JP5773327B2 - Glass for semiconductor coating - Google Patents

Glass for semiconductor coating Download PDF

Info

Publication number
JP5773327B2
JP5773327B2 JP2010195611A JP2010195611A JP5773327B2 JP 5773327 B2 JP5773327 B2 JP 5773327B2 JP 2010195611 A JP2010195611 A JP 2010195611A JP 2010195611 A JP2010195611 A JP 2010195611A JP 5773327 B2 JP5773327 B2 JP 5773327B2
Authority
JP
Japan
Prior art keywords
glass
semiconductor
semiconductor coating
coating
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010195611A
Other languages
Japanese (ja)
Other versions
JP2012051761A (en
Inventor
欣克 西川
欣克 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010195611A priority Critical patent/JP5773327B2/en
Priority to PCT/JP2011/050808 priority patent/WO2011093177A1/en
Priority to CN201180007607.7A priority patent/CN102741185B/en
Priority to CN201510366918.2A priority patent/CN105152532A/en
Priority to TW100102341A priority patent/TWI501933B/en
Publication of JP2012051761A publication Critical patent/JP2012051761A/en
Application granted granted Critical
Publication of JP5773327B2 publication Critical patent/JP5773327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明はP−N接合を含む半導体装置の被覆用として用いられるガラスに関するものである。   The present invention relates to glass used for coating a semiconductor device including a PN junction.

一般に、シリコンダイオードやトランジスタ等の半導体装置は、外気による汚染を防止する観点から半導体素子のP−N接合部を含む表面がガラスにより被覆される。これにより半導体素子表面の安定化を図り、経時的な特性劣化を抑制することができる。   In general, in a semiconductor device such as a silicon diode or a transistor, a surface including a PN junction portion of a semiconductor element is covered with glass from the viewpoint of preventing contamination by outside air. As a result, the surface of the semiconductor element can be stabilized and deterioration of characteristics over time can be suppressed.

半導体被覆用ガラスに要求される特性として、(1)封止時に半導体素子との熱膨張係数差が原因となってクラック等が発生しないように、熱膨張係数が半導体の熱膨張係数に適合すること、(2)半導体素子の特性劣化を防止するため、低温(例えば900℃以下)で封止できること、(3)半導体素子表面に悪影響を与えるアルカリ成分等の不純物を含まないこと、(4)半導体素子表面被覆後の電気特性として、逆耐圧が高く、漏れ電流が少ないなど高い信頼性を有すること、等が挙げられる。   The characteristics required for glass for semiconductor coating are as follows: (1) The thermal expansion coefficient matches the thermal expansion coefficient of the semiconductor so that cracks do not occur due to the difference in thermal expansion coefficient with the semiconductor element during sealing. (2) In order to prevent deterioration of the characteristics of the semiconductor element, it can be sealed at a low temperature (for example, 900 ° C. or less), (3) It does not contain impurities such as alkali components that adversely affect the surface of the semiconductor element, (4) The electrical characteristics after the surface coating of the semiconductor element include high reliability such as high reverse breakdown voltage and low leakage current.

従来、半導体被覆用ガラスとしては、ZnO−B−SiO系等の亜鉛系ガラスや、PbO−SiO−Al系あるいはPbO−SiO−Al−B系等の鉛系ガラスが知られているが、作業性の観点からPbO−SiO−Al系およびPbO−SiO−Al−B系等の鉛系ガラスが主流となっている(例えば、特許文献1〜4参照)。 Conventionally, as a glass for semiconductor coating, zinc-based glass such as ZnO—B 2 O 3 —SiO 2 , PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 O Although lead-based glass 3 system and the like are known, workability PbO-SiO 2 in terms of -Al 2 O 3 system and PbO-SiO 2 -Al 2 O 3 -B 2 O 3 system and the like lead-based glass Has become the mainstream (see, for example, Patent Documents 1 to 4).

特公平1−49653号公報Japanese Examined Patent Publication No. 1-49653 特開昭50−129181号公報JP 50-129181 A 特開昭48−43275号公報JP-A-48-43275 特開2008−162881号公報JP 2008-162881 A

PbO等の鉛成分は環境に対して有害な成分であることから、近年、電気および電子機器での使用が禁止されつつあり、各種材料の無鉛化が進んでいる。既述のZnO−B−SiO系等の亜鉛系ガラスも、少量の鉛成分を含有しており環境の面から使用できないものもある。また、無鉛組成であっても、表面電荷密度が低いものが主流であり、高耐圧用の半導体素子に対応するのが困難であった。また、亜鉛系ガラスは鉛系ガラスと比較して化学耐久性に劣り、ガラス焼成後の後工程での酸に対する耐性が比較的弱い。そのため、被覆ガラス表面にさらに保護膜を形成して後工程を行う必要があった。 Since lead components such as PbO are harmful to the environment, their use in electric and electronic equipment is being prohibited in recent years, and lead-free materials are being developed. Some zinc-based glasses such as the ZnO—B 2 O 3 —SiO 2 system described above contain a small amount of lead components and cannot be used from the viewpoint of the environment. Moreover, even if it is a lead-free composition, the thing with a low surface charge density is the mainstream, and it was difficult to respond | correspond to the semiconductor element for high voltage | pressure resistance. In addition, zinc-based glass is inferior in chemical durability as compared with lead-based glass, and its resistance to acid in a post-process after glass firing is relatively weak. Therefore, it was necessary to form a protective film on the surface of the coated glass and perform a subsequent process.

そこで、本発明は、環境への負担が小さくて表面電荷密度が大きく、かつ化学耐久性に優れた半導体被覆用ガラスを提供することを目的とする。   Then, an object of this invention is to provide the glass for semiconductor coatings with a small environmental burden, a large surface charge density, and excellent chemical durability.

本発明者は、鋭意検討した結果、特定の組成を有するZnO−B−SiO系ガラスにより前記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventor has found that the above problems can be solved by using a ZnO—B 2 O 3 —SiO 2 glass having a specific composition, and proposes the present invention.

すなわち、本発明は、組成として質量%で、ZnO 40〜60%、B 5〜25%、SiO 15〜35%、Al 3〜12%を含有し、鉛成分を実質的に含有しないことを特徴とする半導体被覆用ガラスに関する。 That is, the present invention contains, by mass%, ZnO 40-60%, B 2 O 3 5-25%, SiO 2 15-35%, Al 2 O 3 3-12%, and the lead component is substantially contained. It is related with the glass for semiconductor coating characterized by not containing.

本発明の半導体被覆用ガラスは、ZnO−B−SiO系ガラスに対して、特定量のAlを含有するものであり、各成分の含有量を厳密に制限することにより、表面電荷密度が大きく高耐圧用の半導体素子の被覆に適したもので、かつ化学的耐久性が高いという特徴を有する。また、鉛成分を実質的に含有しないため、環境への負担が小さい。 The glass for semiconductor coating of the present invention contains a specific amount of Al 2 O 3 with respect to ZnO—B 2 O 3 —SiO 2 glass, and strictly limits the content of each component. It has a feature that it has a high surface charge density and is suitable for coating a semiconductor device for high withstand voltage, and has high chemical durability. Moreover, since the lead component is not substantially contained, the burden on the environment is small.

なお本発明において、「鉛成分を実質的に含有しない」とは、ガラス成分として鉛成分を意図的に添加しないことを意味し、不可避的に混入する不純物まで完全に排除することを意味するものではない。客観的には、不純物を含めた鉛成分の含有量が0.1質量%未満であることを意味する。   In the present invention, “substantially free of a lead component” means that a lead component is not intentionally added as a glass component, and means that impurities inevitably mixed are completely excluded. is not. Objectively, it means that the content of lead components including impurities is less than 0.1% by mass.

第二に、本発明の半導体被覆用ガラスは、さらに組成として、Bi 0〜5%、MnO 0〜5%、Nb 0〜5%、CeO 0〜3%を含有することを特徴とする。 Secondly, semiconductor coating glass of the present invention, as further composition containing Bi 2 O 3 0~5%, MnO 2 0~5%, Nb 2 O 5 0~5%, a CeO 2 0 to 3% It is characterized by doing.

第三に、本発明は、前記半導体被覆用ガラスからなるガラス粉末を含むことを特徴とする半導体被覆用材料に関する。   Thirdly, the present invention relates to a semiconductor coating material comprising glass powder made of the semiconductor coating glass.

当該半導体被覆用材料を用いることにより、半導体表面の被覆を容易に行うことができる。   By using the semiconductor coating material, the semiconductor surface can be easily coated.

第四に、本発明の半導体被覆用材料は、ガラス粉末100質量部に対して、TiO、ZrO、ZnO、ZnO・Bおよび2ZnO・SiOから選択される少なくとも1種類の無機粉末を0.01〜5質量部含有してなることを特徴とする。 Fourth, the semiconductor coating material of the present invention is at least one inorganic material selected from TiO 2 , ZrO 2 , ZnO, ZnO · B 2 O 3 and 2ZnO · SiO 2 with respect to 100 parts by mass of the glass powder. It contains 0.01 to 5 parts by mass of powder.

特に、Si等の半導体素子とガラスの接触面積が非常に大きい場合には、ガラスとSiの熱膨張係数が近いことが望ましい。ガラスの熱膨張係数は、ガラス中に含まれる結晶成分により調整することができるが、ガラス中から析出する結晶の量を適切に制御することは非常に困難である。そこで、半導体被覆用ガラスに対して、上記の無機粉末を適宜添加すれば、これらの無機粉末が核形成剤の役割を果たすため、析出する結晶量を比較的容易に制御できる。結果として、所望の熱膨張係数に容易に調整することが可能となる。   In particular, when the contact area between a semiconductor element such as Si and glass is very large, it is desirable that the thermal expansion coefficients of glass and Si are close. Although the thermal expansion coefficient of glass can be adjusted with the crystal component contained in glass, it is very difficult to control appropriately the quantity of the crystal which precipitates out of glass. Therefore, if the above-mentioned inorganic powder is appropriately added to the glass for semiconductor coating, these inorganic powders serve as nucleating agents, so that the amount of precipitated crystals can be controlled relatively easily. As a result, it is possible to easily adjust to a desired thermal expansion coefficient.

本発明の半導体被覆用ガラスは、組成として質量%で、ZnO 40〜60%、B 5〜25%、SiO 15〜35%、Al 3〜12%を含有し、鉛成分を実質的に含有しないことを特徴とする。 The glass for semiconductor coating of the present invention contains, in mass%, ZnO 40-60%, B 2 O 3 5-25%, SiO 2 15-35%, Al 2 O 3 3-12%, and lead. It is characterized by containing substantially no components.

以下、本発明の半導体被覆用ガラスにおいて、各成分を上記の通り規定した理由を説明する。なお、以下の説明において、「%」は特に断りのない限り「質量%」を意味する。   Hereinafter, the reason why each component is defined as described above in the semiconductor coating glass of the present invention will be described. In the following description, “%” means “% by mass” unless otherwise specified.

ZnOはガラスを安定化する成分である。ZnOの含有量は40〜60%、特に47〜55%であることが好ましい。ZnOの含有量が40%より少ないと、ガラス溶融時の失透性が強くなり溶融が困難となる。一方、ZnOの含有量が60%より多いと、耐酸性が弱くなる傾向がある。   ZnO is a component that stabilizes the glass. The content of ZnO is preferably 40 to 60%, particularly 47 to 55%. When the content of ZnO is less than 40%, the devitrification at the time of glass melting becomes strong and melting becomes difficult. On the other hand, if the ZnO content is more than 60%, the acid resistance tends to be weak.

はガラスの網目形成成分で、流動性を高める成分である。Bの含有量は5〜25%、特に7〜18%であることが好ましい。Bの含有量が5%より少ないと、結晶性が強くなって流動性が損なわれ、半導体素子表面への被覆が困難になる。一方、Bの含有量が25%より多いと、熱膨張係数が大きくなる傾向がある。また、化学耐久性が低下する傾向がある。 B 2 O 3 is a component for forming a network of glass and is a component for improving fluidity. The content of B 2 O 3 is preferably 5 to 25%, particularly preferably 7 to 18%. If the content of B 2 O 3 is less than 5%, the crystallinity becomes strong, the fluidity is impaired, and the coating on the surface of the semiconductor element becomes difficult. On the other hand, when the content of B 2 O 3 is more than 25%, the thermal expansion coefficient tends to increase. Moreover, there exists a tendency for chemical durability to fall.

SiOはガラスの網目形成成分であり、耐酸性を高める成分である。SiOの含有量は15〜35%、特に20〜33%であることが好ましい。SiOの含有量が15%より少ないと、化学耐久性に劣る傾向がある。一方、SiOの含有量が35%より多いと、溶融時の失透性が強くなり、均質なガラスが得られにくくなる。 SiO 2 is a component for forming a network of glass and is a component for improving acid resistance. The content of SiO 2 is preferably 15 to 35%, particularly preferably 20 to 33%. When the content of SiO 2 is less than 15%, the chemical durability tends to be inferior. On the other hand, when the content of SiO 2 is more than 35%, devitrification at the time of melting becomes strong, and it becomes difficult to obtain a homogeneous glass.

Alはガラスの表面電荷密度を高くする成分である。Alの含有量は3〜12%、特に5〜10%であることが好ましい。Alの含有量が3%より少ないと、前記効果が得られにくい。一方、Alの含有量が12%より多いと失透しやすくなる。 Al 2 O 3 is a component that increases the surface charge density of the glass. The content of Al 2 O 3 is preferably 3 to 12%, particularly preferably 5 to 10%. When the content of Al 2 O 3 is less than 3%, it is difficult to obtain the above effect. On the other hand, when the content of Al 2 O 3 is more than 12%, devitrification easily occurs.

本発明の半導体被覆用ガラスは、さらに組成として、Bi 0〜5%、MnO 0〜5%、Nb 0〜5%、CeO 0〜3%を含有することが好ましい。 Semiconductor coating glass of the present invention, as further composition, Bi 2 O 3 0~5%, MnO 2 0~5%, Nb 2 O 5 0~5%, preferably contains CeO 2 0 to 3% .

Biはガラスの表面電荷密度を高くする成分である。Biの含有量は0〜5%、特に0.1〜3%であることが好ましい。Biの含有量が5%より多いと、ガラスが失透しやすくなる。 Bi 2 O 3 is a component that increases the surface charge density of the glass. The content of Bi 2 O 3 is preferably 0 to 5%, particularly preferably 0.1 to 3%. If the content of Bi 2 O 3 is more than 5%, the glass tends to be devitrified.

MnO、Nb、CeOは半導体素子の漏れ電流を低下させる成分である。 MnO 2 , Nb 2 O 5 , and CeO 2 are components that reduce the leakage current of the semiconductor element.

MnOの含有量は0〜5%、特に0.1〜3%であることが好ましい。MnOの含有量が5%より多いと、ガラスの溶融性が低下する傾向がある。 The content of MnO 2 is preferably 0 to 5%, particularly preferably 0.1 to 3%. When the content of MnO 2 is more than 5%, the melting property of the glass tends to decrease.

Nbの含有量は0〜5%、特に0.1〜3%であることが好ましい。Nbの含有量が5%より多いと、ガラスの溶融性が低下する傾向がある。 The content of Nb 2 O 5 is preferably 0 to 5%, particularly preferably 0.1 to 3%. When the content of Nb 2 O 5 is more than 5%, the melting property of the glass tends to decrease.

CeOの含有量は0〜3%、特に0.1〜2%であることが好ましい。CeOが3%より多いと、ガラスの結晶性が強くなりすぎてガラスの流動性が低下する傾向がある。 The CeO 2 content is preferably 0 to 3%, particularly preferably 0.1 to 2%. If there is more CeO 2 than 3%, the crystallinity of the glass becomes too strong, and the fluidity of the glass tends to decrease.

本発明の半導体被覆用ガラスは、環境面の観点から実質的に鉛成分(PbO等)を含有しない。また、半導体素子表面に悪影響を与えるアルカリ成分(LiO、NaO、KO)を含まないことが好ましい。 The glass for semiconductor coating of the present invention contains substantially no lead component (PbO or the like) from the viewpoint of the environment. Further, alkaline components adversely affecting the semiconductor device surface (Li 2 O, Na 2 O , K 2 O) is preferably free of.

本発明の半導体被覆用ガラスは、半導体素子表面の被覆を容易に行える観点から、粉末状であることが好ましい。この場合、ガラス粉末の平均粒径D50は25μm以下、特に15μm以下であることが好ましい。ガラス粉末の平均粒径D50が25μmより大きいと、ガラス塗布のためのペースト化が困難になる。また、電気泳動塗布も困難になる。なお下限は特に限定されないが、現実的には0.1μm以上である。 The glass for semiconductor coating of the present invention is preferably in the form of powder from the viewpoint of easily covering the surface of the semiconductor element. In this case, the average particle diameter D 50 of the glass powder is 25μm or less, and particularly preferably 15μm or less. And 25μm greater than the average particle diameter D 50 of the glass powder, a paste for the glass coating becomes difficult. Also, electrophoretic coating becomes difficult. The lower limit is not particularly limited, but is practically 0.1 μm or more.

本発明の半導体被覆用材料は前記半導体被覆用ガラス粉末を含んでなるものである。なお本発明の半導体被覆用材料は、前記半導体被覆用ガラス粉末に対し、TiO、ZrO、ZnO、ZnO・B、2ZnO・SiOから選択された少なくとも1種類の無機粉末を核形成剤として含有してなるものであってもよい。これらの無機粉末の含有量は、半導体被覆用ガラス粉末100質量部に対して0.01〜5質量部、特に0.1〜3質量部であることが好ましい。無機粉末の含有量が0.01質量部より少ないと、析出する結晶量が少なく所望の熱膨張係数を達成することが困難となる傾向がある。無機粉末の含有量が5質量部より多いと、析出する結晶量が多くなりすぎて流動性が損なわれ、半導体素子表面の被覆が困難となる傾向がある。 The semiconductor coating material of the present invention comprises the glass powder for semiconductor coating. The semiconductor coating material of the present invention has at least one inorganic powder selected from TiO 2 , ZrO 2 , ZnO, ZnO · B 2 O 3 , and 2ZnO · SiO 2 as a core with respect to the glass powder for semiconductor coating. It may be contained as a forming agent. The content of these inorganic powders is preferably 0.01 to 5 parts by mass, particularly 0.1 to 3 parts by mass with respect to 100 parts by mass of the glass powder for semiconductor coating. When the content of the inorganic powder is less than 0.01 parts by mass, the amount of precipitated crystals is small and it tends to be difficult to achieve a desired thermal expansion coefficient. When the content of the inorganic powder is more than 5 parts by mass, the amount of crystals to be precipitated tends to be too large, fluidity is impaired, and the semiconductor element surface tends to be difficult to coat.

なお上記無機粉末の粒度が小さいほど、ガラスから析出する結晶の粒径が小さくなり機械的強度が大きくなる傾向がある。したがって、無機粉末の平均粒径D50は5μm以下、特に3μm以下が好ましい。下限は特に限定されないが、現実的には0.1μm以上である。 In addition, there exists a tendency for the particle size of the crystal | crystallization precipitated from glass to become small and the mechanical strength to become large, so that the particle size of the said inorganic powder is small. Therefore, the average particle diameter D 50 of the inorganic powder is 5μm or less, in particular 3μm or less. Although a minimum is not specifically limited, Actually, it is 0.1 micrometer or more.

本発明の半導体被覆用ガラスの熱膨張係数(30〜300℃)は、半導体素子の熱膨張係数に応じて、例えば20〜60×10−7/℃、さらには30〜50×10−7/℃の範囲で適宜調整される。 The thermal expansion coefficient (30 to 300 ° C.) of the glass for semiconductor coating of the present invention is, for example, 20 to 60 × 10 −7 / ° C., and further 30 to 50 × 10 −7 / according to the thermal expansion coefficient of the semiconductor element. It adjusts suitably in the range of ° C.

本発明の半導体被覆用材料の表面電荷密度は、電圧1000Vの半導体装置には7×1011/cm以上、1500V以上の半導体装置には10×1011/cm以上であることが好ましい。なお、表面電荷密度は実施例に記載の方法によって測定した値を指す。 Surface charge density of the semiconductor coating material of the present invention, 7 × 10 11 / cm 2 or more in the semiconductor device of the voltage 1000V, it is preferable that the semiconductor device of the above 1500V is 10 × 10 11 / cm 2 or more. The surface charge density is a value measured by the method described in the examples.

本発明の半導体被覆用ガラスは、各酸化物成分の原料粉末を調合してバッチとし、1500℃前後の温度で約1時間溶融してガラス化した後、成形(その後、必要に応じて粉砕、分級)することによって得ることができる。   The glass for semiconductor coating of the present invention is prepared by blending raw material powders of each oxide component into a batch and melting it for about 1 hour at a temperature of about 1500 ° C., followed by molding (and then grinding if necessary, Classification).

以下、実施例に基づいて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1は本発明の実施例および比較例を示している。   Table 1 shows examples of the present invention and comparative examples.

各試料は以下のようにして作製した。まず表中のガラス組成となるように原料粉末を調合してバッチとし、1500℃で1時間溶融してガラス化した。続いて、この溶融ガラスをフィルム状に成形した後、ボールミルにて粉砕し、350メッシュの篩を用いて分級し、半導体被覆用ガラス粉末(平均粒径D50:12μm)を得た。 Each sample was produced as follows. First, raw material powders were prepared so as to have the glass composition shown in the table, and batchwise melted at 1500 ° C. for 1 hour to be vitrified. Subsequently, the molten glass was formed into a film and then pulverized by a ball mill and classified using a 350 mesh sieve to obtain a glass powder for semiconductor coating (average particle diameter D 50 : 12 μm).

得られた半導体被覆用ガラス粉末について熱膨張係数、表面電荷密度、耐酸性を測定した。結果を表1に示す。   The obtained glass powder for semiconductor coating was measured for thermal expansion coefficient, surface charge density, and acid resistance. The results are shown in Table 1.

熱膨張係数はディラトメーターを用いて30〜300℃の温度範囲にて測定した値を示す。   A thermal expansion coefficient shows the value measured in the temperature range of 30-300 degreeC using the dilatometer.

表面電荷密度は次のようにして測定した。まず、ガラス粉末を有機溶媒中に分散し、電気泳動によってシリコン基板表面に一定の膜厚になるように付着させ、次いで焼成してガラス層を形成した。ガラス層の上にアルミニウム電極を形成後、ガラス中の電気容量の変化をC−Vメータを用いて測定し、表面電荷密度を算出した。   The surface charge density was measured as follows. First, glass powder was dispersed in an organic solvent, adhered to the silicon substrate surface by electrophoresis so as to have a constant film thickness, and then fired to form a glass layer. After forming an aluminum electrode on the glass layer, the change in electric capacity in the glass was measured using a CV meter, and the surface charge density was calculated.

耐酸性は次のようにして評価した。まず、ガラス粉末を直径20mm、厚み4mm程度大きさにプレス成型し、焼成してペレット状試料を作製し、この試料を30%硝酸中に25℃、1分浸漬した後の質量減から単位面積当たりの質量変化を算出し、耐酸性を評価した。   The acid resistance was evaluated as follows. First, a glass powder is press-molded to a size of about 20 mm in diameter and 4 mm in thickness, and baked to prepare a pellet-like sample. The unit area is determined from the weight loss after dipping this sample in 30% nitric acid at 25 ° C. for 1 minute. The mass change per hit was calculated and the acid resistance was evaluated.

表1から明らかなように、実施例1〜6の試料は表面電荷密度が14〜18と高かった。これは、PbO−SiO−Al系あるいはPbO−SiO−Al−B系等の鉛系ガラスと同等以上の表面電荷密度である。また、耐酸性試験による質量減は0.6mg/cm以下であり、耐酸性に優れていることがわかる。したがって、実施例1〜6の半導体被覆用材料は高耐圧用の半導体素子の被覆に適したものである。 As is clear from Table 1, the samples of Examples 1 to 6 had a high surface charge density of 14 to 18. This is a surface charge density equal to or higher than that of lead-based glass such as PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 O 3 . Moreover, the mass loss by an acid resistance test is 0.6 mg / cm < 2 > or less, and it turns out that it is excellent in acid resistance. Therefore, the semiconductor coating materials of Examples 1 to 6 are suitable for coating a semiconductor device for high breakdown voltage.

一方、比較例1および2の試料は表面電荷密度が6以下と低く、高耐圧用の半導体素子の被覆に適していないことがわかる。また、耐酸性試験による質量減は3.5mg/cm以上であり、耐酸性にも劣っていた。 On the other hand, it can be seen that the samples of Comparative Examples 1 and 2 have a surface charge density as low as 6 or less and are not suitable for coating a semiconductor device for high breakdown voltage. Moreover, the mass loss by an acid resistance test was 3.5 mg / cm < 2 > or more, and the acid resistance was also inferior.

Claims (4)

組成として質量%で、ZnO 40〜60%、B 5〜25%、SiO 20〜35%、Al 3〜12%を含有し、鉛成分を実質的に含有せず、アルカリ成分を含有しない半導体被覆用ガラスであって、熱膨張係数(30〜300℃)が20〜50×10 −7 /℃であることを特徴とする半導体被覆用ガラスIn mass% as a composition, 40~60% ZnO, B 2 O 3 5~25%, SiO 2 20 ~35%, containing Al 2 O 3 3 to 12%, is substantially free of lead component, a semi-conductor coated glass had contained Shinano an alkali component, a semiconductor coating glass, wherein the thermal expansion coefficient (30 to 300 ° C.) is 20~50 × 10 -7 / ℃. さらに組成として、Bi 0〜5%、MnO 0〜5%、Nb 0〜5%、CeO 0〜3%を含有することを特徴とする請求項1に記載の半導体被覆用ガラス。 As a further composition, Bi 2 O 3 0~5%, MnO 2 0~5%, Nb 2 O 5 0~5%, a semiconductor according to claim 1, characterized in that it contains CeO 2 0 to 3% Glass for coating. 請求項1または2に記載の半導体被覆用ガラスからなるガラス粉末を含むことを特徴とする半導体被覆用材料。   A semiconductor coating material comprising glass powder made of the glass for semiconductor coating according to claim 1. ガラス粉末100質量部に対して、TiO、ZrO、ZnO、ZnO・Bおよび2ZnO・SiOから選択される少なくとも1種類の無機粉末を0.01〜5質量部含有してなることを特徴とする請求項3に記載の半導体被覆用材料。 The glass powder 100 parts by weight, comprising TiO 2, ZrO 2, ZnO, at least one inorganic powder selected from ZnO · B 2 O 3, and 2ZnO · SiO 2 containing 0.01 to 5 parts by weight The semiconductor coating material according to claim 3.
JP2010195611A 2010-01-28 2010-09-01 Glass for semiconductor coating Active JP5773327B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010195611A JP5773327B2 (en) 2010-09-01 2010-09-01 Glass for semiconductor coating
PCT/JP2011/050808 WO2011093177A1 (en) 2010-01-28 2011-01-19 Glass for semiconductor coating and material for semiconductor coating using the same
CN201180007607.7A CN102741185B (en) 2010-01-28 2011-01-19 Semi-conductor covering glass and the semi-conductor covering material using this glass to be formed
CN201510366918.2A CN105152532A (en) 2010-01-28 2011-01-19 Glass for semiconductor coating and material for semiconductor coating using the same
TW100102341A TWI501933B (en) 2010-01-28 2011-01-21 A semiconductor coated glass, and a semiconductor coated material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195611A JP5773327B2 (en) 2010-09-01 2010-09-01 Glass for semiconductor coating

Publications (2)

Publication Number Publication Date
JP2012051761A JP2012051761A (en) 2012-03-15
JP5773327B2 true JP5773327B2 (en) 2015-09-02

Family

ID=45905560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195611A Active JP5773327B2 (en) 2010-01-28 2010-09-01 Glass for semiconductor coating

Country Status (1)

Country Link
JP (1) JP5773327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236318B1 (en) * 2013-03-29 2016-01-12 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
JP7218531B2 (en) * 2018-10-04 2023-02-07 日本電気硝子株式会社 Semiconductor device coating glass and semiconductor coating material using the same
JP7216323B2 (en) * 2019-01-29 2023-02-01 日本電気硝子株式会社 Semiconductor device coating glass and semiconductor coating material using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117027B1 (en) * 1970-06-15 1976-05-29
JPS57202742A (en) * 1981-06-09 1982-12-11 Toshiba Corp Glass for semiconductor coating
JPH03126639A (en) * 1989-10-06 1991-05-29 Nippon Electric Glass Co Ltd Glass composition for coating
JP3534257B2 (en) * 1993-12-28 2004-06-07 日本電気硝子株式会社 Sealing material

Also Published As

Publication number Publication date
JP2012051761A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
TWI501933B (en) A semiconductor coated glass, and a semiconductor coated material using the same
JP6064298B2 (en) Glass for semiconductor element coating
JP5773327B2 (en) Glass for semiconductor coating
CN112512983B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP5565747B2 (en) Semiconductor coating glass and semiconductor coating material using the same
JP6852961B2 (en) Glass for coating semiconductor devices
CN112512982B (en) Glass for coating semiconductor element and material for coating semiconductor using same
CN115066404B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP7216323B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
TWI657543B (en) Semiconductor component coated glass
TWI830068B (en) Glass for covering semiconductor elements and semiconductor covering materials using the same
WO2024004711A1 (en) Glass for covering semiconductor element, material for covering semiconductor element, and sintered body for covering semiconductor element
WO2021060001A1 (en) Glass for semiconductor element coating and material for semiconductor coating using same
WO2022264853A1 (en) Semiconductor element coating glass, and semiconductor element coating material using same
CN117545726A (en) Glass for coating semiconductor element and material for coating semiconductor element using same
TW202411171A (en) Glass for semiconductor element covering, material for semiconductor element covering, and sintered body for semiconductor element covering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5773327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150621