JP5776850B2 - Titanium sheet - Google Patents

Titanium sheet Download PDF

Info

Publication number
JP5776850B2
JP5776850B2 JP2014530559A JP2014530559A JP5776850B2 JP 5776850 B2 JP5776850 B2 JP 5776850B2 JP 2014530559 A JP2014530559 A JP 2014530559A JP 2014530559 A JP2014530559 A JP 2014530559A JP 5776850 B2 JP5776850 B2 JP 5776850B2
Authority
JP
Japan
Prior art keywords
thickness
less
titanium
thin plate
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014530559A
Other languages
Japanese (ja)
Other versions
JPWO2014027657A1 (en
Inventor
秀徳 岳辺
秀徳 岳辺
善久 白井
善久 白井
尚志 前田
尚志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014530559A priority Critical patent/JP5776850B2/en
Application granted granted Critical
Publication of JP5776850B2 publication Critical patent/JP5776850B2/en
Publication of JPWO2014027657A1 publication Critical patent/JPWO2014027657A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、チタン薄板に関し、より詳しくは、優れた加工性と高い表面硬度を有し、スピーカー振動板などにも好適に使用できる加工性に優れた高強度チタン薄板に関する。本願は、2012年8月14日に日本に出願された特願2012−179861号に基づき優先権を主張し、その内容をここに援用する。   The present invention relates to a titanium thin plate, and more particularly to a high-strength titanium thin plate having excellent workability and high surface hardness, and excellent workability that can be suitably used for speaker diaphragms and the like. This application claims priority based on Japanese Patent Application No. 2012-179861 for which it applied to Japan on August 14, 2012, and uses the content here.

チタン材料は、比強度が高く優れた耐食性を有しており、化学プラント用、建築用、その他多くの産業用素材として、また、カメラボディー、時計やスポーツ用品などの民生用品の素材として、幅広い用途に使用されている。箔など、厚さ0.2mm以下の薄板は、音響部品(スピーカー振動板など)、防食フィルム・シートなど、その特性を生かした用途に用いられている。   Titanium materials have high specific strength and excellent corrosion resistance, and are widely used as materials for chemical plants, construction, and many other industrial materials, as well as for consumer products such as camera bodies, watches and sports equipment. Used for applications. A thin plate having a thickness of 0.2 mm or less, such as a foil, is used for applications that make use of its characteristics, such as acoustic parts (such as speaker diaphragms) and anticorrosion films and sheets.

一般に、金属材料では高強度が要求される傾向にあり、それに加えて加工性も要求される。チタン材料においても例外ではなく、加工性に優れるだけでなく、高強度であることも要求されることが多い。しかしながら、一般的には高強度化すると加工性が低下するため、チタン材料においては、酸素量、鉄量、結晶粒径等を制御することにより強度と加工性のバランスを最適化する試みが行われてきた。   In general, metal materials tend to require high strength, and in addition, workability is also required. Titanium materials are no exception and are often required to have not only excellent workability but also high strength. However, in general, workability decreases when the strength is increased. For titanium materials, attempts are made to optimize the balance between strength and workability by controlling the oxygen content, iron content, crystal grain size, and the like. I have been.

例えば、特許文献1には、チタン材料中のO(酸素)含有量を所定の値としつつ、Fe含有量を増大させる(Fe:0.1〜0.6mass%)ことにより、チタン板の延性の低下を抑制しつつ強度の向上を図り、平均粒径が10μm以下となるようにして成形性を向上させたチタン板が開示されている。   For example, Patent Document 1 discloses ductility of a titanium plate by increasing the Fe content (Fe: 0.1 to 0.6 mass%) while keeping the O (oxygen) content in the titanium material at a predetermined value. A titanium plate is disclosed in which the strength is improved while suppressing the decrease in the thickness, and the formability is improved so that the average particle size is 10 μm or less.

特許文献2には、Fe含有量が300ppm以上で且つ[Fe+O+N+H]量が1500ppm以下と、鉄量、酸素量に加えて窒素量や水素量を制限した成形加工性が良好なTi板材が開示されている。   Patent Document 2 discloses a Ti plate material having good forming workability in which the Fe content is 300 ppm or more and the [Fe + O + N + H] content is 1500 ppm or less, and the amount of nitrogen and hydrogen is limited in addition to the amount of iron and oxygen. ing.

また、特許文献3には、純度の低い安価な原料を使用した場合であっても、良好な成形性を維持できるように、鉄量、酸素量、さらにはニッケルおよびクロム量を所定範囲に規定し、平均粒径20〜80μmとした純チタン板の製造方法が開示されている。   In Patent Document 3, the amount of iron, the amount of oxygen, and further the amount of nickel and chromium are specified within a predetermined range so that good formability can be maintained even when an inexpensive raw material with low purity is used. A method for producing a pure titanium plate having an average particle size of 20 to 80 μm is disclosed.

しかし、これらの特許文献に記載された技術は、いずれも汎用の板厚0.3〜1mmのチタン材を対象とした技術である。   However, all the techniques described in these patent documents are techniques for a general-purpose titanium material having a thickness of 0.3 to 1 mm.

一方、スピーカーの振動板などに用いられる板厚0.2mm以下の薄板や箔は、汎用の材料よりも薄く、加工性が劣る。そのため、上記特許文献1〜3に記載の技術を適用しても加工不良を生じるという問題がある。   On the other hand, a thin plate or foil having a thickness of 0.2 mm or less used for a speaker diaphragm or the like is thinner than a general-purpose material and is inferior in workability. Therefore, even if the techniques described in Patent Documents 1 to 3 are applied, there is a problem that processing defects occur.

板厚0.2mm以下のチタン薄板の加工性については、特許文献4に成形性に優れたチタン箔の製造方法が開示されている。この技術によると、25μm厚のチタン箔に関して、所定の圧延条件で圧延し、結晶粒度をASTM No.で12〜14となるように制御することにより、良好なエリクセン値が確保されるとしている。   Regarding the workability of a titanium thin plate having a plate thickness of 0.2 mm or less, Patent Document 4 discloses a method for producing a titanium foil excellent in formability. According to this technique, a titanium foil having a thickness of 25 μm is rolled under predetermined rolling conditions, and the crystal grain size is determined according to ASTM No. It is said that a good Erichsen value is ensured by controlling to be 12 to 14.

しかし、0.2mm厚以下のチタン箔においては、成形加工後の良好な形状保持性が求められる。一般的に、材料の強度を向上させることによって、良好な形状保持性は確保できるが、反面良好な加工性が得られなくなる問題がある。また、大きな加工を受けた部分は加工硬化により強度が向上し良好な形状保持性が得られるが、加工率が低い部分においては形状保持性が悪化する。   However, a titanium foil having a thickness of 0.2 mm or less is required to have good shape retention after forming. In general, by improving the strength of the material, good shape retention can be ensured, but on the other hand, there is a problem that good workability cannot be obtained. Moreover, although the part which received the big process improves intensity | strength by work hardening and favorable shape retainability is obtained, shape retainability deteriorates in the part with a low processing rate.

例えば特許文献5には、光輝焼鈍もしくは真空焼鈍により内面層としてチタンの炭化物および/または窒化物を含有する層を形成させた後に、電解酸洗を実施する技術が開示されている。この技術は、軟質なチタン母材と金型との接触を抑制することで金型へのチタン母材の付着を防止すると同時に、チタン表面にプレス時の潤滑性に優れる酸化物層を形成させるものである。この技術によれば、チタンの炭化物および/または窒化物が金型と接触することを回避でき、金型の摩耗を防止できる。   For example, Patent Document 5 discloses a technique in which electrolytic pickling is performed after a layer containing titanium carbide and / or nitride is formed as an inner layer by bright annealing or vacuum annealing. This technology prevents adhesion of the titanium base material to the mold by suppressing contact between the soft titanium base material and the mold, and at the same time forms an oxide layer with excellent lubricity during pressing on the titanium surface. Is. According to this technique, titanium carbide and / or nitride can be prevented from coming into contact with the mold, and wear of the mold can be prevented.

しかし、0.2mm厚以下のチタン箔は、特許文献5に開示されているような厳しい加工が行われる場合は少ない。例えば、スピーカーの振動板などの加工は内圧をかけてドーム状に成形することが多く、一般的な薄板プレスによる成形に比べて、加工中の金型との接触が少なく、素材自体の表面潤滑性はそれほど問題にならない。そのため、特許文献5に記載される技術を適用しても、酸化物の潤滑効果による加工性向上効果が発揮されることはない。さらに、当該技術では電解酸洗を行っているので、0.2mm厚以下のチタン箔材にこの技術を適用した場合の歩留まりの低下は看過できない。そればかりか、板厚の不均一を招き製品として出荷できない場合がある。   However, titanium foil having a thickness of 0.2 mm or less is rarely subjected to severe processing as disclosed in Patent Document 5. For example, processing of speaker diaphragms is often molded into a dome shape by applying internal pressure, and there is less contact with the mold during processing compared to molding with a general thin plate press, and surface lubrication of the material itself Sex doesn't matter so much. Therefore, even if the technique described in Patent Document 5 is applied, the workability improvement effect due to the lubricating effect of the oxide is not exhibited. Furthermore, since this technique performs electrolytic pickling, a decrease in yield cannot be overlooked when this technique is applied to a titanium foil material having a thickness of 0.2 mm or less. In addition, there may be cases where the product cannot be shipped as a product due to uneven thickness.

日本国特許第4605514号公報Japanese Patent No. 4605514 日本国特開昭63−103043号公報Japanese Unexamined Patent Publication No. Sho 63-103043 日本国特許第3228134号公報Japanese Patent No. 3228134 日本国特許第2616181号公報Japanese Patent No. 2616181 日本国特開2009−97060号公報Japanese Unexamined Patent Publication No. 2009-97060

本発明は、このような実情に鑑みてなされたものであり、板厚0.2mm以下のチタン薄板であって、形状保持性と加工性に優れたチタン薄板を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a titanium thin plate having a thickness of 0.2 mm or less and excellent in shape retention and workability.

上記の課題を解決するために、本発明者らは、チタン箔の表面の硬度に着目し、表面が固く内部が表面に比較して軟質であれば、形状保持性と加工性を両立させることが可能と考え、チタン薄板の加工性および表面硬度を向上させるための方法についてについて検討した。   In order to solve the above-mentioned problems, the present inventors pay attention to the hardness of the surface of the titanium foil, and if the surface is hard and the inside is softer than the surface, it is possible to achieve both shape retention and workability. Therefore, we investigated the methods for improving the workability and surface hardness of titanium thin plates.

チタン薄板の加工性改善の有効な手段として先ず考えられるのは、鉄、酸素などの元素の低減である。これらの元素は製造上不可避的に持ち込まれる元素でもあるが、前掲の特許文献1〜3にも記載されるとおり、所定量以下に制限する必要がある。   As an effective means for improving the workability of the titanium thin plate, it is first considered to reduce elements such as iron and oxygen. Although these elements are elements inevitably brought into production, it is necessary to limit them to a predetermined amount or less as described in Patent Documents 1 to 3 described above.

次に考えられるのは、結晶粒の粗大化である。粗粒化することでチタン材料の加工性に重要な双晶変形を生じやすくすることができ、加工性が改善される。結晶粒径は最終の仕上げ焼鈍工程で制御するので、焼鈍条件を変更することにより容易に制御可能である。   The next possibility is the coarsening of crystal grains. By coarsening, twin deformation which is important for the workability of the titanium material can be easily generated, and the workability is improved. Since the crystal grain size is controlled in the final finish annealing step, it can be easily controlled by changing the annealing conditions.

そこで、板厚0.2mm以下のチタン薄板を用いて引張試験を行い、伸びを調査した。その結果、板厚0.2mm以下においても、一般的な知見と同様に、結晶粒を微細化することで伸びが低下する。しかし、板厚0.2mm以下のチタン薄板では、結晶粒が粗大化しすぎても、伸びが低下する場合があることが判明した。また、この現象が発生するか否かは板厚と粒径の比によって決まり、板厚/粒径<3の場合に発生することが判明した。なお、板厚0.3〜1mm程度の薄板では、粒径が概ね10〜60μmの範囲内であるため、結晶粒粗大化によって伸びが低下するような現象は生じない。   Therefore, a tensile test was conducted using a titanium thin plate having a thickness of 0.2 mm or less to investigate the elongation. As a result, even when the plate thickness is 0.2 mm or less, the elongation decreases by refining the crystal grains, as in general knowledge. However, it has been found that in a thin titanium plate having a thickness of 0.2 mm or less, elongation may be reduced even if crystal grains become too coarse. Whether or not this phenomenon occurs is determined by the ratio of the plate thickness to the particle size, and it has been found that this phenomenon occurs when the plate thickness / particle size <3. In addition, in a thin plate having a plate thickness of about 0.3 to 1 mm, since the particle size is in the range of about 10 to 60 μm, a phenomenon in which elongation decreases due to coarsening of crystal grains does not occur.

この調査結果から、製品板厚に応じて、板厚/粒径≧3となる範囲で結晶粒を粗大化させることにより、板厚0.2mm以下のチタン薄板の加工性を最大限に引き出すことが可能となる。   From this survey result, the workability of thin titanium plates with a thickness of 0.2 mm or less can be maximized by making the crystal grains coarse in the range of plate thickness / grain size ≧ 3 according to the product plate thickness. Is possible.

さらに調査を進める過程で、プレス加工時に、割れが多く発生する場合があり、原因を調査したところ、割れが発生した部分では、材料表面近傍の炭素量、窒素量が高いことが判明した。通常、板厚0.2mm以下の薄板を製造する場合、冷間圧延後に、軟化させて成形性・加工性を付与するための光輝焼鈍(BA=Bright Annealing)を行う。しかし、焼鈍前の洗浄ラインでの圧延油の除去が不十分な場合、材料表面に圧延油が多く残り、材料表面近傍への炭素の侵入量が多くなる。窒素は、焼鈍炉のガス置換時に残存した窒素ガスで、置換が不十分な場合、多くの窒素が残存し、窒素の侵入量が多くなる。   In the process of further investigation, many cracks may occur during press working, and the cause was investigated. As a result, it was found that the amount of carbon and nitrogen in the vicinity of the material surface were high in the portion where the crack occurred. Usually, when manufacturing a thin plate having a thickness of 0.2 mm or less, bright annealing (BA = Bright Annealing) for softening and imparting formability and workability is performed after cold rolling. However, when the removal of rolling oil in the cleaning line before annealing is insufficient, a large amount of rolling oil remains on the material surface, and the amount of carbon entering the vicinity of the material surface increases. Nitrogen is a nitrogen gas remaining at the time of gas replacement in the annealing furnace. If the replacement is insufficient, a large amount of nitrogen remains and the amount of nitrogen intrusion increases.

侵入した炭素、窒素は、TiC、TiNを形成したり、固溶強化をもたらすために、表面硬度が高くなり、厚さ0.2mm以下の極薄形状のチタン薄板においても、形状保持性がよくなる。しかし、あまり深くまで侵入すると、材料の伸びが著しく低下する。上記の特性(すなわち、表面硬度の向上および伸びの低下抑制)を両立させるためには、炭素、窒素、酸素の侵入深さを表面から200nm〜2μmの範囲内とすることが必要である。すなわち、炭素、窒素、酸素の侵入により形成される硬化層の領域が、表面から200nm〜2μmの範囲であることが必要である。   Intruded carbon and nitrogen form TiC and TiN and cause solid solution strengthening, so that the surface hardness is high and the shape retention is improved even in an ultrathin titanium thin plate having a thickness of 0.2 mm or less. . However, if it penetrates too deeply, the elongation of the material is significantly reduced. In order to achieve both the above characteristics (that is, improvement in surface hardness and suppression of decrease in elongation), it is necessary to set the penetration depth of carbon, nitrogen, and oxygen within the range of 200 nm to 2 μm from the surface. That is, the region of the hardened layer formed by the penetration of carbon, nitrogen, and oxygen needs to be in the range of 200 nm to 2 μm from the surface.

本発明は上記の検討の知見に基づきなされたもので、下記の加工性に優れた高強度チタン薄板を要旨としている。
すなわち、板厚が0.2mm以下のチタン薄板であって、バルクのFeが0.1mass%以下、O(酸素)が0.1mass%以下である純チタンからなり、板厚(mm)/結晶粒径(mm)≧3で、かつ結晶粒径≧2.5μmを満たし、表面に硬化層を有し、前記硬化層の領域が、表面から深さ200nm以上2μm以下である、チタン薄板である。
The present invention has been made on the basis of the findings of the above study, and the gist of the present invention is a high-strength titanium thin plate excellent in the following workability.
That is, a titanium thin plate having a thickness of 0.2 mm or less, consisting of pure titanium having a bulk Fe of 0.1 mass% or less and O (oxygen) of 0.1 mass% or less, and the thickness (mm) / crystal A titanium thin plate having a particle size (mm) ≧ 3, a crystal particle size ≧ 2.5 μm, a hardened layer on the surface, and a region of the hardened layer having a depth of 200 nm to 2 μm from the surface .

本発明のチタン薄板が、冷間圧延後、BAF(バッチ熱処理)もしくは連続焼鈍によって500℃以上850℃以下で仕上げ焼鈍(光輝焼鈍)が施されていれば、安定した加工性が確保されるので望ましい。
ここでいう「チタン薄板」とは、JISH4600に規定される工業用純チタンで、板厚が0.2mm以下の薄板ないしは箔を指す。
前記の「粒径」とは、JISH0501に規定されている求積法により求められる平均粒径を意味する。それを強調して「平均粒径」と記すこともある。
また、「硬化層」とは、焼鈍時に、表面に残存する圧延油に由来する炭素や窒素、酸素、焼鈍炉のガス雰囲気に含まれる窒素および酸素ガスによって形成される酸素、窒素、炭素の濃化層を指す。
If the titanium thin plate of the present invention is subjected to finish annealing (bright annealing) at 500 ° C. or more and 850 ° C. or less by BAF (batch heat treatment) or continuous annealing after cold rolling, stable workability is ensured. desirable.
The “titanium thin plate” referred to here is a pure titanium for industrial use as defined in JISH4600, and refers to a thin plate or foil having a plate thickness of 0.2 mm or less.
The above-mentioned “particle diameter” means an average particle diameter determined by a quadrature method specified in JISH0501. This may be emphasized and referred to as “average particle size”.
In addition, the “hardened layer” means carbon, nitrogen, oxygen derived from the rolling oil remaining on the surface during annealing, oxygen, nitrogen, carbon concentration formed by nitrogen and oxygen gas contained in the gas atmosphere of the annealing furnace. Refers to a chemical layer.

本発明のチタン薄板は、板厚が0.2mm以下の、優れた加工性と高い表面硬度が付与されたチタン薄板であり、例えば、音響部品(スピーカー振動板など)を始め、様々な用途に好適に使用できるチタン薄板(箔)である。   The titanium thin plate of the present invention is a titanium thin plate having a thickness of 0.2 mm or less and imparted with excellent workability and high surface hardness. For example, it is used for various applications including acoustic parts (speaker diaphragms, etc.). It is a titanium thin plate (foil) that can be suitably used.

チタン薄板の引張試験における結晶粒径と伸びの関係を例示する図である。It is a figure which illustrates the relationship between the crystal grain size and elongation in the tensile test of a titanium thin plate. 厚さ25μmのチタン薄板(箔)の引張試験における応力とひずみの関係を例示する図である。It is a figure which illustrates the relationship between the stress and the distortion in the tensile test of a 25-micrometer-thick titanium thin plate (foil). チタン薄板の引張試験における板厚/粒径と伸びの関係を例示する図である。It is a figure which illustrates the relationship between plate | board thickness / particle size and elongation in the tensile test of a titanium thin plate. チタン薄板における硬化層厚さと表面硬度の関係を示す図である。It is a figure which shows the relationship between the hardened layer thickness and surface hardness in a titanium thin plate. 厚さ100μm、板厚/粒径≧3のチタン薄板についての硬化層厚さと伸びの関係を例示する図である。It is a figure which illustrates the relationship between the hardening layer thickness and elongation about the titanium thin plate of thickness 100 micrometers and plate | board thickness / particle size> = 3.

本発明のチタン薄板は、前記のとおり、板厚が0.2mm以下のチタン薄板であって、バルクのFeが0.1mass%以下、O(酸素)が0.1mass%以下であり、板厚(mm)/粒径(mm)≧3で、かつ粒径≧2.5μmを満たし、表面に硬化層を有し、前記硬化層の領域が、表面から深さ200nm以上2μm以下である。   As described above, the titanium thin plate of the present invention is a titanium thin plate having a thickness of 0.2 mm or less, wherein bulk Fe is 0.1 mass% or less, O (oxygen) is 0.1 mass% or less, and the plate thickness is (Mm) / particle diameter (mm) ≧ 3 and particle diameter ≧ 2.5 μm is satisfied, the surface has a hardened layer, and the region of the hardened layer has a depth of 200 nm to 2 μm from the surface.

本発明において、板厚が0.2mm以下のチタン薄板を対象とするのは、例えば、スピーカー振動板などにも好適に使用できる加工性に優れた高強度チタン薄板を提供するためである。   The purpose of the present invention is to provide a high-strength titanium thin plate excellent in workability that can be suitably used for, for example, a speaker diaphragm.

本発明のチタン薄板において、バルクのFeが0.1mass%以下と規定するのは、次の理由による。すなわち、Feはβ相を安定化させる元素であり、β相が存在すると、焼鈍中にβ相によって結晶粒の成長が阻害される。含有量が0.1mass%を超えるとその作用が顕著になるので、Feの含有量は0.1mass%以下とする。下限は特に限定しないが、工業的に製造する場合には、Feの混入は避けられず、0.01mass%以上が含まれるため、望ましい下限を0.01mass%とする。   In the titanium thin plate of the present invention, the bulk Fe is defined to be 0.1 mass% or less for the following reason. That is, Fe is an element that stabilizes the β phase. When the β phase is present, growth of crystal grains is inhibited by the β phase during annealing. When the content exceeds 0.1 mass%, the effect becomes remarkable, so the Fe content is set to 0.1 mass% or less. The lower limit is not particularly limited, but in the case of industrial production, mixing of Fe is unavoidable, and since 0.01 mass% or more is included, the desirable lower limit is set to 0.01 mass%.

また、バルクのO(酸素)が0.1mass%以下と規定するのは、加工性の低下を抑えるためである。Oを添加することによりチタン薄板は高強度化するが、加工性が低下し、含有量が0.1mass%を超えるとその傾向が顕著になる。そのため、Oの含有量は0.1mass%以下とする。下限は特に限定しないが、OもFeと同様に工業的に製造する際の混入は避けられないので、望ましい下限を0.01mass%とする。   The reason why the bulk O (oxygen) is defined to be 0.1 mass% or less is to suppress a decrease in workability. The addition of O increases the strength of the titanium thin plate, but the workability decreases, and the tendency becomes remarkable when the content exceeds 0.1 mass%. Therefore, the content of O is set to 0.1 mass% or less. The lower limit is not particularly limited. However, since O is inevitably mixed when it is industrially produced in the same manner as Fe, the desirable lower limit is set to 0.01 mass%.

なお、バルクとは、チタン薄板の表面に形成された硬化層を除いた内部を意味する。本発明では、バルクにおいて、Fe濃度が0.1mass%以下、O濃度が0.1mass%以下である。   In addition, a bulk means the inside except the hardened layer formed in the surface of a titanium thin plate. In the present invention, in the bulk, the Fe concentration is 0.1 mass% or less, and the O concentration is 0.1 mass% or less.

本発明のチタン薄板において、粒径≧2.5μmを満たすこととするのは、図1に示すように、粒径が2.5μm未満では伸びが大きく低下し、加工性が低下するからである。   In the titanium thin plate of the present invention, the reason why the particle size ≧ 2.5 μm is satisfied is that, as shown in FIG. 1, when the particle size is less than 2.5 μm, the elongation greatly decreases and the workability decreases. .

図1は、チタン薄板の引張試験における結晶粒径と伸びの関係を例示する図である。同図に示すように、結晶粒径が2.5μm未満では未再結晶粒が存在しなくても高強度化しすぎるため、伸びが大きく低下する。   FIG. 1 is a diagram illustrating the relationship between crystal grain size and elongation in a tensile test of a titanium thin plate. As shown in the figure, when the crystal grain size is less than 2.5 μm, the strength is excessively increased even if there is no non-recrystallized grain, and the elongation is greatly reduced.

本発明のチタン薄板において、板厚(mm)/粒径(mm)≧3(以下、「板厚(mm)/粒径(mm)」を単に「板厚/粒径」とも記す)を満たすこととするのは、以下の理由による。   In the titanium thin plate of the present invention, plate thickness (mm) / particle size (mm) ≧ 3 (hereinafter, “plate thickness (mm) / particle size (mm)” is also simply referred to as “plate thickness / particle size”) is satisfied. The reason is as follows.

図2は、厚さ25μmのチタン薄板(箔)の引張試験における応力とひずみの関係を例示する図である。同図において、「粒径:5.3μm」および「粒径:12.3μm」はそれぞれ平均粒径が5.3μmおよび12.3μmの試験片についての測定結果である。
図2に示したように、いずれの試験片においても、均一伸びの状態を経過した後、局所変形を開始し、破断に至る。局部変形量は小さく、均一変形量すなわち、均一伸びが加工性の指標であり、これが低下することは加工性の低下を示す。
FIG. 2 is a diagram illustrating the relationship between stress and strain in a tensile test of a titanium thin plate (foil) having a thickness of 25 μm. In the figure, “particle size: 5.3 μm” and “particle size: 12.3 μm” are measurement results for test pieces having average particle sizes of 5.3 μm and 12.3 μm, respectively.
As shown in FIG. 2, in any of the test pieces, after a uniform elongation state has elapsed, local deformation is started, and breakage occurs. The local deformation amount is small, and the uniform deformation amount, that is, uniform elongation is an index of workability, and a decrease in this indicates a decrease in workability.

多結晶材料の変形では、1個の粒が変形した場合、その周囲の結晶粒による変形の緩和が起こる。しかし、板厚方向に対して結晶粒が少ない場合には、1つの結晶粒の変形に対する寄与が大きくなり、特定の結晶粒で変形が進行するため、早期に局所変形が開始される。図2はこの状態を示している。   In the deformation of a polycrystalline material, when one grain is deformed, the deformation of the surrounding crystal grains is relaxed. However, when the number of crystal grains is small in the plate thickness direction, the contribution to the deformation of one crystal grain is increased, and the deformation progresses with a specific crystal grain, so that local deformation is started at an early stage. FIG. 2 shows this state.

このため、板厚方向に存在する結晶粒の数、つまり板厚/粒径の比によって、粗粒化により加工性が改善できる平均結晶粒径範囲の上限が決まる。   For this reason, the upper limit of the average crystal grain size range in which workability can be improved by coarsening is determined by the number of crystal grains existing in the plate thickness direction, that is, the plate thickness / grain size ratio.

図3は、チタン薄板の引張試験における板厚/粒径と伸びの関係を例示する図である。図3に示したように、板厚25μmから150μmのいずれにおいても、板厚/粒径=3付近で伸びが著しく低下しており、板厚(mm)/粒径(mm)≧3を満たす必要があることがわかる。   FIG. 3 is a diagram illustrating the relationship between the thickness / grain size and elongation in a tensile test of a titanium thin plate. As shown in FIG. 3, in any of the plate thicknesses from 25 μm to 150 μm, the elongation is remarkably reduced in the vicinity of the plate thickness / particle size = 3, and the plate thickness (mm) / particle size (mm) ≧ 3 is satisfied. I understand that it is necessary.

さらに、本発明のチタン薄板においては、表面から深さ200nm以上2μm以下の領域に硬化層を有することが必要である。言い換えれば、表面近傍に200nm〜2μmの厚さの硬化層を有することが必要である。   Furthermore, in the titanium thin plate of the present invention, it is necessary to have a hardened layer in a region having a depth of 200 nm to 2 μm from the surface. In other words, it is necessary to have a cured layer having a thickness of 200 nm to 2 μm in the vicinity of the surface.

硬化層は、焼鈍時に、表面に残存する圧延油に由来する炭素や窒素、酸素、焼鈍炉のガス雰囲気に含まれる窒素および酸素ガスによって形成される酸素、窒素、炭素の濃化層であり、酸素0.5mass%以上を含有する領域、窒素0.5mass%以上を含有する領域、炭素0.5mass%以上を含有する領域、または酸素、窒素と炭素を合計で0.5mass%以上を含有する領域である。なお、硬化層の厚さはGDS(グロー放電発光分析装置)により測定することができる。   The hardened layer is a concentrated layer of carbon, nitrogen, oxygen derived from the rolling oil remaining on the surface at the time of annealing, oxygen, nitrogen, and oxygen formed by nitrogen and oxygen gas contained in the gas atmosphere of the annealing furnace, A region containing 0.5 mass% or more of oxygen, a region containing 0.5 mass% or more of nitrogen, a region containing 0.5 mass% or more of carbon, or a total of 0.5 mass% or more of oxygen, nitrogen and carbon It is an area. The thickness of the hardened layer can be measured by GDS (Glow Discharge Optical Emission Analyzer).

図4は、チタン薄板における硬化層厚さと表面硬度の関係を示す図である。図4に示したように、硬化層厚さが厚いほど表面硬度が高くなる。硬化層の厚さが200nmよりも薄い場合には、素材の断面で測定した素材硬度(図4中に表示)と同程度であり、硬度の増加が認められない。また、表面硬度の増加が不十分であると、形状保持性に劣る。そのため、硬化層の厚さは200nm以上とする。   FIG. 4 is a diagram showing the relationship between the thickness of the hardened layer and the surface hardness of the titanium thin plate. As shown in FIG. 4, the surface hardness increases as the hardened layer thickness increases. When the thickness of the hardened layer is less than 200 nm, it is almost the same as the material hardness measured in the cross section of the material (shown in FIG. 4), and no increase in hardness is observed. Moreover, when the increase in surface hardness is insufficient, the shape retainability is poor. Therefore, the thickness of the cured layer is 200 nm or more.

図5は、厚さ100μm、板厚/粒径≧3のチタン薄板についての硬化層厚さと伸びの関係を例示する図である。図5に示したように、板厚/粒径≧3であっても、硬化層厚さが厚すぎると伸びが低下し、加工性の低下につながるので、硬化層厚さは2000nm(2μm)以下とする。   FIG. 5 is a diagram illustrating the relationship between the cured layer thickness and elongation for a titanium thin plate having a thickness of 100 μm and a plate thickness / particle size ≧ 3. As shown in FIG. 5, even if the plate thickness / particle size ≧ 3, the cured layer thickness is 2000 nm (2 μm), because if the cured layer thickness is too thick, the elongation decreases and the workability decreases. The following.

本発明のチタン薄板は、冷間圧延後、BAFもしくは連続焼鈍によって500℃以上850℃以下で仕上げ焼鈍が施されていれば、安定した加工性が確保されるので望ましい。   If the titanium thin plate of the present invention is subjected to finish annealing at 500 ° C. or more and 850 ° C. or less by BAF or continuous annealing after cold rolling, it is desirable because stable workability is secured.

焼鈍温度が低いと、未再結晶粒が残り、加工性が低下する。本発明のチタン薄板の再結晶温度が500℃であるため、仕上げ焼鈍は500℃以上で行う。また、優れた強度と延性(伸び)のバランスが得られ易い等軸組織とするために、850℃以下とする。通常の操業においても焼鈍処理の目的に添った操業が行われるが、上記望ましい温度条件で仕上げ焼鈍を行うことにより、安定して加工性が確保される。   When the annealing temperature is low, non-recrystallized grains remain and the workability deteriorates. Since the recrystallization temperature of the titanium thin plate of the present invention is 500 ° C., finish annealing is performed at 500 ° C. or higher. Further, in order to obtain an equiaxed structure in which an excellent balance between strength and ductility (elongation) is easily obtained, the temperature is set to 850 ° C. or less. Even in a normal operation, an operation in accordance with the purpose of the annealing treatment is performed. However, by performing the final annealing under the desirable temperature condition, workability is stably ensured.

硬化層の厚さは、例えば、冷間圧延後に通常行われる洗浄工程での圧延油の残存量を変化させることや、光輝焼鈍炉の残存窒素や酸素量を変化させることによって、目的とする厚さにすることが可能である。   The thickness of the hardened layer can be obtained by changing the residual amount of rolling oil in a cleaning process usually performed after cold rolling, or by changing the residual nitrogen and oxygen amount in a bright annealing furnace. It is possible.

本発明の効果を確認するために、以下の試験を行った。
まず、JISH4600に規定される1種の純チタン(厚さ0.5mm)について、冷間圧延および中間焼鈍を経て、25μm〜150μm厚の冷延板を製造した。続いて、Ar雰囲気(露点≦−40℃)中で条件を変えて仕上げ焼鈍を行うことにより結晶粒径を種々変化させた。また、板の表面に残存させた圧延油や、焼鈍炉のガス雰囲気により、板の表面に酸素、窒素、炭素のいずれかを濃化させて硬化層を形成した。硬化層の厚さ(深さ)は、圧延油の残存量や光輝焼鈍時の雰囲気中の窒素量及び酸素量を変化させて、調整した。
In order to confirm the effect of the present invention, the following tests were conducted.
First, about 1 type of pure titanium (thickness 0.5mm) prescribed | regulated to JISH4600, the cold-rolled board of 25 micrometers-150 micrometers thickness was manufactured through cold rolling and intermediate annealing. Subsequently, the crystal grain size was variously changed by performing finish annealing in an Ar atmosphere (dew point ≦ −40 ° C.) under different conditions. In addition, a hardened layer was formed by concentrating oxygen, nitrogen, or carbon on the surface of the plate with the rolling oil remaining on the surface of the plate or the gas atmosphere of the annealing furnace. The thickness (depth) of the hardened layer was adjusted by changing the remaining amount of rolling oil and the amount of nitrogen and oxygen in the atmosphere during bright annealing.

これら仕上げ焼鈍後の各冷延板(各試験片)を平行部幅6.25mm、平行部長さ50mmの試験片に加工した後、引張試験を行った。また、各試験片について、板厚、結晶粒径、表面硬度および硬化層の厚さを測定した。実施例に用いた各試験片のFe濃度(バルクmass%)、O濃度(バルクmass%)、各測定結果を表1にまとめて示す。   Each cold-rolled sheet (each test piece) after finish annealing was processed into a test piece having a parallel part width of 6.25 mm and a parallel part length of 50 mm, and then a tensile test was performed. Moreover, about each test piece, plate | board thickness, crystal grain diameter, surface hardness, and the thickness of the hardened layer were measured. Table 1 shows the Fe concentration (bulk mass%), O concentration (bulk mass%), and measurement results of each test piece used in the examples.

Figure 0005776850
Figure 0005776850

引張試験は、圧延方向に平行な方向(L方向)について、歪速度を、0.2%耐力までは0.5%/min、その後、破断までは20%/minとし、室温の条件で行った。   The tensile test is performed at room temperature in a direction parallel to the rolling direction (L direction) with a strain rate of 0.5% / min up to 0.2% proof stress and then 20% / min up to fracture. It was.

結晶粒径は、試料表面の40,000μm以上の領域について、求積法を用い正方形近似して求めた。The crystal grain size was obtained by square approximation using a quadrature method for an area of 40,000 μm 2 or more on the sample surface.

表面硬度は、ビッカース硬度計を用い、荷重0.245N(25gf)でビッカース圧子を試料表面に押し込み、10点の平均値で評価した。   The surface hardness was evaluated by using a Vickers hardness tester and pushing the Vickers indenter into the sample surface with a load of 0.245 N (25 gf), with an average value of 10 points.

硬化層の厚さは、GDSを用い、試料表面の直径4mmの領域において、Arイオンスパッタにより酸素、窒素、炭素、チタン、鉄の深さ方向分析を行い、酸素、窒素および炭素のうちのいずれかの濃度、またはこれらの合計濃度が0.5mass%以上となる厚さとした。定量化に際しては、各測定値を、酸素については酸化亜鉛(酸素を19.8mass%)を、窒素についてはオーステナイト系ステンレス鋼(窒素を0.3mass%含有)を、炭素についてはチタン合金(炭素を0.12mass%含有)をそれぞれ用いて較正し、純チタン(JIS1種)における測定部位(深さ)に対応させることにより、各元素の深さ方向分析を行った。   The thickness of the hardened layer was determined by analyzing the depth direction of oxygen, nitrogen, carbon, titanium, and iron by Ar ion sputtering in an area of 4 mm in diameter on the sample surface using GDS. Or a total thickness of these layers was 0.5 mass% or more. For quantification, each measured value was measured using zinc oxide (oxygen 19.8 mass%) for oxygen, austenitic stainless steel (containing 0.3 mass% nitrogen) for nitrogen, and titanium alloy (carbon And 0.12 mass%) were calibrated, and the depth direction analysis of each element was performed by making it correspond to the measurement site | part (depth) in pure titanium (JIS1 type).

表1において、板厚やFe、Oの含有量(バルク濃度)によってチタン材の特性値が変化するために、これらが概ね同様の条件のもとで、それぞれ比較した。また、板厚やFe、Oの含有量が同様であっても粒径の影響を受けるため、粒径を考慮して比較した。なお、形状保持性は、加工量が小さい部分で変形することによって、形が変形することが問題であるために、それぞれの板圧において、0.2%耐力の大きさで評価できる。   In Table 1, since the characteristic values of the titanium material change depending on the plate thickness and the contents (bulk concentration) of Fe and O, these were compared under substantially the same conditions. In addition, even if the plate thickness and the contents of Fe and O are the same, they are affected by the particle size, so the comparison was made in consideration of the particle size. In addition, since shape retainability has a problem that a shape deform | transforms by deform | transforming in a part with a small processing amount, it can be evaluated by the magnitude | size of 0.2% yield strength in each board pressure.

比較例1および比較例4は、いずれも未再結晶粒が残存している場合であり、伸びが著しく低かった。
比較例2、3、5、6、11、12、16、17は、いずれも(板厚/粒径)<3の場合であり、伸びが著しく低かった。特に、比較例17は、本発明例18〜23よりも伸びが低かった。
比較例7および比較例13は、いずれも結晶粒径が微細すぎる場合(2.5μm未満)で、伸びが低かった。
比較例8、10、12は、硬化層の厚さが本発明で規定する厚さ(200nm以上2μm以下)よりも大きい場合で、伸びが低かった。特に、比較例12は、板厚/粒径が3未満であり、硬化層も厚いため、本発明例11〜17よりも伸びが低くかった。比較例16は、板厚/粒径が3未満であり、硬化層も厚いため、本発明例18〜23よりも伸びが低かった。
比較例9、14、15は、硬化層の厚さが薄く(200nm未満)、0.2%耐力が低く、形状保持性が良くなかった。特に、比較例14は、粒径がほぼ同じ本発明例22と比較して、耐力が著しく低かった。比較例15は、粒径がほぼ同じ本発明例23と比較して、耐力が著しく低かった。
Comparative Example 1 and Comparative Example 4 were both cases where unrecrystallized grains remained, and the elongation was extremely low.
In Comparative Examples 2, 3, 5, 6, 11, 12, 16, and 17, all were (plate thickness / particle size) <3, and the elongation was remarkably low. In particular, Comparative Example 17 had a lower elongation than Invention Examples 18-23.
In both Comparative Example 7 and Comparative Example 13, when the crystal grain size was too fine (less than 2.5 μm), the elongation was low.
In Comparative Examples 8, 10, and 12, the thickness of the cured layer was larger than the thickness specified in the present invention (200 nm or more and 2 μm or less), and the elongation was low. In particular, Comparative Example 12 had a plate thickness / particle size of less than 3 and a thick cured layer, and therefore, the elongation was lower than those of Invention Examples 11-17. In Comparative Example 16, the plate thickness / particle diameter was less than 3, and the cured layer was thick, so the elongation was lower than those of Invention Examples 18-23.
In Comparative Examples 9, 14, and 15, the thickness of the cured layer was thin (less than 200 nm), the 0.2% proof stress was low, and the shape retention was not good. In particular, the proof stress of the comparative example 14 was remarkably low as compared with the inventive example 22 having substantially the same particle size. In Comparative Example 15, the proof stress was remarkably low as compared with Inventive Example 23 having substantially the same particle size.

同じ板厚でまとめると、次のようになった。
「25μm材について」
比較例1は、未再結晶組織のため、伸びが低い。
比較例2、3は、板厚/粒径が3未満であり、本発明例1〜5と比較して、伸び、耐力、引張強度が低い。
「50μm材について」
比較例4は、未再結晶組織のため、伸びが低い。
比較例5、6は、板厚/粒径が3未満であり、本発明例6〜10と比較して、伸び、耐力、引張強度が低い。
「100μm材について」
比較例7は、細粒化しすぎて、伸びが低い。
比較例8は、板厚/粒径≧3を満たしているが、硬化層が厚く、伸びが低い。
比較例9は、硬化層が薄く、粒径がほぼ同じ本発明例17と比較して、耐力が著しく低い。
比較例10は、硬化層が厚く、本発明例11〜17よりも伸びが低い。
比較例11は、板厚/粒径が3未満であり、本発明例11〜17よりも伸びが低い。
比較例12は、板厚/粒径が3未満であり、硬化層も厚いため、本発明例11〜17よりも伸びが低い。
「150μm材について」
比較例13は、細粒化しすぎて、伸びが低い。
比較例14は、硬化層が薄く、粒径がほぼ同じ本発明例22と比較して、耐力が著しく低い。
比較例15は、硬化層が薄く、粒径がほぼ同じ本発明例23と比較して、耐力が著しく低い。
比較例16は、板厚/粒径が3未満であり、硬化層も厚いため、本発明例18〜23よりも伸びが低い。
比較例17は、板厚/粒径が3未満であり、本発明例18〜23よりも伸びが低い。
The following table summarizes the same thickness.
“About 25μm material”
Comparative Example 1 has a low elongation due to the non-recrystallized structure.
In Comparative Examples 2 and 3, the plate thickness / particle size is less than 3, and the elongation, yield strength, and tensile strength are low as compared with Examples 1 to 5 of the present invention.
“About 50μm materials”
Comparative Example 4 has a low elongation due to the non-recrystallized structure.
In Comparative Examples 5 and 6, the plate thickness / particle diameter is less than 3, and the elongation, yield strength, and tensile strength are low as compared with Examples 6 to 10 of the present invention.
“About 100μm materials”
Comparative Example 7 is too fine and has low elongation.
In Comparative Example 8, the thickness / particle size ≧ 3 is satisfied, but the cured layer is thick and the elongation is low.
In Comparative Example 9, the yield strength is significantly lower than that of Inventive Example 17 in which the cured layer is thin and the particle size is substantially the same.
In Comparative Example 10, the cured layer is thick and the elongation is lower than those of Invention Examples 11-17.
In Comparative Example 11, the plate thickness / particle diameter is less than 3, and the elongation is lower than those of Invention Examples 11-17.
In Comparative Example 12, the thickness / particle diameter is less than 3 and the hardened layer is thick, so the elongation is lower than those of Invention Examples 11-17.
“About 150μm materials”
Comparative Example 13 is too fine and has low elongation.
In Comparative Example 14, the yield strength is significantly lower than that of Inventive Example 22 in which the cured layer is thin and the particle diameter is substantially the same.
In Comparative Example 15, the yield strength is significantly lower than that of Invention Example 23 in which the cured layer is thin and the particle diameter is substantially the same.
In Comparative Example 16, the plate thickness / particle diameter is less than 3 and the hardened layer is thick, so the elongation is lower than those of Invention Examples 18-23.
In Comparative Example 17, the plate thickness / particle diameter is less than 3, and the elongation is lower than those of Invention Examples 18-23.

これに対し、本発明例1〜23は、いずれも本発明で規定する条件を満たす場合であり、高い伸びと表面硬度を示した。   On the other hand, Examples 1 to 23 of the present invention are cases where the conditions defined in the present invention are satisfied, and show high elongation and surface hardness.

本発明のチタン薄板は、優れた加工性と高い表面硬度を備えており、例えばスピーカー振動板など、民生用品および産業用の素材として、幅広い用途に利用することができる。   The titanium thin plate of the present invention has excellent workability and high surface hardness, and can be used in a wide range of applications as consumer products and industrial materials such as speaker diaphragms.

Claims (2)

板厚が0.2mm以下のチタン薄板であって、
バルクのFeが0.1mass%以下、O(酸素)が0.1mass%以下である純チタンからなり、
板厚(mm)/結晶粒径(mm)≧3で、かつ結晶粒径≧2.5μmを満たし、
表面に硬化層を有し、前記硬化層の領域が、表面から深さ200nm以上2μm以下である、チタン薄板。
A titanium thin plate with a plate thickness of 0.2 mm or less,
It consists of pure titanium with bulk Fe of 0.1 mass% or less and O (oxygen) of 0.1 mass% or less ,
Plate thickness (mm) / crystal grain size (mm) ≧ 3 and crystal grain size ≧ 2.5 μm are satisfied,
A titanium thin plate having a hardened layer on the surface, wherein the region of the hardened layer has a depth of 200 nm to 2 μm from the surface.
冷間圧延後、BAFもしくは連続焼鈍によって500℃以上850℃以下で仕上げ焼鈍が施されている、請求項1に記載のチタン薄板。   The titanium thin plate according to claim 1, which is subjected to finish annealing at 500 ° C. or more and 850 ° C. or less by BAF or continuous annealing after cold rolling.
JP2014530559A 2012-08-14 2013-08-13 Titanium sheet Active JP5776850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014530559A JP5776850B2 (en) 2012-08-14 2013-08-13 Titanium sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012179861 2012-08-14
JP2012179861 2012-08-14
JP2014530559A JP5776850B2 (en) 2012-08-14 2013-08-13 Titanium sheet
PCT/JP2013/071869 WO2014027657A1 (en) 2012-08-14 2013-08-13 Thin titanium sheet

Publications (2)

Publication Number Publication Date
JP5776850B2 true JP5776850B2 (en) 2015-09-09
JPWO2014027657A1 JPWO2014027657A1 (en) 2016-07-28

Family

ID=50685605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014530559A Active JP5776850B2 (en) 2012-08-14 2013-08-13 Titanium sheet

Country Status (5)

Country Link
US (1) US20150152538A1 (en)
JP (1) JP5776850B2 (en)
CN (1) CN104520455B (en)
TW (1) TWI493048B (en)
WO (1) WO2014027657A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060428A1 (en) * 2011-03-01 2014-03-06 Nippon Steel & Sumitomo Metal Corporation Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP6536076B2 (en) * 2015-02-24 2019-07-03 日本製鉄株式会社 Titanium plate and method of manufacturing the same
JP6610062B2 (en) * 2015-07-31 2019-11-27 日本製鉄株式会社 Titanium plate
JP6156597B1 (en) * 2016-06-30 2017-07-05 新日鐵住金株式会社 Titanium sheet and manufacturing method thereof
WO2020213713A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet, titanium rolled coil, and copper foil production drum
CN113260727B (en) * 2019-04-17 2022-06-28 日本制铁株式会社 Titanium plate and copper foil manufacturing roller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352885B2 (en) * 1996-08-21 2002-12-03 新日本製鐵株式会社 Titanium sheet and method for producing the same
JP3600792B2 (en) * 2000-12-15 2004-12-15 新日本製鐵株式会社 Industrial pure titanium sheet and its manufacturing method
CN101050495A (en) * 2007-05-16 2007-10-10 宝鸡市嘉诚稀有金属材料有限公司 Method for manufacturing titanium sheet metal with high plasticity
JP5081570B2 (en) * 2007-10-19 2012-11-28 住友金属工業株式会社 Titanium material and titanium material manufacturing method
WO2010070742A1 (en) * 2008-12-17 2010-06-24 住友金属工業株式会社 Titanium material and method for producing titanium material
JP5365266B2 (en) * 2009-03-05 2013-12-11 新日鐵住金株式会社 Titanium alloy sheet excellent in press formability and manufacturing method thereof
JP5700650B2 (en) * 2011-01-28 2015-04-15 株式会社神戸製鋼所 Pure titanium plate with excellent balance between press formability and strength

Also Published As

Publication number Publication date
CN104520455B (en) 2017-02-22
US20150152538A1 (en) 2015-06-04
WO2014027657A1 (en) 2014-02-20
JPWO2014027657A1 (en) 2016-07-28
TWI493048B (en) 2015-07-21
CN104520455A (en) 2015-04-15
TW201414856A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5776850B2 (en) Titanium sheet
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP6156597B1 (en) Titanium sheet and manufacturing method thereof
WO2015037614A1 (en) Cold-rolled steel sheet for enameling, method for producing same, and enamel product
JP4666271B2 (en) Titanium plate
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
CN114807776A (en) Steel, product made of said steel and method for manufacturing same
TWI573881B (en) Steel sheet for drawn-can and producing method thereof
TWI428453B (en) Steel plate for can and manufacturing method thereof
JPWO2019043882A1 (en) Titanium plate
JP5930144B1 (en) Steel plate for squeezed can and method for manufacturing the same
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JP2017190469A (en) Cold rolled steel sheet for drawn can and production method therefor
JP6610062B2 (en) Titanium plate
JP2020164956A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP2011001564A (en) Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
JP5484756B2 (en) Molybdenum plate and method for manufacturing molybdenum plate
JP5032011B2 (en) Hard α brass and method for producing the hard α brass
JP3222239B2 (en) Hard surface-treated original sheet with high BH property and excellent workability
JP4783214B2 (en) Titanium alloys and press-molded parts with excellent press workability
JP4452753B1 (en) Titanium or titanium alloy plate with excellent balance of press formability and strength
JP2016191123A (en) Titanium ultra thin sheet and manufacturing method therefor
JP2011208194A (en) Method for manufacturing ultra-low carbon steel having excellent material uniformity in thickness direction
JP2006183071A (en) Austenitic stainless steel sheet having excellent bulging moldability and its production method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R151 Written notification of patent or utility model registration

Ref document number: 5776850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350