JP5772327B2 - HTGR core restraint mechanism - Google Patents

HTGR core restraint mechanism Download PDF

Info

Publication number
JP5772327B2
JP5772327B2 JP2011157386A JP2011157386A JP5772327B2 JP 5772327 B2 JP5772327 B2 JP 5772327B2 JP 2011157386 A JP2011157386 A JP 2011157386A JP 2011157386 A JP2011157386 A JP 2011157386A JP 5772327 B2 JP5772327 B2 JP 5772327B2
Authority
JP
Japan
Prior art keywords
core
restraint mechanism
fastening
mechanism according
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011157386A
Other languages
Japanese (ja)
Other versions
JP2013024619A (en
Inventor
延昌 辻
延昌 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011157386A priority Critical patent/JP5772327B2/en
Publication of JP2013024619A publication Critical patent/JP2013024619A/en
Application granted granted Critical
Publication of JP5772327B2 publication Critical patent/JP5772327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、原子炉の一型式である高温ガス炉(HTGR)の炉内構造に係り、特に固定反射体ブロックを締付ける炉心拘束機構の改良に関する。   The present invention relates to an internal structure of a high-temperature gas reactor (HTGR) which is a type of nuclear reactor, and more particularly to an improvement in a core restraint mechanism for fastening a fixed reflector block.

一般に、高温ガス炉は、セラミックス(炭化ケイ素等)被覆の燃料と化学的に不活性なヘリウムガスを冷却材として使用し、高温の炉心にガスを通過させて加熱することで高温の熱エネルギーを取り出してガスタービンにより発電するものであるが、燃料及び鋼構造物に関する制限温度が原子炉の性能(出力・冷却材取出し温度)を制約する因子となっている。   In general, high-temperature gas reactors use ceramic (silicon carbide, etc.)-Coated fuel and chemically inert helium gas as coolants, and heat the gas by passing the gas through a high-temperature core to heat it. The power is taken out and generated by a gas turbine, but the limiting temperature related to the fuel and the steel structure is a factor that restricts the performance of the nuclear reactor (output / cooling material extraction temperature).

図3に高温ガス炉200の基本的な炉構造を示す。
高温ガス炉200の炉内構造物は、黒鉛製構造物と鋼構造物とで構成される。図示のように、内側反射体ブロック61、燃料ブロック62および外側反射体ブロック63からなる炉心は、正六角柱の黒鉛ブロックを積上げた構造である。固定反射体ブロック60は、炉心を取囲むように配置され、その内面形状は炉心の六角柱ブロックの積層配置に合致するように設計されている。
FIG. 3 shows a basic furnace structure of the HTGR 200.
The in-furnace structure of the HTGR 200 includes a graphite structure and a steel structure. As shown in the figure, the core composed of the inner reflector block 61, the fuel block 62, and the outer reflector block 63 has a structure in which regular hexagonal graphite blocks are stacked. The fixed reflector block 60 is disposed so as to surround the core, and the inner surface shape thereof is designed to match the stacked arrangement of the hexagonal column blocks of the core.

冷却材ヘリウムガスは二重管構造のクロスダクト70の外管70aから原子炉圧力容器40内に流入し、固定反射体ブロック60に設けた流路孔により炉側部を上昇して炉上部の空間に達した後、下降流となって燃料ブロック62に設けた多数の流路孔を流れる。炉心を通過し、加熱された高温のヘリウムガスは、高温プレナム80に集められ、クロスダクト70の内管70bから圧力容器40の外へ取り出される。   The coolant helium gas flows into the reactor pressure vessel 40 from the outer tube 70a of the cross duct 70 having a double tube structure, and rises up the side of the reactor through a flow passage hole provided in the fixed reflector block 60, so that After reaching the space, it flows downward through a number of flow passage holes provided in the fuel block 62. The heated hot helium gas passing through the core is collected in the hot plenum 80 and taken out from the inner tube 70b of the cross duct 70 to the outside of the pressure vessel 40.

このような構造においては、固定反射体ブロック60と燃料ブロック62に設けた多数の流路孔で形成される本来の主要な流路F1の他に、隣接する黒鉛製の各ブロック間に必然的に生じる隙間によって形成される冷却材ヘリウムガスの流れるバイパス流路F2が多数存在する。このバイパス流路F2は、直接炉心の冷却に寄与する流れではないために結果として有効流量を低下させ、燃料温度を上昇させてしまうだけでなく、バイパス流路F2を通じて炉心の外側に設置されるコアバレル(金属円筒)50や圧力容器40等の鋼構造物を加熱する流れも生じてしまうことになる。   In such a structure, in addition to the original main flow path F1 formed by a number of flow path holes provided in the fixed reflector block 60 and the fuel block 62, it is inevitably necessary between adjacent graphite blocks. There are a number of bypass flow paths F2 through which the coolant helium gas is formed, which is formed by gaps generated in Since this bypass flow path F2 is not a flow that directly contributes to cooling of the core, as a result, the effective flow rate is decreased and the fuel temperature is increased, and the bypass flow path F2 is installed outside the core through the bypass flow path F2. The flow which heats steel structures, such as the core barrel (metal cylinder) 50 and the pressure vessel 40 will also arise.

通常、鋼製であるコアバレル50の熱膨張率は、その内側に設置される黒鉛製の各ブロックの熱膨張率より3倍程度以上大きく、原子炉運転時にはコアバレル50の方が熱膨張量が大きくなってバイパス流路F2を形成するブロック相互間の隙間はより広がる傾向となるため、高温ガス炉200の性能を低下させる重大な原因になっている。従来の高温ガス炉200では、黒鉛製の各ブロック間の隙間をなくし、バイパス流路F2を経由した漏れ流れを抑制することが困難であるが故に、出力(冷却材取出し温度)を制限せざるを得ないという状況にあった。   Usually, the thermal expansion coefficient of the core barrel 50 made of steel is about three times or more larger than the thermal expansion coefficient of each graphite block installed inside, and the core barrel 50 has a larger thermal expansion amount during the operation of the nuclear reactor. Thus, the gap between the blocks forming the bypass flow path F2 tends to be wider, which is a serious cause of reducing the performance of the HTGR 200. In the conventional HTGR 200, it is difficult to eliminate the gap between the graphite blocks and suppress the leakage flow via the bypass flow path F2, so that the output (cooling material extraction temperature) must be limited. I was in a situation where I didn't

例えば、わが国最初の高温ガス炉である高温工学試験研究炉(HTTR)では、黒鉛製ブロック間の隙間を抑制する手段として金属製の拘束バンドを有する炉心拘束機構を固定反射体ブロック60の外側に設置し、隣接する固定反射体相互間を炉心拘束機構の締付力によって一体化して隙間を無くすことにより高い有効流量を確保して世界最高の冷却材取出し温度(950℃)を達成したが、高温クリープによって炉心拘束機構の締付力が顕著に低下しないように冷却材入口温度を400℃以下に低く設定している。   For example, in the High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas reactor in Japan, a core restraint mechanism having a metal restraint band is provided outside the fixed reflector block 60 as a means for suppressing a gap between graphite blocks. Installed and integrated the adjacent fixed reflectors with the tightening force of the core restraint mechanism to eliminate gaps, ensuring a high effective flow rate and achieving the world's highest coolant extraction temperature (950 ° C). The coolant inlet temperature is set to a low temperature of 400 ° C or lower so that the clamping force of the core restraint mechanism is not significantly reduced by high temperature creep.

その他、高温ガス炉の炉心拘束機構としては、複数の金属製のユニットを連結してなる拘束バンドを用いたもの(特許文献1)や、金属のセグメントと繊維強化セラミックのセグメントを交互に連結してなる拘束バンドを用いたもの(特許文献2)などが知られている。   In addition, as a core restraint mechanism of a high temperature gas reactor, one using a restraint band formed by connecting a plurality of metal units (Patent Document 1), or alternately connecting metal segments and fiber reinforced ceramic segments. A device using a restraining band (Patent Document 2) is known.

特開昭57−1992号JP-A-57-1992 特表2008−510133号Special table 2008-510133

最近の原子炉の高性能化に伴い、高温ガス炉200では発電効率を向上させるために冷却材入口温度を600℃近くにまで上昇させることが求められている。原子炉寿命期間中を通じて安定して締付力を与え続けることの可能な炉心拘束機構が実現できれば、高い出力を確保しながら950℃を超える冷却材取出し温度を達成できる。   With the recent high performance of nuclear reactors, the high temperature gas reactor 200 is required to raise the coolant inlet temperature to near 600 ° C. in order to improve the power generation efficiency. If a core restraint mechanism capable of continuously providing a tightening force throughout the lifetime of the reactor can be realized, a coolant removal temperature exceeding 950 ° C. can be achieved while ensuring a high output.

しかしながら、このような高性能な高温ガス炉においては、冷却材入口温度が400℃程度に留まる従来の炉と異なり、炉心拘束機構が600℃近い高温環境下で使用されることになるので、金属製の拘束バンドでは高温でのクリープの進行のため対応することができない。   However, in such a high-performance HTGR, unlike a conventional furnace in which the coolant inlet temperature stays at about 400 ° C, the core restraint mechanism is used in a high-temperature environment close to 600 ° C. Restraint bands made of metal cannot cope with the progress of creep at high temperatures.

本発明は上記の問題点に鑑みなされたもので、600℃に近い高温環境下においてもクリープに起因する締付力の低下を引き起すこと無く、原子炉寿命期間中に渡って安定して固定反射体ブロック60に締付力を与えつづけることのできる、耐熱性に優れた高温ガス炉の炉心拘束機構を提供することを目的とする。   The present invention has been made in view of the above problems, and can be stably fixed over the lifetime of the reactor without causing a decrease in the tightening force due to creep even in a high temperature environment close to 600 ° C. It is an object of the present invention to provide a core restraint mechanism for a high-temperature gas reactor that is capable of continuing to apply a tightening force to the reflector block 60 and has excellent heat resistance.

請求項1の発明は、高温ガス炉の炉心周囲に配置された固定反射体ブロックを締付けるための炉心拘束機構であって、前記固定反射体ブロックの外周にセラミック長繊維材からなる円環状の拘束バンドを設けたことを特徴とする。   The invention of claim 1 is a core restraint mechanism for tightening a fixed reflector block arranged around the core of a high temperature gas reactor, and an annular restraint made of a ceramic long fiber material on the outer periphery of the fixed reflector block. A band is provided.

請求項2の発明は、請求項1に記載の炉心拘束機構において、前記固定反射体ブロックを囲繞すると共に、その円周方向の所定の箇所に外方へ向けて突出する折返し部が設けられた円環状の拘束バンドと、方形状を呈する金具本体に、前記折り返し部の先端湾曲部分を収容する収容部と、この収容部に連通し前記折り返し部の脚部をその内面で両側から挟みこむにようにして挟持する挟持部とが形成され、前記挟持部を貫通する締結手段によって前記拘束バンドに固定される締付金具と、圧力容器の内壁に配置されたコアバレルに固定される固定部と、前記締付金具の嵌合部と嵌合する嵌合凹部とを有し、前記嵌合凹部に嵌め込まれた締付金具を径方向および鉛直方向に移動可能に案内する一方、前記拘束バンドの円周方向の移動を阻止する連結具と、を備えることを特徴とする。 The invention of claim 2 is the core restraining mechanism according to claim 1, with surrounds the fixed reflector block, Ori Ri return portion projecting toward the outside is provided at a predetermined position of the circumferential direction An annular constraining band, a square-shaped metal fitting body, a housing portion that houses the curved end portion of the folded portion, and a leg portion of the folded portion that communicates with the housing portion from both sides thereof. A clamping part that is clamped in such a manner is formed, and a fastening member that is fixed to the restraining band by fastening means that penetrates the clamping part, and a fixing part that is fixed to the core barrel disposed on the inner wall of the pressure vessel And a fitting recess that fits into the fitting portion of the clamp, and guides the clamp fitting fitted in the fitting recess so as to be movable in a radial direction and a vertical direction, while the restraining band The circumferential movement of the Characterized in that it comprises a connector, a.

請求項の発明は、請求項に記載の炉心拘束機構において、
前記拘束バンドの複数個所に等間隔で前記折り返し部を設け、各折り返し部と対応させて前記締付金具及び前記連結具を配置するようにしたことを特徴とする。
The invention of claim 3 is the core restraint mechanism according to claim 2 ,
The folded portions are provided at equal intervals in a plurality of locations of the restraining band, and the fastening hardware and the coupling tool are arranged corresponding to the folded portions.

請求項の発明は、請求項1乃至請求項3の何れか一項に記載の炉心拘束機構において、前記セラミック長繊維材として炭素繊維材又はSC材を用いたことを特徴とする。
請求項の発明は、請求項1乃至請求項の何れか一項に記載の炉心拘束機構において、前記固定反射体ブロックの熱膨張率より小さい熱膨張率を有する前記セラミック長繊維材を用いたことを特徴とする。
According to a fourth aspect of the present invention, in the core restraint mechanism according to any one of the first to third aspects, a carbon fiber material or a SiC material is used as the ceramic long fiber material.
A fifth aspect of the present invention is the core restraint mechanism according to any one of the first to fourth aspects, wherein the ceramic long fiber material having a thermal expansion coefficient smaller than that of the fixed reflector block is used. It is characterized by that.

請求項6の発明は、請求項1乃至請求項5の何れか一項に記載の炉心拘束機構において、炉心ブロックの積層方向に沿って前記拘束バンドを複数段設置するようにしたことを特徴とする。   The invention of claim 6 is characterized in that, in the core restraint mechanism according to any one of claims 1 to 5, the restraint bands are installed in a plurality of stages along the stacking direction of the core block. To do.

本発明によれば、炉心拘束機構を耐熱性及び可撓性に優れたセラミック長繊維材からなる1本の円環状の拘束バンドを用いた簡素な構造のものとしたことにより、高温ガス炉の隣接する固定反射体ブロック相互間の隙間を長期間に渡って厳しく制限することが出来、バイパス流れを低減して炉心燃料を冷却する冷却材の有効流量割合を増加させることが可能になるので、高温ガス炉の熱出力を向上させることができる。また、炉心の外側に設置されるコアバレルや圧力容器等の鋼構造物がバイパス流れによって加熱されることも無くなり、より一層の安全性の向上を図ることができる。   According to the present invention, the core restraint mechanism has a simple structure using one annular restraint band made of a ceramic long fiber material excellent in heat resistance and flexibility. Since the gap between adjacent fixed reflector blocks can be strictly limited over a long period of time, it becomes possible to reduce the bypass flow and increase the effective flow rate of the coolant that cools the core fuel, The thermal output of the HTGR can be improved. In addition, steel structures such as a core barrel and a pressure vessel installed outside the core are not heated by the bypass flow, and the safety can be further improved.

本発明の第1の実施形態に係る炉心拘束機構の構成を示す図である。It is a figure which shows the structure of the core restraint mechanism which concerns on the 1st Embodiment of this invention. 炉心拘束機構の主要部分の詳細を説明するための図である。It is a figure for demonstrating the detail of the principal part of a core restraint mechanism. 図3は従来の高温ガス炉の概要を示す図である。FIG. 3 is a diagram showing an outline of a conventional HTGR.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
図1に本発明の実施形態に係る炉心拘束機構100を適用した高温ガス炉の部分断面を示す。図示のように、炉心拘束機構100は、内側反射体ブロック61、燃料ブロック62および外側反射体ブロック63からなる炉心64の外側に設けられた固定反射体ブロック60と、高温ガス炉の圧力容器40の内壁面に沿って設けられたコアバレル50との間に配置される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a partial cross section of a high temperature gas reactor to which a core restraint mechanism 100 according to an embodiment of the present invention is applied. As shown in the figure, the core restraint mechanism 100 includes a fixed reflector block 60 provided outside a core 64 composed of an inner reflector block 61, a fuel block 62 and an outer reflector block 63, and a pressure vessel 40 of a high temperature gas reactor. Between the core barrel 50 provided along the inner wall surface.

この炉心拘束機構100は、図示のように、高温ガス炉の炉心周囲に配置された固定反射体ブロック60を外側から締付けるためのものであって、セラミック長繊維材からなる円環状の拘束バンド10と、鋼製の締付金具20および連結具30を備えている。   As shown in the figure, the core restraint mechanism 100 is for tightening a fixed reflector block 60 disposed around the core of a high temperature gas reactor from the outside, and is an annular restraint band 10 made of a ceramic long fiber material. And a steel fastener 20 and a connector 30 are provided.

拘束バンド10は、黒鉛構造物の直径より僅かに大きい内径を有する1本の円環状のバンドであり、固定反射体ブロック60を囲繞すると共に、その円周方向の4箇所に等間隔で外方へ向けて突出する折返し部11が設けられている。これらの各折り返し部11は、図2に示す湾曲部12と脚部13とを有している。なお、本実施形態では、拘束バンド10に、炭素繊維材又はSC材などのセラミック長繊維材を用いている。 The constraining band 10 is an annular band having an inner diameter slightly larger than the diameter of the graphite structure, surrounds the fixed reflector block 60, and outwards at equal intervals at four locations in the circumferential direction. is Ori Ri folded portion 11 to protrude toward the provided. Each folded portion 11 has a curved portion 12 and a leg portion 13 shown in FIG. In this embodiment, a ceramic long fiber material such as a carbon fiber material or a S i C material is used for the restraining band 10.

本発明の要部構造について図2により詳細に説明する。
締付金具20は、方形状を呈する金具本体を有し、この金具本体には、拘束バンド10の折り返し部11先端の湾曲部12を収容する収容部21と、この収容部21に連通する幅狭の溝として形成され、拘束バンド10の折り返し部11の脚部13をその内面で両側から挟みこむにようにして挟持する挟持部22とが設けられている。
The essential structure of the present invention will be described in detail with reference to FIG.
The fastening fitting 20 has a square-shaped fitting main body. The fitting main body includes a receiving portion 21 for receiving the bending portion 12 at the tip of the folded portion 11 of the restraining band 10 and a width communicating with the receiving portion 21. A clamping portion 22 is provided which is formed as a narrow groove and clamps the leg portion 13 of the folded portion 11 of the restraining band 10 so as to sandwich the leg portion 13 from both sides thereof.

さらに、締付金具20の挟持部22には拘束バンド10の幅方向に沿って複数(例えば5つ)の貫通穴が設けられており、各貫通穴に挿通される締結ボルト25とナット24からなる締結手段によって、所定の突出量を保った状態で拘束バンド10は締付金具20に固定される。このとき、拘束バンド10には突出量に応じた張力が生じ、固定反射体ブロック60は拘束バンド10で締付けられることになる。   Furthermore, a plurality of (for example, five) through-holes are provided in the clamping portion 22 of the fastening bracket 20 along the width direction of the restraining band 10. From the fastening bolts 25 and nuts 24 inserted into the respective through-holes. The restraining band 10 is fixed to the fastening hardware 20 in a state where a predetermined protruding amount is maintained by the fastening means. At this time, a tension corresponding to the protruding amount is generated in the restraining band 10, and the fixed reflector block 60 is tightened by the restraining band 10.

そして、連結具30は、圧力容器40の内壁に配置されたコアバレル50に溶接などによって固定される固定部31と、この固定部31とその両側から延びる一対の側壁32とで形成された炉心側に向けて開口する嵌合凹部33とを有している。この嵌合凹部33は、締付金具20の幅寸法にほぼ等しい幅を持ち、締付金具20の係合部23と嵌合するようになっている。これにより、連結具30は、嵌合凹部33に嵌め込まれた締付金具20を径方向および鉛直方向に移動可能に案内する一方、拘束バンド10の円周方向の移動を阻止する。従って、拘束バンド10に締付けられた炉内構造物は、円周方向の動きだけが制限されることになる。即ち、締付金具20と連結具30は径方向と鉛直方向に対してフリーになっているので、炉心拘束機構100は、固定反射体ブロック60とコアバレル50の相対的熱膨張差を吸収することが出来、また、地震時においても確実に締付力を付与し固定反射体ブロック60間に隙間を生じさせることがない。   The connector 30 is a core side formed by a fixing portion 31 fixed to the core barrel 50 disposed on the inner wall of the pressure vessel 40 by welding or the like, and the fixing portion 31 and a pair of side walls 32 extending from both sides thereof. And a fitting recess 33 that opens toward the front. The fitting recess 33 has a width substantially equal to the width dimension of the fastening fitting 20 and is fitted with the engaging portion 23 of the fastening fitting 20. Thereby, the connector 30 guides the fastening fitting 20 fitted in the fitting recess 33 so as to be movable in the radial direction and the vertical direction, and prevents the restraint band 10 from moving in the circumferential direction. Therefore, the in-furnace structure fastened to the restraining band 10 is limited only in the circumferential direction. That is, since the fastening bracket 20 and the connector 30 are free in the radial direction and the vertical direction, the core restraint mechanism 100 absorbs the relative thermal expansion difference between the fixed reflector block 60 and the core barrel 50. In addition, a tightening force is reliably applied even during an earthquake, and no gap is generated between the fixed reflector blocks 60.

上述のような本実施形態に係る炉心拘束機構100によれば、セラミックス長繊維材製の円環状の拘束バンド10を用い、その円周方向の複数箇所に外方へ向けて突出する折返し部11を設け、折り返し部11の突出量を調整しつつ締付金具20で固定することによって拘束バンド10に張力を付与する構成としているので、高い耐熱性と組み付け作業性を有する。また、構造的にも簡素であり、長期に渡って安定して固定反射体ブロックに締付力を与えつづけることができる。 According to the core restraining mechanism 100 according to the present embodiment as described above, using a restraint band 10 an annular steel ceramic long fiber material, return Ri Ori protruding toward the outside at a plurality of locations of the circumferential Since the portion 11 is provided and the restraint band 10 is tensioned by fixing with the fastening bracket 20 while adjusting the protruding amount of the folded portion 11, it has high heat resistance and assembly workability. In addition, the structure is simple, and it is possible to stably apply a tightening force to the fixed reflector block over a long period of time.

なお、締付金具20は金属材料製であっても長さが短く、さらに連結具30の嵌合凹部33に嵌め込まれるように一体化されて十分な剛性を確保できるので、クリープの問題を生じる恐れはない。   Even if the fastening fitting 20 is made of a metal material, the length is short, and the fastening fitting 20 is integrated so as to be fitted into the fitting recess 33 of the connector 30, so that sufficient rigidity can be secured, thereby causing a problem of creep. There is no fear.

なお、拘束バンド10を、黒鉛製の固定反射体ブロック60より熱膨張率の小さいセラミック長繊維材(例えば、炭素繊維材)で製作するようにすれば、拘束バンド10と固定反射体ブロック60との熱膨張差を利用して、室温据付時から高温の運転時に移行する際に締付力を増加させ、原子炉運転時に必要な締付力がかかるようにすることも出来る。   If the restraint band 10 is made of a ceramic long fiber material (for example, carbon fiber material) having a thermal expansion coefficient smaller than that of the fixed reflector block 60 made of graphite, the restraint band 10 and the fixed reflector block 60 By using this difference in thermal expansion, it is possible to increase the tightening force when shifting from room temperature installation to high temperature operation so that the necessary tightening force is applied during reactor operation.

10:拘束バンド、 11:折り返し部、 12:湾曲部、 13:脚部、
20:締付金具、 21:収容部、 22:挟持部、 30:連結具、 31:固定部、 32:側壁部、 33:嵌合凹部、 40:圧力容器、 50:コアバレル、
60:固定反射体ブロック、 80:高温プレナム、 100:炉心拘束機構、
200:高温ガス炉。
10: Restraint band, 11: Folded part, 12: Curved part, 13: Leg part,
20: Clamping fitting, 21: Housing part, 22: Clamping part, 30: Connecting tool, 31: Fixing part, 32: Side wall part, 33: Fitting recess, 40: Pressure vessel, 50: Core barrel,
60: Fixed reflector block, 80: High temperature plenum, 100: Core restraint mechanism,
200: HTGR.

Claims (6)

高温ガス炉の炉心周囲に配置された固定反射体ブロックを締付けるための炉心拘束機構であって、前記固定反射体ブロックの外周にセラミック長繊維材からなる円環状の拘束バンドを設けたことを特徴とする炉心拘束機構。   A core restraint mechanism for fastening a fixed reflector block disposed around a core of a high temperature gas reactor, wherein an annular restraint band made of a ceramic long fiber material is provided on an outer periphery of the fixed reflector block. The core restraint mechanism. 請求項1に記載の炉心拘束機構において、
前記固定反射体ブロックを囲繞すると共に、その円周方向の所定の箇所に外方へ向けて突出する折返し部が設けられた円環状の拘束バンドと、
方形状を呈する金具本体に、前記折り返し部の先端湾曲部分を収容する収容部と、この収容部に連通し前記折り返し部の脚部をその内面で両側から挟みこむにようにして挟持する挟持部とが形成され、前記挟持部を貫通する締結手段によって前記拘束バンドに固定される締付金具と、
圧力容器の内壁に配置されたコアバレルに固定される固定部と、前記締付金具の嵌合部と嵌合する嵌合凹部とを有し、前記嵌合凹部に嵌め込まれた締付金具を径方向および鉛直方向に移動可能に案内する一方、前記拘束バンドの円周方向の移動を阻止する連結具と、
を備える、
ことを特徴とする炉心拘束機構。
In the core restraint mechanism according to claim 1,
Together surrounding said fixed reflector block, an annular restraining bands Ori Ri return portion projecting toward the outside is provided at a predetermined position of the circumferential direction,
A holding part for receiving the bent end portion of the folded part in a metal body having a square shape, and a clamping part communicating with the accommodating part and sandwiching the leg part of the folded part from both sides thereof And a fastening bracket fixed to the restraining band by fastening means penetrating the clamping part,
A fastening part that is fixed to the core barrel disposed on the inner wall of the pressure vessel, and a fitting recess that fits into the fitting part of the fastening fitting, and has a diameter of the fastening fitting that is fitted into the fitting recess. A connector that guides the movement of the restraining band in a circumferential direction while guiding the movement in a direction and a vertical direction;
Comprising
A core restraint mechanism characterized by that.
請求項に記載の炉心拘束機構において、
前記拘束バンドの複数個所に等間隔で前記折り返し部を設け、各折り返し部と対応させて前記締付金具及び前記連結具を配置するようにした、ことを特徴とする炉心拘束機構。
In the core restraint mechanism according to claim 2 ,
A core restraint mechanism according to claim 1, wherein the folded portions are provided at a plurality of locations of the restraining band at equal intervals, and the fastening hardware and the coupling tool are arranged in correspondence with the folded portions.
請求項1乃至請求項3の何れか一項に記載の炉心拘束機構において、前記セラミック長繊維材として炭素繊維材又はSC材を用いた、ことを特徴とする炉心拘束機構。 The core restraint mechanism according to any one of claims 1 to 3 , wherein a carbon fiber material or a SiC material is used as the ceramic long fiber material. 請求項1乃至請求項の何れか一項に記載の炉心拘束機構において、前記固定反射体ブロックの熱膨張率より小さい熱膨張率を有する前記セラミック長繊維材を用いた、ことを特徴とする炉心拘束機構。 The core restraint mechanism according to any one of claims 1 to 4 , wherein the ceramic long fiber material having a thermal expansion coefficient smaller than that of the fixed reflector block is used. Core restraint mechanism. 請求項1乃至請求項5の何れか一項に記載の炉心拘束機構において、炉心ブロックの積層方向に沿って前記拘束バンドを複数段設置するようにした、ことを特徴とする炉心拘束機構。   The core restraint mechanism according to any one of claims 1 to 5, wherein a plurality of the restraint bands are installed along the stacking direction of the core blocks.
JP2011157386A 2011-07-19 2011-07-19 HTGR core restraint mechanism Active JP5772327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157386A JP5772327B2 (en) 2011-07-19 2011-07-19 HTGR core restraint mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157386A JP5772327B2 (en) 2011-07-19 2011-07-19 HTGR core restraint mechanism

Publications (2)

Publication Number Publication Date
JP2013024619A JP2013024619A (en) 2013-02-04
JP5772327B2 true JP5772327B2 (en) 2015-09-02

Family

ID=47783156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157386A Active JP5772327B2 (en) 2011-07-19 2011-07-19 HTGR core restraint mechanism

Country Status (1)

Country Link
JP (1) JP5772327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871486B (en) * 2014-02-24 2016-08-17 清华大学 A kind of boot band structure limiting HTGR graphite core displacement structure
JP2017058330A (en) * 2015-09-18 2017-03-23 株式会社東芝 Core shroud and nuclear reactor
RU2020125869A (en) * 2018-01-22 2022-02-24 Ультра Сейф Нуклеар Корпорейшн COMPOSITE MODELER FOR NUCLEAR REACTOR SYSTEMS

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865828A (en) * 1954-12-13 1958-12-23 Atomic Energy Authority Uk Moderator and reflector structures for nuclear reactors
NL102745C (en) * 1956-09-27 1900-01-01
US4073685A (en) * 1976-02-20 1978-02-14 General Atomic Company Reactor core lateral restraint assembly
JPS5314290A (en) * 1976-07-23 1978-02-08 Fuji Electric Co Ltd Core restraining mechanism for gas-cooled reactor
JPS571992A (en) * 1980-06-06 1982-01-07 Fuji Electric Co Ltd Reactor core restriction mechanism
JPS57182695A (en) * 1981-05-08 1982-11-10 Babcock Hitachi Kk Reactor core restrictive device
US4596689A (en) * 1982-08-27 1986-06-24 Ga Technologies Inc. Lateral restraint assembly for reactor core
US4673548A (en) * 1984-08-31 1987-06-16 The United States Of America As Represented By The United States Department Of Energy Thermal barrier and support for nuclear reactor fuel core
JPS6312798U (en) * 1986-07-11 1988-01-27
JPH0742232Y2 (en) * 1987-09-18 1995-09-27 東芝機械株式会社 Molten metal immersion type electromagnetic pump
GB0108398D0 (en) * 2001-04-04 2001-05-23 Siemens Ag Seal element for sealing a gap and combustion turbine having a seal element
JP2008510133A (en) * 2004-08-13 2008-04-03 ペブル ベッド モデュラー リアクター (プロプライエタリー) リミテッド Reactor

Also Published As

Publication number Publication date
JP2013024619A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5772327B2 (en) HTGR core restraint mechanism
JP5868036B2 (en) Liner rear end support mechanism and spring loaded liner stop mechanism
JP4926892B2 (en) Flange connection structure of heat exchanger
JP2006307733A (en) Exhaust diffuser of gas turbine
JP4939980B2 (en) EGR cooler
JP4911229B2 (en) Water cooling adapter
WO2012133751A1 (en) Burner, reaction furnace such as gasification furnace equipped with burner, and electric generating power plant equipped with reaction furnace
WO2011093163A1 (en) Waste heat boiler
JP2015102051A (en) EGR cooler
JP5948934B2 (en) HTGR
JP6025561B2 (en) Vibration suppression device for heat transfer tube and repair method for the vibration suppression device
US11802744B2 (en) Exhaust heat recovery boiler
JP4198618B2 (en) Heat radiation tube mounting structure
CN110043882B (en) Waste heat recovery boiler and supporting method
JP2014047994A (en) Clearance expansion jig for heat transfer pipe and method for arranging vibration suppression member
JP2019178843A (en) Vibration control device of heat transfer tube, heat exchanger and boiler
KR100942657B1 (en) Mechanical sleeve type expansion joint of heat recovery system generator
JP4630811B2 (en) Nuclear fuel assembly
JP4343156B2 (en) Temperature reducing tube
JP2020045960A (en) Piping protection device
JP4996158B2 (en) Fast reactor
KR102450401B1 (en) heat exchanger
JP7401762B2 (en) Stave replacement method and stave
KR20130006953U (en) Support for exaust duct
KR20100048569A (en) Bellows connector of exhaust manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250