JP5788793B2 - Sliding part with conformable coating and method for manufacturing the same - Google Patents

Sliding part with conformable coating and method for manufacturing the same Download PDF

Info

Publication number
JP5788793B2
JP5788793B2 JP2011521444A JP2011521444A JP5788793B2 JP 5788793 B2 JP5788793 B2 JP 5788793B2 JP 2011521444 A JP2011521444 A JP 2011521444A JP 2011521444 A JP2011521444 A JP 2011521444A JP 5788793 B2 JP5788793 B2 JP 5788793B2
Authority
JP
Japan
Prior art keywords
coating
piston ring
beryllium
titanium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011521444A
Other languages
Japanese (ja)
Other versions
JP2011530008A5 (en
JP2011530008A (en
Inventor
フィッシャー,マンフレート
ケネディ,マルクス
ツィナボルト,ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Burscheid GmbH
Original Assignee
Federal Mogul Burscheid GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Burscheid GmbH filed Critical Federal Mogul Burscheid GmbH
Publication of JP2011530008A publication Critical patent/JP2011530008A/en
Publication of JP2011530008A5 publication Critical patent/JP2011530008A5/ja
Application granted granted Critical
Publication of JP5788793B2 publication Critical patent/JP5788793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、例えば、慣らし運転層及び摩耗保護層の両方として機能する適合性コーティングを有する、燃焼エンジン中のピストンリングなどの滑り部品、並びにその製造方法に関する。   The present invention relates to a sliding component, such as a piston ring in a combustion engine, for example, having a conformal coating that functions as both a break-in and wear protection layer, and a method for manufacturing the same.

ピストンリングは、エンジンの全運転段階において適切な機能を保証し、かつエンジンの長い耐用年数を確保するために、シリンダー壁に対する運転面の上に摩耗保護層を備えている。運転面コーティングは、その耐用年数の経過に対して様々な要求を満たさなければならない。   The piston ring is provided with a wear protection layer on the operating surface against the cylinder wall in order to ensure proper functioning at all operating stages of the engine and to ensure a long service life of the engine. Operating surface coatings must meet various requirements over the course of their useful life.

新しいエンジンの慣らし運転中、そのコーティングは、それを破損したり、二度目の破損を起こしたりすることなく、微視的かつ巨視的にその面形状をその反対面の条件に適合させることができるべきである。慣らし運転段階が終わった後、摩耗及び焼き付きに対する高耐性などの性質によって、反対面の摩耗が低く記録され、そして低摩擦弁が重要になる。これは、耐用年数が増加するほどに、様々な機能が必要になることを意味する。   During the running-in of a new engine, the coating can adapt its surface shape to the conditions of its opposite surface microscopically and macroscopically without damaging it or causing a second failure Should. After the break-in phase, due to properties such as wear and high resistance to seizure, wear on the opposite surface is recorded low and low friction valves become important. This means that various functions are required as the service life increases.

実際には、これらの要求は、摩耗保護層に加えて塗布され、均質層又は傾斜層(それらの性質は、層の厚さ全体に亘って次第に変わる)のいずれかとして設計されることができる慣らし運転層によって満たされている。摩耗保護及び慣らし運転層は、様々なプロセスに適用され、製造コストをさらに増加させるであろう。別の欠点は、何らかの後処理作業が運転面上で行なわれる必要があるならば、既に塗布された慣らし運転層の一部分を再び除去しなければならないことであり、それ故に、慣らし運転層の一部分は、もはや慣らし運転作業に適していない。   In practice, these requirements are applied in addition to the wear protection layer and can be designed as either a homogeneous layer or a graded layer (the properties of which vary gradually throughout the thickness of the layer). Satisfied by the running-in class. Wear protection and break-in layers will be applied to various processes and will further increase manufacturing costs. Another disadvantage is that if any after-treatment operation needs to be performed on the operating surface, a part of the already applied break-in layer must be removed again, and therefore a part of the break-in layer. Is no longer suitable for break-in operation.

したがって、本発明の課題は、これらの欠点をなくし、均質コーティングとして塗布されることができ、かつ慣らし運転層及び摩耗保護層の両方として機能できるコーティングを提供することである。この滑り部品の製造方法も提案される。   The object of the present invention is therefore to eliminate these drawbacks and to provide a coating which can be applied as a homogeneous coating and which can function both as a break-in layer and as a wear protection layer. A method for manufacturing the sliding component is also proposed.

本発明の第一の態様によって、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも1つの添加物を有する銅系合金から形成された運転面コーティングを特徴とする、少なくとも1つの運転面を含む、燃焼エンジンのための滑り部品が提供される。   According to a first aspect of the present invention, at least one operating surface coating formed from a copper-based alloy having at least one additive selected from the group consisting of Ti, Co, Cr, Zr or Be A sliding component for a combustion engine is provided, including an operating surface.

この滑り部品は適合性コーティングを備えている。この適合性とは、そのコーティングが最初に比較的低い硬さを有することを意味する。この状態では、それは、例えば、新しいエンジンの慣らし運転段階中に燃焼エンジン内のピストンリング上の、慣らし運転層として機能する。ピストンリングとシリンダーの間の比較的少量の凹凸は、慣らし運転層の適合により相殺される。つまり、慣らし運転層は、シリンダー壁を破損することなく、それ自体をシリンダー壁の構造に適合させる。このようにして、良好な封止体が、ピストンリングとシリンダー壁の間に付けられる。   This sliding part is provided with a compatible coating. This compatibility means that the coating initially has a relatively low hardness. In this state, it functions as a break-in layer, for example on a piston ring in the combustion engine during the break-in phase of the new engine. A relatively small amount of unevenness between the piston ring and the cylinder is offset by the adaptation of the running-in layer. In other words, the break-in layer adapts itself to the structure of the cylinder wall without damaging the cylinder wall. In this way, a good seal is applied between the piston ring and the cylinder wall.

エンジンの耐用年数の後期では、コーティングは、高温が効くので、析出硬化を受ける。そのコーティングの硬さは増加するので、慣らし運転プロセスが終わる時まで、それは摩耗保護層として機能している。本発明によるコーティングの適合性のために、慣らし運転性から摩耗保護性への遷移は温度駆動型である。したがって、エンジン負荷、及びそのコーティングの結合温度が、慣らし運転層から摩耗保護層への遷移を制御する。それ故に、エンジン負荷が高くなるほど、耐摩耗性層の形成が速く進み、その後、その耐摩耗性層は、エンジンの耐用年数の残りの期間に亘ってその性質を保持する。   Later in the service life of the engine, the coating is subject to precipitation hardening because of the high temperatures. As the hardness of the coating increases, it functions as a wear protection layer until the end of the break-in process. Due to the suitability of the coating according to the invention, the transition from run-in to wear protection is temperature driven. Therefore, the engine load and the bonding temperature of the coating control the transition from the break-in layer to the wear protection layer. Therefore, the higher the engine load, the faster the wear-resistant layer forms, after which the wear-resistant layer retains its properties for the remainder of the engine's useful life.

一実施形態によれば、前記合金は、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも2つの添加物を含む。   According to one embodiment, the alloy comprises at least two additives selected from the group consisting of Ti, Co, Cr, Zr or Be.

一実施形態によれば、前記合金は、0.1〜4質量%のベリリウム及び0.1〜0.8質量%のチタン、好ましくは1〜3質量%のベリリウム及び0.2〜0.6質量%のチタン、最も好ましくは約2質量%のベリリウム及び約0.4質量%のチタンを含む。   According to one embodiment, the alloy comprises 0.1 to 4% by weight beryllium and 0.1 to 0.8% by weight titanium, preferably 1 to 3% by weight beryllium and 0.2 to 0.6%. % By weight titanium, most preferably about 2% by weight beryllium and about 0.4% by weight titanium.

一実施形態によれば、前記滑り部品はピストンリングである。   According to one embodiment, the sliding part is a piston ring.

本発明の第二の態様によれば、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも1つの添加物を含む銅系合金を、滑り部品の運転面上に堆積させる工程を含む、燃焼エンジンのための滑り部品の製造方法が提供される。   According to a second aspect of the present invention, the step of depositing a copper-based alloy containing at least one additive selected from the group consisting of Ti, Co, Cr, Zr or Be on the operating surface of the sliding component. A method of manufacturing a sliding component for a combustion engine is provided.

一実施形態によれば、前記堆積工程は溶射プロセスを含む。この溶射プロセスは高速酸素燃料(HVOF)又はプラズマ溶射プロセスでよい。   According to one embodiment, the deposition step includes a thermal spray process. This thermal spray process may be a high velocity oxygen fuel (HVOF) or plasma spray process.

一実施形態によれば、前記合金は、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも2つの異なる添加物を含む。   According to one embodiment, the alloy comprises at least two different additives selected from the group consisting of Ti, Co, Cr, Zr or Be.

一実施形態によれば、前記合金は、0.1〜4質量%のベリリウム及び0.1〜0.8質量%のチタン、好ましくは1〜3質量%のベリリウム及び0.2〜0.6質量%のチタン、最も好ましくは約2質量%のベリリウム及び約0.4質量%のチタンを含む。   According to one embodiment, the alloy comprises 0.1 to 4% by weight beryllium and 0.1 to 0.8% by weight titanium, preferably 1 to 3% by weight beryllium and 0.2 to 0.6%. % By weight titanium, most preferably about 2% by weight beryllium and about 0.4% by weight titanium.

本発明の第三の態様によれば、燃焼エンジン内の滑り部品の運転面のためのコーティングとしての、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも1つの添加物を含む銅系合金の使用が提供される。前記合金は、0.1〜4質量%のベリリウム及び0.1〜0.8質量%のチタン、好ましくは1〜3質量%のベリリウム及び0.2〜0.6質量%のチタン、最も好ましくは約2質量%のベリリウム及び約0.4質量%のチタンを含む。   According to a third aspect of the invention, it comprises at least one additive selected from the group consisting of Ti, Co, Cr, Zr or Be as a coating for the operating surface of a sliding component in a combustion engine. Use of a copper-based alloy is provided. The alloy is 0.1 to 4 wt% beryllium and 0.1 to 0.8 wt% titanium, preferably 1 to 3 wt% beryllium and 0.2 to 0.6 wt% titanium, most preferably Contains about 2% by weight beryllium and about 0.4% by weight titanium.

本発明は、コーティングが均質的に塗布されることを可能にするので、例えば、ピストンリングは、より速く、かつより安く製造されることができる。したがって、個別の摩耗保護層及び慣らし運転層を有するコーティング(それは、より遅く、かつより高価であろう)を回避することができる。また、本発明による滑り部品は、個別の慣らし運転層を除去する(その後、その慣らし運転層は、もはや慣らし運転段階に適していないであろう)必要なしに、容易に再加工されることができる。   For example, piston rings can be made faster and cheaper because the present invention allows the coating to be applied homogeneously. Thus, coatings with separate wear protection layers and break-in layers (which would be slower and more expensive) can be avoided. Also, the sliding component according to the present invention can be easily reworked without the need to remove a separate running-in layer (then the running-in layer will no longer be suitable for the running-in phase). it can.

本発明によるピストンリングは、1つの均質コーティング(それは、その元の条件では、慣らし運転層の性質を有する)のみを有するので、コーティングの残りの厚さが十分に残ったままならば、再加工が必要になるとしても、その慣らし運転性は失われない。そのコーティングは、それがエンジン内で働き始めるまで、その摩耗保護性を獲得しない。   Since the piston ring according to the present invention has only one homogeneous coating (which in its original conditions has the properties of a break-in layer), if the remaining thickness of the coating remains sufficiently reworked However, the running-in performance will not be lost. The coating does not acquire its wear protection until it begins to work in the engine.

従来のピストンリングと比較したときの本発明によるピストンリングのさらなる利点は、コーティングが慣らし運転段階の後でも硬さについて基本的に均質のままであることにある。一方で、従来のピストンリングでは、微量の慣らし運転層が、摩耗保護層の露出領域とともに特定の領域に残り、そしてこれらの領域は、必然的に異なる硬さを有する。慣らし運転層の残りを有する領域は比較的柔軟であるが、摩耗保護層が露出している領域は比較的硬い。   A further advantage of the piston ring according to the invention when compared to conventional piston rings is that the coating remains essentially homogeneous in hardness even after the break-in phase. On the other hand, in conventional piston rings, a small amount of the running-in layer remains in certain areas along with the exposed areas of the wear protection layer, and these areas necessarily have different hardnesses. The area with the rest of the break-in layer is relatively soft, but the area where the wear protection layer is exposed is relatively hard.

硬さが本発明におけるコーティング全体に適合しているので、そのコーティングの硬さは、慣らし運転段階の後でも基本的に均一なままである。従来のピストンリングに起こるような硬さの減少した領域が残っていないので、これは摩耗保護を強化する。   Since the hardness is compatible with the entire coating in the present invention, the hardness of the coating remains essentially uniform after the break-in phase. This enhances wear protection because there is no remaining reduced area as occurs in conventional piston rings.

また、固有の圧縮張力が本発明によるピストンリング内に形成され、これらの張力は、ひびの形成及び伝播に対するさらなる耐性を提供することが発見された。   It has also been discovered that inherent compressive tensions are formed within the piston ring according to the present invention, and these tensions provide additional resistance to crack formation and propagation.

合金系が形成された後に、最初に合金系は室温で熱力学的不平衡の状態である。例えば、熱の形態のエネルギーがそれらに掛かるならば、個別の相が堆積し、その材料を硬化させるために機能することができ、かつ特定の状況下で耐摩耗性を増加させることができる。本発明によれば、適切な方法により、運転面コーティングとしてそのような合金をエンジン内のピストンリング又は他の滑り部品に塗布することが提案される。熱的に未処理の条件では、そのようにして形成されたコーティングは、柔軟な慣らし運転層の機能を果たす。   After the alloy system is formed, initially the alloy system is in a thermodynamic unbalanced state at room temperature. For example, if energy in the form of heat is applied to them, individual phases can be deposited, function to cure the material, and increase wear resistance under certain circumstances. In accordance with the present invention, it is proposed to apply such alloys to piston rings or other sliding parts in the engine as a driving surface coating by a suitable method. In thermally untreated conditions, the coating thus formed serves as a flexible running-in layer.

コーティングの析出硬化が、運転中のエンジン及びそれによる部品の加熱により燃焼室内に発生した熱によって同時に開始する。このプロセスは温度駆動型であるから、コーティングの硬化は、エンジン負荷が増加しているときにはより速く進むであろう。つまり、エンジン自体の負荷条件は、慣らし運転層から耐摩耗性層への遷移を制御し、その後に、耐摩耗性層は、エンジンの耐用年数の残りの期間に亘ってその耐摩耗性を保持する。   Precipitation hardening of the coating is initiated simultaneously by the heat generated in the combustion chamber due to the heating of the running engine and the parts thereby. Since this process is temperature driven, the curing of the coating will proceed faster when the engine load is increasing. That is, the load conditions of the engine itself control the transition from the running-in layer to the wear-resistant layer, after which the wear-resistant layer retains its wear resistance for the remainder of the engine's useful life. To do.

機械的性質を向上させるために、鉄、アルミニウム、銅、及び冷却又は加熱処理と併用した析出硬化により素地の性質を変えることができる他の金属を主成分とする系のために極めて広い範囲の元素がある。とりわけ、Cu、Co、Mg、Si、Mn又はZnの添加物を有する、アルミニウムを主成分とする合金の種類が、加熱処理の結果としてその耐性及び硬さを増加させる能力で知られている。また、Ti、Co、Cr、Zr又はBeの添加物を有する銅系合金もこれらの要求を満たす。   An extremely wide range for systems based on iron, aluminum, copper and other metals whose main properties can be changed by precipitation hardening in combination with cooling or heat treatment to improve mechanical properties There are elements. In particular, alloy types based on aluminum with additives of Cu, Co, Mg, Si, Mn or Zn are known for their ability to increase their resistance and hardness as a result of heat treatment. A copper-based alloy having an additive of Ti, Co, Cr, Zr or Be also satisfies these requirements.

実施形態:
溶射プロセスを用いて、約2質量%のベリリウム及び0.4%のチタンを含むCuBeTi合金を堆積させ、運転面コーティングをピストンリングに塗布した。コーティング後の層の硬さは、約310 HVO.3であった。この状態では、コーティングは慣らし運転層として機能する。一方で、エンジンの外の摩耗試験(300℃で0.5時間)前に取り出された試料は、約400 HVO.3の硬さを示した。この条件では、コーティングは摩耗保護層のように機能する。
Embodiment:
A thermal spray process was used to deposit a CuBeTi alloy containing about 2% by weight beryllium and 0.4% titanium and a working surface coating was applied to the piston ring. The hardness of the layer after coating is about 310 HVO. 3. In this state, the coating functions as a break-in layer. On the other hand, the sample taken out before the wear test outside the engine (0.5 hours at 300 ° C.) is about 400 HVO. A hardness of 3 was shown. Under this condition, the coating functions like a wear protection layer.

銅を主成分とする合金を硬化させた析出試験では、固有の圧縮張力が、層に形成され、起こり得るひび形成及びひび伝播に対するさらなる耐性を提供することについて、さらなる利点が観察された。本発明の実施態様の一部を下記項目[1]〜[12]に記載する。
[1]
Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも1つの添加物を有する銅系合金から形成された運転面コーティングを特徴とする、少なくとも1つの運転面を含む、燃焼エンジンのための滑り部品。
[2]
前記合金は、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも2つの添加物を含む、項目1に記載の滑り部品。
[3]
前記合金は、0.1〜4質量%のベリリウム及び0.1〜0.8質量%のチタン、好ましくは1〜3質量%のベリリウム及び0.2〜0.6質量%のチタン、最も好ましくは約2質量%のベリリウム及び約0.4質量%のチタンを含む、項目2に記載の滑り部品。
[4]
前記滑り部品はピストンリングである、項目1〜3のいずれか1項に記載の滑り部品。
[5]
Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも1つの添加物を含む銅系合金を、滑り部品の運転面上に堆積させる工程を含む、燃焼エンジンのための滑り部品の製造方法。
[6]
前記堆積工程は溶射プロセスを含む、項目5に記載の方法。
[7]
前記溶射プロセスは高速酸素燃料溶射又はプラズマ溶射を含む、項目6に記載の方法。
[8]
前記合金は、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも2つの異なる添加物を含む、項目5〜7のいずれか1項に記載の方法。
[9]
前記合金は、0.1〜4質量%のベリリウム及び0.1〜0.8質量%のチタン、好ましくは1〜3質量%のベリリウム及び0.2〜0.6質量%のチタン、最も好ましくは約2質量%のベリリウム及び約0.4質量%のチタンを含む、項目8に記載の方法。
[10]
コーティングを均質的に塗布する、項目5〜9のいずれか1項に記載の方法。
[11]
燃焼エンジン内の滑り部品の運転面のためのコーティングとしての、Ti、Co、Cr、Zr又はBeから成る群から選択される少なくとも1つの添加物を含む銅系合金の使用。
[12]
前記合金は、0.1〜4質量%のベリリウム及び0.1〜0.8質量%のチタン、好ましくは1〜3質量%のベリリウム及び0.2〜0.6質量%のチタン、最も好ましくは約2質量%のベリリウム及び約0.4質量%のチタンを含む、項目11に記載の使用。
In precipitation tests with hardened alloys based on copper, additional advantages were observed in that inherent compressive tension was formed in the layer, providing additional resistance to possible crack formation and crack propagation. A part of the embodiment of the present invention is described in the following items [1] to [12].
[1]
For a combustion engine comprising at least one operating surface, characterized by an operating surface coating formed from a copper-based alloy having at least one additive selected from the group consisting of Ti, Co, Cr, Zr or Be Sliding parts.
[2]
The sliding component of item 1, wherein the alloy includes at least two additives selected from the group consisting of Ti, Co, Cr, Zr, or Be.
[3]
The alloy is 0.1 to 4 wt% beryllium and 0.1 to 0.8 wt% titanium, preferably 1 to 3 wt% beryllium and 0.2 to 0.6 wt% titanium, most preferably The sliding component of claim 2, comprising about 2 wt% beryllium and about 0.4 wt% titanium.
[4]
The sliding component according to any one of items 1 to 3, wherein the sliding component is a piston ring.
[5]
Sliding component manufacturing for a combustion engine comprising the step of depositing a copper-based alloy comprising at least one additive selected from the group consisting of Ti, Co, Cr, Zr or Be on the operating surface of the sliding component Method.
[6]
6. The method of item 5, wherein the deposition step comprises a thermal spray process.
[7]
The method of item 6, wherein the thermal spraying process comprises high velocity oxygen fuel spraying or plasma spraying.
[8]
8. A method according to any one of items 5 to 7, wherein the alloy comprises at least two different additives selected from the group consisting of Ti, Co, Cr, Zr or Be.
[9]
The alloy is 0.1 to 4 wt% beryllium and 0.1 to 0.8 wt% titanium, preferably 1 to 3 wt% beryllium and 0.2 to 0.6 wt% titanium, most preferably 9. The method of item 8, comprising about 2% by weight beryllium and about 0.4% by weight titanium.
[10]
10. A method according to any one of items 5 to 9, wherein the coating is applied homogeneously.
[11]
Use of a copper-based alloy comprising at least one additive selected from the group consisting of Ti, Co, Cr, Zr or Be as a coating for the operating surface of a sliding component in a combustion engine.
[12]
The alloy is 0.1 to 4 wt% beryllium and 0.1 to 0.8 wt% titanium, preferably 1 to 3 wt% beryllium and 0.2 to 0.6 wt% titanium, most preferably 12. Use according to item 11, comprising about 2% by weight beryllium and about 0.4% by weight titanium.

Claims (9)

少なくとも1つの運転面を含む、燃焼エンジンのためのピストンリングであって、
系合金から形成された運転面用適合性コーティングを特徴とし、
前記合金は、0.1〜4質量%のベリリウム0.1〜0.8質量%のチタン、及び残量の銅から成り、かつ
前記コーティングは、比較的低い硬さを最初に有し、かつ析出硬化を受けるように構成されていて、前記コーティングは、前記ピストンリングが前記燃焼エンジンの慣らし運転のために使用されている期間中、慣らし運転層及び摩耗保護層として機能する、
ピストンリング。
A piston ring for a combustion engine, comprising at least one operating surface,
Featuring a driving surface compatible coating formed from a copper- based alloy,
The alloy consists of 0.1 to 4% by weight beryllium , 0.1 to 0.8% by weight titanium , and a balance of copper, and the coating initially has a relatively low hardness; And configured to undergo precipitation hardening, wherein the coating functions as a break-in layer and a wear protection layer during the period when the piston ring is used for the break-in operation of the combustion engine.
piston ring.
前記合金は、1〜3質量%のベリリウム及び0.2〜0.6質量%のチタンを含む、請求項1に記載のピストンリング。   The piston ring according to claim 1, wherein the alloy contains 1 to 3 mass% beryllium and 0.2 to 0.6 mass% titanium. 前記合金は、2質量%のベリリウム及び0.4質量%のチタンを含む、請求項1に記載のピストンリング。   The piston ring of claim 1, wherein the alloy comprises 2 wt% beryllium and 0.4 wt% titanium. 銅系合金をピストンリングの運転面上に堆積させて、運転面用適合性コーティングを形成する工程を含む、燃焼エンジンのための前記ピストンリングの製造方法であって、
前記合金は、0.1〜4質量%のベリリウム0.1〜0.8質量%のチタン、及び残量の銅から成り、かつ
前記コーティングは、比較的低い硬さを最初に有し、かつ析出硬化を受けるように構成されていて、前記コーティングは、前記ピストンリングが前記燃焼エンジンの慣らし運転のために使用されている期間中、慣らし運転層及び摩耗保護層として機能する、
方法。
A method of manufacturing said piston ring for a combustion engine comprising the step of depositing a copper-based alloy on the operating surface of the piston ring to form an operating surface compatible coating,
The alloy consists of 0.1 to 4% by weight beryllium , 0.1 to 0.8% by weight titanium , and a balance of copper, and the coating initially has a relatively low hardness; And configured to undergo precipitation hardening, wherein the coating functions as a break-in layer and a wear protection layer during the period when the piston ring is used for the break-in operation of the combustion engine.
Method.
前記合金は、1〜3質量%のベリリウム及び0.2〜0.6質量%のチタンを含む、請求項に記載の方法。 The method of claim 4 , wherein the alloy comprises 1 to 3 wt% beryllium and 0.2 to 0.6 wt% titanium. 前記合金は、2質量%のベリリウム及び0.4質量%のチタンを含む、請求項に記載の方法。 The method of claim 4 , wherein the alloy comprises 2 wt% beryllium and 0.4 wt% titanium. 前記堆積工程は溶射プロセスを含む、請求項に記載の方法。 The method of claim 4 , wherein the deposition step comprises a thermal spray process. 前記溶射プロセスは高速酸素燃料溶射又はプラズマ溶射を含む、請求項に記載の方法。 The method of claim 7 , wherein the thermal spraying process comprises high velocity oxygen fuel spraying or plasma spraying. 前記適合性コーティングを均質的に塗布する、請求項4〜8のいずれか1項に記載の方法。 9. A method according to any one of claims 4 to 8 , wherein the compatible coating is applied homogeneously.
JP2011521444A 2008-08-06 2009-04-21 Sliding part with conformable coating and method for manufacturing the same Expired - Fee Related JP5788793B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008036657.9A DE102008036657B4 (en) 2008-08-06 2008-08-06 Piston ring with adaptive coating and manufacturing method thereof
DE102008036657.9 2008-08-06
PCT/EP2009/002907 WO2010015289A1 (en) 2008-08-06 2009-04-21 Sliding element having an adaptive coating, and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2011530008A JP2011530008A (en) 2011-12-15
JP2011530008A5 JP2011530008A5 (en) 2012-04-26
JP5788793B2 true JP5788793B2 (en) 2015-10-07

Family

ID=40823595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011521444A Expired - Fee Related JP5788793B2 (en) 2008-08-06 2009-04-21 Sliding part with conformable coating and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP5788793B2 (en)
DE (1) DE102008036657B4 (en)
GB (1) GB2474791B (en)
WO (1) WO2010015289A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064490A1 (en) * 2011-09-13 2013-03-14 II Ronald G. Brock Thermal spray coating of sliding bearing lining layer
DE102011114420A1 (en) * 2011-09-26 2013-03-28 Audi Ag Manufacturing cylindrical tube of internal combustion engine, comprises mechanically processing piston bearing surface of cylindrical tube, during which additive is mechanically introduced into piston bearing surface
US20180195613A1 (en) * 2017-01-06 2018-07-12 Materion Corporation Piston compression rings of copper-beryllium alloys

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE676628C (en) * 1931-08-01 1939-06-08 Metallgesellschaft Akt Ges Copper-beryllium alloy
US2030921A (en) * 1933-06-17 1936-02-18 Heraeus Vacuumschmelze Ag Copper-beryllium alloys
DE1254869B (en) * 1957-02-20 1967-11-23 Ver Deutsche Metallwerke Ag Use of heat-hardenable copper-titanium alloys as a material for objects that have to have high heat resistance, insensitivity to hot gases, high fatigue strength, long-term stability and low elastic after-effects
US3773504A (en) * 1970-12-28 1973-11-20 I Niimi Copper base alloy having wear resistance at high temperatures
JPS5768247A (en) * 1980-10-13 1982-04-26 Chuetsu Gokin Chuko Kk Precipitation hardening type mold material for continuous casting
JPS5810986B2 (en) * 1980-07-07 1983-02-28 トヨタ自動車株式会社 sliding member
JPS5832949A (en) * 1981-08-22 1983-02-26 Nippon Piston Ring Co Ltd Piston ring
DE3329034A1 (en) * 1983-08-11 1985-02-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen LIQUID-LOCKED SHAFT SEAL WITH REDUCED SLEEVE TEMPERATURE
US4606889A (en) * 1985-11-07 1986-08-19 Cabot Corporation Copper-titanium-beryllium alloy
DK174241B1 (en) * 1996-12-05 2002-10-14 Man B & W Diesel As Cylinder element, such as a cylinder liner, piston, piston skirt or piston ring, in a diesel-type internal combustion engine as well as a piston ring for such an engine.
JPH1180921A (en) * 1997-07-09 1999-03-26 Nippon Piston Ring Co Ltd Wettable sprayed coating layer for sliding member
JPH11241153A (en) * 1998-02-27 1999-09-07 Nippon Piston Ring Co Ltd Thermally sprayed coating layer with fitness of sliding member
DE19908107C2 (en) * 1999-02-25 2003-04-10 Man B & W Diesel As Kopenhagen Method for producing a wear-resistant surface in the case of components made of steel and machine with at least one such component
JP3366304B2 (en) * 1999-11-25 2003-01-14 誠石 勝見 Plunger chip for die casting
CN100420843C (en) * 2002-01-18 2008-09-24 株式会社理研 Spraying piston ring
JP4170195B2 (en) * 2003-10-29 2008-10-22 山陽特殊製鋼株式会社 Cu-based alloy for sliding members
DE102004043914A1 (en) * 2004-09-10 2006-03-16 Linde Ag Bronze slip bearing is fabricated by cold gas spray application of a suitable alloy
JP4725229B2 (en) * 2005-07-28 2011-07-13 トヨタ自動車株式会社 Combination sliding member, and internal combustion engine and plain bearing mechanism using the same

Also Published As

Publication number Publication date
GB2474791B (en) 2012-06-13
GB201101319D0 (en) 2011-03-09
WO2010015289A1 (en) 2010-02-11
GB2474791A (en) 2011-04-27
DE102008036657A1 (en) 2010-02-11
JP2011530008A (en) 2011-12-15
DE102008036657B4 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
PT2914761T (en) Sliding element, in particular a piston ring, having a coating
JP6340014B2 (en) Sliding element
JP2000120870A (en) Piston ring
RU2469127C2 (en) Wear-resistant article with protective coating
JP4334354B2 (en) Piston ring with PVD coating layer
US20100304129A1 (en) Coating of a functional component that is subject to thermal loads and erosion, mold-release agent and method for producing said coating
WO2001033065A1 (en) Combination of cylinder liner and piston ring of internal combustion engine
JP2004531678A (en) Nickel-aluminide based wear resistant material for piston rings
JP5788793B2 (en) Sliding part with conformable coating and method for manufacturing the same
US8647751B2 (en) Coated valve retainer
US8920881B2 (en) Method for producing a component covered with a wear-resistant coating
JP5890946B2 (en) Pressure ring and base material for pressure ring
US9174276B2 (en) Method of producing a piston ring having embedded particles
JP2739722B2 (en) piston ring
CA2762692A1 (en) High-temperature jointed assemblies and wear-resistant coating systems therefor
JP2006057674A (en) Sliding member and piston ring
WO2014196259A1 (en) Sliding component
CN104500251B (en) Super abrasive nano ceramics alloy coat high-power engine cylinder sleeve and manufacture method thereof
Krishnamurthy et al. Tribological behavior of plasma sprayed Al2O3 and ZrO2 5CaO coatings on Al-6061 substrate
JP4374160B2 (en) piston ring
JP5826958B1 (en) Piston ring for internal combustion engine
Pandey et al. Friction and sliding wear characterization of ion chrome coating
JP2865419B2 (en) piston ring
RU2281983C2 (en) Thermal spraying on machine parts
JP7250714B2 (en) Piston ring and coating

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140625

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150730

R150 Certificate of patent or registration of utility model

Ref document number: 5788793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees