JP5793957B2 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
JP5793957B2
JP5793957B2 JP2011114426A JP2011114426A JP5793957B2 JP 5793957 B2 JP5793957 B2 JP 5793957B2 JP 2011114426 A JP2011114426 A JP 2011114426A JP 2011114426 A JP2011114426 A JP 2011114426A JP 5793957 B2 JP5793957 B2 JP 5793957B2
Authority
JP
Japan
Prior art keywords
internal pressure
secondary battery
battery
control device
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011114426A
Other languages
Japanese (ja)
Other versions
JP2012243660A (en
Inventor
聖也 石倉
聖也 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011114426A priority Critical patent/JP5793957B2/en
Publication of JP2012243660A publication Critical patent/JP2012243660A/en
Application granted granted Critical
Publication of JP5793957B2 publication Critical patent/JP5793957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電動車両制御装置に関し、特に電動車両に駆動電源を提供する二次電池の異常に対応する制御のためのシステムに関する。   The present invention relates to an electric vehicle control apparatus, and more particularly to a system for control corresponding to an abnormality of a secondary battery that provides a drive power source to an electric vehicle.

リチウム二次電池等の二次電池は、短絡等の異常により発熱すると、その熱によって内部の電解液が気化し、その結果電池の内圧が上昇する。電池内圧が限度を超えて上昇することを防止するために、リチウム二次電池には安全弁が設けられている。内圧がある程度以上高くなると、安全弁が開状態となることで電池内部のガスが安全弁から外に放出され、電池内部の圧力が開放される。   When a secondary battery such as a lithium secondary battery generates heat due to an abnormality such as a short circuit, the internal electrolyte is vaporized by the heat, and as a result, the internal pressure of the battery increases. In order to prevent the internal pressure of the battery from rising beyond the limit, a safety valve is provided in the lithium secondary battery. When the internal pressure becomes higher than a certain level, the gas inside the battery is released from the safety valve by opening the safety valve, and the pressure inside the battery is released.

特許文献1には、リチウム二次電池の安全弁の内側空間に圧力センサを備え、その圧力センサの出力信号を表示したり、その信号を基準値と比較することで容器の内圧異常を検知したりする装置が開示されている(第1の実施の形態)。リチウム二次電池の容器に貼付された歪みゲージより、容器の内圧に応じた容器の歪みを検出し、歪みの検出値を表示したり、その検出値を基準値と比較することで容器の内圧異常を検知したりする装置が開示されている(第2の実施の形態)。また、複数のリチウム二次電池を収容するフレームに歪みゲージ又は荷重計を備え、その歪みゲージ又は荷重計の出力に基づき、それら二次電池群の内圧異常を検知する装置が開示されている(第3及び第5の実施形態)。   Patent Document 1 includes a pressure sensor in the inner space of a safety valve of a lithium secondary battery, displays an output signal of the pressure sensor, or detects an abnormal internal pressure of the container by comparing the signal with a reference value. An apparatus is disclosed (first embodiment). By detecting the strain of the container according to the internal pressure of the container from the strain gauge attached to the container of the lithium secondary battery, displaying the detected value of the strain, or comparing the detected value with the reference value, the internal pressure of the container An apparatus for detecting an abnormality is disclosed (second embodiment). Further, a device is disclosed that includes a strain gauge or a load meter in a frame that accommodates a plurality of lithium secondary batteries, and detects an abnormal internal pressure of the secondary battery group based on the output of the strain gauge or load meter ( Third and fifth embodiments).

特許文献2には、二次電池を収容する筐体の内壁と二次電池との間に、圧力を検出するための膨れ検出部を備え、その膨れ検出部が検出した圧力を基準値と比較することで、二次電池の異常の有無を判定する装置が開示されている。   Patent Document 2 includes a bulge detection unit for detecting pressure between an inner wall of a housing for housing a secondary battery and the secondary battery, and compares the pressure detected by the bulge detection unit with a reference value. Thus, an apparatus for determining the presence or absence of abnormality of the secondary battery is disclosed.

特開2002−289265号公報JP 2002-289265 A 特開2009−076265号公報JP 2009-076265 A

二次電池の安全弁は、弁自体の機械的機構により、電池内圧がある値を超えると自動的に開く。安全弁が開く事態になると、二次電池から電源供給を受けて駆動される電動車両に対してもそれに応じた制御を行うことが望まれる。そこで、電池ユニット内にガス検知センサを設け、そのガス検知センサが電池内からの放出ガスを検出することで、安全弁が開いたことを検知することも考えられる。しかし、ガス検知センサによる検知は開弁から検知までの時間遅れが大きく、またガス検知センサの設置コストを要する。   The safety valve of the secondary battery is automatically opened by the mechanical mechanism of the valve itself when the battery internal pressure exceeds a certain value. When the safety valve is opened, it is desired to perform control corresponding to the electric vehicle driven by receiving power supply from the secondary battery. Therefore, it is conceivable that a gas detection sensor is provided in the battery unit, and the gas detection sensor detects the gas released from the battery, thereby detecting that the safety valve is opened. However, the detection by the gas detection sensor has a large time delay from the opening of the valve to the detection, and requires the installation cost of the gas detection sensor.

また、上述の従来技術は、いずれも安全弁の開放検知については何ら配慮していない。   In addition, none of the above-described conventional techniques considers the safety valve opening detection.

本発明は、二次電池に設けられた安全弁の開放を素早く検知するための仕組みを提供することを目的とする。   An object of the present invention is to provide a mechanism for quickly detecting the opening of a safety valve provided in a secondary battery.

1つの側面では、本発明は、内圧を解放するための安全弁を備えた二次電池からの電力により駆動される電動車両を制御するための電動車両制御装置であって、前記二次電池の内圧を直接的又は間接的に測定するセンサと、前記センサが測定した前記二次電池の内圧が、通常時の前記二次電池の内圧よりも高く設定された内圧異常判定閾値を超えた後、前記内圧異常判定閾値よりも低く設定された開弁判定閾値を下回った場合に、前記安全弁が開いたと判定し、前記センサが測定した前記二次電池の内圧が、前記内圧異常判定閾値を超えたことがないにもかかわらず前記開弁判定閾値を下回った場合には、前記安全弁が開いたこと以外の異常が発生したと判定する内圧状態判定手段と、を備える電動車両制御装置を提供する。 In one aspect, the present invention is an electric vehicle control device for controlling an electric vehicle driven by electric power from a secondary battery provided with a safety valve for releasing internal pressure, the internal pressure of the secondary battery The internal pressure of the secondary battery measured by the sensor directly or indirectly exceeds the internal pressure abnormality determination threshold set higher than the internal pressure of the secondary battery at normal time, When it falls below the valve opening determination threshold set lower than the internal pressure abnormality determination threshold, it is determined that the safety valve has opened, and the internal pressure of the secondary battery measured by the sensor exceeds the internal pressure abnormality determination threshold it is the case of below the no despite the opening determination threshold, the abnormality other than that the safety valve is open to provide an electric vehicle control device and a pressure state determining means determines that occurred.

参考例は、内圧を解放するための安全弁を備えた二次電池からの電力により駆動される車両駆動用モータを備えた電動車両を制御するための電動車両制御装置であって、前記二次電池の内圧を直接的又は間接的に測定するセンサと、前記センサが測定した前記二次電池の内圧が、前記安全弁が閉じている通常時の前記二次電池の内圧よりも低く設定された開弁判定閾値を下回った場合に、前記安全弁が開いたと判定する内圧状態判定手段と、を備える電動車両制御装置を提供する。 A reference example is an electric vehicle control device for controlling an electric vehicle provided with a vehicle drive motor driven by electric power from a secondary battery provided with a safety valve for releasing internal pressure, wherein the secondary battery A sensor for directly or indirectly measuring the internal pressure of the secondary battery, and the internal pressure of the secondary battery measured by the sensor is set lower than the internal pressure of the secondary battery during normal operation when the safety valve is closed An electric vehicle control device comprising: an internal pressure state determination unit that determines that the safety valve is opened when a determination threshold value is not reached.

1つの態様では、電動車両制御装置は、前記センサが測定した前記二次電池の内圧が、前記内圧異常判定閾値を超えている間、前記二次電池への充電を停止しつつも、前記二次電池から所定の負荷に電力供給が行われるよう制御を行うことで、前記二次電池に蓄積された電気エネルギーが放出されるようにする電池制御手段、を更に備える。   In one aspect, the electric vehicle control device stops charging the secondary battery while the internal pressure of the secondary battery measured by the sensor exceeds the internal pressure abnormality determination threshold value. Battery control means is further provided for controlling the power supply from the secondary battery to a predetermined load so that the electrical energy stored in the secondary battery is released.

更なる態様では、前記所定の負荷は、前記車両駆動用モータである。   In a further aspect, the predetermined load is the vehicle drive motor.

更なる態様では、前記電池制御手段は、前記安全弁が開いたと前記内圧状態判定手段が判定した場合、前記二次電池への充電の停止に加え、前記二次電池から前記車両駆動用モータへの電力供給も停止する。   In a further aspect, when the internal pressure state determination unit determines that the safety valve is opened, the battery control unit is configured to stop charging the secondary battery, and from the secondary battery to the vehicle driving motor. Power supply is also stopped.

1つの態様では、前記所定の負荷として、前記二次電池からの電力を消費するための外部抵抗を負荷したことを特徴とする請求項3に記載の電動車両制御装置。   4. The electric vehicle control device according to claim 3, wherein an external resistor for consuming electric power from the secondary battery is loaded as the predetermined load.

本発明によれば、二次電池の内圧を直接的又は間接的に測定するセンサの測定値を用いて安全弁が開いたかどうかを判定するので、素早い判定を行うことができる。   According to the present invention, since it is determined whether or not the safety valve has been opened using the measured value of the sensor that directly or indirectly measures the internal pressure of the secondary battery, a quick determination can be made.

実施の形態の制御が適用されるハイブリッド車両の模式的なシステム構成の例を示す図である。It is a figure showing an example of a typical system configuration of a hybrid vehicle to which control of an embodiment is applied. 異常時の二次電池の内圧の時間変化パターンを説明するための図である。It is a figure for demonstrating the time change pattern of the internal pressure of the secondary battery at the time of abnormality. 実施の形態における二次電池の内圧測定値に応じた制御の手順の一例を示す図である。It is a figure which shows an example of the procedure of the control according to the internal pressure measured value of the secondary battery in embodiment. 実施の形態における二次電池の内圧測定値に応じた制御の手順の別の一例を示す図である。It is a figure which shows another example of the procedure of control according to the internal pressure measured value of the secondary battery in embodiment.

まず、この発明の実施の形態の制御方式が適用されるハイブリッド車両のシステム構成の一例を、図1を参照して説明する。   First, an example of a system configuration of a hybrid vehicle to which the control method of the embodiment of the present invention is applied will be described with reference to FIG.

図1のシステムでは、電池ユニット10から出力される電力を、インバータ12により三相交流に変換し、車輪を駆動するモータ/ジェネレータ(M/G)14にこの三相交流を供給する。また、ガソリンエンジン等のエンジン(内燃機関)15による走行時や、下り坂走行時又は減速時等にM/G14が発電した電力を、インバータ12により直流電力に変換し、この直流電力を電池ユニット10に充電する。   In the system of FIG. 1, the electric power output from the battery unit 10 is converted into a three-phase alternating current by an inverter 12, and this three-phase alternating current is supplied to a motor / generator (M / G) 14 that drives a wheel. Further, the electric power generated by the M / G 14 during traveling by an engine (internal combustion engine) 15 such as a gasoline engine, when traveling downhill or during deceleration, etc. is converted into direct current power by an inverter 12, and this direct current power is converted into a battery unit. Charge to 10.

図1は概略説明のための模式的な図なので、モータ(電動機)又はジェネレータ(発電機)を1つ(M/G14)しか示さなかったが、例えばシリーズハイブリッド方式やシリーズパラレルハイブリッド方式等のように、モータ又はジェネレータが2つ以上設けられていてもよい。   Since FIG. 1 is a schematic diagram for schematic explanation, only one motor (electric motor) or generator (generator) (M / G14) is shown. For example, a series hybrid system, a series parallel hybrid system, etc. Two or more motors or generators may be provided.

電池ユニット10とインバータ12とを結ぶ正極側及び負極側の配線16B及び16Gの途中には、システムメインリレー18B及び18Gが設けられている。   System main relays 18B and 18G are provided in the middle of the positive and negative wirings 16B and 16G connecting the battery unit 10 and the inverter 12.

図示は省略したが、例えばシステムメインリレー18B及び18Gとインバータ12との間に昇圧コンバータ等の他の回路を設けてもよい。   Although not shown, other circuits such as a boost converter may be provided between the system main relays 18B and 18G and the inverter 12, for example.

電池ユニット10は、リチウム二次電池等の二次電池のセル(単電池)が集積されて構成されている。個々の二次電池セルには、セル内部でのガス発生によるセル内圧の過度の上昇を抑制するために、セル内圧がある設定圧力(開弁圧)になると自動的に開弁する安全弁が設けられている。安全弁が開くと、セル内のガスが放出され、その結果セルの内圧が低下する。これにより、セル内圧の過度の上昇による問題が回避される。   The battery unit 10 is configured by integrating cells (single cells) of secondary batteries such as lithium secondary batteries. Each secondary battery cell is provided with a safety valve that automatically opens when the cell internal pressure reaches a set pressure (valve open pressure) in order to suppress an excessive increase in cell internal pressure due to gas generation inside the cell. It has been. When the safety valve opens, the gas in the cell is released, and as a result, the internal pressure of the cell decreases. Thereby, the problem by the excessive raise of a cell internal pressure is avoided.

電池ユニット10には、二次電池セルの内圧を直接的又は間接的に測定するためのセンサ20が設けられている。センサ20は、個々のセルごとに設けてもよい。この場合、センサ20は、セル内のガス圧を直接検出するためにセル内部に設けられた圧力センサであってもよいし、セルの筐体に装着される歪みゲージ、荷重計、感圧導電性ゴム等のようなものであってもよい。歪みゲージ、荷重計、感圧導電性ゴムは、セル筐体表面の歪みやセル筐体にかかる力を検知するものであるが、そのような歪みや圧力は、内圧上昇によるセルの膨張によって引き起こされるものであり、セル内圧を間接的に表している。   The battery unit 10 is provided with a sensor 20 for directly or indirectly measuring the internal pressure of the secondary battery cell. The sensor 20 may be provided for each individual cell. In this case, the sensor 20 may be a pressure sensor provided in the cell to directly detect the gas pressure in the cell, or may be a strain gauge, a load meter, a pressure-sensitive conductive material attached to the cell casing. It may be something like a rubber. Strain gauges, load cells, and pressure-sensitive conductive rubber detect strain on the cell housing surface and the force applied to the cell housing. Such strain and pressure are caused by cell expansion due to an increase in internal pressure. It indirectly represents the cell internal pressure.

また、複数のセルをまとめて1つの筐体に収容して電池モジュールが形成されている場合に、その電池モジュールに対してセンサ20を設けてもよい。この場合、センサ20としては、歪みゲージ、荷重計、感圧導電性ゴム等を用いることができ、センサ20は、例えば、モジュール筐体の表面に、あるいは、モジュール筐体と筐体内部のセルとの間又は筐体内部のセル同士の間に挟持される形態等で、設ければよい。このように、電池ユニット10が複数の電池モジュールを有する場合には、個々の電池モジュールに対してセンサ20を設ける。また、複数の電池モジュールを1つのケースに収容したりフレームにて結束したりすることで電池ユニット10が構成されている場合に、そのケース又はフレームに対して、あるいはケース又はフレームとモジュールとの間に挟持される形で、あるいはモジュール同士の間で挟持される形で、センサ20を設けてもよい。この場合も、センサ20としては、歪みゲージ、荷重計、感圧導電性ゴム等を用いることができる。これらの構成では、いずれか1以上のセルがガス発生による内圧上昇に応じて膨張した場合、その膨張の影響が上述のように個々の電池モジュール又は電池ユニット10全体に対して設けられたセンサ20により検出される。したがって、センサ20の検出信号は、二次電池の内圧を間接的に計測したものと捉えられる。   In addition, when a battery module is formed by accommodating a plurality of cells in one housing, the sensor 20 may be provided for the battery module. In this case, a strain gauge, a load meter, a pressure-sensitive conductive rubber, or the like can be used as the sensor 20, and the sensor 20 is, for example, on the surface of the module housing or the cell inside the module housing and the housing. Or in the form of being sandwiched between cells inside the housing. Thus, when the battery unit 10 has a plurality of battery modules, the sensor 20 is provided for each battery module. Further, when the battery unit 10 is configured by housing a plurality of battery modules in one case or binding them with a frame, the case or the frame or the case or the frame and the module The sensor 20 may be provided so as to be held between the modules or between the modules. Also in this case, a strain gauge, a load meter, a pressure-sensitive conductive rubber, or the like can be used as the sensor 20. In these configurations, when any one or more cells expand in response to an increase in internal pressure due to gas generation, the influence of the expansion is provided on the individual battery modules or the entire battery unit 10 as described above. Is detected. Therefore, the detection signal of the sensor 20 can be regarded as an indirect measurement of the internal pressure of the secondary battery.

電池監視装置30は、電池ユニット10の状態を監視する装置である。電池監視装置30は、例えば、図示省略した各種センサから入力される各二次電池セルの電圧、電池ユニット10の温度、電池ユニット10の出力電流値等に基づき、電池ユニット10の充電状態を判定する。この充電状態判定結果に応じて、制御装置40がインバータ12や昇圧コンバータ等を制御して、電池ユニット10への充電制御を行う。また、電池監視装置30は、センサ20の検出信号に基づき、二次電池の内圧異常上昇や安全弁の開弁を判定する機能(内圧状態判定部32)を有する。内圧状態判定部32の機能及び処理の詳細は、後で詳しく説明する。内圧状態判定部32は、例えば、電池監視装置30内のプロセッサにより実行されるプログラムとして、又はハードウエアロジック回路として、又はそれらの組合せとして実装される。内圧状態判定部32の判定結果は制御装置40に通知される。制御装置40は、それら判定結果に応じて、ハイブリッドシステムの各部を制御する。   The battery monitoring device 30 is a device that monitors the state of the battery unit 10. The battery monitoring device 30 determines the state of charge of the battery unit 10 based on, for example, the voltage of each secondary battery cell input from various sensors (not shown), the temperature of the battery unit 10, the output current value of the battery unit 10, and the like. To do. In accordance with the charging state determination result, the control device 40 controls the inverter 12, the step-up converter, and the like to control charging to the battery unit 10. Further, the battery monitoring device 30 has a function (internal pressure state determination unit 32) for determining whether the internal pressure of the secondary battery is abnormally increased or the safety valve is opened based on the detection signal of the sensor 20. Details of the function and processing of the internal pressure state determination unit 32 will be described later. The internal pressure state determination unit 32 is implemented, for example, as a program executed by a processor in the battery monitoring device 30, a hardware logic circuit, or a combination thereof. The determination result of the internal pressure state determination unit 32 is notified to the control device 40. The control device 40 controls each part of the hybrid system according to the determination results.

制御装置40は、ハイブリッドシステムの各部、例えば、電池ユニット10,インバータ12,M/G14、エンジン15及びシステムメインリレー18B及び18G等を制御する。制御装置40は、例えばCPU(中央演算装置)等のプロセッサと、そのプロセッサが実行する制御プログラムを記憶したリードオンリーメモリ等の不揮発性記憶媒体を備えている。制御装置40が実行する制御機能は、例えばその制御機能を記述した制御プログラムをプロセッサに実行させることにより実現される。この実施の形態との関連では、制御装置40は、電池監視装置30の内圧状態判定部32から供給される判定結果信号に応じて、ハイブリッドシステムの各部を制御する。この制御の詳細な例については、後で説明する。なお、図1では、制御装置40を1つの装置として表したが、制御装置40は、車内ネットワークなどの通信経路を介して相互に通信可能な複数のハードウエア装置(例えばコンピュータ)の集合体であってもよい。   The control device 40 controls each part of the hybrid system, for example, the battery unit 10, the inverter 12, the M / G 14, the engine 15, and the system main relays 18B and 18G. The control device 40 includes, for example, a processor such as a CPU (Central Processing Unit) and a nonvolatile storage medium such as a read-only memory that stores a control program executed by the processor. The control function executed by the control device 40 is realized, for example, by causing a processor to execute a control program describing the control function. In relation to this embodiment, the control device 40 controls each part of the hybrid system according to the determination result signal supplied from the internal pressure state determination unit 32 of the battery monitoring device 30. A detailed example of this control will be described later. In FIG. 1, the control device 40 is represented as one device, but the control device 40 is an aggregate of a plurality of hardware devices (for example, computers) that can communicate with each other via a communication path such as an in-vehicle network. There may be.

電池異常インジケータ42は、車両のインストルメントパネル等に設けられた表示器の1つであり、電池ユニット10に異常が生じた場合に、その異常を示す表示を行う(例えば点灯により異常発生を示す)。   The battery abnormality indicator 42 is one of the indicators provided on the instrument panel or the like of the vehicle. When an abnormality occurs in the battery unit 10, the battery abnormality indicator 42 displays the abnormality (for example, the abnormality is indicated by lighting). ).

次に、図2を参照して、リチウム二次電池等の二次電池において、過電流や過充電等の異常状態が生じた場合の、二次電池の内圧の時間的変化を説明する。   Next, with reference to FIG. 2, a temporal change in the internal pressure of the secondary battery when an abnormal state such as an overcurrent or overcharge occurs in a secondary battery such as a lithium secondary battery will be described.

図2に示すように、二次電池セルの内圧は、通常(正常)動作時(例えば時刻t1からt2の間)ではほぼ一定に保たれているが、異常状態によりセル内部でガス発生が進むと上昇していく(t2からt4の間)。そして、セル内圧が開弁圧Cに達すると、安全弁が自動的に開く。安全弁の開弁により、セル内部のガスが安全弁から外界へ放出され、その結果セルの内圧が急激に低下する(t4以降)。この場合、例えば、一つの例では、安全弁からガスが放出されることでセルの体積が元の体積よりも小さくなる等の影響により、安全弁開弁後のセルの内圧は、通常時、すなわちセルが通常の使用状態にある時(例えば、短絡、過充電、過放電等が生じていない時、又は安全弁が閉じており且つセル内部でガスが発生していない時)の内圧(「通常時内圧」と呼ぶ)よりも低くなる。例えば、複数の電池モジュールを積層し、その積層物を大きな圧力を掛けた状態で例えばフレーム等で結束することで電池ユニット10を構成する場合、セル(ひいてはモジュール、あるいは電池ユニット10全体)の通常時内圧は、その結束のための圧力に応じた圧力となっているが、ガス発生後に安全弁が開かれると、ガスが放出される結果、セルの内圧はその通常時内圧よりも低くなる。なお、電池ユニット10の構造によっては、安全弁開弁後のセル内圧が通常時内圧より低くならない(例えば通常時内圧程度までしか圧力低下しない)場合もある。   As shown in FIG. 2, the internal pressure of the secondary battery cell is kept substantially constant during normal (normal) operation (for example, between time t1 and t2), but gas generation proceeds inside the cell due to an abnormal state. And rise (between t2 and t4). When the cell internal pressure reaches the valve opening pressure C, the safety valve is automatically opened. By opening the safety valve, the gas inside the cell is released from the safety valve to the outside, and as a result, the internal pressure of the cell rapidly decreases (after t4). In this case, for example, in one example, the internal pressure of the cell after opening the safety valve is normal, that is, the cell due to the effect that the volume of the cell becomes smaller than the original volume due to the gas being released from the safety valve. Is in normal use (for example, when there is no short circuit, overcharge, overdischarge, etc., or when the safety valve is closed and no gas is generated inside the cell) "). For example, when the battery unit 10 is configured by stacking a plurality of battery modules and binding the stack with a frame or the like in a state where a large pressure is applied, a normal cell (and thus a module or the entire battery unit 10) The internal pressure is a pressure corresponding to the pressure for binding, but when the safety valve is opened after the gas is generated, the gas is released, so that the internal pressure of the cell becomes lower than the normal internal pressure. Depending on the structure of the battery unit 10, the cell internal pressure after opening the safety valve may not be lower than the normal internal pressure (for example, the pressure is reduced only to the normal internal pressure).

本実施形態では、図2のような内圧変化の特徴を考慮して、通常時内圧よりも高いある内圧を、内圧異常閾値Bとして定める。本実施の形態では、セル内圧が内圧異常閾値Bを超えると、充電停止や退避モードへの移行などのように、セル内のガス発生状況の悪化を避けつつも車両を安全に停止できるよう車両の制御を行う。このような制御を行っても、セル内圧は上昇し続けていずれ安全弁の開弁へと至ることが多いが、例えば、セル内圧が内圧異常閾値Bに達した時点から開弁圧Cに達するまでに車両を安全な場所に退避させる時間的余裕が確保できるよう内圧異常閾値Bを実験等により定めることが考えられる。例えば、開弁圧C、ガス発生時における退避モードでのセル内圧の上昇速度の実験値、一般的に安全退避に要すると想定される時間の長さ、などから、内圧異常閾値Bを計算してもよい。もちろん、これはあくまで一例に過ぎず、内圧異常閾値Bは、様々な状況を考慮して実験等により定めればよい。   In the present embodiment, an internal pressure that is higher than the normal internal pressure is determined as the internal pressure abnormality threshold B in consideration of the characteristics of the internal pressure change as shown in FIG. In the present embodiment, when the internal pressure of the cell exceeds the abnormal internal pressure threshold B, the vehicle can be safely stopped while avoiding the deterioration of the gas generation state in the cell, such as stopping charging or shifting to the evacuation mode. Control. Even if such control is performed, the cell internal pressure continues to rise and eventually reaches the opening of the safety valve. For example, from the time when the cell internal pressure reaches the internal pressure abnormality threshold B until the valve opening pressure C is reached. It is conceivable that the internal pressure abnormality threshold value B is determined by an experiment or the like so that a time margin for evacuating the vehicle to a safe place can be secured. For example, the internal pressure abnormality threshold value B is calculated from the valve opening pressure C, the experimental value of the rising speed of the cell internal pressure in the evacuation mode at the time of gas generation, the length of time generally required for safe evacuation, etc. May be. Of course, this is merely an example, and the internal pressure abnormality threshold value B may be determined by experiments or the like in consideration of various situations.

また、開弁判定閾値Aは、セル内圧がこの閾値Aを下回った場合に安全弁が開弁したと判定する閾値であり、実験等により実際に安全弁開弁後のセル内圧を調べて、これに応じて定めればよい。図2のように安全弁を開くとセル内圧が通常時内圧(図2のt1−t2間の内圧)よりも低くなる例では、開弁判定閾値Aとして、通常時内圧よりも低い内圧値を設定してもよい。また、開弁後のセル内圧が通常時内圧程度までしか低下しない場合は、通常時内圧よりも少し高い内圧を開弁判定閾値Aとして定めればよい。   Further, the valve opening determination threshold A is a threshold for determining that the safety valve has opened when the cell internal pressure falls below the threshold A, and the cell internal pressure after the safety valve is actually opened is examined by experiments or the like. It may be determined accordingly. In the example where the cell internal pressure is lower than the normal internal pressure (the internal pressure between t1 and t2 in FIG. 2) when the safety valve is opened as shown in FIG. 2, the internal pressure value lower than the normal internal pressure is set as the valve opening determination threshold A. May be. Further, when the cell internal pressure after the valve opening only decreases to about the normal internal pressure, an internal pressure slightly higher than the normal internal pressure may be set as the valve opening determination threshold A.

開弁判定閾値Aは、内圧異常閾値Bよりも低い値である。   The valve opening determination threshold A is a value lower than the internal pressure abnormality threshold B.

以上では、開弁判定閾値A及び内圧異常閾値Bを、「セル」の内圧に関する閾値として説明し例えば歪みゲージや荷重計などといったセンサ20の種類に応じた測定値(歪み量や荷重値など)について上述の開弁判定閾値Aや内圧異常閾値Bを設定するようにしてもよい(もちろん、この逆に歪みゲージ等の測定値をセル内圧に換算し、内圧についての閾値と比較するようにしてもよい)。また、センサ20がモジュール、又は電池ユニット10全体に対して設けられる場合、開弁判定閾値Aや内圧異常閾値Bとしては、モジュールに設けられたセンサ20、又は電池ユニット10全体に対して設けられたセンサ20、の測定値についての閾値として定める。   In the above, the valve opening determination threshold A and the internal pressure abnormality threshold B are described as thresholds related to the internal pressure of the “cell”, and measured values (strain amount, load value, etc.) according to the type of the sensor 20 such as a strain gauge or load meter The above-mentioned valve opening determination threshold A and internal pressure abnormality threshold B may be set for the above (of course, conversely, the measured value of the strain gauge or the like is converted into the cell internal pressure and compared with the internal pressure threshold. May be good). When the sensor 20 is provided for the module or the entire battery unit 10, the valve opening determination threshold A or the internal pressure abnormality threshold B is provided for the sensor 20 or the entire battery unit 10 provided in the module. The threshold value for the measured value of the sensor 20 is determined.

次に、図3を参照して、本実施の形態における電池監視装置30及び制御装置40により実行される処理の手順の一例を説明する。   Next, an example of a procedure of processing executed by the battery monitoring device 30 and the control device 40 in the present embodiment will be described with reference to FIG.

この手順では、電池監視装置30の内圧状態判定部32は、例えば一定の時間間隔ごとに、センサ20が出力する内圧測定値x(すなわち、センサ20が出力する二次電池の内圧に対応した出力値)を取得する(S10)。次に、その内圧測定値を開弁判定閾値A及び内圧異常閾値Bと比較することにより、電池ユニット10の内圧状態を判定する。判定結果は、(1)A≦x≦B,(2)B<x,(3)x<Aの3つに場合分けされる。電池監視装置30は、内圧測定値xがその3つの場合のいずれに該当するかを判定し、その判定結果を制御装置40に通知する。   In this procedure, the internal pressure state determination unit 32 of the battery monitoring device 30 outputs, for example, an internal pressure measurement value x output from the sensor 20 (that is, an output corresponding to the internal pressure of the secondary battery output from the sensor 20 at regular time intervals). Value) is acquired (S10). Next, the internal pressure state of the battery unit 10 is determined by comparing the measured internal pressure value with the valve opening determination threshold value A and the internal pressure abnormality threshold value B. The determination results are divided into three cases: (1) A ≦ x ≦ B, (2) B <x, and (3) x <A. The battery monitoring device 30 determines which of the three cases the internal pressure measurement value x corresponds to, and notifies the control device 40 of the determination result.

ここで、図2の例では、説明の便宜上、内圧測定値xは二次電池の内圧を示している場合の例を代表にとっている。この場合、測定値xの数値が高いほど二次電池の内圧が高い。なお、センサ20の測定する物理量の種類によっては、測定値が高いほど、二次電池の内圧が低くなる場合もあるが、このような場合には、判定における測定値と閾値との大小関係を逆にすればよい。   Here, in the example of FIG. 2, for convenience of explanation, an example in which the measured internal pressure value x indicates the internal pressure of the secondary battery is taken as a representative. In this case, the higher the measured value x, the higher the internal pressure of the secondary battery. Depending on the type of physical quantity measured by the sensor 20, the higher the measured value, the lower the internal pressure of the secondary battery. In such a case, the magnitude relationship between the measured value and the threshold value in the determination is shown. Just reverse.

測定値xがA≦x≦Bを満たす場合、電池ユニット10の内圧は正常状態にあるので、処理は所定の時間間隔の経過後に再びS10に戻る。   When the measured value x satisfies A ≦ x ≦ B, the internal pressure of the battery unit 10 is in a normal state, so the process returns to S10 again after a predetermined time interval has elapsed.

測定値xがB<xを満たす場合、内圧が内圧異常閾値Bを上回っているということであり、電池ユニット10内のいずれか1以上のセル内でガスが発生して内圧が異常上昇している。この場合、制御装置40は、電池異常インジケータ42に電池異常が発生したことを示す表示を行うと共に、インバータ12や昇圧コンバータ(図示省略)などを制御して電池ユニット10への充電を停止し、車両の動作モードを「退避モード」に移行する(S14)。ここで、退避モードは、車両を安全な場所に退避させるための走行を許可するモードであり、エンジン15を停止しつつも、EV走行(モータジェネレータ14のみの駆動力による電気自動車としての走行)は許可する。退避モードでは、ステアリングの操作は許可される。また、退避モードでは、電池ユニット10への負荷の上昇を避けるため等の理由から、加速を禁止してもよい。加速を禁止した場合、アクセルペダルが踏み込まれても、制御装置40は加速のための制御(例えばモータジェネレータ14への供給電力の増大)は行わない。このような制御によれば、電池ユニット10への充電を停止することでガス発生中のセルにおけるガス発生反応をある程度抑制しつつ、EV走行により電池ユニット10内の電気エネルギーを消費することで、電池ユニット10内の残存エネルギーを減らすことができる。   When the measured value x satisfies B <x, it means that the internal pressure exceeds the abnormal internal pressure threshold B, and gas is generated in any one or more cells in the battery unit 10 and the internal pressure increases abnormally. Yes. In this case, the control device 40 displays on the battery abnormality indicator 42 that the battery abnormality has occurred, and controls the inverter 12 and the boost converter (not shown) to stop charging the battery unit 10, The operation mode of the vehicle is shifted to the “evacuation mode” (S14). Here, the evacuation mode is a mode in which traveling for evacuating the vehicle to a safe place is permitted, and EV traveling (running as an electric vehicle by the driving force of only the motor generator 14) while the engine 15 is stopped. Allow. In the retreat mode, the steering operation is permitted. In the evacuation mode, acceleration may be prohibited for reasons such as avoiding an increase in load on the battery unit 10. When acceleration is prohibited, the control device 40 does not perform control for acceleration (for example, increase of power supplied to the motor generator 14) even if the accelerator pedal is depressed. According to such control, the electric energy in the battery unit 10 is consumed by EV traveling while suppressing the gas generation reaction in the gas generating cell to some extent by stopping the charging of the battery unit 10. The residual energy in the battery unit 10 can be reduced.

S14では、制御装置40は、更に、異常フラグを「オン」にセットする。異常フラグは、電池ユニット10に内圧異常閾値Bを超える異常な内圧上昇が生じたことを表すフラグであり、初期値は「オフ」にセットされている。内圧測定値xが一度でも内圧異常閾値Bを超えると、異常フラグは「オン」に設定され、その「オン」状態は、電池ユニット10について適切な処置(例えば交換等)がとられるまで維持される。通常、いったん内圧異常閾値Bを超えた内圧が安全弁を開弁せずに正常範囲(A≦x≦B)内に戻ることはほとんどなく、また一度その閾値Bを超えた電池ユニット10は交換等の処置を行った方がよいので、このように一度「オン」になった異常フラグは「オフ」に戻らないようにし、内圧異常上昇が生じたことを記録している。S14の後、処理は所定の時間間隔の経過後に再びS10に戻る。   In S14, the control device 40 further sets the abnormality flag to “ON”. The abnormality flag is a flag indicating that an abnormal internal pressure increase exceeding the internal pressure abnormality threshold B has occurred in the battery unit 10, and the initial value is set to “off”. When the internal pressure measurement value x exceeds the internal pressure abnormality threshold B even once, the abnormality flag is set to “ON”, and the “ON” state is maintained until an appropriate measure (for example, replacement) is taken for the battery unit 10. The Normally, the internal pressure once exceeding the abnormal internal pressure threshold B rarely returns to the normal range (A ≦ x ≦ B) without opening the safety valve, and the battery unit 10 once exceeded the threshold B is replaced. Therefore, the abnormality flag once turned “ON” is not returned to “OFF”, and the fact that the internal pressure abnormality has risen is recorded. After S14, the process returns to S10 again after a predetermined time interval has elapsed.

S12の判定で、内圧測定値xがx<Aを満たすと判定された場合、制御装置40は、異常フラグの値が「オン」であるか否かを判定し(S16)、「オン」であれば、電池ユニット10の安全弁が開弁したと判断する。すなわち、この実施の形態では、内圧測定値xがいったん内圧異常閾値Bを超えた後、開弁判定閾値Aを下回った場合に、安全弁が開弁したと判定するのである。すなわち、内圧が内圧異常閾値Bを上回ったことで二次電池内部でのガス発生があったことが認められ、その後内圧が開弁判定閾値Aを下回ったことで安全弁が開いてそのガスが外界に放出されたと判断できるのである。この場合、制御装置40は、システムメインリレー(SMR)18B及び18Gをオフしてモータジェネレータ14に電力が供給されないようにし、すぐに車両を停止させる(S18)。すなわち、安全弁が開くような状況では、充電のみならず電池ユニット10の放電も止めることで、更なる安全を期す。そして、S18の安全停止処置を行った後は、車両の再起動(特に電池ユニット10の充放電の再開)を禁止する。運転者は、修理業者等を呼んで、電池ユニット10の交換・修理を依頼する。修理が完了すると、車両は起動可能な状態となる。   When it is determined in S12 that the internal pressure measurement value x satisfies x <A, the control device 40 determines whether or not the value of the abnormality flag is “on” (S16). If there is, it is determined that the safety valve of the battery unit 10 has been opened. That is, in this embodiment, when the internal pressure measurement value x once exceeds the internal pressure abnormality threshold value B and then falls below the valve opening determination threshold value A, it is determined that the safety valve has opened. That is, it is recognized that gas has been generated inside the secondary battery when the internal pressure exceeds the internal pressure abnormal threshold B, and then the safety valve is opened and the gas is discharged to the outside world when the internal pressure falls below the valve opening determination threshold A. It can be judged that it was released. In this case, control device 40 turns off system main relays (SMR) 18B and 18G so that electric power is not supplied to motor generator 14, and immediately stops the vehicle (S18). That is, in a situation where the safety valve is opened, further safety is expected by stopping not only charging but also discharging of the battery unit 10. Then, after the safety stop procedure of S18 is performed, the restart of the vehicle (especially resumption of charging / discharging of the battery unit 10) is prohibited. The driver calls a repair agent or the like to request replacement / repair of the battery unit 10. When the repair is complete, the vehicle is ready to start.

また、x<Aであっても、異常フラグが「オフ」である場合(S16の判定結果がNo)は、ガス発生による安全弁開弁以外の何らかの異常が電池ユニット10又はセンサ20等に生じていることになる。この場合は、例えば、電池ユニット10等の点検を促す安全処置を執る。このような安全処置として、図3の例では、電池異常インジケータ42に電池異常を表示させ、また一例として前述の退避モードに移行して安全な場所への退避を促している。ただし、これは一例に過ぎず、S20の処理は他のものであってもよい。   Even if x <A, if the abnormality flag is “OFF” (the determination result in S16 is No), some abnormality other than the safety valve opening due to gas generation has occurred in the battery unit 10 or the sensor 20 or the like. Will be. In this case, for example, a safety measure that prompts inspection of the battery unit 10 or the like is taken. As such a safety measure, in the example of FIG. 3, battery abnormality is displayed on the battery abnormality indicator 42, and as an example, the above-described retreat mode is entered to prompt retreat to a safe place. However, this is only an example, and the process of S20 may be other.

図3の処理手順では、内圧の異常上昇があったことを示す異常フラグを用いて、内圧異常上昇後の安全弁開弁を判定したが、これは一例に過ぎず、内圧が異常上昇した後の安全弁が開弁したことを判定できる手順であれば、どのような手順を用いてもよい。   In the processing procedure of FIG. 3, the safety valve opening after the abnormal increase of the internal pressure is determined using the abnormal flag indicating that the abnormal increase of the internal pressure has occurred. Any procedure may be used as long as it can be determined that the safety valve has opened.

次に、図4を参照して、本実施の形態における電池監視装置30及び制御装置40により実行される処理の手順の別の例を説明する。図4において、図3に示した手順のステップと同様の処理内容のステップには、同一符号を付す。   Next, with reference to FIG. 4, another example of the procedure of processing executed by the battery monitoring device 30 and the control device 40 in the present embodiment will be described. 4, steps having the same processing contents as the steps in the procedure shown in FIG. 3 are denoted by the same reference numerals.

図4の処理手順は、B<xとなったことを記録する異常フラグを用いず、S14aではS14のうち異常フラグに関する処理以外の処理を行う。そして、S12の判定でx<Aと判定された場合に、いずれかの二次電池セルの安全弁が開弁されたと判定し、S18の安全処置、すなわちSMR18B及び18Gをオフして車両の安全停止処置を行う。ここで開弁判定閾値Aは、通常時のセルの内圧よりも低い値である。   The processing procedure of FIG. 4 does not use the abnormality flag that records that B <x, and performs processing other than the processing related to the abnormality flag in S14 in S14a. If x <A is determined in S12, it is determined that the safety valve of any of the secondary battery cells has been opened, and the safety action of S18, that is, the SMRs 18B and 18G are turned off to safely stop the vehicle. Take action. Here, the valve opening determination threshold A is a value lower than the internal pressure of the cell at the normal time.

このように、図4の例では、内圧異常上昇発生の記録(異常フラグ オン)がなくても、x<Aの場合は完全弁が開いたと判断し、対応する安全処置を行うのである。すなわち、この例では、内圧異常上昇がなくても何らかの理由で安全弁が開いた場合には、大事をとって車両を停止させ、電池ユニット10の充放電を禁止するのである。   Thus, in the example of FIG. 4, even if there is no record of the occurrence of abnormal internal pressure (abnormal flag on), if x <A, it is determined that the complete valve has been opened and the corresponding safety measures are taken. That is, in this example, even if there is no abnormal increase in internal pressure, if the safety valve opens for some reason, the vehicle is stopped precautions and charging / discharging of the battery unit 10 is prohibited.

以上に説明した実施の形態によれば、電池ユニット10の内圧が内圧異常閾値Bを超えた場合に、車両のEV走行を許可することで電池ユニット10の残存エネルギーを消費したが、この代わりに、又はこれに加えて、車両に設けられたモータジェネレータ以外の負荷に電池ユニット10から電力供給を行って残存エネルギーの消費を行わせてもよい。モータジェネレータ以外の負荷としては、例えばブレーキアクチュエータ等の各種アクチュエータがある。また、緊急時の電池ユニット10の残存エネルギーの早急な消費を目的とした外部抵抗を車両に設け、S14ではその外部抵抗に電池ユニット10内の電気を供給してもよい。また、S14の退避モードでは、EV走行中は電池ユニット10から他の負荷への電力供給を行わないことで退避動作のための電力を確保し、退避が完了するなどして車両が停止した場合に、電池ユニット10の残存エネルギーの放出のためにモータジェネレータ以外の負荷への電力供給を行わせるようにしてもよい。   According to the embodiment described above, when the internal pressure of the battery unit 10 exceeds the abnormal internal pressure threshold B, the remaining energy of the battery unit 10 is consumed by allowing the vehicle to travel on EV. Alternatively, in addition to this, the remaining energy may be consumed by supplying power from the battery unit 10 to a load other than the motor generator provided in the vehicle. Examples of loads other than the motor generator include various actuators such as a brake actuator. Further, an external resistor for the purpose of urgently consuming the remaining energy of the battery unit 10 in an emergency may be provided in the vehicle, and in S14, the electricity in the battery unit 10 may be supplied to the external resistor. Further, in the evacuation mode of S14, when the vehicle is stopped due to securing the power for the evacuation operation by not supplying power from the battery unit 10 to the other loads during EV traveling and completing the evacuation. In addition, power may be supplied to a load other than the motor generator in order to release the remaining energy of the battery unit 10.

以上に説明した実施の形態によれば、センサ20を用いることで安全弁の開弁を素早く検知することができる。また、二次電池の内圧異常上昇と安全弁の開弁を、共通のセンサ20の検出値から判定するので、開弁検知のためにガス検知センサを別途設ける構成よりも、コスト低減を図ることができる。また、安全弁が開弁する前の内圧異常上昇をセンサ20により検知し、開弁までに電池ユニット10内の残存エネルギーを消費しつつも車両を安全に退避させるための制御を行うので、安全性が向上する。そして、開弁した後は、車両を停止させて電池ユニット10の放電も禁止するので、より安全性が向上する。   According to the embodiment described above, the opening of the safety valve can be quickly detected by using the sensor 20. Further, the abnormal rise in the internal pressure of the secondary battery and the opening of the safety valve are determined from the detection value of the common sensor 20, so that the cost can be reduced as compared with a configuration in which a gas detection sensor is separately provided for valve opening detection. it can. In addition, an abnormal increase in internal pressure before the safety valve is opened is detected by the sensor 20, and control is performed to safely evacuate the vehicle while consuming residual energy in the battery unit 10 until the valve is opened. Will improve. And after opening a valve, since a vehicle is stopped and discharge of the battery unit 10 is also prohibited, safety | security improves more.

以上では、電池ユニット10としてリチウム二次電池を例示したが、上記実施の形態の方式は、リチウム二次電池以外でも、ガス発生により内圧が上がり、それを安全弁で解放する形式の電池であれば、適用可能である。   In the above, a lithium secondary battery has been exemplified as the battery unit 10. However, the method of the above embodiment is a battery of a type in which the internal pressure rises due to gas generation and is released by a safety valve other than the lithium secondary battery. Applicable.

10 電池ユニット、12 インバータ、14 モータジェネレータ、15 エンジン、16B,16G 配線、18B,18G システムメインリレー、20 センサ、30 電池監視装置、32 内圧状態判定部、40 制御装置、42 電池異常インジケータ。   DESCRIPTION OF SYMBOLS 10 Battery unit, 12 Inverter, 14 Motor generator, 15 Engine, 16B, 16G Wiring, 18B, 18G System main relay, 20 Sensor, 30 Battery monitoring apparatus, 32 Internal pressure state determination part, 40 Control apparatus, 42 Battery abnormality indicator.

Claims (5)

内圧を解放するための安全弁を備えた二次電池からの電力により駆動される電動車両を制御するための電動車両制御装置であって、
前記二次電池の内圧を直接的又は間接的に測定するセンサと、
前記センサが測定した前記二次電池の内圧が、通常時の前記二次電池の内圧よりも高く設定された内圧異常判定閾値を超えた後、前記内圧異常判定閾値よりも低く設定された開弁判定閾値を下回った場合に、前記安全弁が開いたと判定し、前記センサが測定した前記二次電池の内圧が、前記内圧異常判定閾値を超えたことがないにもかかわらず前記開弁判定閾値を下回った場合には、前記安全弁が開いたこと以外の異常が発生したと判定する内圧状態判定手段と、
を備える電動車両制御装置。
An electric vehicle control device for controlling an electric vehicle driven by electric power from a secondary battery provided with a safety valve for releasing an internal pressure,
A sensor for directly or indirectly measuring the internal pressure of the secondary battery;
After the internal pressure of the secondary battery measured by the sensor exceeds the internal pressure abnormality determination threshold set higher than the internal pressure of the secondary battery at normal time, the valve opening set lower than the internal pressure abnormality determination threshold When the threshold value is below the threshold value, it is determined that the safety valve has opened, and the internal pressure of the secondary battery measured by the sensor has not exceeded the abnormal internal pressure threshold value. when below includes a pressure state determining means for determining an abnormality other than that the safety valve is opened occurs,
An electric vehicle control device comprising:
前記センサが測定した前記二次電池の内圧が、前記内圧異常判定閾値を超えている間、前記二次電池への充電を停止しつつも、前記二次電池から所定の負荷に電力供給が行われるよう制御を行うことで、前記二次電池に蓄積された電気エネルギーが放出されるようにする電池制御手段、
を更に備える請求項に記載の電動車両制御装置。
While the internal pressure of the secondary battery measured by the sensor exceeds the internal pressure abnormality determination threshold, power is supplied from the secondary battery to a predetermined load while charging to the secondary battery is stopped. Battery control means for causing the electrical energy stored in the secondary battery to be released by performing control so that
The electric vehicle control device according to claim 1 , further comprising:
前記所定の負荷は、前記電動車両を駆動するための車両駆動用モータであることを特徴とする請求項に記載の電動車両制御装置。 The electric vehicle control device according to claim 2 , wherein the predetermined load is a vehicle driving motor for driving the electric vehicle. 前記電池制御手段は、前記安全弁が開いたと前記内圧状態判定手段が判定した場合、前記二次電池への充電の停止に加え、前記二次電池から前記車両駆動用モータへの電力供給も停止する、ことを特徴とする請求項に記載の電動車両制御装置。 When the internal pressure state determination unit determines that the safety valve is opened, the battery control unit also stops power supply from the secondary battery to the vehicle driving motor in addition to stopping charging of the secondary battery. The electric vehicle control device according to claim 3 . 前記所定の負荷として、前記二次電池からの電力を消費するための外部抵抗を付加したことを特徴とする請求項に記載の電動車両制御装置。 The electric vehicle control device according to claim 2 , wherein an external resistor for consuming electric power from the secondary battery is added as the predetermined load.
JP2011114426A 2011-05-23 2011-05-23 Electric vehicle control device Active JP5793957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114426A JP5793957B2 (en) 2011-05-23 2011-05-23 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114426A JP5793957B2 (en) 2011-05-23 2011-05-23 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2012243660A JP2012243660A (en) 2012-12-10
JP5793957B2 true JP5793957B2 (en) 2015-10-14

Family

ID=47465122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114426A Active JP5793957B2 (en) 2011-05-23 2011-05-23 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP5793957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763554B2 (en) 2016-05-17 2020-09-01 Mitsubishi Electric Corporation Rechargeable battery protecting apparatus and power storage system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207842B2 (en) * 2013-02-15 2017-10-04 株式会社東芝 Non-aqueous electrolyte battery, battery control device and battery control system
FR3031628B1 (en) 2015-01-13 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROCHEMICAL BATTERY WITH ELECTRONIC MODULE INTERNAL TO THE HOUSING
JP7323860B2 (en) * 2019-05-09 2023-08-09 三菱自動車工業株式会社 Abnormality detection device for battery pack
JP7528435B2 (en) 2019-12-19 2024-08-06 三菱自動車工業株式会社 Vehicle battery pack safety monitoring device
MX2022012444A (en) * 2020-04-06 2022-10-27 Nissan Motor Battery-abnormality warning method and battery-abnormality warning device.
JP7408609B2 (en) * 2021-09-29 2024-01-05 本田技研工業株式会社 Control device and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617117U (en) * 1992-07-30 1994-03-04 住友エール株式会社 Internal pressure detection and gas discharge device for sealed storage batteries for electric vehicles.
JPH0676861A (en) * 1992-08-31 1994-03-18 Shinko Electric Co Ltd Battery charging device for unmanned conveying vehicle
JP2010080225A (en) * 2008-09-25 2010-04-08 Toshiba Corp Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763554B2 (en) 2016-05-17 2020-09-01 Mitsubishi Electric Corporation Rechargeable battery protecting apparatus and power storage system

Also Published As

Publication number Publication date
JP2012243660A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5793957B2 (en) Electric vehicle control device
JP4116609B2 (en) Power supply control device, electric vehicle and battery control unit
US7495417B2 (en) Accumulating system and method for processing abnormality of accumulating system
US9669782B2 (en) Electric power supply device using electric vehicle
EP3004906B1 (en) Battery degradation detection device
JP2010035350A (en) Method of controlling charge and discharge of battery in power supply device of hybrid car
JP5501070B2 (en) Power supply voltage protection device and power supply voltage protection method
JP5304661B2 (en) Power storage device state determination system and state determination method
JP6186248B2 (en) Inverter abnormality determination device
JP2015115100A (en) Degradation determination method for outer package film of electrode body
JP2010011619A (en) Charging control method and charge controller of battery
CN105489956A (en) Method for monitoring the state of a battery in a motor vehicle
JP5978143B2 (en) Battery system
JP7381987B2 (en) Battery pack abnormality detection device
JP2015231763A (en) Hybrid electric vehicle
JP4875640B2 (en) Vehicle control device, electric vehicle, and failure detection method for vehicle control device
JP6717123B2 (en) Battery pack abnormality detection device
JP2011017546A (en) Device and method for diagnosing deterioration of lead battery for vehicle
JP2009290984A (en) Charge/discharge controller for vehicle battery
JP5978142B2 (en) Battery system
JP5978144B2 (en) Battery system
WO2015152405A1 (en) Power supply system and vehicle
JP2020161315A (en) Abnormality detection device for in-vehicle battery
KR20150075652A (en) Method and apparatus for correcting of current sensor scale of hybrid starter generator
US20230226916A1 (en) Diagnostic system for secondary battery, diagnostic method for secondary battery, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R151 Written notification of patent or utility model registration

Ref document number: 5793957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151