JP5775596B2 - Hot water supply air conditioner - Google Patents

Hot water supply air conditioner Download PDF

Info

Publication number
JP5775596B2
JP5775596B2 JP2013540604A JP2013540604A JP5775596B2 JP 5775596 B2 JP5775596 B2 JP 5775596B2 JP 2013540604 A JP2013540604 A JP 2013540604A JP 2013540604 A JP2013540604 A JP 2013540604A JP 5775596 B2 JP5775596 B2 JP 5775596B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013540604A
Other languages
Japanese (ja)
Other versions
JPWO2013061473A1 (en
Inventor
陽子 國眼
陽子 國眼
小谷 正直
正直 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2013061473A1 publication Critical patent/JPWO2013061473A1/en
Application granted granted Critical
Publication of JP5775596B2 publication Critical patent/JP5775596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯と空調を行う給湯空調装置に関する。   The present invention relates to a hot water supply air conditioner that performs hot water supply and air conditioning.

給湯と空調を行う給湯空調装置として、例えば、特許文献1に示す技術が開示されている。すなわち、特許文献1には、給湯用冷媒回路の第2熱交換器としてカスケード熱交換器を用い、該カスケード熱交換器を空調用冷媒回路に接続して二元のヒートポンプサイクル動作を行う空調給湯システム(給湯空調装置)について記載されている。また、特許文献1には、貯湯運転を行っている際に室外熱交換器(給湯熱源側熱交換器)で着霜が生じた場合、空調用冷媒回路の冷媒の循環を逆サイクル(つまり、冷房運転のサイクル)とすることによって除霜運転を行う技術について記載されている。   As a hot water supply air conditioner that performs hot water supply and air conditioning, for example, a technique disclosed in Patent Document 1 is disclosed. That is, in Patent Document 1, a cascade heat exchanger is used as the second heat exchanger of the hot water supply refrigerant circuit, and the cascade heat exchanger is connected to the air conditioning refrigerant circuit to perform a dual heat pump cycle operation. The system (hot water supply air conditioner) is described. Further, in Patent Document 1, when frost formation occurs in the outdoor heat exchanger (hot water supply heat source side heat exchanger) during hot water storage operation, the circulation of the refrigerant in the air conditioning refrigerant circuit is reversed (that is, A technique for performing a defrosting operation by setting a cycle of cooling operation) is described.

また、特許文献2には、複数系統の冷媒回路(空調用冷媒回路)を有し、それぞれの冷媒回路の室内熱交換器を一体にして室内機に搭載した空気調和装置について記載されている。また、特許文献2には、暖房運転中にいずれか1つの着霜検知手段が着霜を検知すると、着霜を検知した方の冷媒回路の運転を停止し、四方弁を切り換えて除霜運転を行うとともに他方の冷媒回路の圧縮機能力を上昇させ、暖房能力の低下を防止する技術について記載されている。   Patent Document 2 describes an air conditioner having a plurality of refrigerant circuits (air-conditioning refrigerant circuits), in which indoor heat exchangers of the respective refrigerant circuits are integrated into an indoor unit. Further, in Patent Document 2, when any one frost detection means detects frost during the heating operation, the operation of the refrigerant circuit that detects the frost is stopped, and the four-way valve is switched to perform the defrost operation. And a technique for increasing the compression function of the other refrigerant circuit and preventing a decrease in heating capacity is described.

特開2004−132647号公報JP 2004-132647 A 特開2003−106712号公報JP 2003-106712 A

しかしながら、特許文献1に記載の技術では、空調運転が不要となる深夜の時間帯に給湯運転を行うことが前提となっており、給湯運転と空調運転を同時に行っている際の除霜運転については考慮されていないという問題がある。また、特許文献1に記載の技術では、除霜運転中において暖房運転を停止させている。したがって、空調給湯システム全体の効率が低くなってしまうとともに、室内(被空調空間)での快適性を損なう虞がある。   However, the technique described in Patent Document 1 is based on the premise that the hot water supply operation is performed in the midnight time when the air conditioning operation is unnecessary, and the defrosting operation when the hot water supply operation and the air conditioning operation are performed simultaneously. There is a problem that is not considered. Moreover, in the technique described in Patent Document 1, the heating operation is stopped during the defrosting operation. Therefore, the efficiency of the entire air conditioning and hot water supply system is lowered, and the comfort in the room (the air-conditioned space) may be impaired.

また、特許文献2に記載の技術では、圧縮機(空調用圧縮機)と、四方弁と、室外熱交換器(空調熱源側熱交換器)と、膨張弁(空調用膨張弁)と、からなる室外ユニットを複数備えるため、設置体積の増加や、製造コストの増加につながる虞がある。また、除霜運転を行う際に、一方の冷媒回路の運転を停止させ、他方の冷媒回路で暖房運転を行うため、空調負荷が大きい場合には室内(被空調空間)を十分に暖めることができず、室内での快適性を損なう虞がある。   In the technique described in Patent Document 2, a compressor (air conditioning compressor), a four-way valve, an outdoor heat exchanger (air conditioning heat source side heat exchanger), and an expansion valve (air conditioning expansion valve) Since a plurality of outdoor units are provided, there is a possibility that the installation volume increases and the manufacturing cost increases. Further, when performing the defrosting operation, the operation of one refrigerant circuit is stopped and the heating operation is performed with the other refrigerant circuit, so that the room (air-conditioned space) can be sufficiently warmed when the air conditioning load is large. This may not be possible and may impair indoor comfort.

そこで、本発明は、簡単な構成でシステム全体の効率を向上させた給湯空調装置を提供することを課題とする。   Then, this invention makes it a subject to provide the hot water supply air conditioner which improved the efficiency of the whole system with simple structure.

前記課題を解決するために、本発明は、給湯用圧縮機と、給湯利用側熱交換器と、給湯用減圧装置と、給湯熱源側熱交換器とを環状に接続して構成され、第一冷媒が循環する給湯用冷媒回路を備えるとともに、空調用圧縮機と、流路切替手段と、空調利用側熱交換器と、空調用減圧装置と、空調熱源側熱交換器とを環状に接続して構成され、第二冷媒が循環する空調用冷媒回路と、を備える給湯空調装置であって、前記給湯熱源側熱交換器及び前記空調熱源側熱交換器はそれぞれ、室外空気と熱交換可能であり、前記給湯熱源側熱交換器と前記空調熱源側熱交換器とが熱的に接触し、前記給湯熱源側熱交換器は、前記空調熱源側熱交換器よりも上方に設置され、前記給湯熱源側熱交換器及び前記空調熱源側熱交換器と並列に接続され、第二冷媒からの排熱を第一冷媒に回収させるための排熱回収用熱交換器をさらに備え、前記給湯用冷媒回路には、前記給湯熱源側熱交換器及び/又は前記排熱回収用熱交換器に第一冷媒を通流させるための給湯用開閉手段が設置され、前記空調用冷媒回路には、前記空調熱源側熱交換器及び/又は前記排熱回収用熱交換器に第二冷媒を通流させるための空調用開閉手段が設置されていることを特徴とする。 In order to solve the above problems, the present invention comprises a hot water supply compressor, a hot water supply use side heat exchanger, a hot water supply decompression device, and a hot water supply heat source side heat exchanger connected in an annular shape. A refrigerant circuit for hot water supply in which the refrigerant circulates is provided, and an air conditioning compressor, a flow path switching means, an air conditioning utilization side heat exchanger, an air conditioning decompression device, and an air conditioning heat source side heat exchanger are connected in an annular shape. A hot water supply air conditioner comprising a second refrigerant circuit for circulating air, wherein the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are each capable of exchanging heat with outdoor air. The hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact, and the hot water supply heat source side heat exchanger is installed above the air conditioning heat source side heat exchanger, and the hot water supply Connected in parallel with the heat source side heat exchanger and the air conditioning heat source side heat exchanger, An exhaust heat recovery heat exchanger for recovering the exhaust heat from the first refrigerant, and the hot water supply refrigerant circuit includes the hot water supply heat source side heat exchanger and / or the exhaust heat recovery heat exchanger. The hot water supply opening / closing means for allowing the first refrigerant to flow through is installed, and the second refrigerant is passed through the air conditioning refrigerant circuit to the air conditioning heat source side heat exchanger and / or the exhaust heat recovery heat exchanger. It is characterized in that an air-conditioning opening / closing means for flowing is installed .

本発明により、簡単な構成でシステム全体の効率を向上させた給湯空調装置を提供することができる。   According to the present invention, it is possible to provide a hot water supply air conditioner that improves the efficiency of the entire system with a simple configuration.

本発明の第1実施形態に係る給湯空調装置の構成図である。It is a lineblock diagram of the hot-water supply air conditioner concerning a 1st embodiment of the present invention. 熱源側熱交換器の概略構成図である。It is a schematic block diagram of a heat source side heat exchanger. 給湯用伝熱管及び空調用伝熱管を2段構成とした場合の熱源側熱交換器の例を示す側面図である。It is a side view which shows the example of the heat source side heat exchanger at the time of setting the heat exchanger tube for hot water supply and the heat exchanger tube for an air conditioning to 2 steps | paragraphs. 本発明の第2実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。It is a schematic block diagram of the heat-source side heat exchanger of the hot water supply air conditioner which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。It is a schematic block diagram of the heat source side heat exchanger of the hot water supply air conditioner which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る給湯空調装置の構成図である。It is a block diagram of the hot water supply air conditioner which concerns on 4th Embodiment of this invention. 給湯冷房運転におけるモード判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the mode determination process in hot water supply air_conditionaing | cooling operation. 給湯冷房運転(排熱回収A)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。It is a block diagram which shows the flow of the refrigerant | coolant of the hot water supply air conditioner, a heat transfer medium, and the to-be-heated liquid in hot water supply air_conditionaing | cooling operation (exhaust heat recovery A) mode. 給湯冷房運転(排熱回収B)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。It is a block diagram which shows the flow of the refrigerant | coolant of the hot water supply air conditioner, a heat transfer medium, and a to-be-heated liquid in hot water supply cooling operation (exhaust heat recovery B) mode. 給湯冷房運転(排熱回収C)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。It is a block diagram which shows the flow of the refrigerant | coolant of the hot water supply air conditioner, a heat transfer medium, and the to-be-heated liquid in hot water supply air_conditionaing | cooling operation (exhaust heat recovery C) mode. 本発明の第5実施形態に係る給湯空調装置の構成図である。It is a block diagram of the hot water supply air conditioner which concerns on 5th Embodiment of this invention.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

≪第1実施形態≫
<給湯空調装置の構成>
図1は、本発明の第1実施形態に係る給湯空調装置の構成図である。図1に示すように、給湯空調装置S1は、室外(被空調空間外)に設置される室外ユニット100と、室内(被空調空間内)に設置される室内ユニット200と、制御装置60と、を備えている。
<< First Embodiment >>
<Configuration of hot water supply air conditioner>
FIG. 1 is a configuration diagram of a hot water supply air-conditioning apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the hot water supply air conditioner S1 includes an outdoor unit 100 installed outside the room (outside the air-conditioned space), an indoor unit 200 installed inside the room (in the air-conditioned space), a control device 60, It has.

給湯空調装置S1は、被加熱液体(例えば、水)を加熱して貯湯タンク42に高温の被加熱液体を供給する「給湯運転」と、室内ユニット200が設置された室内を冷房する「冷房運転」と、室内ユニット200が設置された室内を暖房する「暖房運転」と、給湯運転及び冷房運転を行う「給湯冷房運転」と、給湯運転及び暖房運転を行う「給湯暖房運転」と、を行う機能を有している。   The hot water supply air conditioner S1 heats a liquid to be heated (for example, water) to supply a high temperature heated liquid to the hot water storage tank 42, and cools the room in which the indoor unit 200 is installed. ”,“ Heating operation ”for heating the room in which the indoor unit 200 is installed,“ hot water cooling operation ”for performing hot water supply operation and cooling operation, and“ hot water supply heating operation ”for performing hot water supply operation and heating operation It has a function.

また、給湯空調装置S1は、第一冷媒が循環する給湯用冷媒回路20と、第二冷媒が循環する空調用冷媒回路30と、被加熱液体が通流する給湯回路40と、熱搬送媒体が循環する空調用熱搬送媒体循環回路50と、を備えている。   The hot water supply air conditioner S1 includes a hot water supply refrigerant circuit 20 through which a first refrigerant circulates, an air conditioning refrigerant circuit 30 through which a second refrigerant circulates, a hot water supply circuit 40 through which a liquid to be heated flows, and a heat transfer medium. And an air conditioning heat transfer medium circulation circuit 50 that circulates.

<給湯用冷媒回路>
室外ユニット100に設けられた給湯用冷媒回路20は、給湯用圧縮機21と、給湯利用側熱交換器22の一次側伝熱管22aと、給湯用膨張弁23と、熱源側熱交換器11の給湯用伝熱管21aと、が環状に配管で接続されている。
<Refrigerant circuit for hot water supply>
The hot water supply refrigerant circuit 20 provided in the outdoor unit 100 includes a hot water supply compressor 21, a primary heat transfer tube 22 a of the hot water supply side heat exchanger 22, a hot water supply expansion valve 23, and a heat source side heat exchanger 11. The hot water supply heat transfer pipe 21a is connected in a ring shape by piping.

給湯用圧縮機21は、第一冷媒を圧縮して高温高圧の冷媒とする圧縮機である。ちなみに、給湯用圧縮機21として、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものなどを使用することができる。
給湯利用側熱交換器22は、一次側伝熱管22aを通流する第一冷媒と、二次側伝熱管22bを通流する被加熱液体との熱交換を行う熱交換器である。
給湯用膨張弁23は、第一冷媒を減圧する減圧装置として機能する。
The hot-water supply compressor 21 is a compressor that compresses the first refrigerant into a high-temperature and high-pressure refrigerant. Incidentally, a piston type, rotary type, scroll type, screw type, centrifugal type or the like can be used as the hot water supply compressor 21.
The hot water supply side heat exchanger 22 is a heat exchanger that performs heat exchange between the first refrigerant flowing through the primary side heat transfer tube 22a and the heated liquid flowing through the secondary side heat transfer tube 22b.
The hot water supply expansion valve 23 functions as a decompression device that decompresses the first refrigerant.

熱源側熱交換器11は、給湯用伝熱管21aを通流する第一冷媒と、給湯用ファン24から送られてくる空気(室外空気)との熱交換や、給湯用伝熱管21aを通流する第一冷媒と、空調用伝熱管31aを通流する第二冷媒との熱交換などを行う熱交換器である。
また、熱源側熱交換器11は、給湯用伝熱管31aを通流する第二冷媒と、空調用ファン35から送られてくる空気(室外空気)との熱交換も行う。
なお、熱源側熱交換器11の詳細については後記する。
The heat source side heat exchanger 11 exchanges heat between the first refrigerant flowing through the hot water supply heat transfer tube 21a and the air (outdoor air) sent from the hot water supply fan 24, and flows through the hot water supply heat transfer tube 21a. It is a heat exchanger which performs heat exchange etc. with the 1st refrigerant | coolant to perform and the 2nd refrigerant | coolant which flows through the heat exchanger tube 31a for an air conditioning.
Further, the heat source side heat exchanger 11 also performs heat exchange between the second refrigerant flowing through the hot water supply heat transfer tube 31 a and the air (outdoor air) sent from the air conditioning fan 35.
Details of the heat source side heat exchanger 11 will be described later.

ちなみに、第一冷媒として、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。Incidentally, HFC, HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used as the first refrigerant.

<空調用冷媒回路>
室外ユニット100に設けられた空調用冷媒回路30は、空調用圧縮機31と、四方弁32と、空調利用側熱交換器33の一次側伝熱管33aと、空調用膨張弁34と、熱源側熱交換器11の空調用伝熱管31aと、が環状に配管で接続されている。
<Air conditioning refrigerant circuit>
The air conditioning refrigerant circuit 30 provided in the outdoor unit 100 includes an air conditioning compressor 31, a four-way valve 32, an air conditioning utilization side heat exchanger 33 primary side heat transfer pipe 33a, an air conditioning expansion valve 34, and a heat source side. A heat transfer pipe 31a for air conditioning of the heat exchanger 11 is connected in a ring shape with a pipe.

空調用圧縮機31は、第二冷媒を圧縮して高温高圧の冷媒にする圧縮機である。ちなみに、空調用圧縮機31として、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものなどを使用することができる。
四方弁32は、冷房運転と暖房運転とで空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒の向きを切り替える四方弁である。
すなわち、四方弁32の切り替えによって、冷房運転時には空調用膨張弁34で膨張した低温低圧の第二冷媒が、空調利用側熱交換器33の一次側伝熱管33aに流入するようになっている。また、暖房運転時には、空調用圧縮機31で圧縮された高温高圧の第二冷媒が、空調利用側熱交換器33の一次側伝熱管33aに流入するようになっている。
The air conditioning compressor 31 is a compressor that compresses the second refrigerant into a high-temperature and high-pressure refrigerant. Incidentally, a piston type, rotary type, scroll type, screw type, centrifugal type or the like can be used as the air conditioning compressor 31.
The four-way valve 32 is a four-way valve that switches the direction of the second refrigerant that flows through the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 between the cooling operation and the heating operation.
That is, by switching the four-way valve 32, the low-temperature and low-pressure second refrigerant expanded by the air-conditioning expansion valve 34 during the cooling operation flows into the primary heat transfer pipe 33a of the air-conditioning use side heat exchanger 33. Further, during the heating operation, the high-temperature and high-pressure second refrigerant compressed by the air conditioning compressor 31 flows into the primary side heat transfer tube 33 a of the air conditioning utilization side heat exchanger 33.

空調利用側熱交換器33は、一次側伝熱管33aを通流する第二冷媒と、二次側伝熱管33bを通流する熱搬送媒体との熱交換を行う熱交換器である。
空調用膨張弁34は、第二冷媒を減圧する減圧装置として機能する。
また、熱源側熱交換器11は、前記したように、空調用ファン35から送られてくる空気(室外空気)と空調用伝熱管31aを通流する第二冷媒との熱交換などを行う。
The air conditioning utilization side heat exchanger 33 is a heat exchanger that performs heat exchange between the second refrigerant that flows through the primary side heat transfer tube 33a and the heat transfer medium that flows through the secondary side heat transfer tube 33b.
The air conditioning expansion valve 34 functions as a decompression device that decompresses the second refrigerant.
Further, as described above, the heat source side heat exchanger 11 performs heat exchange between the air (outdoor air) sent from the air conditioning fan 35 and the second refrigerant flowing through the air conditioning heat transfer pipe 31a.

なお、第二冷媒として、R410A、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。As the second refrigerant, R410A, HFC, HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used.

(熱源側熱交換器)
ここで、熱源側熱交換器11について詳細に説明する。図2は、熱源側熱交換器の概略構成図である。なお、図2において、給湯用伝熱管21aを網掛けで示した。
熱源側熱交換器11は、所定の間隔を空けて略平行に積層された複数の板状フィン11fのそれぞれに、伝熱管(給湯用伝熱管21a及び空調用伝熱管31a)の管径よりもわずかに小さい直径の円形孔(図示せず)を複数空け、当該円形孔に給湯用伝熱管21a及び空調用伝熱管31aを貫通させた構成となっている。
なお、各板状フィン11fは、その伝熱面が略上下方向(鉛直方向)となるように設置されている。
(Heat source side heat exchanger)
Here, the heat source side heat exchanger 11 will be described in detail. FIG. 2 is a schematic configuration diagram of the heat source side heat exchanger. In FIG. 2, the hot water supply heat transfer tube 21 a is shaded.
The heat source side heat exchanger 11 has a plurality of plate-like fins 11f stacked substantially in parallel at a predetermined interval, and has a diameter larger than that of the heat transfer tubes (the hot water supply heat transfer tubes 21a and the air conditioning heat transfer tubes 31a). A plurality of circular holes (not shown) having a slightly smaller diameter are formed, and the heat transfer pipe 21a for hot water supply and the heat transfer pipe 31a for air conditioning are passed through the circular holes.
Each plate-like fin 11f is installed such that its heat transfer surface is substantially in the vertical direction (vertical direction).

熱源側熱交換器11では、給湯用伝熱管21aを通流する第一冷媒と室外空気との熱交換、給湯用伝熱管21aを通流する第一冷媒と空調用伝熱管31aを通流する第二冷媒との熱交換、空調用伝熱管31aを通流する第二冷媒と室外空気との熱交換が行われる。
ちなみに、板状フィン11fは薄い金属板であり、ステンレスフィン、アルミフィン、銅フィン、亜鉛メッキフィンなどを用いることができるが、これらに限定されるものではない。
In the heat source side heat exchanger 11, heat exchange between the first refrigerant flowing through the hot water supply heat transfer tube 21a and outdoor air, and the first refrigerant flowing through the hot water supply heat transfer tube 21a and the heat transfer tube 31a for air conditioning flow through. Heat exchange with the second refrigerant and heat exchange between the second refrigerant flowing through the air-conditioning heat transfer pipe 31a and the outdoor air are performed.
Incidentally, the plate-like fins 11f are thin metal plates, and stainless fins, aluminum fins, copper fins, galvanized fins, etc. can be used, but are not limited thereto.

給湯用伝熱管21aは、直線状の給湯用伝熱管21s,21s,・・・,21s(以下、「直線状第一伝熱管21s」と記す。)と、接続用の給湯用伝熱管21c,21c,・・・,21c(以下、「接続用第一伝熱管21c」と記す。)と、を備える。
また、空調用伝熱管31aは、直線状の空調用伝熱管31s,31s,・・・,31s(以下、「直線状第二伝熱管31s」と記す。)と、接続用の空調用伝熱管31c,31c,・・・,31c(以下、「接続用第二伝熱管31c」と記す。)と、を備える。
The hot-water supply heat transfer tube 21a includes linear hot-water supply heat transfer tubes 21s 1 , 21s 2 ,..., 21s k (hereinafter referred to as “linear first heat transfer tubes 21s”) and a hot-water supply transfer for connection. comprising heat pipes 21c 1, 21c 2, · · ·, 21c h (hereinafter. referred to as "first heat exchanger tube 21c for connection") and, the.
Further, the air-conditioning heat exchanger tube 31a is linear air-conditioning heat-transfer tubes 31s 1, 31s 2, · · ·, 31s m (hereinafter, referred to as "straight second heat exchanger tube 31s".) And air conditioning for connection comprising use heat transfer tube 31c 1, 31c 2, · · ·, 31c n (hereinafter. referred to as "the second heat exchanger tube 31c for connection") and, the.

直線状第一伝熱管21s及び直線状第二伝熱管31sは、複数の板状フィン11fの伝熱面(鉛直方向)と略垂直となるように、各板状フィン11fを貫通している。つまり、直線状第一伝熱管21s及び直線状第二伝熱管31sは、略水平方向に設置されている。   The linear first heat transfer tube 21s and the linear second heat transfer tube 31s pass through the plate fins 11f so as to be substantially perpendicular to the heat transfer surfaces (vertical direction) of the plurality of plate fins 11f. That is, the linear first heat transfer tube 21s and the linear second heat transfer tube 31s are installed in a substantially horizontal direction.

そして、図2に示すように、直線状第一伝熱管21sと21s、21sと21s、・・・,21sk−1と21sは、接続用第一伝熱管21c,21c,・・・,21cで接続されている。これによって、給湯用伝熱管21aは、複数の板状フィン11fを貫通しつつ蛇行する流路(第一冷媒の流路)を形成している。
また、直線状第二伝熱管31sと31s、31sと31s、・・・,31sm−1と31sは、接続用第二伝熱管31c,31c,・・・,31cで接続されている。これによって、空調用伝熱管31aは、複数の板状フィン11fを貫通しつつ蛇行する流路(第二冷媒の流路)を形成している。
Then, as shown in FIG. 2, straight first heat exchanger tube 21s 1 and 21s 2, 21s 2 and 21s 3, ···, 21s k- 1 and 21s k is first heat exchanger tube 21c 1, 21c for connection 2,..., it is connected by 21c h. As a result, the hot water supply heat transfer tube 21a forms a meandering passage (first refrigerant passage) while penetrating through the plurality of plate-like fins 11f.
Further, the linear second heat transfer tubes 31s 1 and 31s 2 , 31s 2 and 31s 3 ,..., 31s m−1 and 31s m are connected to the second heat transfer tubes 31c 1 , 31c 2 ,. n . Thus, the heat transfer tube 31a for air conditioning forms a flow path (second refrigerant flow path) that snakes through the plurality of plate-like fins 11f.

なお、図2では、直線状第一伝熱管21sの本数が12本(k=12)、直線状第二伝熱管31sの本数が12本(m=12)の場合を示したが、これに限定されるものではない。また、後記する第2実施形態、第3実施形態に係る給湯空調装置の熱源側熱交換器11B,11Cについても前記と同様のことがいえる。   FIG. 2 shows the case where the number of linear first heat transfer tubes 21s is 12 (k = 12) and the number of linear second heat transfer tubes 31s is 12 (m = 12). It is not limited. The same applies to the heat source side heat exchangers 11B and 11C of the hot water supply air conditioner according to the second embodiment and the third embodiment described later.

給湯用ファン24(図1参照)は、給湯用伝熱管21aの設置位置に対応して設置されている。また、給湯用ファン24は、当該給湯用ファン24から送風される空気の通流方向が、各板状フィン11fの伝熱面と略平行になるように設置されている。
空調用ファン35(図1参照)は、空調用伝熱管31aの設置位置に対応して設置されている。また、空調用ファン35は、当該空調用ファン35から送風される空気の通流方向が、各板状フィン11fの伝熱面と略平行になるように設置されている。
The hot water supply fan 24 (see FIG. 1) is installed corresponding to the installation position of the hot water supply heat transfer tube 21a. The hot water supply fan 24 is installed such that the flow direction of air blown from the hot water supply fan 24 is substantially parallel to the heat transfer surface of each plate-like fin 11f.
The air-conditioning fan 35 (see FIG. 1) is installed corresponding to the installation position of the air-conditioning heat transfer tube 31a. The air conditioning fan 35 is installed so that the flow direction of the air blown from the air conditioning fan 35 is substantially parallel to the heat transfer surface of each plate-like fin 11f.

また、図2に示すように、熱源側熱交換器11において、給湯用伝熱管21aは空調用伝熱管31aよりも上方に設置されている。
なお、前記の「上方に設置」とは、全ての直線状第一伝熱管21sが、直線状第二伝熱管31sよりも上方に設置されていることを意味するものではない。
As shown in FIG. 2, in the heat source side heat exchanger 11, the hot water supply heat transfer pipe 21 a is installed above the air conditioning heat transfer pipe 31 a.
The above-mentioned “installation above” does not mean that all the linear first heat transfer tubes 21s are installed above the linear second heat transfer tubes 31s.

図3は、給湯用伝熱管及び空調用伝熱管を2段構成とした場合の熱源側熱交換器の例を示す側面図である。図3において、実線は伝熱管(給湯用伝熱管21a又は空調用伝熱管31a)が紙面の手前側にターンしていることを示し、点線は伝熱管が紙面の背面側でターンしていることを示している。   FIG. 3 is a side view showing an example of a heat source side heat exchanger when the hot water supply heat transfer tube and the air conditioning heat transfer tube have a two-stage configuration. In FIG. 3, the solid line indicates that the heat transfer tube (the hot water supply heat transfer tube 21 a or the air conditioning heat transfer tube 31 a) is turned to the front side of the page, and the dotted line is that the heat transfer tube is turned on the back side of the page. Is shown.

図3に示す熱源側熱交換器11Aでは、複数平行に積層された板状フィン11fが二列に配置されている。そして、給湯用伝熱管21aが一列目(左側)の複数の板状フィン11fを貫通しつつ下方に向かって蛇行し、位置Aから位置Bにターンして二列目(右側)の複数の板状フィン11fを貫通しつつ上方に向かって蛇行する構成となっている。
また、空調用伝熱管31aが一列目(左側)の位置Cから複数の板状フィン11fを貫通しつつ下方に向かって蛇行し、さらに二列目(右側)の板状フィン11fを貫通しつつ上方に向かって蛇行して位置Dの孔から出る構成となっている。
In the heat source side heat exchanger 11A shown in FIG. 3, a plurality of plate-like fins 11f stacked in parallel are arranged in two rows. The hot water supply heat transfer tubes 21a meander downward while passing through the first row (left side) of the plurality of plate-like fins 11f, turn from position A to position B, and then move to the second row (right side) of the plurality of plates. It is configured to meander upward while penetrating through the fins 11f.
Further, the air-conditioning heat transfer tube 31a meanders downward from the position C of the first row (left side) while penetrating the plurality of plate-like fins 11f, and further passes through the plate-like fins 11f of the second row (right side). It is configured to meander upward and exit from the hole at position D.

給湯用伝熱管21a及び空調用伝熱管31aのパスを図3に示す配置とした場合、給湯用伝熱管21aの最下部の位置Bの高さは、空調用伝熱管31aの最上部の位置Cの高さよりも低くなっている。
本実施形態ではこのような場合も、給湯用伝熱管21aが空調用伝熱管31aの上方に設置されている場合に含める。つまり、熱源側熱交換器11(11A)において、給湯用伝熱管21aの総体が、空調用伝熱管31aの総体に対して上方に設置されている。
When the paths of the hot water supply heat transfer tube 21a and the air conditioning heat transfer tube 31a are arranged as shown in FIG. 3, the height of the lowermost position B of the hot water supply heat transfer tube 21a is the uppermost position C of the air conditioning heat transfer tube 31a. It is lower than the height.
In the present embodiment, such a case is also included when the hot water supply heat transfer tube 21a is installed above the air conditioning heat transfer tube 31a. That is, in the heat source side heat exchanger 11 (11A), the total of the hot water supply heat transfer tubes 21a is installed above the total of the air conditioning heat transfer tubes 31a.

<給湯回路>
再び図1に戻って、給湯空調装置S1についての説明を続ける。室外ユニット100に設けられた給湯回路40は、第一ポンプ41と、給湯利用側熱交換器22の二次側伝熱管22bと、三方弁45と、貯湯タンク42と、三方弁43と、が環状に配管で接続されている。
<Hot water supply circuit>
Returning to FIG. 1 again, the description of the hot water supply air conditioner S1 will be continued. The hot water supply circuit 40 provided in the outdoor unit 100 includes a first pump 41, a secondary heat transfer pipe 22b of the hot water use side heat exchanger 22, a three-way valve 45, a hot water storage tank 42, and a three-way valve 43. It is connected to the ring by piping.

第一ポンプ41は、貯湯タンク42から被加熱液体を汲み上げ、給湯利用側熱交換器22の二次側伝熱管22bに向けて圧送するポンプである。
貯湯タンク42は、被加熱液体を貯留するものであり、断熱材(図示せず)で覆われている。
三方弁43,45は、通流する被加熱液体の流量比率を調整可能に構成された三方弁である。
The first pump 41 is a pump that pumps up the liquid to be heated from the hot water storage tank 42 and pumps it toward the secondary heat transfer tube 22 b of the hot water supply side heat exchanger 22.
The hot water storage tank 42 stores the liquid to be heated, and is covered with a heat insulating material (not shown).
The three-way valves 43 and 45 are three-way valves configured to be able to adjust the flow rate ratio of the heated liquid to flow.

また、室外ユニット100は、三方弁44,46と、給水金具101と、給湯金具102と、を備えている。
給水金具101は、一端が三方弁46に接続され、他端が給水端末(図示せず)に接続されている。そして、使用者が給湯端末(図示せず)を開操作した場合に、給水源からの圧力によって、給水金具101を介して貯湯タンク42の下部に被加熱液体(水)が流入するようになっている。
The outdoor unit 100 includes three-way valves 44 and 46, a water supply fitting 101, and a hot water supply fitting 102.
The water supply fitting 101 has one end connected to the three-way valve 46 and the other end connected to a water supply terminal (not shown). When the user opens a hot water supply terminal (not shown), the liquid to be heated (water) flows into the lower part of the hot water storage tank 42 via the water supply fitting 101 due to the pressure from the water supply source. ing.

三方弁44,46は、通流する被加熱液体の流量比率を調整可能に構成された三方弁であり、配管47aを介して相互に接続されている。そして、各三方弁44,46の開度に応じた流量の被加熱液体(水)が配管47aを介して流入することにより、貯湯タンク42から供給される高温の被加熱液体を適度な温度に調整するようになっている。
給湯金具102は、一端が三方弁44に接続され、他端が給湯端末(図示せず)に接続されている。そして、使用者が給湯端末を開操作することにより、温度調整がされた被加熱液体(湯)が給湯金具102を介して給湯端末に供給されるようになっている。
The three-way valves 44 and 46 are three-way valves configured to be able to adjust the flow rate ratio of the liquid to be heated to flow therethrough, and are connected to each other via a pipe 47a. Then, the liquid to be heated (water) having a flow rate corresponding to the opening degree of each of the three-way valves 44 and 46 flows in through the pipe 47a, so that the high temperature liquid to be heated supplied from the hot water storage tank 42 is brought to an appropriate temperature. It comes to adjust.
One end of the hot water fitting 102 is connected to the three-way valve 44 and the other end is connected to a hot water supply terminal (not shown). When the user opens the hot water supply terminal, the heated liquid (hot water) whose temperature has been adjusted is supplied to the hot water supply terminal via the hot water supply fitting 102.

<空調用熱搬送媒体循環回路>
室外ユニット100から室内ユニット200に亘って設けられた空調用熱搬送媒体循環回路50は、第二ポンプ51と、空調利用側熱交換器33の二次側伝熱管33bと、室内熱交換器52と、が環状に配管で接続して構成されている。
<Heat transfer medium circulation circuit for air conditioning>
The heat transfer medium circulation circuit 50 for air conditioning provided from the outdoor unit 100 to the indoor unit 200 includes a second pump 51, a secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33, and an indoor heat exchanger 52. And are connected by a pipe in a ring shape.

第一ポンプ51は、室内熱交換器52から流入する熱搬送媒体を、空調利用側熱交換器33の二次側伝熱管33bに向けて圧送するポンプである。
室内熱交換器52は、室内ファン53から送られてくる空気(室内空気)と熱搬送媒体との熱交換を行う熱交換器である。
なお、熱搬送媒体として、エチレングリコールなどのブライン(不凍液)や、水などを用いることができる。
The first pump 51 is a pump that pumps the heat transfer medium flowing in from the indoor heat exchanger 52 toward the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33.
The indoor heat exchanger 52 is a heat exchanger that performs heat exchange between the air (room air) sent from the indoor fan 53 and the heat transfer medium.
Note that brine (antifreeze) such as ethylene glycol, water, or the like can be used as the heat transfer medium.

<制御装置>
また、給湯空調装置S1は、制御装置60を備えている。
制御装置60は、給湯空調装置S1の運転モードを決定し、決定した運転モードに従って各種弁(給湯用膨張弁23、四方弁32、空調用膨張弁34、三方弁43〜46)の状態(開度)、圧縮機(給湯用圧縮機21、空調用圧縮機31)の回転速度、各熱交換器のファン(給湯用ファン24、空調用ファン35、室内ファン53)の回転速度、ポンプ(第一ポンプ41、第二ポンプ51)の回転速度、を制御して、給湯空調装置S1の各種運転を制御する機能を有している。
<Control device>
The hot water supply air conditioner S <b> 1 includes a control device 60.
The control device 60 determines the operation mode of the hot water supply air conditioner S1, and according to the determined operation mode, various valves (hot water supply expansion valve 23, four-way valve 32, air conditioning expansion valve 34, three-way valves 43 to 46) (open state). Degree), the rotational speed of the compressor (hot water supply compressor 21, air conditioning compressor 31), the rotational speed of the fans of each heat exchanger (hot water supply fan 24, air conditioning fan 35, indoor fan 53), pump (No. It has a function to control various operations of the hot water supply air conditioner S1 by controlling the rotation speed of the one pump 41 and the second pump 51).

(1.給湯運転モード)
次に、給湯空調装置S1の各運転モードにおける動作について説明する。
給湯運転モードは、被加熱液体(例えば、水)を加熱して貯湯タンク42に高温の被加熱液体を供給する運転モードである。このモードにおいて、空調用冷媒回路30及び空調用熱搬送媒体循環回路50は停止している。
給湯用冷媒回路20について説明する。制御装置60は、給湯用膨張弁23の開度(絞り)を制御し、給湯用圧縮機21及び給湯用ファン24の回転速度を制御する。
(1. Hot water supply operation mode)
Next, the operation in each operation mode of the hot water supply air conditioner S1 will be described.
The hot water supply operation mode is an operation mode in which the liquid to be heated (for example, water) is heated and the hot liquid to be heated is supplied to the hot water storage tank 42. In this mode, the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are stopped.
The hot water supply refrigerant circuit 20 will be described. The control device 60 controls the opening degree (throttle) of the hot water supply expansion valve 23 and controls the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24.

給湯用圧縮機21から吐出された高温高圧の第一冷媒は、凝縮器として機能する給湯利用側熱交換器22の一次側伝熱管22aに流入する。給湯利用側熱交換器22の一次側伝熱管22aを通流する第一冷媒は、二次側伝熱管22bを通流する被加熱液体と熱交換することにより放熱して、中温高圧の第一冷媒となる。
給湯利用側熱交換器22の一次側伝熱管22aから流出した中温高圧の第一冷媒は、給湯用膨張弁23で減圧され、低温低圧の第一冷媒となる。
The high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary side heat transfer tube 22a of the hot water supply side heat exchanger 22 that functions as a condenser. The first refrigerant flowing through the primary side heat transfer tube 22a of the hot water supply side heat exchanger 22 dissipates heat by exchanging heat with the liquid to be heated flowing through the secondary side heat transfer tube 22b, and the medium temperature and high pressure first refrigerant is supplied. Becomes a refrigerant.
The medium temperature and high pressure first refrigerant flowing out from the primary heat transfer tube 22a of the hot water supply side heat exchanger 22 is depressurized by the hot water supply expansion valve 23 to become a low temperature and low pressure first refrigerant.

そして、低温低圧の第一冷媒は、蒸発器として機能する熱源側熱交換器11の給湯用伝熱管21aに流入する。熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、給湯用ファン24により送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、熱源側熱交換器11から給湯用圧縮機21へと送られ、給湯用冷媒回路20を循環する。   Then, the low-temperature and low-pressure first refrigerant flows into the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 functioning as an evaporator. The first refrigerant flowing through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 pumps heat from the air by exchanging heat with the air (outdoor air) sent by the hot water supply fan 24 (heat absorption). To do). The absorbed first refrigerant is sent from the heat source side heat exchanger 11 to the hot water supply compressor 21 and circulates through the hot water supply refrigerant circuit 20.

次に、給湯回路40について説明する。なお、給湯回路40については、一般的な貯湯式の給湯器と同様であるから、以下では説明を簡略化している。
制御装置4は、第一ポンプ41の回転速度を制御する。
第一ポンプ41を駆動させることにより、貯湯タンク42から吸入された被加熱液体は、給湯利用側熱交換器22の二次側伝熱管22bに流入する。給湯利用側熱交換器22の二次側伝熱管22bを通流する被加熱液体は、一次側伝熱管22aを通流する第一冷媒と熱交換することにより吸熱し、高温の被加熱液体となる。そして、高温の被加熱液体は、給湯利用側熱交換器22の二次側伝熱管22bから貯湯タンク42に戻され、貯留される。
Next, the hot water supply circuit 40 will be described. Note that the hot water supply circuit 40 is the same as a general hot water storage type hot water heater, and therefore the description thereof is simplified below.
The control device 4 controls the rotation speed of the first pump 41.
By driving the first pump 41, the liquid to be heated sucked from the hot water storage tank 42 flows into the secondary heat transfer tube 22 b of the hot water supply side heat exchanger 22. The heated liquid flowing through the secondary side heat transfer tube 22b of the hot water supply side heat exchanger 22 absorbs heat by exchanging heat with the first refrigerant flowing through the primary side heat transfer tube 22a. Become. The hot liquid to be heated is returned to the hot water storage tank 42 from the secondary side heat transfer tube 22b of the hot water supply use side heat exchanger 22 and stored.

なお、熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒が、給湯用ファン24により送られてくる空気(室外空気)と熱交換する際には、給湯用伝熱管21aが設置されている部分の板状フィン11fだけでなく、空調用伝熱管31aが設置されている部分の板状フィン11fにおいても熱交換が可能である。これは、図2に示すように、給湯用伝熱管21a及び空調用伝熱管31aを、共通の板状フィン11fに貫通させることによって、給湯用の熱源側熱交換器と空調用の熱源側熱交換器とが一体化されているためである。   When the first refrigerant flowing through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the hot water supply fan 24, the hot water supply heat transfer tube 21a. Heat exchange is possible not only in the plate-like fins 11f in the portion where the heat sink is installed, but also in the plate-like fins 11f in the portion where the heat transfer tubes 31a for air conditioning are installed. As shown in FIG. 2, the hot water supply heat transfer tube 21a and the air conditioning heat transfer tube 31a are passed through a common plate-shaped fin 11f, thereby providing a heat source side heat exchanger for hot water supply and a heat source side heat for air conditioning. This is because the exchanger is integrated.

したがって、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器とを分離した場合に比べて熱源側熱交換器11における伝熱面積が大きくなり、伝熱性能が向上する。これによって、給湯用圧縮機21及び給湯用ファン24の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。   Therefore, the heat transfer area in the heat source side heat exchanger 11 is increased and the heat transfer performance is improved as compared with the case where the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are separated. Thereby, it becomes possible to reduce the rotational speed of the hot water supply compressor 21 and the hot water supply fan 24, and the efficiency of the entire system can be improved.

(1−1.除霜運転について)
冬期などにおいて室外空気が低温高湿の場合には、低温の第一冷媒が熱源側熱交換器11の給湯用伝熱管21aを通流することにより、給湯用伝熱管12aが設置されている部分の板状フィン11fが着霜する。この場合、制御装置60は、室外ユニット100に設置された着霜検知手段(温度センサなど:図示せず)から入力される信号に応じて、空調用冷媒回路30を後記する冷房運転と同様に動作させ、熱源側熱交換器11内の空調用伝熱管31aに高温の第二冷媒を送る。
ちなみに、除霜運転を行っている間も給湯空調装置S1は給湯運転を継続している。
(1-1. Defrosting operation)
When the outdoor air is cold and humid in winter or the like, a portion where the hot water supply heat transfer pipe 12a is installed by allowing the low temperature first refrigerant to flow through the hot water supply heat transfer pipe 21a of the heat source side heat exchanger 11 The plate-like fins 11f are frosted. In this case, the control device 60 is similar to the cooling operation described later for the air-conditioning refrigerant circuit 30 in response to a signal input from a frost detection means (temperature sensor or the like: not shown) installed in the outdoor unit 100. The high-temperature second refrigerant is sent to the air-conditioning heat transfer tube 31 a in the heat source side heat exchanger 11.
Incidentally, the hot water supply air conditioner S1 continues the hot water supply operation even during the defrosting operation.

前記したように、熱源側熱交換器11では、2つの熱交換器(つまり、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器)が一体化されている。すなわち、給湯用伝熱管21aが設置されている部分の板状フィン11fと空調用伝熱管31aが設置されている部分の板状フィン11fとが連続している(図2参照)。
したがって、空調用伝熱管31a内を通過する高温の第二冷媒からの温熱が板状フィン11fを伝わり、給湯用伝熱管21aが設置されている部分の板状フィン11fに付着した霜を溶かすことができる。
As described above, in the heat source side heat exchanger 11, the two heat exchangers (that is, the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning) are integrated. That is, the plate-like fins 11f where the hot-water supply heat transfer tubes 21a are installed and the plate-like fins 11f where the air-conditioning heat transfer tubes 31a are installed are continuous (see FIG. 2).
Therefore, the heat from the high-temperature second refrigerant passing through the air-conditioning heat transfer tube 31a is transmitted through the plate-shaped fins 11f, and the frost attached to the plate-shaped fins 11f in the portion where the hot-water supply heat transfer tubes 21a are installed is melted. Can do.

また、図2に示すように、熱源側熱交換器11において、給湯用伝熱管21aが空調用伝熱管31aよりも上方に設置されている。空調用伝熱管31aが設置されている部分では第二冷媒からの温熱が放出されており、この温熱が上昇して給湯用ファン24の周囲温度を上昇させることとなる。したがって、給湯用伝熱管21aが配置されている部分の板状フィン11fに付着した霜を、第二冷媒からの温熱と、より高温になった室外空気とにより加熱することで速やかに溶かすことができる。   As shown in FIG. 2, in the heat source side heat exchanger 11, the hot water supply heat transfer tube 21a is installed above the air conditioning heat transfer tube 31a. In the portion where the air-conditioning heat transfer tube 31a is installed, the heat from the second refrigerant is released, and this heat rises, and the ambient temperature of the hot water supply fan 24 is raised. Therefore, the frost adhering to the plate-like fin 11f in the portion where the hot water supply heat transfer tube 21a is disposed can be quickly melted by heating with the heat from the second refrigerant and the outdoor air having a higher temperature. it can.

ちなみに、制御装置60は除霜運転の際、空調用冷媒回路30を冷房運転と同様に動作させるが、空調用熱搬送媒体循環回路50の動作を停止させておいてもよい。なぜなら、空調利用側熱交換器33の二次側伝熱管33b内の熱搬送媒体が、ある程度の熱を有しており、空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒が前記熱を吸熱するからである。   Incidentally, the control device 60 operates the air conditioning refrigerant circuit 30 in the same manner as the cooling operation during the defrosting operation, but the operation of the air conditioning heat transfer medium circulation circuit 50 may be stopped. This is because the heat transfer medium in the secondary side heat transfer tube 33b of the air conditioning utilization side heat exchanger 33 has a certain amount of heat and flows through the primary heat transfer tube 33a of the air conditioning utilization side heat exchanger 33. This is because the two refrigerants absorb the heat.

なお、除霜運転を行う際に、前記のように空調用熱搬送媒体循環回路50の動作を停止させると第二冷媒を十分に蒸発させることができない場合、制御装置60は第二ポンプ51を駆動させる。この場合、第二ポンプ51によって、空調用熱搬送媒体循環回路50内を熱搬送媒体が循環する。したがって、空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体の温熱が、一次側伝熱管33aを通流する第二冷媒に伝熱され、除霜運転を促進させることができる。   When performing the defrosting operation, if the operation of the air-conditioning heat transfer medium circulation circuit 50 is stopped as described above and the second refrigerant cannot be sufficiently evaporated, the control device 60 turns the second pump 51 on. Drive. In this case, the heat transfer medium is circulated in the heat transfer medium circulation circuit 50 for air conditioning by the second pump 51. Therefore, the heat of the heat transfer medium flowing through the secondary side heat transfer pipe 33b of the air conditioning utilization side heat exchanger 33 is transferred to the second refrigerant flowing through the primary side heat transfer pipe 33a, and the defrosting operation is promoted. be able to.

また、除霜運転を行う際に、前記のような第二ポンプ51の駆動のみでは第二冷媒を十分に蒸発させることができない場合、制御装置60はさらに所定の回転速度で空調用ファン53を回転させる。この場合、空調用ファン53の回転によって、室内熱交換器52で室内空気の熱を汲み上げることができる。したがって、空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体の温熱が、一次側伝熱管33aを通流する第二冷媒に伝熱され、除霜運転をさらに促進させることができる。   When performing the defrosting operation, if the second refrigerant cannot be sufficiently evaporated only by driving the second pump 51 as described above, the control device 60 further turns the air conditioning fan 53 at a predetermined rotational speed. Rotate. In this case, the heat of the indoor air can be pumped up by the indoor heat exchanger 52 by the rotation of the air conditioning fan 53. Therefore, the heat of the heat transfer medium flowing through the secondary heat transfer pipe 33b of the air-conditioning utilization side heat exchanger 33 is transferred to the second refrigerant flowing through the primary heat transfer pipe 33a, further promoting the defrosting operation. Can be made.

(2.冷房運転モード)
冷房運転モードは、室内ユニット200が設置された室内(被空調空間)を冷房する運転モードである。このモードにおいて、給湯用冷媒回路20及び給湯回路40は停止している。
空調用冷媒回路30について説明する。制御装置60は、四方弁32の切替手段(図示せず)が、冷房運転の位置となるように制御する。また、制御装置60は、空調用膨張弁34の開度(絞り)を制御し、空調用圧縮機31及び空調用ファン35の回転速度を制御する。
(2. Cooling operation mode)
The cooling operation mode is an operation mode for cooling the room (air-conditioned space) in which the indoor unit 200 is installed. In this mode, the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 are stopped.
The air conditioning refrigerant circuit 30 will be described. The control device 60 controls the switching means (not shown) of the four-way valve 32 to be in the cooling operation position. In addition, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34 and controls the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35.

空調用圧縮機31から吐出された高温高圧の第二冷媒は、四方弁32を介して、凝縮器として機能する熱源側熱交換器11の空調用伝熱管31aに流入する。
熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、空調用ファン35により送られてくる空気(室外空気)と熱交換することにより放熱(排熱)し、中温高圧の第二冷媒となる。熱源側熱交換器11の空調用伝熱管31aから流出した中温高圧の第二冷媒は、空調用膨張弁34に流入する。
The high-temperature and high-pressure second refrigerant discharged from the air-conditioning compressor 31 flows through the four-way valve 32 into the air-conditioning heat transfer tube 31a of the heat source side heat exchanger 11 that functions as a condenser.
The second refrigerant flowing through the air-conditioning heat transfer tube 31a of the heat source side heat exchanger 11 dissipates heat (exhaust heat) by exchanging heat with the air (outdoor air) sent by the air-conditioning fan 35. The second refrigerant. The medium-temperature high-pressure second refrigerant that has flowed out of the air-conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 flows into the air-conditioning expansion valve 34.

そして、中温高圧の第二冷媒は空調用膨張弁34で減圧され、低温低圧の第二冷媒となり、蒸発器として機能する空調利用側熱交換器33の一次側伝熱管33aに流入する。空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する熱搬送媒体と熱交換することにより、熱搬送媒体から熱を汲み上げる(吸熱する)。そして、吸熱した第二冷媒は、空調利用側熱交換器33の一次側伝熱管33aから四方弁32を介して空調用圧縮機31へと送られ、空調用冷媒回路30を循環する。   The medium-temperature high-pressure second refrigerant is decompressed by the air-conditioning expansion valve 34, becomes a low-temperature low-pressure second refrigerant, and flows into the primary-side heat transfer tube 33a of the air-conditioning use-side heat exchanger 33 that functions as an evaporator. The second refrigerant flowing through the primary side heat transfer tube 33a of the air conditioning utilization side heat exchanger 33 pumps heat from the heat transfer medium by exchanging heat with the heat transfer medium flowing through the secondary side heat transfer tube 33b ( Endothermic). Then, the absorbed second refrigerant is sent from the primary side heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33 to the air conditioning compressor 31 through the four-way valve 32 and circulates through the air conditioning refrigerant circuit 30.

次に、空調用熱搬送媒体循環回路50について説明する。制御装置60は、第二ポンプ51及び室内ファン53の回転速度を制御する。
第二ポンプ51を駆動させることにより、熱搬送媒体は空調利用側熱交換器33の二次側伝熱管33bに流入する。空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体は、一次側伝熱管33aを通流する第二冷媒と熱交換することにより放熱(排熱)して、低温の熱搬送媒体となる。
Next, the heat transfer medium circulation circuit 50 for air conditioning will be described. The control device 60 controls the rotation speeds of the second pump 51 and the indoor fan 53.
By driving the second pump 51, the heat transfer medium flows into the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33. The heat transfer medium flowing through the secondary side heat transfer tube 33b of the air conditioning utilization side heat exchanger 33 dissipates heat (exhaust heat) by exchanging heat with the second refrigerant flowing through the primary side heat transfer tube 33a. It becomes a heat transfer medium.

そして、低温の熱搬送媒体は、室内ユニット200の室内熱交換器52に流入する。室内熱交換器52を通流する熱搬送媒体は、室内ファン53により送られてくる空気(室内空気)と熱交換することにより吸熱する。そして、吸熱した熱搬送媒体は、室内熱交換器52から第二ポンプ51へと送られ、空調用熱搬送媒体循環回路50を循環する。
このように、室内ユニット2の室内熱交換器52で熱搬送媒体が吸熱することにより、室内空気が冷却され、室内(被空調空間)が冷房される。
Then, the low temperature heat transfer medium flows into the indoor heat exchanger 52 of the indoor unit 200. The heat transfer medium flowing through the indoor heat exchanger 52 absorbs heat by exchanging heat with the air (indoor air) sent by the indoor fan 53. Then, the heat transfer medium that has absorbed heat is sent from the indoor heat exchanger 52 to the second pump 51 and circulates through the heat transfer medium circulation circuit 50 for air conditioning.
As described above, the heat transfer medium absorbs heat in the indoor heat exchanger 52 of the indoor unit 2, thereby cooling the indoor air and cooling the room (air-conditioned space).

なお、熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒が、空調用ファン35により送られてくる空気(室外空気)と熱交換する際には、空調用伝熱管31aが設置されている部分の板状フィン11fだけでなく、給湯用伝熱管21aが設置されている部分の板状フィン11fにおいても熱交換が可能である。
したがって、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器を分離した場合に比べて熱源側熱交換器11における伝熱面積が大きくなり、伝熱性能が向上する。これによって、空調用圧縮機31及び空調用ファン35の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。
When the second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air conditioning fan 35, the air conditioning heat transfer pipe 31a. Heat exchange is possible not only in the plate-like fins 11f where the heat sink is installed, but also in the plate-like fins 11f where the hot water supply heat transfer tubes 21a are installed.
Therefore, the heat transfer area in the heat source side heat exchanger 11 is increased compared with the case where the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning are separated, and heat transfer performance is improved. As a result, the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35 can be reduced, and the efficiency of the entire system can be improved.

(3.暖房運転モード)
暖房運転モードは、室内ユニット200が設置された室内(被空調空間)を暖房する運転モードである。このモードにおいて、給湯用冷媒回路20及び給湯回路40は停止している。
空調用冷媒回路30について説明する。制御装置60は、四方弁32の切替手段(図示せず)が、暖房運転の位置となるように制御する。また、制御装置60は、空調用膨張弁34の開度(絞り)を制御し、空調用圧縮機31及び空調用ファン35の回転速度を制御する。
(3. Heating operation mode)
The heating operation mode is an operation mode in which the room (air-conditioned space) in which the indoor unit 200 is installed is heated. In this mode, the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 are stopped.
The air conditioning refrigerant circuit 30 will be described. The control device 60 controls the switching means (not shown) of the four-way valve 32 to be in the heating operation position. In addition, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34 and controls the rotational speeds of the air conditioning compressor 31 and the air conditioning fan 35.

空調用圧縮機31から吐出された高温高圧の第二冷媒は、四方弁32を介して、凝縮器として機能する空調利用側熱交換器33の一次側伝熱管33aに流入する。
空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する熱搬送媒体と熱交換することにより放熱(排熱)し、中温高圧の第二冷媒となる。空調利用側熱交換器の一次側伝熱管33aから流出した中温高圧の第二冷媒は空調用膨張弁34に流入する。
The high-temperature and high-pressure second refrigerant discharged from the air-conditioning compressor 31 flows through the four-way valve 32 into the primary heat transfer pipe 33a of the air-conditioning use side heat exchanger 33 that functions as a condenser.
The second refrigerant flowing through the primary side heat transfer pipe 33a of the air-conditioning utilization side heat exchanger 33 dissipates heat (exhaust heat) by exchanging heat with the heat transfer medium flowing through the secondary side heat transfer pipe 33b. The second refrigerant. The intermediate-temperature and high-pressure second refrigerant that has flowed out from the primary side heat transfer tube 33a of the air conditioning utilization side heat exchanger flows into the air conditioning expansion valve 34.

そして、中温高圧の第二冷媒は空調用膨張弁34で減圧され、低温低圧の第二冷媒となり、蒸発器として機能する熱源側熱交換器11の空調用伝熱管31aに流入する。熱源側熱交換器11の空調用伝熱管31aを通流する低温低圧の第二冷媒は、空調用ファン35により送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第二冷媒は、熱源側熱交換器11の空調用伝熱管31aから四方弁32を介して空調用圧縮機31へと送られ、空調用冷媒回路30を循環する。   The medium-temperature high-pressure second refrigerant is decompressed by the air-conditioning expansion valve 34, becomes a low-temperature low-pressure second refrigerant, and flows into the air-conditioning heat transfer tube 31a of the heat source side heat exchanger 11 functioning as an evaporator. The low-temperature and low-pressure second refrigerant flowing through the air-conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air-conditioning fan 35, so that heat is transferred from the air. Pump up (absorb heat). Then, the second refrigerant that has absorbed heat is sent from the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11 to the air conditioning compressor 31 through the four-way valve 32 and circulates through the air conditioning refrigerant circuit 30.

次に、空調用熱搬送媒体循環回路50について説明する。制御装置4は、第二ポンプ51及び室内ファン53の回転速度を制御する。
第二ポンプ51を駆動させることにより、熱搬送媒体は空調利用側熱交換器33の二次側伝熱管33bに流入する。空調利用側熱交換器33の二次側伝熱管33bを通流する熱搬送媒体は、一次側伝熱管33aを通流する第二冷媒と熱交換することにより吸熱して、高温の熱搬送媒体となる。
Next, the heat transfer medium circulation circuit 50 for air conditioning will be described. The control device 4 controls the rotation speeds of the second pump 51 and the indoor fan 53.
By driving the second pump 51, the heat transfer medium flows into the secondary heat transfer pipe 33 b of the air conditioning utilization side heat exchanger 33. The heat transfer medium flowing through the secondary side heat transfer tube 33b of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the second refrigerant flowing through the primary side heat transfer tube 33a, resulting in a high temperature heat transfer medium. It becomes.

そして、高温の熱搬送媒体は、室内ユニット200の室内熱交換器52に流入する。室内熱交換器52を通流する熱搬送媒体は、室内ファン53により送られてくる空気(室内空気)と熱交換することにより放熱する。そして、放熱した熱搬送媒体は、室内熱交換器52から第一ポンプ51へと送られ、空調用熱搬送媒体循環回路50を循環する。
このように、室内ユニット2の室内熱交換器52で熱搬送媒体が放熱することにより、室内空気が加熱され、室内(被空調空間)が暖房される。
Then, the high-temperature heat transfer medium flows into the indoor heat exchanger 52 of the indoor unit 200. The heat transfer medium flowing through the indoor heat exchanger 52 dissipates heat by exchanging heat with the air (indoor air) sent by the indoor fan 53. The radiated heat transfer medium is sent from the indoor heat exchanger 52 to the first pump 51 and circulates through the heat transfer medium circulation circuit 50 for air conditioning.
As described above, the heat transfer medium dissipates heat in the indoor heat exchanger 52 of the indoor unit 2, whereby the indoor air is heated and the room (the air-conditioned space) is heated.

(3−1.除霜運転について)
冬期などにおいて室外空気が低温高湿の場合には、低温の第二冷媒が熱源側熱交換器11を通過することにより、空調用伝熱管31aが設置されている部分の板状フィン11fが着霜する。この場合、制御装置60は、給湯用冷媒回路20を用いて熱源側熱交換器11の給湯用伝熱管21aに高温の第一冷媒を送る。
(3-1. About defrosting operation)
When the outdoor air is cold and humid in winter or the like, the plate-like fin 11f where the air-conditioning heat transfer tube 31a is installed is attached by passing the low-temperature second refrigerant through the heat source side heat exchanger 11. Frost. In this case, the control device 60 uses the hot water supply refrigerant circuit 20 to send the high temperature first refrigerant to the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11.

具体的には、制御装置60は、給湯用膨張弁23を全開にした状態で給湯用圧縮機21を起動させ、高温の第一冷媒を給湯用伝熱管21aに送る。このとき、給湯回路40では第一ポンプ41を停止させているため、被加熱液体を冷却することはない。ちなみに、除霜運転を行っている間も給湯空調装置S1は暖房運転を継続している。   Specifically, the control device 60 starts the hot water supply compressor 21 with the hot water supply expansion valve 23 fully opened, and sends the high-temperature first refrigerant to the hot water supply heat transfer tube 21a. At this time, since the first pump 41 is stopped in the hot water supply circuit 40, the liquid to be heated is not cooled. Incidentally, the hot water supply air conditioner S1 continues the heating operation even during the defrosting operation.

また、熱源側熱交換器11において、給湯用伝熱管21aが設置されている部分の板状フィン11fと、空調用伝熱管31aが設置されている部分の板状フィン11fとは連続している。したがって、給湯用伝熱管21aを通流する高温の第一冷媒の温熱が板状フィン11fを伝わり、結果として空調用伝熱管31aが設置されている部分の霜を溶かすことができる。
なお、前記除霜運転を行っている間、給湯用冷媒回路20の給湯用ファン24は停止している。これは、給湯用ファン24を回転させた場合、給湯用伝熱管21aを通流する第一冷媒が、低温の室外空気との熱交換によって放熱してしまうからである。
Further, in the heat source side heat exchanger 11, the plate-like fins 11f where the hot-water supply heat transfer tubes 21a are installed and the plate-like fins 11f where the air-conditioning heat transfer tubes 31a are installed are continuous. . Therefore, the heat of the high-temperature first refrigerant flowing through the hot-water supply heat transfer tube 21a is transmitted through the plate-like fins 11f, and as a result, the frost in the portion where the air-conditioning heat transfer tube 31a is installed can be melted.
During the defrosting operation, the hot water supply fan 24 of the hot water supply refrigerant circuit 20 is stopped. This is because when the hot water supply fan 24 is rotated, the first refrigerant flowing through the hot water supply heat transfer tube 21a dissipates heat by heat exchange with the low-temperature outdoor air.

(4.給湯冷房運転モード)
給湯冷房運転モードは、給湯運転及び冷房運転を行う運転モードである。
なお、給湯冷房運転モードの給湯用冷媒回路20及び給湯回路40における動作は、前記した給湯運転モードの場合と同様であり、空調用冷媒回路30及び空調用熱搬送媒体循環回路50での動作は、前記した冷房運転モードの場合と同様であるから、説明を省略する。
以下、熱源側熱交換器11における熱交換について詳細に説明する。
(4. Hot water supply and cooling operation mode)
The hot water supply / cooling operation mode is an operation mode in which a hot water supply operation and a cooling operation are performed.
The operations in the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 in the hot water supply / cooling operation mode are the same as those in the hot water supply operation mode described above, and the operations in the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are as follows. Since it is the same as that in the above-described cooling operation mode, the description thereof is omitted.
Hereinafter, heat exchange in the heat source side heat exchanger 11 will be described in detail.

給湯冷房運転モードでは、熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分が第一冷媒の蒸発器として機能し、空調用伝熱管31aが設置されている部分が第二冷媒の凝縮器として機能する。
給湯用膨張弁23によって減圧されて低温低圧となった第一冷媒は、熱源側熱交換器11の給湯用伝熱管21aに流入する。ここで、熱源側熱交換器11の空調用伝熱管31aには、空調用圧縮機31から吐出された高温の第二冷媒が通流している。
In the hot water supply / cooling operation mode, the portion of the heat source side heat exchanger 11 where the hot water supply heat transfer tube 21a is installed functions as an evaporator of the first refrigerant, and the portion where the air conditioning heat transfer tube 31a is installed is the first. It functions as a condenser with two refrigerants.
The first refrigerant that has been depressurized by the hot water supply expansion valve 23 to a low temperature and low pressure flows into the hot water supply heat transfer tube 21 a of the heat source side heat exchanger 11. Here, the high-temperature second refrigerant discharged from the air-conditioning compressor 31 flows through the air-conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.

したがって、熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒の温熱が、板状フィン11fを介して、給湯用伝熱管21aを通流する第一冷媒に伝熱される。
また、空調用伝熱管31aを通流する第二冷媒と熱交換することによって加熱された空気が上昇するため、上方に設置されている給湯用ファン24の周囲温度が高くなる。
これによって、給湯用ファン24から給湯用伝熱管21aに高温の空気が送り込まれることとなる。
Therefore, the heat of the second refrigerant flowing through the air-conditioning heat transfer tube 31a of the heat source side heat exchanger 11 is transferred to the first refrigerant flowing through the hot water supply heat transfer tube 21a via the plate-like fins 11f.
Moreover, since the heated air rises by exchanging heat with the second refrigerant flowing through the air-conditioning heat transfer tube 31a, the ambient temperature of the hot water supply fan 24 installed above increases.
As a result, hot air is sent from the hot water supply fan 24 to the hot water supply heat transfer tube 21a.

熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、空調用伝熱管31aを通流する高温の第二冷媒と板状フィン11fを介して熱交換するとともに、給湯用ファン24から送り込まれる高温の空気とも熱交換する。
したがって、給湯用伝熱管21aにおける伝熱性能が向上し、給湯用圧縮機21及び給湯用ファン24の回転速度を低減できるため、システム全体としての効率を向上させることができる。
The first refrigerant flowing through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 exchanges heat with the high temperature second refrigerant flowing through the air conditioning heat transfer tube 31a via the plate-like fins 11f, and for hot water supply. Heat is also exchanged with the hot air sent from the fan 24.
Therefore, the heat transfer performance in the hot water supply heat transfer pipe 21a is improved, and the rotation speed of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced. Therefore, the efficiency of the entire system can be improved.

また、空調用圧縮機によって圧縮された高温高圧の第二冷媒は、熱源側熱交換器11の空調用伝熱管31aに流入する。ここで、熱源側熱交換器11の給湯用伝熱管21aには、給湯用膨張弁23によって減圧された低温の第一冷媒が通流している。
したがって、熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒の冷熱が、板状フィン11fを介して、空調用伝熱管31aを通流する第二冷媒に伝熱される。
The high-temperature and high-pressure second refrigerant compressed by the air-conditioning compressor flows into the air-conditioning heat transfer tube 31 a of the heat source side heat exchanger 11. Here, the low temperature first refrigerant decompressed by the hot water supply expansion valve 23 flows through the hot water supply heat transfer pipe 21 a of the heat source side heat exchanger 11.
Accordingly, the cold heat of the first refrigerant flowing through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 is transferred to the second refrigerant flowing through the air conditioning heat transfer tube 31a via the plate-like fins 11f.

また、給湯用伝熱管21aを通流する低温の第一冷媒と熱交換することによって冷却された空気が下降するため、下方に設置された空調用ファン35の周囲温度が低くなる。これによって、空調用ファン35から空調用伝熱管31aに低温の空気が送り込まれることとなる。   Moreover, since the air cooled by heat-exchange with the low temperature 1st refrigerant | coolant which flows through the heat exchanger tube 21a for hot water supply falls, the ambient temperature of the air-conditioning fan 35 installed below becomes low. As a result, low-temperature air is sent from the air-conditioning fan 35 to the air-conditioning heat transfer tube 31a.

熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、給湯用伝熱管21aを通流する低温の第一冷媒と、板状フィン11fを介して熱交換するとともに、空調用ファン35から送り込まれる低温の空気とも熱交換する。
したがって、空調用伝熱管31aにおける伝熱性能も向上し、空調用圧縮機31及び空調用ファン35の回転速度を低減できるため、システム全体としての効率を向上させることができる。
The second refrigerant flowing through the air-conditioning heat transfer tube 31a of the heat source side heat exchanger 11 exchanges heat with the low-temperature first refrigerant flowing through the hot-water supply heat transfer tube 21a via the plate-like fins 11f, and air conditioning. Heat is also exchanged with the low-temperature air sent from the fan 35.
Therefore, the heat transfer performance in the air-conditioning heat transfer pipe 31a is also improved, and the rotation speed of the air-conditioning compressor 31 and the air-conditioning fan 35 can be reduced. Therefore, the efficiency of the entire system can be improved.

(4−1.ドレン水による冷却について)
夏期などにおいて室外空気が高温高湿の場合、給湯冷媒回路20において、低温の第一冷媒が熱源側熱交換器11の給湯用伝熱管21aを通流する際、給湯用伝熱管21aが設置された部分が結露して、ドレン水が生じる。
前記ドレン水は、重力により板状フィン11を伝って下降し、空調用伝熱管31aが設置された部分に到達する。そして、ドレン水は、空調用伝熱管31aが設置された部分において高温の第二冷媒により加熱され、蒸発する。
一方、高温の第二冷媒は、ドレン水が蒸発する際の潜熱によって冷却される。
(4-1. Cooling with drain water)
When the outdoor air is hot and humid in summer or the like, the hot water supply heat transfer tube 21a is installed when the low temperature first refrigerant flows through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 in the hot water supply refrigerant circuit 20. Condensed parts form condensation and drain water is generated.
The drain water descends along the plate-like fins 11 due to gravity and reaches a portion where the air-conditioning heat transfer tube 31a is installed. And the drain water is heated by the high temperature 2nd refrigerant | coolant in the part in which the heat exchanger tube 31a for air conditioning was installed, and evaporates.
On the other hand, the high-temperature second refrigerant is cooled by latent heat generated when the drain water evaporates.

このように、熱源側熱交換器11の空調用伝熱管31aを通流する高温の第二冷媒が、給湯用伝熱管31aを通流する低温の第一冷媒と、より低温になった室外空気と、前記ドレン水による蒸発潜熱により冷却される。したがって、空調用伝熱管31aにおける伝熱性能が向上し、空調用圧縮機31及び空調用ファン35の回転速度をさらに低減できるため、システム全体としての効率を向上させることができる。   Thus, the high-temperature second refrigerant flowing through the air-conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 is the low-temperature first refrigerant flowing through the hot-water supply heat transfer pipe 31a and the outdoor air having a lower temperature. And cooled by the latent heat of evaporation caused by the drain water. Therefore, the heat transfer performance in the heat transfer pipe 31a for air conditioning is improved, and the rotational speed of the air conditioning compressor 31 and the air conditioning fan 35 can be further reduced, so that the efficiency of the entire system can be improved.

また、図1に示すように、熱源側熱交換器11には板状フィン11fの下にドレンパン12が設けられている。したがって、板状フィン11fの最下点まで到達したドレン水は、ドレンパン12から地上に放出される。このように、熱源側熱交換器11は給湯用熱源側の熱交換器と、空調用熱源の側熱交換器とが一体化されているため、それぞれの冷媒回路ごとにドレンパンを設ける必要がなく、構成部品の簡素化が可能となる。   As shown in FIG. 1, the heat source side heat exchanger 11 is provided with a drain pan 12 below the plate-like fins 11f. Therefore, the drain water that has reached the lowest point of the plate-like fins 11f is discharged from the drain pan 12 to the ground. Thus, since the heat source side heat exchanger 11 is integrated with the heat exchanger for the hot water supply side and the side heat exchanger for the air conditioning heat source, there is no need to provide a drain pan for each refrigerant circuit. It is possible to simplify the components.

(5.給湯暖房運転モード)
給湯暖房運転モードは、給湯運転及び暖房運転を行う運転モードである。
なお、給湯暖房運転モードの給湯用冷媒回路20及び給湯回路40における動作は、前記した給湯運転モードの場合と同様であり、空調用冷媒回路30及び空調用熱搬送媒体循環回路50での動作は、前記した暖房運転モードの場合と同様であるから説明を省略する。
以下、熱源側熱交換器11における熱交換について詳細に説明する。
(5. Hot water supply / heating mode)
The hot water supply and heating operation mode is an operation mode in which a hot water supply operation and a heating operation are performed.
The operations in the hot water supply refrigerant circuit 20 and the hot water supply circuit 40 in the hot water supply / heating operation mode are the same as those in the hot water supply operation mode described above, and the operations in the air conditioning refrigerant circuit 30 and the air conditioning heat transfer medium circulation circuit 50 are as follows. Since it is the same as that of the heating operation mode described above, the description thereof is omitted.
Hereinafter, heat exchange in the heat source side heat exchanger 11 will be described in detail.

給湯暖房運転モードでは、熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分が第一冷媒の蒸発器として機能し、空調用伝熱管31aが設置されている部分が第二冷媒の蒸発器として機能する。すなわち、給湯暖房運転モードでは、熱源側熱交換器11が第一冷媒及び第二冷媒の蒸発器として機能し、室外空気から熱を汲み上げる。   In the hot water supply / heating operation mode, the portion of the heat source side heat exchanger 11 where the hot water supply heat transfer tube 21a is installed functions as the evaporator of the first refrigerant, and the portion where the air conditioning heat transfer tube 31a is installed is the first. It functions as an evaporator of two refrigerants. That is, in the hot water supply and heating operation mode, the heat source side heat exchanger 11 functions as an evaporator of the first refrigerant and the second refrigerant, and pumps heat from the outdoor air.

給湯用膨張弁23によって減圧されて低温低圧となった第一冷媒は、熱源側熱交換器11の給湯用伝熱管21aに流入する。そして、熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、給湯用ファン24から送り込まれる室外空気と熱交換することによって吸熱し、蒸発する。そして、熱源側熱交換器11の給湯用伝熱管21aから流出した第一冷媒は、給湯用圧縮機21に流入することとなる。   The first refrigerant that has been depressurized by the hot water supply expansion valve 23 to a low temperature and low pressure flows into the hot water supply heat transfer tube 21 a of the heat source side heat exchanger 11. The first refrigerant flowing through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 absorbs heat and evaporates by exchanging heat with the outdoor air sent from the hot water supply fan 24. And the 1st refrigerant | coolant which flowed out from the heat exchanger tube 21a for hot water supply of the heat source side heat exchanger 11 will flow in into the compressor 21 for hot water supply.

また、空調用膨張弁34によって減圧された低温低圧の第二冷媒は、熱源側熱交換器11の空調用伝熱管31aに流入する。そして、熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、空調用ファン35から送り込まれる室外空気と熱交換することによって吸熱し、蒸発する。そして、熱源側熱交換器11の空調用伝熱管31aから流出した第二冷媒は、空調用圧縮機31に流入することとなる。   The low-temperature and low-pressure second refrigerant decompressed by the air conditioning expansion valve 34 flows into the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11. The second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 absorbs heat and evaporates by exchanging heat with outdoor air sent from the air conditioning fan 35. And the 2nd refrigerant | coolant which flowed out from the heat exchanger tube 31a for the air conditioning of the heat source side heat exchanger 11 will flow in into the compressor 31 for an air conditioning.

(5−1.除霜運転について)
次に、冬期などにおいて室外空気が低温高湿の場合に、給湯用伝熱管21aが設置されている部分の板状フィン11f、及び、空調用伝熱管31aが設置されている部分の板状フィン11fのうち、少なくとも一方が着霜した場合について説明する。
熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分の板状フィン11fが着霜した場合、制御装置60は、熱源側熱交換器11の給湯用伝熱管21aに高温高圧の第一冷媒を流入させるよう制御する。また、制御装置60は、第一ポンプ41を停止させる。
これによって、暖房運転を継続させつつ、板状フィン11fに付着した霜を溶かすことができる。ちなみに、前記除霜運転の間は第一ポンプ41を停止しているので、被加熱液体を冷却することはない。
(5-1. About defrosting operation)
Next, when the outdoor air is cold and humid in winter, the plate-like fin 11f where the heat transfer pipe 21a for hot water supply is installed and the plate-like fin where the heat transfer pipe 31a for air conditioning is installed The case where at least one frosts among 11f is demonstrated.
In the heat source side heat exchanger 11, when the plate-like fin 11f in the portion where the hot water supply heat transfer tube 21a is installed is frosted, the control device 60 causes the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 to have a high temperature. Control is performed so that the high-pressure first refrigerant flows in. Further, the control device 60 stops the first pump 41.
Thereby, frost adhering to the plate-like fins 11f can be melted while continuing the heating operation. Incidentally, since the first pump 41 is stopped during the defrosting operation, the liquid to be heated is not cooled.

また、熱源側熱交換器11のうち、空調用伝熱管31aが設置されている部分の板状フィン11fが着霜した場合、制御装置60は、給湯回路40の第一ポンプ41の駆動を停止させ、給湯用冷媒回路20の給湯用膨張弁23を全開にした状態で給湯用圧縮機21を起動させ、高温高圧の第一冷媒を給湯用伝熱管21aへ送る。
前記除霜運転については、暖房運転モードにおける除霜運転と同様であるから、説明を省略する。
Moreover, when the plate-shaped fin 11f of the part in which the heat exchanger tube 31a for air conditioning is installed in the heat source side heat exchanger 11, the control device 60 stops driving the first pump 41 of the hot water supply circuit 40. The hot water supply compressor 21 is started in a state where the hot water supply expansion valve 23 of the hot water supply refrigerant circuit 20 is fully opened, and the high temperature and high pressure first refrigerant is sent to the hot water supply heat transfer tube 21a.
About the said defrost operation, since it is the same as that of the defrost operation in heating operation mode, description is abbreviate | omitted.

また、給湯用伝熱管21aが設置されている部分の板状フィン11fと、空調用伝熱管31aが設置されている部分の板状フィン11fの両方が着霜した場合、制御装置60は、給湯用伝熱管21aに高温高圧の第一冷媒を送ることを優先させる。これは、暖房運転を中断しないようにすることによって、被空調空間内の快適性を保つためである。
この場合の制御装置60の処理については、暖房運転モードにおいて、熱源側熱交換器11のうち空調用伝熱管31aが設置されている部分の板状フィン11fが着霜した場合と同様であるから、説明を省略する。
When both the plate-like fins 11f where the hot-water supply heat transfer tubes 21a are installed and the plate-like fins 11f where the air-conditioning heat transfer tubes 31a are installed are frosted, the control device 60 Priority is given to sending the high-temperature, high-pressure first refrigerant to the heat transfer tube 21a. This is to maintain comfort in the air-conditioned space by not interrupting the heating operation.
The processing of the control device 60 in this case is the same as that in the heating operation mode when the plate-like fins 11f of the heat source side heat exchanger 11 where the air-conditioning heat transfer tubes 31a are installed are frosted. The description is omitted.

なお、給湯用伝熱管21aが設置されている部分の板状フィン11fと、空調用伝熱管31aが設置されている部分の板状フィン11fの両方が着霜した場合であって、給湯用伝熱管21aに高温の第一冷媒を通流させることのみでは除霜が不十分である場合、制御装置60は、給湯用伝熱管21aに高温の第一冷媒を通流させることと併せて、空調用伝熱管31aに高温の第二冷媒を通流させる。
これによって、板状フィン11fに付着した霜を全て溶かすことができる。
In addition, it is a case where both the plate-shaped fin 11f of the part in which the heat exchanger tube 21a for hot water supply is installed, and the plate-shaped fin 11f of the part in which the heat exchanger tube 31a for air conditioning is frosted, Comprising: When the defrosting is insufficient only by passing the high-temperature first refrigerant through the heat pipe 21a, the control device 60 performs air conditioning in addition to passing the high-temperature first refrigerant through the hot water supply heat transfer pipe 21a. The high-temperature second refrigerant is caused to flow through the heat transfer tube 31a.
Thereby, all the frost adhering to the plate-like fins 11f can be melted.

この場合、給湯用冷媒回路20を用いた除霜運転時間と、空調用冷媒回路30を用いた除霜運転時間とを同じとする必要はない。空調冷媒回路30を用いて除霜運転を行う場合には暖房運転が停止されるため、空調冷媒回路30を用いた除霜運転時間は短いほうが好ましい。   In this case, the defrosting operation time using the hot water supply refrigerant circuit 20 and the defrosting operation time using the air conditioning refrigerant circuit 30 are not necessarily the same. When the defrosting operation is performed using the air conditioning refrigerant circuit 30, the heating operation is stopped. Therefore, it is preferable that the defrosting operation time using the air conditioning refrigerant circuit 30 is short.

<効果1>
本実施形態に係る給湯空調装置S1によれば、使用者の要求に応じて給湯運転、冷房運転、暖房運転、給湯冷房運転、及び給湯暖房運転を実行することができる。
また、給湯運転を実行する際には、空調用伝熱管31aが設置された部分の板状フィン11fも室外空気との伝熱に使用することができる。つまり、室外空気と熱交換を行う際の伝熱面積を大きくすることができ、伝熱性能を向上させることができる。したがって、給湯用圧縮機21及び給湯用ファン24の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。
<Effect 1>
According to the hot water supply air conditioner S1 according to the present embodiment, a hot water supply operation, a cooling operation, a heating operation, a hot water supply cooling operation, and a hot water supply / air heating operation can be executed according to a user's request.
In addition, when the hot water supply operation is performed, the plate-like fins 11f at the portion where the air-conditioning heat transfer tubes 31a are installed can also be used for heat transfer with outdoor air. That is, the heat transfer area when heat exchange with the outdoor air can be increased, and the heat transfer performance can be improved. Therefore, the rotational speed of the hot water supply compressor 21 and the hot water supply fan 24 can be reduced, and the efficiency of the entire system can be improved.

同様に、冷房運転又は暖房運転を実行する際には、給湯用伝熱管21aが設置された部分の板状フィン11fも室外空気との伝熱に使用することができる。したがって、室外空気と熱交換を行う際の伝熱面積を大きくすることができ、空調用圧縮機31及び空調用ファン35の回転速度を低減させることが可能となり、システム全体の効率を向上させることができる。   Similarly, when performing the cooling operation or the heating operation, the plate-like fins 11f of the portion where the hot water supply heat transfer tube 21a is installed can also be used for heat transfer with the outdoor air. Therefore, it is possible to increase the heat transfer area when exchanging heat with the outdoor air, it is possible to reduce the rotational speed of the air conditioning compressor 31 and the air conditioning fan 35, and to improve the efficiency of the entire system. Can do.

また、熱源側熱交換器11は、給湯用の熱源側熱交換器と、空調用の熱源側熱交換器が一体化された構成となっている。したがって、板状フィン11fを介して給湯用冷媒回路20を循環する第一冷媒と、空調用冷媒回路30を循環する第二冷媒との熱交換を行うことができる。すなわち、熱源側熱交換器11は、第一冷媒と第二冷媒との熱交換を行う中間熱交換器としての機能も果たしている。
したがって、熱源側熱交換器11が、給湯用の熱源側熱交換器、空調用の熱源側熱交換器、及び中間熱交換器としての機能を兼ねることになるため、給湯空調装置S1を簡単な構成とすることができ、製造コストを削減することができる。
The heat source side heat exchanger 11 has a configuration in which a heat source side heat exchanger for hot water supply and a heat source side heat exchanger for air conditioning are integrated. Therefore, heat exchange can be performed between the first refrigerant circulating through the hot water supply refrigerant circuit 20 and the second refrigerant circulating through the air conditioning refrigerant circuit 30 via the plate-like fins 11f. That is, the heat source side heat exchanger 11 also functions as an intermediate heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant.
Accordingly, since the heat source side heat exchanger 11 also functions as a heat source side heat exchanger for hot water supply, a heat source side heat exchanger for air conditioning, and an intermediate heat exchanger, the hot water supply air conditioner S1 can be simplified. It can be set as a structure and manufacturing cost can be reduced.

また、空調冷房運転を行う際には、空調用冷媒回路30を循環する第二冷媒からの排熱を、板状フィン11fを介して給湯用冷媒回路20を循環する第一冷媒に供給することができる。したがって、システム全体の効率を向上させることができる。   Further, when performing the air conditioning cooling operation, exhaust heat from the second refrigerant circulating in the air conditioning refrigerant circuit 30 is supplied to the first refrigerant circulating in the hot water supply refrigerant circuit 20 via the plate-like fins 11f. Can do. Therefore, the efficiency of the entire system can be improved.

また、除霜運転を行う際には、着霜していないほうの回路(給湯用冷媒回路20又は空調用冷媒回路30)を用いて高温の冷媒を送ることにより除霜することができる。したがって、例えば、暖房運転を行っている際に空調用伝熱管31aが設置されている部分の板状フィン11fが着霜したとしても、暖房運転を継続しながら除霜運転を行うことができるため、室内(被空調空間内)での快適性を向上させることができる。   Moreover, when performing a defrost operation, it can defrost by sending a high temperature refrigerant | coolant using the circuit (Hot-water supply refrigerant circuit 20 or the air-conditioning refrigerant circuit 30) which is not frosted. Therefore, for example, even when the plate-shaped fin 11f in the portion where the air-conditioning heat transfer pipe 31a is installed during the heating operation, the defrosting operation can be performed while continuing the heating operation. The comfort in the room (in the air-conditioned space) can be improved.

また、熱源側熱交換器11において、給湯用伝熱管21aは空調用伝熱管31aよりも上方に設置されている。したがって、給湯冷房運転を行っている際に、給湯用伝熱管21aが設置されている部分の板状フィン11fが結露してドレン水が生じると、当該ドレン水が重力により板状フィン11fをつたって下降する。そして、当該ドレン水は空調用伝熱管31aで蒸発するため、蒸発潜熱により空調用伝熱管31aを通流する第二冷媒から吸熱することができる。これによって、熱源側熱交換器11の第二冷媒の凝縮機能が増すため、システム全体としての効率を向上させることができる。   In the heat source side heat exchanger 11, the hot water supply heat transfer tube 21a is installed above the air conditioning heat transfer tube 31a. Therefore, during the hot water supply cooling operation, if the plate-like fins 11f in the portion where the hot-water supply heat transfer tubes 21a are installed are condensed and drain water is generated, the drain water is connected to the plate-like fins 11f by gravity. It descends. And since the said drain water evaporates with the heat exchanger tube 31a for an air conditioning, it can absorb heat from the 2nd refrigerant | coolant which flows through the heat exchanger tube 31a for an air conditioning with latent heat of evaporation. Thereby, since the condensation function of the second refrigerant of the heat source side heat exchanger 11 is increased, the efficiency of the entire system can be improved.

すなわち、本実施形態に係る給湯空調装置S1によれば、給湯と空調の熱を互いに有効利用することができ、システム全体としての効率を向上させることができる。また、システムの構成が簡単であるため、製造コストを抑えることが可能である。   That is, according to the hot water supply air conditioner S1 according to the present embodiment, the heat of the hot water supply and the air conditioning can be used effectively, and the efficiency of the entire system can be improved. In addition, since the system configuration is simple, manufacturing costs can be reduced.

≪第2実施形態≫
第2実施形態に係る給湯空調装置は、第1実施形態に係る給湯空調装置S1と比較して、熱源側熱交換器11Bの構成が異なる。その他の点については、第1実施形態に係る給湯空調装置S1と同様であるから説明を省略する。
図4は、第2実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。なお、図4において、給湯用伝熱管21aを網掛けで示した。
<< Second Embodiment >>
The hot water supply air conditioner according to the second embodiment differs from the hot water supply air conditioner S1 according to the first embodiment in the configuration of the heat source side heat exchanger 11B. About another point, since it is the same as that of hot water supply air conditioner S1 which concerns on 1st Embodiment, description is abbreviate | omitted.
FIG. 4 is a schematic configuration diagram of a heat source side heat exchanger of the hot water supply air conditioner according to the second embodiment. In FIG. 4, the hot water supply heat transfer tube 21 a is shaded.

図4に示すように、直線状第一伝熱管21s及び直線状第二伝熱管31sが、複数の板状フィン11fを、伝熱面に対して垂直に貫通している。
そして、給湯用伝熱管21aに流入した第一冷媒が、図4の矢印で示すように分流した後、合流するように、直線状第一伝熱管21sが接続用伝熱管に接続されている。
また、空調用伝熱管31aに流入した第二冷媒が、図4の矢印で示すように空調用伝熱管31aを通流するように、直線状第二伝熱管31sが接続用伝熱管に接続されている。
As shown in FIG. 4, the linear first heat transfer tube 21s and the linear second heat transfer tube 31s pass through the plurality of plate-like fins 11f perpendicularly to the heat transfer surface.
And the linear 1st heat exchanger tube 21s is connected to the heat exchanger tube for connection so that after the 1st refrigerant | coolant which flowed into the heat exchanger tube 21a for hot water supply may be branched, as shown by the arrow of FIG.
Further, the linear second heat transfer tube 31s is connected to the connection heat transfer tube so that the second refrigerant flowing into the air conditioning heat transfer tube 31a flows through the air conditioning heat transfer tube 31a as shown by an arrow in FIG. ing.

また、図4に示すように、直線状第一伝熱管21s,21s,・・・,21sが、直線状第二伝熱管31s,31s,・・・,31sよりも上方に位置するように設置されている。また、直線状第一伝熱管21sk+1、21sk+2が、直線状第二伝熱管31s,31s,・・・,31sよりも下方に位置するように設置されている。
さらに、直線状の給湯用伝熱管21sのうち、直線状の空調用伝熱管31sよりも上方に位置するものの本数(図4では、10本)が、直線状の空調用伝熱管よりも下方に位置するものの本数(図4では、2本)よりも多くなっている。
Further, as shown in FIG. 4, a linear first heat exchanger tube 21s 1, 21s 2, ···, 21s k is a linear second heat exchanger tube 31s 1, 31s 2, · · ·, than 31s m above It is installed to be located in. Also, the linear first heat exchanger tube shaped 21s k + 1, 21s k + 2 is straight second heat exchanger tube 31s 1, 31s 2, · · ·, are disposed so as to be positioned below the 31s m.
Further, among the linear hot water supply heat transfer tubes 21 s, the number (10 in FIG. 4) located above the straight air conditioning heat transfer tubes 31 s is lower than the straight air conditioning heat transfer tubes 21 s. The number is greater than the number of objects (two in FIG. 4).

<効果2>
このように、直線状第一伝熱管21sによって、直線状第二伝熱管31sを上下で挟み込む構成とすることで、給湯用伝熱管21aを通流する第一冷媒と、空調用伝熱管31aを通流する第二冷媒との伝熱がより促進される。したがって、システム全体としての効率を向上させることができる。
また、給湯用伝熱管21aに高温の第一冷媒を通流させることによって除霜運転を行う場合には、空調伝熱管21aの上下から第一冷媒の温熱が伝わるため、平板フィン11の除霜を促進させ、除霜運転を短時間で終わらせることができる。
<Effect 2>
Thus, the 1st refrigerant | coolant which flows through the hot water supply heat exchanger tube 21a and the air-conditioning heat exchanger tube 31a are comprised by sandwiching the linear second heat exchanger tube 31s up and down by the linear first heat exchanger tube 21s. Heat transfer with the flowing second refrigerant is further promoted. Therefore, the efficiency of the entire system can be improved.
Further, when the defrosting operation is performed by passing a high temperature first refrigerant through the hot water supply heat transfer tube 21a, the heat of the first refrigerant is transmitted from above and below the air conditioning heat transfer tube 21a. And the defrosting operation can be completed in a short time.

また、直線状の空調伝熱管31sの上部に設置される給湯用伝熱管21sが、下部に設置される給湯用伝熱管21sよりも多いことにより、給湯冷房運転モードにおいて、給湯用伝熱管21aで生じたドレン水の蒸発潜熱を利用した第二冷媒の冷却を促進することができる。   Further, since there are more hot water supply heat transfer tubes 21s installed in the upper part of the straight air conditioning heat transfer tube 31s than the hot water supply heat transfer tubes 21s installed in the lower part, in the hot water supply cooling operation mode, Cooling of the second refrigerant utilizing the latent heat of evaporation of the generated drain water can be promoted.

≪第3実施形態≫
図5は、第3実施形態に係る給湯空調装置の熱源側熱交換器の概略構成図である。なお、図5において、給湯用伝熱管21aを網掛けで示した。
第3実施形態に係る給湯空調装置は、第1実施形態に係る給湯空調装置S1と比較して、熱源側熱交換器11の構成が異なる。その他の点については、第1実施形態に係る給湯空調装置S1と同様であるから、説明を省略する。
«Third embodiment»
FIG. 5 is a schematic configuration diagram of a heat source side heat exchanger of the hot water supply air conditioner according to the third embodiment. In FIG. 5, the hot-water supply heat transfer tube 21a is shaded.
The hot water supply air conditioner according to the third embodiment is different from the hot water supply air conditioner S1 according to the first embodiment in the configuration of the heat source side heat exchanger 11. About another point, since it is the same as that of hot water supply air conditioner S1 which concerns on 1st Embodiment, description is abbreviate | omitted.

図5に示すように、直線状第一伝熱管21s及び直線状第二伝熱管31sが、複数の板状フィン11fを伝熱面に対して垂直に貫通している。
そして、給湯用伝熱管21aに流入した第一冷媒が、図5に示すように分流した後、合流するように、直線状第一伝熱管21sが接続用伝熱管21cに接続されている。また、空調用伝熱管31aに流入した第二冷媒が、図5に示すように分流した後、合流するように、直線状第二伝熱管31sが接続用伝熱管31cに接続されている。
As shown in FIG. 5, the linear first heat transfer tube 21s and the linear second heat transfer tube 31s penetrate the plurality of plate-like fins 11f perpendicularly to the heat transfer surface.
And the linear 1st heat exchanger tube 21s is connected to the heat exchanger tube 21c for connection so that the 1st refrigerant | coolant which flowed in into the heat exchanger tube 21a for hot water supply may be merged, after dividing as shown in FIG. Moreover, the linear 2nd heat exchanger tube 31s is connected to the connection heat exchanger tube 31c so that the 2nd refrigerant | coolant which flowed in into the heat exchanger tube 31a for an air conditioning may divide, as shown in FIG.

また、直線状第一伝熱管21s,21s,・・・,21sが、直線状第二伝熱管31s,31s,・・・,31sと上下交互に設置されている。なお、ここで「上下交互に設置」とは、一本ずつ上下交互に設置する場合の他、上下に連続する2本以上の直線状第一伝熱管21sと、上下に連続する2本以上の直線状第二伝熱管31sとが交互に設置されている場合も含むものとする。また、「上下交互に設置」とは、連続する直線状第一伝熱管21sの本数と、連続する直線状第二伝熱管31sの本数とが等しい場合に限定されない。Also, the linear first heat exchanger tube 21s 1, 21s 2, ···, 21s k is a linear second heat exchanger tube 31s 1, 31s 2, · · ·, are installed vertically alternately 31s m. Here, “alternately installed vertically” means, in addition to the case where the tubes are alternately installed one by one, two or more linear first heat transfer tubes 21 s that are continuous in the vertical direction and two or more that are continuous in the vertical direction. The case where the linear second heat transfer tubes 31s are alternately installed is also included. “Alternatingly arranged in the vertical direction” is not limited to the case where the number of continuous linear first heat transfer tubes 21s is equal to the number of continuous linear second heat transfer tubes 31s.

ちなみに、図5では、上下に連続する2本の直線状第一伝熱管21sと、上下に連続する2本の直線状第二伝熱管31sとが交互に設置されている場合を示している。
また、熱源側熱交換器11に設置された伝熱管のうち最上端のものは、直線状第一伝熱管21sであることが好ましい。これは、給湯冷房運転モードにおいて、板状フィン11fをつたって重力により下降するドレン水によって、空調用伝熱管31aを通流する第二冷媒の冷却を促進させるためである。
Incidentally, FIG. 5 shows a case where two linear first heat transfer tubes 21s that are continuous in the vertical direction and two linear second heat transfer tubes 31s that are continuous in the vertical direction are alternately installed.
Moreover, it is preferable that the uppermost one of the heat transfer tubes installed in the heat source side heat exchanger 11 is the linear first heat transfer tube 21s. This is because in the hot water supply / cooling operation mode, the cooling of the second refrigerant flowing through the air-conditioning heat transfer tube 31a is promoted by the drain water that descends due to gravity through the plate-like fins 11f.

<効果3>
本実施形態に係る給湯空調装置によれば、給湯用伝熱管21aと空調用伝熱管31aとが、板状フィン11fにそれぞれ分散して設置されている。したがって、板状フィン11f全体を熱交換の際の伝熱面積とすることができ、伝熱性能を向上させることができる。
また、給湯運転、冷房運転、暖房運転では、前記のように伝熱性能が向上することで、圧縮機やファンの回転数を低減させることが可能となり、システム全体としての効率を向上させることができる。また、伝熱性能の向上により、着霜を抑制する効果も高まり、快適性と省エネ性を向上させることができる。
<Effect 3>
According to the hot water supply air-conditioning apparatus according to the present embodiment, the hot water supply heat transfer tubes 21a and the air conditioning heat transfer tubes 31a are installed in a distributed manner on the plate-like fins 11f. Therefore, the whole plate-like fin 11f can be made into a heat transfer area at the time of heat exchange, and heat transfer performance can be improved.
In addition, in the hot water supply operation, cooling operation, and heating operation, the heat transfer performance is improved as described above, so that the rotation speed of the compressor and the fan can be reduced, and the efficiency of the entire system can be improved. it can. Moreover, the effect of suppressing frost formation increases by improvement in heat transfer performance, and comfort and energy saving can be improved.

また、直線状第一伝熱管21sと直線状第二伝熱管31sとの距離が近く、上下交互に配置されているために、各伝熱管が一か所にまとまって配置される場合と比較して、板状フィン11f介した熱交換の効率が上がる。そのため、給湯冷房運転を行う場合に、排熱回収のための機器を新たに設けなくても、互いの冷媒回路の熱を有効に利用することが可能となり、システム全体の効率をより向上させることができる。   In addition, since the distance between the linear first heat transfer tube 21s and the linear second heat transfer tube 31s is close and alternately arranged up and down, compared to the case where the heat transfer tubes are arranged together in one place. Thus, the efficiency of heat exchange through the plate-like fins 11f increases. Therefore, when performing hot water supply cooling operation, it becomes possible to effectively use the heat of each refrigerant circuit without newly installing equipment for exhaust heat recovery, and to further improve the efficiency of the entire system. Can do.

≪第4実施形態≫
<空調給湯装置の構成>
図6は、第4実施形態に係る給湯空調装置の構成図である。第4実施形態に係る給湯空調装置S2は、第1実施形態に係る給湯空調装置S1と比較して、給湯熱源側熱交換器(熱源側熱交換器11のうち、給湯用伝熱管21aが設置されている部分)及び空調熱源側熱交換器(熱源側熱交換器11のうち、空調用伝熱管31aが設置されている部分)と並列に接続され、第二冷媒からの排熱を第一冷媒に回収させるための排熱回収用熱交換器70を備える点が異なる。その他の点については、第1実施形態に係る給湯空調装置S1と同様であるから、説明を省略する。
<< Fourth Embodiment >>
<Configuration of air conditioning and hot water supply system>
FIG. 6 is a configuration diagram of a hot water supply air conditioner according to the fourth embodiment. Compared with the hot water supply air conditioner S1 according to the first embodiment, the hot water supply air conditioner S2 according to the fourth embodiment includes a hot water supply heat source side heat exchanger (of the heat source side heat exchanger 11, the hot water supply heat transfer tube 21a is installed. Connected to the air-conditioning heat source side heat exchanger (the portion of the heat source side heat exchanger 11 where the air-conditioning heat transfer pipe 31a is installed) in parallel with the first heat exhausted from the second refrigerant. The difference is that a heat exchanger for exhaust heat recovery 70 for recovering the refrigerant is provided. About another point, since it is the same as that of hot water supply air conditioner S1 which concerns on 1st Embodiment, description is abbreviate | omitted.

図6に示すように、給湯用冷媒回路20には、第一冷媒と第二冷媒との熱交換を行う排熱回収用熱交換器70と、開閉により第一冷媒を通流又は遮断する二方弁25,26,27,28とが設置されている。
排熱回収用熱交換器70の一次側伝熱管70aの一端は、二方弁25を介して配管23aに接続され、他端は二方弁26を介して配管28aに接続されている。
また、二方弁27の一端は配管23aを介して給湯用膨張弁23に接続され、他端は熱源側熱交換器11の給湯用伝熱管21aに接続されている。また、二方弁28の一端は配管28aを介して給湯用圧縮機21に接続され、他端は熱源側熱交換器11の給湯用伝熱管21aに接続されている。
As shown in FIG. 6, the hot water supply refrigerant circuit 20 includes an exhaust heat recovery heat exchanger 70 that exchanges heat between the first refrigerant and the second refrigerant, and a second refrigerant that opens or closes the first refrigerant. The direction valves 25, 26, 27, and 28 are installed.
One end of the primary side heat transfer pipe 70 a of the heat exchanger 70 for exhaust heat recovery is connected to the pipe 23 a through the two-way valve 25, and the other end is connected to the pipe 28 a through the two-way valve 26.
One end of the two-way valve 27 is connected to the hot water supply expansion valve 23 via a pipe 23 a, and the other end is connected to the hot water supply heat transfer pipe 21 a of the heat source side heat exchanger 11. One end of the two-way valve 28 is connected to the hot water supply compressor 21 via the pipe 28 a, and the other end is connected to the hot water supply heat transfer tube 21 a of the heat source side heat exchanger 11.

また、図6に示すように、空調用冷媒回路30には、開閉により第二冷媒を通流又は遮断する二方弁36,37,38,39が設置されている。
排熱回収用熱交換器70の二次側伝熱管70bの一端は、二方弁36を介して配管32aに接続され、他端は二方弁37を介して配管34aに接続されている。
また、二方弁38の一端は配管32aを介して四方弁32に接続され、他端は熱源側熱交換器11の空調用伝熱管31aに接続されている。また、二方弁39の一端は配管34aを介して空調用膨張弁34に接続され、他端は熱源側熱交換器11の空調用伝熱管31aに接続されている。
As shown in FIG. 6, the air conditioning refrigerant circuit 30 is provided with two-way valves 36, 37, 38, and 39 that pass or block the second refrigerant by opening and closing.
One end of the secondary heat transfer tube 70 b of the heat exchanger 70 for exhaust heat recovery is connected to the pipe 32 a via the two-way valve 36, and the other end is connected to the pipe 34 a via the two-way valve 37.
One end of the two-way valve 38 is connected to the four-way valve 32 via a pipe 32 a, and the other end is connected to the air-conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11. One end of the two-way valve 39 is connected to the air conditioning expansion valve 34 via a pipe 34 a, and the other end is connected to the air conditioning heat transfer pipe 31 a of the heat source side heat exchanger 11.

本実施形態に係る給湯空調装置S2は、第1実施形態に係る給湯空調装置S1と同様に、各種運転モードに対応した運転を行う。
なお、排熱回収用熱交換器70は給湯冷房運転を行う際に使用し、その他の場合には使用しない。つまり、給湯運転、冷房運転、暖房運転、又は暖房給湯運転を行う場合、制御装置60は、二方弁25,26,36,37を閉止させ、二方弁27,28,38,39を開放する。
排熱回収用熱交換器70を使用しない場合の給湯用冷媒回路20、空調用冷媒回路30、給湯回路40、空調用熱搬送媒体循環回路50での動作はそれぞれ、第1実施形態の場合と同様であるから説明を省略する。
The hot water supply air conditioner S2 according to the present embodiment performs operations corresponding to various operation modes, similarly to the hot water supply air conditioner S1 according to the first embodiment.
The exhaust heat recovery heat exchanger 70 is used when performing hot water supply cooling operation, and is not used in other cases. That is, when performing hot water supply operation, cooling operation, heating operation, or heating hot water supply operation, the control device 60 closes the two-way valves 25, 26, 36, and 37 and opens the two-way valves 27, 28, 38, and 39. To do.
The operations of the hot water supply refrigerant circuit 20, the air conditioning refrigerant circuit 30, the hot water supply circuit 40, and the air conditioning heat transfer medium circulation circuit 50 when the exhaust heat recovery heat exchanger 70 is not used are the same as those in the first embodiment. Since it is the same, description is abbreviate | omitted.

<給湯冷房運転におけるモード判定処理>
次に、給湯冷房運転を行う際の制御装置60の処理について説明する。図7は、給湯冷房運転におけるモード判定処理の流れを示すフローチャートである。
ステップS101において、制御装置60は、給湯吸熱量Qec_ex及び空調排熱量Qac_exを推定する。ここで、給湯吸熱量Qec_exとは、給湯用冷媒回路20及び空調用冷媒回路30を独立して運転した際の、給湯運転に要する熱源からの吸熱量である。また、空調排熱量Qac_exとは、給湯用冷媒回路20及び空調用冷媒回路30を独立して運転した際の冷房運転に要する熱源への排熱量である。
<Mode determination process in hot water cooling operation>
Next, processing of the control device 60 when performing hot water supply / cooling operation will be described. FIG. 7 is a flowchart showing a flow of mode determination processing in hot water supply / cooling operation.
In step S101, control device 60 estimates hot water supply heat absorption amount Qec_ex and air conditioning exhaust heat amount Qac_ex. Here, the hot water supply heat absorption amount Qec_ex is the heat absorption amount from the heat source required for the hot water supply operation when the hot water supply refrigerant circuit 20 and the air conditioning refrigerant circuit 30 are operated independently. The air conditioning exhaust heat amount Qac_ex is the amount of heat exhausted to the heat source required for the cooling operation when the hot water supply refrigerant circuit 20 and the air conditioning refrigerant circuit 30 are independently operated.

ステップS102において、制御装置60は、給湯吸熱量Qec_exが空調排熱量Qac_exより大きいか否かを判定する。
給湯吸熱量Qec_exが空調排熱量Qac_exより大きい場合(S102→Yes)、制御装置60の処理はステップS103に進む。給湯吸熱量Qec_exが空調排熱量Qac_ex以下である場合(S102→No)、制御装置60の処理はステップS104に進む。
In step S102, control device 60 determines whether hot water supply heat absorption amount Qec_ex is larger than air conditioning exhaust heat amount Qac_ex.
When the hot water supply heat absorption amount Qec_ex is larger than the air conditioning exhaust heat amount Qac_ex (S102 → Yes), the process of the control device 60 proceeds to step S103. When the hot water supply heat absorption amount Qec_ex is equal to or less than the air conditioning exhaust heat amount Qac_ex (S102 → No), the process of the control device 60 proceeds to step S104.

ステップS103において、制御装置60は、給湯空調装置S2の運転モードを「冷房給湯運転(排熱回収A)モード」に決定する。当該運転モードにおける給湯空調装置S2の動作については、図8を用いて後記する。
ステップS104において、制御装置60は、給湯吸熱量Qec_exが空調排熱量Qac_exと等しいか否かを判定する。
給湯吸熱量Qec_exが空調排熱量Qac_exと等しい場合(S104→Yes)、制御装置60の処理はステップS105に進む。給湯吸熱量Qec_exが空調排熱量Qac_exと等しくない場合(S104→No)、制御装置60の処理はステップS106に進む。
In step S103, the control device 60 determines the operation mode of the hot water supply air conditioner S2 as the “cooling hot water supply operation (exhaust heat recovery A) mode”. The operation of the hot water supply air conditioner S2 in the operation mode will be described later with reference to FIG.
In step S104, control device 60 determines whether or not hot water heat absorption amount Qec_ex is equal to air conditioning exhaust heat amount Qac_ex.
When the hot water supply heat absorption amount Qec_ex is equal to the air conditioning exhaust heat amount Qac_ex (S104 → Yes), the process of the control device 60 proceeds to step S105. When the hot water supply heat absorption amount Qec_ex is not equal to the air conditioning exhaust heat amount Qac_ex (S104 → No), the process of the control device 60 proceeds to step S106.

ステップS105において、制御装置60は、給湯空調装置S2の運転モードを「冷房給湯運転(排熱回収B)モード」に決定する。当該運転モードにおける給湯空調装置S2の動作については、図9を用いて後記する。
ステップS106において、制御装置60は、給湯空調装置S2の運転モードを「冷房給湯運転(排熱回収C)モード」に決定する。当該運転モードにおける給湯空調装置S2の動作については、図10を用いて後記する。
In step S105, the control device 60 determines the operation mode of the hot water supply air conditioner S2 as the “cooling hot water supply operation (exhaust heat recovery B) mode”. The operation of the hot water supply air conditioner S2 in the operation mode will be described later with reference to FIG.
In step S106, the control device 60 determines the operation mode of the hot water supply air conditioner S2 as the “cooling hot water supply operation (exhaust heat recovery C) mode”. The operation of the hot water supply air conditioner S2 in the operation mode will be described later with reference to FIG.

<給湯冷房運転における制御>
(給湯冷房運転(排熱回収A)モード)
図8は、給湯冷房運転(排熱回収A)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。
ここで、排熱回収Aは「給湯吸熱>空調排熱」の場合であり、排熱回収用熱交換器70を介して空調用冷媒回路30の排熱を給湯用冷媒回路20で回収し、給湯に必要な熱の不足分を室外空気から吸熱している。
当該運転モードにおける給湯回路40の動作は、第1実施形態の給湯運転モードの場合と同様であり、空調用熱搬送媒体循環回路50の動作は、第1実施形態の冷房運転モードにおける動作と同様であるため、説明を省略する。
<Control in hot water cooling operation>
(Hot water supply cooling operation (exhaust heat recovery A) mode)
FIG. 8 is a configuration diagram illustrating the flow of the refrigerant, the heat transfer medium, and the liquid to be heated in the hot water supply air conditioner in the hot water supply cooling operation (exhaust heat recovery A) mode.
Here, the exhaust heat recovery A is a case of “hot water supply heat absorption> air conditioning exhaust heat”, and the exhaust heat of the air conditioning refrigerant circuit 30 is recovered by the hot water supply refrigerant circuit 20 via the exhaust heat recovery heat exchanger 70. The shortage of heat required for hot water supply is absorbed from the outdoor air.
The operation of the hot water supply circuit 40 in the operation mode is the same as that in the hot water supply operation mode of the first embodiment, and the operation of the air-conditioning heat transfer medium circulation circuit 50 is the same as the operation in the cooling operation mode of the first embodiment. Therefore, the description is omitted.

給湯用冷媒回路20について説明する。制御装置60は、熱源側熱交換器11及び排熱回収用熱交換器70に第一冷媒が通流するように二方弁25,26,27,28を開放する。また、制御装置60は、給湯用膨張弁23の開度(絞り)を制御し、給湯用圧縮機21及び給湯用ファン24の回転速度を制御する。   The hot water supply refrigerant circuit 20 will be described. The control device 60 opens the two-way valves 25, 26, 27, and 28 so that the first refrigerant flows through the heat source side heat exchanger 11 and the exhaust heat recovery heat exchanger 70. In addition, the control device 60 controls the opening degree (throttle) of the hot water supply expansion valve 23 and controls the rotational speeds of the hot water supply compressor 21 and the hot water supply fan 24.

給湯用圧縮機21から吐出された高温高圧の第一冷媒は、凝縮器として機能する給湯利用側熱交換器22の一次側伝熱管22aに流入する。給湯利用側熱交換器22の一次側伝熱管22aを通流する第一冷媒は、給湯利用側熱交換器22の二次側伝熱管22bを通流する被加熱液体と熱交換することにより放熱(排熱)して、中温高圧の第一冷媒となる。給湯利用側熱交換器22の一次側伝熱管22aから流出した中温高圧の第一冷媒は、給湯用膨張弁23で減圧され、低温低圧の第一冷媒となる。   The high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary side heat transfer tube 22a of the hot water supply side heat exchanger 22 that functions as a condenser. The first refrigerant flowing through the primary side heat transfer tube 22a of the hot water supply side heat exchanger 22 is radiated by exchanging heat with the heated liquid flowing through the secondary side heat transfer tube 22b of the hot water supply side heat exchanger 22. (Exhaust heat) to become a medium temperature and high pressure first refrigerant. The medium temperature and high pressure first refrigerant flowing out from the primary heat transfer tube 22a of the hot water supply side heat exchanger 22 is depressurized by the hot water supply expansion valve 23 to become a low temperature and low pressure first refrigerant.

そして、低温低圧の第一冷媒は、二方弁27を介して熱源側熱交換器11の給湯用伝熱管21aに流入する流れと、二方弁25を介して排熱回収用熱交換器70の一次側電熱管に流入する流れと、に分流する。
熱源側熱交換器11の給湯用伝熱管21aを通流する第一冷媒は、給湯用ファン24により送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、給湯用伝熱管21aから流出した第一冷媒は、二方弁28を介して給湯用圧縮機21に流入する。
The low-temperature and low-pressure first refrigerant flows into the hot water supply heat transfer pipe 21a of the heat source side heat exchanger 11 through the two-way valve 27, and the exhaust heat recovery heat exchanger 70 through the two-way valve 25. And the flow flowing into the primary side electric heating tube.
The first refrigerant flowing through the hot water supply heat transfer tube 21a of the heat source side heat exchanger 11 pumps heat from the air by exchanging heat with the air (outdoor air) sent by the hot water supply fan 24 (heat absorption). To do). And the 1st refrigerant | coolant which flowed out from the heat exchanger tube 21a for hot water supply flows into the compressor 21 for hot water supplies via the two-way valve 28. FIG.

一方、排熱回収用熱交換器70の一次側伝熱管70aを通流する第一冷媒は、二次側伝熱管70bを通流する高温の第二冷媒と熱交換することにより、第二冷媒から熱を汲み上げる(吸熱する)。そして、排熱回収用熱交換器70の一次側伝熱管70aから流出した第一冷媒は、二方弁26を介して給湯用圧縮機21に流入する。
このようにして、第一冷媒は給湯用冷媒回路20を循環する。
On the other hand, the first refrigerant flowing through the primary side heat transfer tube 70a of the heat exchanger for exhaust heat recovery 70 exchanges heat with the high temperature second refrigerant flowing through the secondary side heat transfer tube 70b, whereby the second refrigerant Pumps up heat (absorbs heat). And the 1st refrigerant | coolant which flowed out from the primary side heat exchanger tube 70a of the heat exchanger 70 for waste heat collection | recovery flows in into the compressor 21 for hot water supply via the two-way valve 26. FIG.
In this way, the first refrigerant circulates through the hot water supply refrigerant circuit 20.

空調用冷媒回路30について説明する。制御装置60は、第一冷媒が排熱回収用熱交換器70を通流し、かつ、熱源側熱交換器11を通流しないようにするため、二方弁36,37を開放し、二方弁38,39を閉止する。また、制御装置60は、空調用膨張弁34の開度(絞り)を制御し、空調用ファン35を停止させ、空調用圧縮機31の回転速度を制御する。   The air conditioning refrigerant circuit 30 will be described. The control device 60 opens the two-way valves 36 and 37 so that the first refrigerant flows through the exhaust heat recovery heat exchanger 70 and does not flow through the heat source side heat exchanger 11. The valves 38 and 39 are closed. Further, the control device 60 controls the opening degree (throttle) of the air conditioning expansion valve 34, stops the air conditioning fan 35, and controls the rotational speed of the air conditioning compressor 31.

空調用圧縮機31から吐出された高温高圧の第二冷媒は、四方弁32及び二方弁36を介して排熱回収用熱交換器70の二次側伝熱管70bに流入する。排熱回収用熱交換器70の二次側伝熱管70bを通流する第二冷媒は、一次側伝熱管70aを通流する低温の第一冷媒と熱交換することによって放熱(排熱)し、中温高圧の第二冷媒となる。   The high-temperature and high-pressure second refrigerant discharged from the air conditioning compressor 31 flows into the secondary heat transfer pipe 70b of the exhaust heat recovery heat exchanger 70 through the four-way valve 32 and the two-way valve 36. The second refrigerant flowing through the secondary heat transfer tube 70b of the heat exchanger for exhaust heat recovery 70 dissipates heat (exhaust heat) by exchanging heat with the low temperature first refrigerant flowing through the primary heat transfer tube 70a. It becomes a medium temperature and high pressure second refrigerant.

排熱回収用熱交換器70の二次側伝熱管70bから流出した中温高圧の第二冷媒は、二方弁37を介して空調用膨張弁34に流入する。そして、中温高圧の第二冷媒は空調用膨張弁34で減圧され、低温低圧の第一冷媒となり、空調利用側熱交換器33の一次側伝熱管33aに流入する。
空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する熱搬送媒体と熱交換することにより吸熱し、四方弁32を介して空調用圧縮機31に流入する。
このようにして、第二冷媒は空調用冷媒回路30を循環する。
The medium-temperature and high-pressure second refrigerant that has flowed out of the secondary heat transfer pipe 70 b of the exhaust heat recovery heat exchanger 70 flows into the air conditioning expansion valve 34 via the two-way valve 37. The medium-temperature and high-pressure second refrigerant is decompressed by the air conditioning expansion valve 34, becomes a low-temperature and low-pressure first refrigerant, and flows into the primary-side heat transfer pipe 33 a of the air-conditioning utilization side heat exchanger 33.
The second refrigerant flowing through the primary side heat transfer pipe 33a of the air-conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the heat transfer medium flowing through the secondary side heat transfer pipe 33b, and passes through the four-way valve 32. It flows into the air conditioning compressor 31.
In this way, the second refrigerant circulates through the air conditioning refrigerant circuit 30.

(給湯冷房運転(排熱回収B)モード)
図9は、給湯冷房運転(排熱回収B)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。
ここで、排熱回収Bは、「給湯吸熱=空調排熱」の場合であり、排熱回収用熱交換器70を介して空調用冷媒回路30の排熱を給湯用冷媒回路20で回収している。
当該運転モードにおける給湯回路40の動作は、第1実施形態の給湯運転モードの場合と同様であり、空調用熱搬送媒体循環回路50の動作は第1実施形態の冷房運転モードにおける動作と同様であるため、説明を省略する。
また、当該運転モードにおける空調用冷媒回路40の動作は、冷房給湯運転(排熱回収A)モード(図8参照)の動作と同様であるため、説明を省略する。
(Hot water supply cooling operation (exhaust heat recovery B) mode)
FIG. 9 is a configuration diagram illustrating the flow of the refrigerant, the heat transfer medium, and the liquid to be heated in the hot water supply air conditioner in the hot water supply cooling operation (exhaust heat recovery B) mode.
Here, the exhaust heat recovery B is a case of “hot water supply heat absorption = air conditioning exhaust heat”, and the exhaust heat of the air conditioning refrigerant circuit 30 is recovered by the hot water supply refrigerant circuit 20 via the exhaust heat recovery heat exchanger 70. ing.
The operation of the hot water supply circuit 40 in the operation mode is the same as that in the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Therefore, the description is omitted.
The operation of the air-conditioning refrigerant circuit 40 in the operation mode is the same as the operation in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 8), and thus the description thereof is omitted.

給湯用冷媒回路20について説明する。冷房給湯運転(排熱回収A)モード(図8参照)における給湯用冷媒回路20と、冷房給湯運転(排熱回収B)モード(図9参照)における給湯用冷媒回路20との差異点は、冷房給湯運転(排熱回収A)モードでは制御装置60が二方弁27,28を開放するのに対し、冷房給湯運転(排熱回収B)モードでは二方弁27,28を閉止する点である。
その他の制御については、冷房給湯運転(排熱回収A)モードにおける給湯用冷媒回路20と同様であるから説明を省略する。
The hot water supply refrigerant circuit 20 will be described. The difference between the hot water supply refrigerant circuit 20 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 8) and the hot water supply refrigerant circuit 20 in the cooling hot water supply operation (exhaust heat recovery B) mode (see FIG. 9) is as follows. In the cooling hot water supply operation (exhaust heat recovery A) mode, the control device 60 opens the two-way valves 27 and 28, whereas in the cooling hot water supply operation (exhaust heat recovery B) mode, the two-way valves 27 and 28 are closed. is there.
The other control is the same as that of the hot water supply refrigerant circuit 20 in the cooling hot water supply operation (exhaust heat recovery A) mode, and thus the description thereof is omitted.

給湯用圧縮機21から吐出された高温高圧の第一冷媒は、凝縮器として機能する給湯利用側熱交換器22の一次側伝熱管22aに流入する。給湯利用側熱交換器22の一次側伝熱管22aを通流する第一冷媒は、給湯利用側熱交換器22の二次側伝熱管22bを通流する被加熱液体と熱交換することにより放熱(排熱)して、中温高圧の第一冷媒となる。給湯利用側熱交換器22の一次側伝熱管22aから流出した中温高圧の第一冷媒は、給湯用膨張弁23で減圧され、低温低圧の第一冷媒となる。   The high-temperature and high-pressure first refrigerant discharged from the hot water supply compressor 21 flows into the primary side heat transfer tube 22a of the hot water supply side heat exchanger 22 that functions as a condenser. The first refrigerant flowing through the primary side heat transfer tube 22a of the hot water supply side heat exchanger 22 is radiated by exchanging heat with the heated liquid flowing through the secondary side heat transfer tube 22b of the hot water supply side heat exchanger 22. (Exhaust heat) to become a medium temperature and high pressure first refrigerant. The medium temperature and high pressure first refrigerant flowing out from the primary heat transfer tube 22a of the hot water supply side heat exchanger 22 is depressurized by the hot water supply expansion valve 23 to become a low temperature and low pressure first refrigerant.

そして、低温低圧の第一冷媒は、二方弁25を介して排熱回収用熱交換器70の一次側伝熱管70aに流入する。排熱回収用熱交換器70の一次側伝熱管70aを通流する第一冷媒は、二次側伝熱管70bを通流する高温の第二冷媒と熱交換することによって、第二冷媒から熱を汲み上げる(吸熱する)。排熱回収用熱交換器70の一次側伝熱管70aから流出した第一冷媒は、二方弁26を介して給湯用圧縮機21に流入する。
このようにして、第一冷媒は給湯用冷媒回路20を循環する。
Then, the low-temperature and low-pressure first refrigerant flows into the primary side heat transfer tube 70 a of the exhaust heat recovery heat exchanger 70 through the two-way valve 25. The first refrigerant flowing through the primary heat transfer pipe 70a of the heat exchanger 70 for exhaust heat recovery recovers heat from the second refrigerant by exchanging heat with the high-temperature second refrigerant flowing through the secondary heat transfer pipe 70b. Pumps up (absorbs heat). The first refrigerant that has flowed out of the primary heat transfer tube 70 a of the exhaust heat recovery heat exchanger 70 flows into the hot water supply compressor 21 through the two-way valve 26.
In this way, the first refrigerant circulates through the hot water supply refrigerant circuit 20.

(給湯冷房運転(排熱回収C)モード)
図10は、給湯冷房運転(排熱回収C)モードにおける給湯空調装置の冷媒、熱搬送媒体、及び被加熱液体の流れを示す構成図である。
ここで、排熱回収Cは「給湯吸熱<空調排熱」の場合であり、排熱回収用熱交換器70を介して空調用冷媒回路10の排熱を給湯用冷媒回路30で回収し、余分な空調排熱を室外空気に排熱している。
当該運転モードにおける給湯回路40の動作は、第1実施形態の給湯運転モードの場合と同様であり、空調用熱搬送媒体循環回路50の動作は第1実施形態の冷房運転モードにおける動作と同様であるため、説明を省略する。
また、当該運転モードにおける給湯用冷媒回路20の動作は、冷房給湯運転(排熱回収B)モード(図10参照)の動作と同様であるため、説明を省略する。
(Hot water supply cooling operation (exhaust heat recovery C) mode)
FIG. 10 is a configuration diagram illustrating the flow of the refrigerant, the heat transfer medium, and the liquid to be heated in the hot water supply air conditioner in the hot water supply cooling operation (exhaust heat recovery C) mode.
Here, the exhaust heat recovery C is a case of “hot water supply heat absorption <air conditioning exhaust heat”, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the exhaust heat recovery heat exchanger 70. Excess air conditioning exhaust heat is exhausted to outdoor air.
The operation of the hot water supply circuit 40 in the operation mode is the same as that in the hot water supply operation mode of the first embodiment, and the operation of the heat transfer medium circulation circuit 50 for air conditioning is the same as the operation in the cooling operation mode of the first embodiment. Therefore, the description is omitted.
In addition, the operation of the hot water supply refrigerant circuit 20 in the operation mode is the same as the operation in the cooling hot water supply operation (exhaust heat recovery B) mode (see FIG. 10), and thus the description thereof is omitted.

空調用冷媒回路30について説明する。冷房給湯運転(排熱回収A)モード(図8参照)における空調用冷媒回路30と、冷房給湯運転(排熱回収C)モード(図10参照)における空調用冷媒回路30との差異点は、冷房給湯運転(排熱回収A)モードでは制御装置60が二方弁38,39を閉止するのに対し、冷房給湯運転(排熱回収C)モードでは二方弁38,39を開放する点である。
その他の制御については、冷房給湯運転(排熱回収A)モードにおける空調用冷媒回路30と同様であるから説明を省略する。
The air conditioning refrigerant circuit 30 will be described. The difference between the air conditioning refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 8) and the air conditioning refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery C) mode (see FIG. 10) is as follows. In the cooling hot water supply operation (exhaust heat recovery A) mode, the control device 60 closes the two-way valves 38 and 39, whereas in the cooling hot water supply operation (exhaust heat recovery C) mode, the two-way valves 38 and 39 are opened. is there.
The other control is the same as that of the air conditioning refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery A) mode, and thus the description thereof is omitted.

空調用圧縮機31から吐出された高温高圧の第二冷媒は、二方弁38を介して熱源側熱交換器11の空調用伝熱管31aに流入する流れと、二方弁36を介して排熱回収用熱交換器70の二次側伝熱管70bに流入する流れと、に分流する。
熱源側熱交換器11の空調用伝熱管31aを通流する第二冷媒は、空調用ファン35により送られてくる空気(室外空気)と熱交換することにより、前記空気に放熱(排熱)して、中温高圧の第二冷媒となる。そして、熱源側熱交換器11の空調用伝熱管31aから流出した第二冷媒は、二方弁39を介して空調用膨張弁34に流入する。
The high-temperature and high-pressure second refrigerant discharged from the air-conditioning compressor 31 flows through the two-way valve 38 into the air-conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 and is discharged through the two-way valve 36. The flow is divided into the flow flowing into the secondary heat transfer tube 70b of the heat recovery heat exchanger 70.
The second refrigerant flowing through the air conditioning heat transfer pipe 31a of the heat source side heat exchanger 11 exchanges heat with the air (outdoor air) sent by the air conditioning fan 35, thereby radiating heat (exhaust heat) to the air. Thus, it becomes a medium temperature and high pressure second refrigerant. And the 2nd refrigerant | coolant which flowed out from the heat exchanger tube 31a for an air conditioning of the heat source side heat exchanger 11 flows in into the expansion valve 34 for an air conditioning through the two-way valve 39.

一方、排熱回収用熱交換器70の二次側伝熱管70bを通流する第二冷媒は、一次側伝熱管70aを通流する低温の第一冷媒と熱交換することにより、第一冷媒に放熱(排熱)する。そして、排熱回収用熱交換器70の二次側伝熱管70bから流出した第二冷媒は、二方弁37を介して空調用膨張弁34に流入する。
さらに、第二冷媒は空調用膨張弁34で減圧され、低温低圧の第二冷媒となって空調利用側熱交換器33の一次側伝熱管33aに流入する。
On the other hand, the second refrigerant flowing through the secondary side heat transfer tube 70b of the heat exchanger for exhaust heat recovery 70 exchanges heat with the low temperature first refrigerant flowing through the primary side heat transfer tube 70a, whereby the first refrigerant Dissipate heat (exhaust heat). And the 2nd refrigerant | coolant which flowed out from the secondary side heat exchanger tube 70b of the heat exchanger 70 for waste heat recovery flows in into the air-conditioning expansion valve 34 via the two-way valve 37.
Further, the second refrigerant is depressurized by the air conditioning expansion valve 34, becomes a low temperature and low pressure second refrigerant, and flows into the primary side heat transfer pipe 33 a of the air conditioning utilization side heat exchanger 33.

空調利用側熱交換器33の一次側伝熱管33aを通流する第二冷媒は、二次側伝熱管33bを通流する空調用熱搬送媒体と熱交換することにより吸熱し、四方弁32を介して空調用圧縮機31に流入する。
このようにして、第二冷媒は空調用冷媒回路30を循環する。
The second refrigerant flowing through the primary side heat transfer pipe 33a of the air conditioning utilization side heat exchanger 33 absorbs heat by exchanging heat with the air conditioning heat transfer medium flowing through the secondary side heat transfer pipe 33b. To the air conditioning compressor 31.
In this way, the second refrigerant circulates through the air conditioning refrigerant circuit 30.

<効果4>
本実施形態に係る給湯空調装置S2は、給湯冷房運転時に排熱回収用熱交換器70において空調用冷媒回路30を循環する第二冷媒の温排熱を、給湯用冷媒回路20を循環する第一冷媒に供給することで、これまで外気に放出していた排熱を有効利用することが可能となり、システム全体の効率を向上させることができる。
また、給湯冷媒回路20における第一冷媒の吸熱量と、空調冷媒回路30における第二冷媒の排熱量とが一致しない場合であっても、各二方弁を適宜開閉することで、不足分の吸熱又は排熱を、熱源側熱交換器11における室外空気との熱交換によって補うことができる。
<Effect 4>
The hot water supply air conditioner S2 according to the present embodiment circulates the hot exhaust heat of the second refrigerant circulating in the air conditioning refrigerant circuit 30 in the exhaust heat recovery heat exchanger 70 during the hot water cooling operation, and circulates in the hot water supply refrigerant circuit 20. By supplying to one refrigerant, it is possible to effectively use the exhaust heat that has been released to the outside air so far, and the efficiency of the entire system can be improved.
Further, even if the heat absorption amount of the first refrigerant in the hot water supply refrigerant circuit 20 and the exhaust heat amount of the second refrigerant in the air conditioning refrigerant circuit 30 do not coincide with each other, by opening and closing each two-way valve appropriately, the shortage amount Heat absorption or exhaust heat can be supplemented by heat exchange with outdoor air in the heat source side heat exchanger 11.

また、本実施形態に係る給湯空調装置S2は、給湯冷房運転モードを実行する際に熱源側熱交換器11を、給湯冷媒回路20を循環する第一冷媒と室外空気との熱交換のみに使用するか(図8参照)、又は、空調用冷媒回路30を循環する第二冷媒と室外空気との熱交換のみに使用する(図10参照)。
すなわち、第一冷媒と室外空気との熱交換、又は第二冷媒と室外空気との熱交換を行う際に、熱源側熱交換器11の板状フィン11f全体を熱交換に使用することによって、伝熱性能を向上させることができる。これにより、圧縮機やファンの回転数を低減させることができ、システム全体の効率を向上させることができる。
The hot water supply air conditioner S2 according to the present embodiment uses the heat source side heat exchanger 11 only for heat exchange between the first refrigerant circulating in the hot water supply refrigerant circuit 20 and the outdoor air when executing the hot water supply cooling operation mode. Or used only for heat exchange between the second refrigerant circulating in the air conditioning refrigerant circuit 30 and the outdoor air (see FIG. 10).
That is, when performing heat exchange between the first refrigerant and outdoor air or heat exchange between the second refrigerant and outdoor air, by using the entire plate-like fins 11f of the heat source side heat exchanger 11 for heat exchange, Heat transfer performance can be improved. Thereby, the rotation speed of a compressor and a fan can be reduced and the efficiency of the whole system can be improved.

≪第5実施形態≫
図11は第5実施形態に係る給湯空調装置の構成図である。
第5実施形態に係る給湯空調装置S3は、第1実施形態に係る給湯空調装置S1と比較して、太陽熱集熱ユニット300を備える点が異なる。その他の点については第1実施形態に係る給湯空調装置S1と同様であるから、説明を省略する。
«Fifth embodiment»
FIG. 11 is a configuration diagram of a hot water supply air-conditioning apparatus according to the fifth embodiment.
The hot water supply air conditioner S3 according to the fifth embodiment is different from the hot water supply air conditioner S1 according to the first embodiment in that it includes a solar heat collecting unit 300. Since it is the same as that of hot water supply air conditioner S1 which concerns on 1st Embodiment about another point, description is abbreviate | omitted.

図11に示すように、太陽熱集熱ユニット300は、太陽熱集熱用回路80と、蓄熱タンク82と、三方弁85,86とを備える。
太陽熱集熱回路80は、太陽熱集熱器84と、循環ポンプ81と、タンク内熱交換器83と、を環状に配管で接続して構成されている。
As shown in FIG. 11, the solar heat collection unit 300 includes a solar heat collection circuit 80, a heat storage tank 82, and three-way valves 85 and 86.
The solar heat collecting circuit 80 is configured by connecting a solar heat collector 84, a circulation pump 81, and an in-tank heat exchanger 83 with an annular pipe.

太陽熱集熱器84は、太陽熱を集熱して第三冷媒を加熱するものであり、平板型集熱器や真空管型集熱器などを用いることができる。
循環ポンプ81は、太陽熱集熱回路80内の第三冷媒を圧送するものである。循環ポンプ81を駆動させることによって、太陽熱集熱器80によって加熱された第三冷媒をタンク内熱交換器83に圧送することができる。
タンク内熱交換器83は、第三冷媒と、蓄熱タンク82内に貯留された被加熱液体との熱交換を行うものである。また、タンク内熱交換器83は蓄熱タンク83内に設置され、その両端に接続された配管はそれぞれ蓄熱タンク82を貫通し、一方は循環ポンプ81の吐出口に接続され、他方は太陽熱集熱器84に接続されている。
なお、第三冷媒として、例えばブライン(不凍液)を用いることができる。
The solar heat collector 84 collects solar heat and heats the third refrigerant, and a flat plate heat collector, a vacuum tube heat collector, or the like can be used.
The circulation pump 81 pumps the third refrigerant in the solar heat collecting circuit 80. By driving the circulation pump 81, the third refrigerant heated by the solar heat collector 80 can be pumped to the in-tank heat exchanger 83.
The in-tank heat exchanger 83 performs heat exchange between the third refrigerant and the heated liquid stored in the heat storage tank 82. In addition, the tank heat exchanger 83 is installed in the heat storage tank 83, and pipes connected to both ends thereof penetrate the heat storage tank 82, one is connected to the outlet of the circulation pump 81, and the other is solar heat collection. Connected to the device 84.
For example, brine (antifreeze) can be used as the third refrigerant.

蓄熱タンク82の内部には、被加熱液体が貯留されており、蓄熱タンク82内でタンク内熱交換器83を通流する第三冷媒と被加熱液体とが熱交換可能となっている。
三方弁85,86は、通流する被加熱液体の流量比率を調整可能に構成された三方弁である。三方弁85の各ポートはそれぞれ三方弁44、蓄熱タンク82、及び給湯金具102に接続されている。また、三方弁86の各ポートはそれぞれ三方弁46、蓄熱タンク82、及び給水金具101に接続されている。
The heated liquid is stored inside the heat storage tank 82, and the third refrigerant flowing through the in-tank heat exchanger 83 and the heated liquid can exchange heat in the heat storage tank 82.
The three-way valves 85 and 86 are three-way valves configured to be able to adjust the flow rate ratio of the liquid to be heated. Each port of the three-way valve 85 is connected to the three-way valve 44, the heat storage tank 82, and the hot water supply fitting 102, respectively. Each port of the three-way valve 86 is connected to the three-way valve 46, the heat storage tank 82, and the water supply fitting 101.

太陽熱集熱用回路80では、循環ポンプ81によりタンク内熱交換器83から太陽熱集熱器84に圧送された低温の第三冷媒が太陽熱により加熱されて温度上昇し、中温の第三冷媒となる。さらに、中温の第三冷媒は循環ポンプ81によりタンク内熱交換器83に送られ、蓄熱タンク82内の被加熱液体と熱交換することにより冷却され、低温の第三冷媒となる。
また、蓄熱タンク82内の被加熱液体は、タンク内熱交換器83を通流する中温の第三冷媒との熱交換により昇温し、中温の被加熱液体となる。
In the solar heat collecting circuit 80, the low-temperature third refrigerant pumped by the circulation pump 81 from the in-tank heat exchanger 83 to the solar heat collector 84 is heated by the solar heat to rise in temperature, and becomes a medium-temperature third refrigerant. . Further, the intermediate-temperature third refrigerant is sent to the in-tank heat exchanger 83 by the circulation pump 81, cooled by exchanging heat with the liquid to be heated in the heat storage tank 82, and becomes a low-temperature third refrigerant.
In addition, the liquid to be heated in the heat storage tank 82 is heated by heat exchange with the medium temperature third refrigerant flowing through the heat exchanger 83 in the tank, and becomes a medium temperature liquid to be heated.

ユーザからの出湯要求があった場合、蓄熱タンク82内の中温の被加熱液体は、貯湯タンク42内の被加熱液体と同様に所望の温度になるよう調整された後、給湯金具102を介して供給される。なお、ユーザからの出湯要求に対して、貯湯タンク42内の被加熱液体又は蓄熱タンク82内の被加熱液体のどちらを使用するかについては、その時点での貯湯タンク42内の被加熱液体の温度、蓄熱タンク72内の被加熱液体の温度、及び、ユーザの要求する温度などにより決定される。
なお、太陽熱集熱ユニット300は、給湯運転、冷房運転、暖房運転、給湯冷房運転、給湯暖房運転のいずれの運転とも併用できるため、年間を通して使用可能である。
When there is a hot water request from the user, the medium-temperature heated liquid in the heat storage tank 82 is adjusted to have a desired temperature in the same manner as the heated liquid in the hot water storage tank 42, and then the hot water supply fitting 102 is used. Supplied. It should be noted that whether to use the heated liquid in the hot water storage tank 42 or the heated liquid in the heat storage tank 82 in response to a hot water request from the user, the heated liquid in the hot water storage tank 42 at that time is used. It is determined by the temperature, the temperature of the heated liquid in the heat storage tank 72, the temperature requested by the user, and the like.
The solar heat collecting unit 300 can be used together with any of the hot water supply operation, the cooling operation, the heating operation, the hot water supply cooling operation, and the hot water supply heating operation, and can be used throughout the year.

<効果5>
本実施形態に係る給湯空調装置S3によれば、給湯の熱源として太陽熱集熱器84で得られた温熱を利用することができるため、システム全体の効率を大幅に向上させることが可能となる。ちなみに、約6mの太陽熱集熱器84を用いた場合について計算で見積もると、年間で消費電力量を約4割削減できるという結果が出た。
<Effect 5>
According to the hot water supply air conditioner S3 according to the present embodiment, since the heat obtained by the solar heat collector 84 can be used as a heat source for hot water supply, the efficiency of the entire system can be significantly improved. By the way, when the calculation using the solar heat collector 84 of about 6 m 2 was performed, it was found that the power consumption could be reduced by about 40% per year.

また、本実施形態に係る給湯空調装置S3によれば、太陽熱によって被加熱液体を加熱することができるので、冷房給湯運転や暖房給湯運転を行う際に、熱源側熱交換器11の給湯用伝熱管21aを使用する頻度が少なくなる。すなわち、空調用伝熱管31aを通流する第二冷媒と室外空気との熱交換を行う際に、板状フィン11fの全体を使用する頻度が多くなる。これによって、圧縮機やファンの回転速度を低減させることができ、システム全体の効率をより向上させることができる。   Further, according to the hot water supply air conditioner S3 according to the present embodiment, the liquid to be heated can be heated by solar heat. Therefore, when performing the cooling hot water supply operation or the heating hot water supply operation, the hot water supply transfer of the heat source side heat exchanger 11 is performed. The frequency of using the heat tube 21a is reduced. That is, the frequency of using the entire plate-like fins 11f increases when heat exchange is performed between the second refrigerant flowing through the air-conditioning heat transfer tube 31a and the outdoor air. Thereby, the rotation speed of the compressor and the fan can be reduced, and the efficiency of the entire system can be further improved.

≪変形例≫
以上、本発明に係る給湯空調装置について各実施形態により説明したが、本発明の実施態様はこれらの記載に限定されるものではなく、種々の変更などを行うことができる。
例えば、第1実施形態〜第3実施形態で示した熱源側熱交換器11(図2〜図5参照)の構成は、第4実施形態に係る給湯空調装置S2や第5実施形態に係る給湯空調装置S3にも適用することができる。
≪Modification≫
As mentioned above, although the hot water supply air-conditioning apparatus which concerns on this invention was demonstrated by each embodiment, the embodiment of this invention is not limited to these description, A various change etc. can be performed.
For example, the structure of the heat source side heat exchanger 11 (see FIGS. 2 to 5) shown in the first to third embodiments is the hot water supply air conditioner S2 according to the fourth embodiment and the hot water supply according to the fifth embodiment. The present invention can also be applied to the air conditioner S3.

また、熱源側熱交換器11の例として、図2〜図5を用いて説明したが、熱源側熱交換器11の構成はこれに限らない。例えば、給湯用伝熱管21aと空調用伝熱管31aとが空気の通流方向と平行に重なるように板状フィン11fに設置してもよい。この場合でも、板状フィン11fを介して給湯用の熱源側熱交換器と空調用の熱源側熱交換器とが一体化されていることによって、簡単な構成でシステム全体の効率を向上させることができる。   Moreover, although demonstrated using FIGS. 2-5 as an example of the heat source side heat exchanger 11, the structure of the heat source side heat exchanger 11 is not restricted to this. For example, you may install in the plate-shaped fin 11f so that the heat exchanger tube 21a for hot water supply and the heat exchanger tube 31a for an air conditioning may overlap in parallel with the flow direction of air. Even in this case, the efficiency of the entire system can be improved with a simple configuration by integrating the heat source side heat exchanger for hot water supply and the heat source side heat exchanger for air conditioning via the plate-like fins 11f. Can do.

また、上記実施形態においては、空調利用側熱交換器33で熱搬送媒体を加熱(又は冷却)して室内ユニット200に供給し、室内熱交換器52で加熱(又は冷却)された熱搬送媒体と室内空気とを熱交換することにより室内を暖房(又は冷房)するものとして説明したが、これに限られるものではない。すなわち、空調用熱搬送媒体循環回路50を省略し、空調利用側熱交換器33を室内ユニット2に設置し、空調利用側熱交換器33内を通流する第二冷媒と室内空気との間で熱交換することにより暖房(又は冷房)する構成としてもよい。   In the above-described embodiment, the heat transfer medium heated (or cooled) by the air conditioning utilization side heat exchanger 33 and supplied to the indoor unit 200 and heated (or cooled) by the indoor heat exchanger 52 is used. In the above description, the room is heated (or cooled) by exchanging heat with the room air. However, the present invention is not limited to this. That is, the air-conditioning heat transfer medium circulation circuit 50 is omitted, the air-conditioning use side heat exchanger 33 is installed in the indoor unit 2, and the space between the second refrigerant flowing through the air-conditioning use side heat exchanger 33 and the room air. It is good also as a structure which heats (or cools) by exchanging heat with.

また、前記各実施形態では、所定の間隔を空けて略平行に積層された複数のフィン11fを、給湯用伝熱管21aと、空調用伝熱管31aとがそれぞれ貫通する構成としていたが、これに限らない。すなわち、給湯熱源側熱交換器と空調熱源側熱交換器がそれぞれ、室外空気と熱交換可能であり、かつ、給湯熱源側熱交換器と空調熱源側熱交換器とが熱的に接触していればよい。
例えば、給湯熱源側熱交換器が備える複数のフィンと、空調熱源側熱交換器が備える複数のフィンとが一体とされている場合の他、物理的に接触している構成でもよい。この場合でも、給湯熱源側熱交換器の給湯用伝熱管を通流する第一冷媒と、空調熱源側熱交換器の空調用伝熱管を通流する第二冷媒とが互いに熱交換することができる。
In each of the above embodiments, the hot water supply heat transfer pipe 21a and the air conditioning heat transfer pipe 31a pass through the plurality of fins 11f stacked substantially in parallel at a predetermined interval. Not exclusively. That is, the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger can respectively exchange heat with outdoor air, and the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact with each other. Just do it.
For example, in addition to the case where the plurality of fins included in the hot water supply heat source side heat exchanger and the plurality of fins included in the air conditioning heat source side heat exchanger are integrated, a configuration in which the fins are in physical contact may be used. Even in this case, the first refrigerant flowing through the hot water supply heat transfer pipe of the hot water supply heat source side heat exchanger and the second refrigerant flowing through the air conditioning heat transfer pipe of the air conditioning heat source side heat exchanger may exchange heat with each other. it can.

S1,S2,S3 空調給湯装置
11 熱源側熱交換器(給湯熱源側熱交換器、空調熱源側熱交換器)
20 給湯用冷媒回路
21a 給湯用伝熱管
21s 直線状第一伝熱管
21c 接続用第一伝熱管
21 給湯用圧縮機
22 給湯利用側熱交換器
23 給湯用膨張弁(給湯用減圧装置)
25,26,27,28 二方弁(給湯用開閉手段)
30 空調用冷媒回路
31a 空調用伝熱管
31s 直線状第二伝熱管
31c 接続用第二伝熱管
31 空調用圧縮機
32 四方弁(流路切替手段)
33 空調利用側熱交換器
34 空調用膨張弁(空調用減圧装置)
36,37,38,39 二方弁(空調用開閉手段)
S1, S2, S3 Air-conditioning hot water supply device 11 Heat source side heat exchanger (hot water supply heat source side heat exchanger, air conditioning heat source side heat exchanger)
DESCRIPTION OF SYMBOLS 20 Hot-water supply refrigerant circuit 21a Hot-water supply heat transfer tube 21s Linear first heat-transfer tube 21c Connection first heat-transfer tube 21 Hot-water supply compressor 22 Hot-water supply side heat exchanger 23 Hot-water supply expansion valve (hot-water decompression device)
25, 26, 27, 28 Two-way valve (open / close means for hot water supply)
30 Air Conditioning Refrigerant Circuit 31a Air Conditioning Heat Transfer Tube 31s Linear Second Heat Transfer Tube 31c Connection Second Heat Transfer Tube 31 Air Conditioning Compressor 32 Four Way Valve (Flow Path Switching Means)
33 Air Conditioning Utilization Side Heat Exchanger 34 Air Conditioning Expansion Valve
36, 37, 38, 39 Two-way valve (air conditioning opening / closing means)

Claims (5)

給湯用圧縮機と、給湯利用側熱交換器と、給湯用減圧装置と、給湯熱源側熱交換器とを環状に接続して構成され、第一冷媒が循環する給湯用冷媒回路を備えるとともに、
空調用圧縮機と、流路切替手段と、空調利用側熱交換器と、空調用減圧装置と、空調熱源側熱交換器とを環状に接続して構成され、第二冷媒が循環する空調用冷媒回路を備える給湯空調装置であって、
前記給湯熱源側熱交換器及び前記空調熱源側熱交換器はそれぞれ、室外空気と熱交換可能であり、
前記給湯熱源側熱交換器と前記空調熱源側熱交換器とが熱的に接触し、
前記給湯熱源側熱交換器は、前記空調熱源側熱交換器よりも上方に設置され
前記給湯熱源側熱交換器及び前記空調熱源側熱交換器と並列に接続され、第二冷媒からの排熱を第一冷媒に回収させるための排熱回収用熱交換器をさらに備え、
前記給湯用冷媒回路には、前記給湯熱源側熱交換器及び/又は前記排熱回収用熱交換器に第一冷媒を通流させるための給湯用開閉手段が設置され、
前記空調用冷媒回路には、前記空調熱源側熱交換器及び/又は前記排熱回収用熱交換器に第二冷媒を通流させるための空調用開閉手段が設置されていること
を特徴とする給湯空調装置。
A hot water supply compressor, a hot water use side heat exchanger, a hot water supply decompression device, and a hot water source heat source side heat exchanger are connected in an annular shape, and include a hot water supply refrigerant circuit through which the first refrigerant circulates,
An air conditioning compressor, a flow path switching means, an air conditioning utilization side heat exchanger, an air conditioning decompression device, and an air conditioning heat source side heat exchanger are connected in an annular shape, and the second refrigerant circulates. A hot water supply air conditioner comprising a refrigerant circuit,
The hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger can each exchange heat with outdoor air,
The hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact,
The hot water supply heat source side heat exchanger is installed above the air conditioning heat source side heat exchanger ,
A heat exchanger for exhaust heat recovery, connected in parallel with the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger, for recovering exhaust heat from the second refrigerant to the first refrigerant;
The hot water supply refrigerant circuit is provided with hot water supply opening / closing means for allowing the first refrigerant to flow through the hot water supply heat source side heat exchanger and / or the exhaust heat recovery heat exchanger,
The air conditioning refrigerant circuit is provided with air conditioning opening / closing means for allowing the second refrigerant to flow through the air conditioning heat source side heat exchanger and / or the exhaust heat recovery heat exchanger. Hot water supply air conditioner.
前記給湯熱源側熱交換器及び前記空調熱源側熱交換器はそれぞれ、室外空気と熱交換する複数のフィンを備え、前記熱的な接触は、前記給湯熱源側熱交換器の複数のフィンと、前記空調熱源側熱交換器の複数のフィンとが一体とされているか、又は、物理的に接触していることによりなされること
を特徴とする請求項1に記載の給湯空調装置。
Each of the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger includes a plurality of fins that exchange heat with outdoor air, and the thermal contact includes a plurality of fins of the hot water supply heat source side heat exchanger, The hot water supply air conditioner according to claim 1 , wherein the plurality of fins of the air conditioning heat source side heat exchanger are integrated or physically contacted.
所定の間隔を空けて略平行に積層された複数のフィンを、前記給湯熱源側熱交換器の給湯用伝熱管と、前記空調熱源側熱交換器の空調用伝熱管と、がそれぞれ貫通することによって、前記給湯熱源側熱交換器と前記空調熱源側熱交換器とが熱的に接触していること
を特徴とする請求項2に記載の給湯空調装置。
A plurality of fins stacked substantially in parallel with a predetermined interval through the hot water supply heat transfer pipe of the hot water supply heat source side heat exchanger and the air conditioning heat transfer pipe of the air conditioning heat source side heat exchanger, respectively. The hot water supply air conditioner according to claim 2 , wherein the hot water supply heat source side heat exchanger and the air conditioning heat source side heat exchanger are in thermal contact with each other.
前記給湯用伝熱管は、前記フィンの伝熱面と略垂直な方向に当該フィンを貫通する複数の直線状第一伝熱管と、前記直線状第一伝熱管を接続する複数の接続用第一伝熱管と、を有し、
前記空調用伝熱管は、前記フィンの伝熱面と略垂直な方向に当該フィンを貫通する複数の直線状第二伝熱管と、前記直線状第二伝熱管を接続する複数の接続用第二伝熱管と、を有し、
前記直線状第一伝熱管及び前記直線状第二伝熱管は略水平方向に設置されていること
を特徴とする請求項3に記載の給湯空調装置。
The hot water supply heat transfer tube includes a plurality of linear first heat transfer tubes that pass through the fin in a direction substantially perpendicular to the heat transfer surface of the fins, and a plurality of connection firsts that connect the linear first heat transfer tubes. A heat transfer tube,
The air-conditioning heat transfer tube includes a plurality of linear second heat transfer tubes that pass through the fin in a direction substantially perpendicular to the heat transfer surface of the fins, and a plurality of connection second tubes that connect the linear second heat transfer tubes. A heat transfer tube,
The hot water supply air conditioner according to claim 3 , wherein the linear first heat transfer tube and the linear second heat transfer tube are installed in a substantially horizontal direction.
第三冷媒が循環する太陽熱集熱用回路をさらに備え、
前記太陽熱集熱用回路は、
前記給湯用冷媒回路を通流する第一冷媒と熱交換可能な給湯回路に接続された蓄熱タンク内に設置され、前記蓄熱タンク内に貯留された被加熱液体と第三冷媒との熱交換を行うタンク内熱交換器と、
太陽熱を集熱する太陽熱集熱器と、
前記太陽熱集熱器によって加熱された第三冷媒を前記タンク内熱交換器に圧送する循環ポンプと、を環状に接続して構成されること
を特徴とする請求項1から請求項4のいずれか一項に記載の給湯空調装置。
A solar heat collecting circuit through which the third refrigerant circulates;
The solar heat collecting circuit is:
It is installed in a heat storage tank connected to a hot water supply circuit capable of exchanging heat with the first refrigerant flowing through the hot water supply refrigerant circuit, and heat exchange between the heated liquid stored in the heat storage tank and the third refrigerant is performed. A tank heat exchanger to perform,
A solar collector that collects solar heat,
The circulation pump for pumping the third refrigerant heated by the solar heat collector to the heat exchanger in the tank is configured to be connected in an annular shape . The hot water supply air conditioner according to one item .
JP2013540604A 2011-10-28 2011-10-28 Hot water supply air conditioner Expired - Fee Related JP5775596B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075003 WO2013061473A1 (en) 2011-10-28 2011-10-28 Hot-water supply and air-conditioning device

Publications (2)

Publication Number Publication Date
JPWO2013061473A1 JPWO2013061473A1 (en) 2015-04-02
JP5775596B2 true JP5775596B2 (en) 2015-09-09

Family

ID=48167336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013540604A Expired - Fee Related JP5775596B2 (en) 2011-10-28 2011-10-28 Hot water supply air conditioner

Country Status (2)

Country Link
JP (1) JP5775596B2 (en)
WO (1) WO2013061473A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788526B2 (en) * 2011-11-29 2015-09-30 株式会社日立製作所 Air conditioning and hot water supply system
US9389000B2 (en) 2013-03-13 2016-07-12 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US9945587B2 (en) 2014-09-02 2018-04-17 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
CN108474593B (en) 2015-10-15 2021-02-02 弗诺尼克公司 Hybrid vapor compression/thermoelectric heat transfer system
US10458678B2 (en) 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
US10422562B2 (en) * 2017-02-14 2019-09-24 Heatcraft Refrigeration Products Llc Cooling system with intermediary heat exchange
CN115235145A (en) * 2022-07-21 2022-10-25 北京工业大学 Heat pump system with sleeve pipe fin type heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332686A (en) * 1994-06-03 1995-12-22 Matsushita Electric Ind Co Ltd Heat exchanging device
JP2003106712A (en) * 2001-10-02 2003-04-09 Sanyo Electric Co Ltd Air conditioning device
JP3925383B2 (en) * 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2004218943A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Air conditioning and water heater
JP2007232282A (en) * 2006-03-01 2007-09-13 Sharp Corp Heat pump type water heater
JP5166385B2 (en) * 2009-10-16 2013-03-21 株式会社日立製作所 Air conditioning and hot water supply system
WO2011104878A1 (en) * 2010-02-26 2011-09-01 株式会社 日立製作所 Three-fluid heat exchanger and air-conditioning/water-heating system using same
WO2011108068A1 (en) * 2010-03-01 2011-09-09 株式会社 日立製作所 Air-conditioning hot-water-supplying system

Also Published As

Publication number Publication date
WO2013061473A1 (en) 2013-05-02
JPWO2013061473A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5775596B2 (en) Hot water supply air conditioner
JP5327308B2 (en) Hot water supply air conditioning system
JP3925383B2 (en) Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
US20180031285A1 (en) Thermoelectric heat pump system
JP5455521B2 (en) Air conditioning and hot water supply system
JP3998024B2 (en) Heat pump floor heating air conditioner
JP4428341B2 (en) Refrigeration cycle equipment
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
JP6528078B2 (en) Air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
CN108844265A (en) A kind of energy-saving and water-saving type heat water-spraying removes defrosting system
JP2013083439A (en) Hot water supply air conditioning system
JP4229881B2 (en) Heat pump system
JP2013083439A5 (en)
JP2004218943A (en) Air conditioning and water heater
KR100945452B1 (en) Heat pump system
EP1669698B1 (en) Cooling/heating system
WO2018163347A1 (en) Geothermal heat pump device
JP6143682B2 (en) Combined heat source heat pump device
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
KR101123254B1 (en) Combined regeneration heating and cooling system
EP1766295A1 (en) Heat pump installation
JP2019128103A (en) Heat pump system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5775596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees