5〜1.5%、P:0.010%以下、S:0.0030%以下、Al:0.005〜0.050%、Ti:0.005〜0.025%、B:0.0003%以下、Ca:0.0005〜0.0050%、O:0.0030%以下を含有し、さらにCu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.10%以下、V:0.10%以下の中から選ばれる1種または2種以上を含有し、式(1)で規定されるCeqを0.28以上、式(2)で規定されるPHICを1.00以下、式(3)で規定されるACRを1.0〜4.0とし、残部Feおよび不可避的不純物からなる厚鋼板であり、板厚tの1/2t位置である板厚中央部の組織が平均アスペクト比2.0以下、平均粒径40μm以下のポリゴナルフェライトおよび擬ポリゴナルフェライトを含む軟質フェライトを10〜60vol%含む組織で、硬質第2相との硬度(Hv)差が20〜100であることを特徴とする耐サワー性能に優れた調質型低降伏比厚鋼板。
Figure 0005796369
Figure 0005796369
Figure 0005796369
By mass%, C: less than 0.03% or more 0.08%, Si: 0.5% or less, Mn: 0.5~1.5%, P: 0.010% or less, S: 0.0030% Hereinafter, Al: 0.005 to 0.050%, Ti: 0.005 to 0.025%, B: 0.0003% or less, Ca: 0.0005 to 0.0050%, O: 0.0030% or less Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.10% or less, V: 0.10 % Or less, Ceq defined by Formula (1) is 0.28 or more, PHIC defined by Formula (2) is 1.00 or less, Formula (3 ) Is defined as 1.0 to 4.0, a thick steel plate made of the remaining Fe and unavoidable impurities, and a plate thickness at a position 1 / 2t of the plate thickness t The structure of the central part contains 10-60 vol% of soft ferrite containing polygonal ferrite and pseudopolygonal ferrite having an average aspect ratio of 2.0 or less and an average particle diameter of 40 μm or less, and hardness (Hv) with the hard second phase A tempered low-yield specific thickness steel plate excellent in sour resistance, characterized in that the difference is 20 to 100.
Figure 0005796369
Figure 0005796369
Figure 0005796369
請求項1に記載の調質型低降伏比厚鋼板の製造方法であり、連続鋳造鋳片を再加熱し熱間圧延した後、室温から(Ac+Ac)/2以上Ac点以下の温度まで加熱、保持した後、800〜500℃の冷却速度を15℃/s以上80℃/s以下で水冷し、再び室温から550℃以上Ac点以下の温度に再加熱、保持した後に空冷することを特徴とする耐サワー性能に優れた調質型低降伏比厚鋼板の製造方法。 A method for producing a tempered type low yield ratio steel plate according to claim 1, after the reheating and hot rolling the continuous cast slab, from room temperature (Ac 1 + Ac 3) / 2 or more Ac following three After heating and holding to temperature, cooling at 800 to 500 ° C. with water at a cooling rate of 15 ° C./s to 80 ° C./s, reheating from room temperature to a temperature of 550 ° C. to Ac 1 point, and then air cooling A method for producing a tempered low-yield-thickness steel sheet having excellent sour resistance, characterized by
JP2011139386A 2011-06-23 2011-06-23 Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof Active JP5796369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139386A JP5796369B2 (en) 2011-06-23 2011-06-23 Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139386A JP5796369B2 (en) 2011-06-23 2011-06-23 Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013007080A JP2013007080A (en) 2013-01-10
JP5796369B2 true JP5796369B2 (en) 2015-10-21

Family

ID=47674667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139386A Active JP5796369B2 (en) 2011-06-23 2011-06-23 Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5796369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015023632B1 (en) * 2013-04-04 2020-04-28 Jfe Steel Corp hot rolled steel sheet and method for producing it
CN103898405B (en) * 2014-03-20 2016-07-13 济钢集团有限公司 A kind of 780MPa rank molybdenum boron high strength structure steel plate and manufacture method thereof
KR102020415B1 (en) 2017-12-24 2019-09-10 주식회사 포스코 High strength steel sheet having excellent low yield ratio property, and manufacturing method for the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112722A (en) * 1985-11-13 1987-05-23 Nippon Steel Corp Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking
JP2655911B2 (en) * 1989-04-07 1997-09-24 川崎製鉄株式会社 Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance
JP5098256B2 (en) * 2006-08-30 2012-12-12 Jfeスチール株式会社 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP5176591B2 (en) * 2008-02-26 2013-04-03 Jfeスチール株式会社 Welded steel pipe with excellent weld heat-affected zone toughness
JP5216530B2 (en) * 2008-10-29 2013-06-19 株式会社神戸製鋼所 Thick steel plate with excellent brittle crack propagation stop properties
JP5418251B2 (en) * 2009-01-30 2014-02-19 Jfeスチール株式会社 Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance

Also Published As

Publication number Publication date
JP2013007080A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5853456B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
US8216400B2 (en) High-strength steel plate and producing method therefor
JP6418358B1 (en) High Mn steel sheet and method for producing the same
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
WO2012133910A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JP5278188B2 (en) Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
WO2012133911A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JPWO2010055609A1 (en) High strength thick steel plate and manufacturing method thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
KR101811159B1 (en) Steel member and process for producing same
JP2019081930A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP5796369B2 (en) Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
WO2017077967A1 (en) Steel member and steel plate, and production processes therefor
JP6210112B2 (en) High strength steel material with excellent fatigue characteristics and method for producing the same
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP5796368B2 (en) Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JPWO2015022729A1 (en) steel sheet
JP2012036499A (en) High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP5870525B2 (en) High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250