JP5768446B2 - Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target - Google Patents

Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target Download PDF

Info

Publication number
JP5768446B2
JP5768446B2 JP2011079546A JP2011079546A JP5768446B2 JP 5768446 B2 JP5768446 B2 JP 5768446B2 JP 2011079546 A JP2011079546 A JP 2011079546A JP 2011079546 A JP2011079546 A JP 2011079546A JP 5768446 B2 JP5768446 B2 JP 5768446B2
Authority
JP
Japan
Prior art keywords
barium silicide
polycrystal
barium
silicon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011079546A
Other languages
Japanese (ja)
Other versions
JP2012214310A (en
Inventor
雅実 召田
雅実 召田
慶太郎 松丸
慶太郎 松丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2011079546A priority Critical patent/JP5768446B2/en
Publication of JP2012214310A publication Critical patent/JP2012214310A/en
Application granted granted Critical
Publication of JP5768446B2 publication Critical patent/JP5768446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Description

現在、Siを用いた従来の太陽電池のほかに、化合物半導体を用いた太陽電池が使用されている。現在化合物半導体として主にCu−In−Ga−Se(CIGS)系合金やCdTe系合金が用いられているが、InやGaなどのレアメタルが必要であることや、Se、Cd、Teのような毒性の高い元素を使用しなければならず環境面で最適化されたものとは考えにくい。そこで、新しい太陽電池用化合物半導体として珪化バリウムが注目されている。珪化バリウムは光吸収係数が高く、また、禁制帯幅が1.3eVと太陽電池として用いる上で良好な化合物半導体であり(例えば、非特許文献1及び2参照)、さらにSrを添加することでその禁制帯幅を1.4eVまで調整する事が可能である(例えば、特許文献1参照)。   Currently, solar cells using compound semiconductors are used in addition to conventional solar cells using Si. Currently, Cu—In—Ga—Se (CIGS) -based alloys and CdTe-based alloys are mainly used as compound semiconductors. However, rare metals such as In and Ga are necessary, and Se, Cd, Te and the like are used. Highly toxic elements must be used and are unlikely to be environmentally optimized. Thus, barium silicide has attracted attention as a new compound semiconductor for solar cells. Barium silicide has a high light absorption coefficient and a forbidden band width of 1.3 eV, which is a good compound semiconductor for use as a solar cell (see, for example, Non-Patent Documents 1 and 2). Further, by adding Sr The forbidden bandwidth can be adjusted to 1.4 eV (see, for example, Patent Document 1).

しかし、現在はシリコン(111)基板へ各元素を分子線エピタキシー法(MBE法)を用いて成膜を行なっているが、成膜速度が遅く、特殊な装置であることから、量産には向いていない。そこで、量産向きの薄膜の作成方法が求められる。   At present, however, each element is deposited on a silicon (111) substrate using molecular beam epitaxy (MBE). However, since the deposition rate is slow and this is a special apparatus, it is suitable for mass production. Not. Therefore, a method for producing a thin film suitable for mass production is required.

量産に向いている薄膜の作製製法としてスパッタ法が挙げられる。このスパッタリング法は陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面に設置した基板上にターゲット材料とほぼ同組成の膜を堆積する方法であり、直流スパッタリング法(DCスパッタリング法)と高周波スパッタリング法(RFスパッタリング法)がある。   A sputtering method is an example of a method for producing a thin film suitable for mass production. In this sputtering method, positive ions such as Ar ions are physically collided with a target placed on the cathode, the material constituting the target is released by the collision energy, and the composition is almost the same as the target material on the substrate placed on the opposite side. There are two methods of depositing a film, such as a direct current sputtering method (DC sputtering method) and a high frequency sputtering method (RF sputtering method).

これまで、スパッタ法にて珪化バリウム薄膜を成膜した報告はこれまで無く、珪化バリウムの塊はこれまでも真空溶解などによる製法において存在していたが、珪化バリウムに関する詳細な検討は行われてこなかった(例えば、特許文献2参照)。   Up to now, there have been no reports on the formation of barium silicide thin films by sputtering, and barium silicide lumps have existed in production methods such as by vacuum melting until now, but detailed investigations on barium silicide have been conducted. (For example, refer to Patent Document 2).

特開2005−294810号公報JP 2005-294810 A 特開2002−359230号公報JP 2002-359230 A

Japanese Journal of Applied Physics Vol.49 04DP05−01−04DP05−05(2010)Japan Journal of Applied Physics Vol. 49 04DP05-01-04DP05-05 (2010) Japanese Journal of Applied Physics Vol.45 No.14 L390−392(2006)Japan Journal of Applied Physics Vol. 45 No. 14 L390-392 (2006)

本発明の目的は、割れのない珪化バリウム多結晶体を製造し、珪化バリウムスパッタリングターゲットを提供することである。   An object of the present invention is to produce a barium silicide polycrystal having no cracks and to provide a barium silicide sputtering target.

本発明は、
(1)珪化バリウム多結晶体中に存在するシリコン粗粒の最大直径が150μm以下であって、密度が3.0g/cm以上であることを特徴とする珪化バリウム多結晶体。
(2)珪化バリウム多結晶体中の酸素含有量が10mol%以下であることを特徴とする(1)記載の珪化バリウム多結晶体。
(3)珪化バリウム多結晶体中に存在するシリコン粗粒の平均直径が40μm以下であることを特徴とする(1)または(2)に記載の珪化バリウム多結晶体。
(4)バリウムと平均粒径が5mm以下であるシリコン粉末から珪化バリウム合金を合成する工程と、前記珪化バリウム合金を粉砕して珪化バリウム粉末とする工程と、前記珪化バリウム粉末を600℃〜1100℃でホットプレス処理する工程とを含んでなる(1)〜(3)のいずれかに記載の珪化バリウム多結晶体の製造方法。
(5)バリウムと平均粒径が5mm以下であるシリコン粉末をアーク溶解法によって珪化バリウム合金を合成することを特徴とする(4)に記載の珪化バリウム多結晶体の製造方法。
(6)珪化バリウム粉末中の酸素含有量が10mol%以下である事を特徴とする(4)または(5)に記載の珪化バリウム多結晶体の製造方法。
(7)(1)〜(3)のいずれかに記載の珪化バリウム多結晶体を用いることを特徴とする珪化バリウムスパッタリングターゲット。
The present invention
(1) A barium silicide polycrystal having a maximum diameter of silicon coarse particles present in the barium silicide polycrystal of 150 μm or less and a density of 3.0 g / cm 3 or more.
(2) The barium silicide polycrystal according to (1), wherein the oxygen content in the barium silicide polycrystal is 10 mol% or less.
(3) The barium silicide polycrystal according to (1) or (2), wherein an average diameter of silicon coarse grains present in the barium silicide polycrystal is 40 μm or less.
(4) A step of synthesizing a barium silicide alloy from barium and a silicon powder having an average particle size of 5 mm or less, a step of pulverizing the barium silicide alloy to form a barium silicide powder, and the barium silicide powder at 600 ° C. to 1100 The manufacturing method of the barium silicide polycrystal in any one of (1)-(3) including the process of hot-press-processing at (degreeC).
(5) The method for producing a barium silicide polycrystal according to (4), wherein a barium silicide alloy is synthesized from barium and silicon powder having an average particle size of 5 mm or less by an arc melting method.
(6) The method for producing a barium silicide polycrystal according to (4) or (5), wherein the oxygen content in the barium silicide powder is 10 mol% or less.
(7) A barium silicide sputtering target using the barium silicide polycrystal according to any one of (1) to (3).

本発明の珪化バリウム多結晶体を用いることで、珪化バリウムスパッタリングターゲットを製造する事ができる。   By using the barium silicide polycrystal of the present invention, a barium silicide sputtering target can be produced.

実施例1で作製した珪化バリウムのX線回折スペクトルである。2 is an X-ray diffraction spectrum of barium silicide produced in Example 1. FIG. シリコン粗粒の代表例のSEM像(シリコン粗大粒子)である。It is a SEM image (silicon coarse particle) of a typical example of a silicon coarse particle. シリコン粗粒の代表例のSEM像(シリコン粒子凝集体)である。It is a SEM image (silicon particle aggregate) of a typical example of a silicon coarse grain.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の珪化バリウムは化学式としてBaSiに属し、結晶系は斜方晶となる(JCPDSカードNo 01−071−2327)。 The barium silicide of the present invention belongs to BaSi 2 as a chemical formula and the crystal system is orthorhombic (JCPDS card No 01-071-2327).

本発明の珪化バリウム多結晶体は、珪化バリウム内に存在するシリコン粗粒の最大直径が150μm以下であることが必要であり、100μm以下であることが好ましく、50μm以下であることがより好ましい。直径が150μmより大きいシリコン粗粒が存在すると、シリコン粗粒と珪化バリウムの間の熱膨張差により割れが生じやすくなるからである。また、シリコンは珪化バリウム内に存在する異分子であるため、直径が150μmより大きいシリコン粗粒は割れの起点となり易く、珪化バリウム多結晶体の強度を著しく低下させる。   In the barium silicide polycrystal of the present invention, the maximum diameter of silicon coarse grains present in barium silicide is required to be 150 μm or less, preferably 100 μm or less, and more preferably 50 μm or less. This is because if silicon coarse grains having a diameter larger than 150 μm are present, cracks are likely to occur due to a difference in thermal expansion between the silicon coarse grains and barium silicide. Further, since silicon is a foreign molecule present in barium silicide, silicon coarse grains having a diameter larger than 150 μm are likely to be the starting point of cracking, and the strength of the barium silicide polycrystal is significantly reduced.

シリコン粗粒の直径の測定方法は、例えば珪化バリウム焼結体の破断面もしくは切断面についてEPMA(電子線マイクロアナライザ)やEDS(エネルギー分散型X線分析)のマッピングを用いて珪化バリウムであるか、シリコンであるかを判断し、マッピング像から直径を測定するという方法が挙げられる。その上でSEM(走査型電子顕微鏡)の像と比較し、SEM像に写る色の濃淡からシリコンの粗粒を判断する事は可能となる。本発明で定義するシリコン粗粒とは、図2のような単独に存在する粗大粒または図3のようなシリコン粒子の凝集体を指す。なお、形状が円でない場合、マッピング像などから画像解析を行うことでシリコンの粗粒の面積を算出し、算出された面積から換算される直径の値または粗粒に対して重心付近を通るような最も長い直径の部分と最も短い直径の部分との測定値の平均を直径とすればよい。   The method for measuring the diameter of the coarse silicon grains is, for example, whether the fracture surface or cut surface of the barium silicide sintered body is barium silicide using mapping of EPMA (electron beam microanalyzer) or EDS (energy dispersive X-ray analysis). And determining the diameter of the silicon and measuring the diameter from the mapping image. In addition, it is possible to determine the coarse grains of silicon from the density of the color shown in the SEM image as compared with the SEM (scanning electron microscope) image. The silicon coarse grain defined in the present invention refers to a coarse grain present alone as shown in FIG. 2 or an aggregate of silicon grains as shown in FIG. When the shape is not a circle, the area of the silicon coarse grain is calculated by performing image analysis from a mapping image or the like, and passes through the vicinity of the center of gravity with respect to the diameter value or coarse grain converted from the calculated area. The average of the measured values of the longest diameter portion and the shortest diameter portion may be taken as the diameter.

珪化バリウム多結晶体中に存在するシリコン粗粒の平均直径は、40μm以下であることが好ましく、20μm以下であることがより好ましい。シリコン粗粒の平均直径は、直径10μm以上の粗粒に対して測定を行ない、その平均値を平均直径とする。その平均粒径を測定する視野は10mm以上である事が望ましい。 The average diameter of the silicon coarse grains present in the barium silicide polycrystal is preferably 40 μm or less, and more preferably 20 μm or less. The average diameter of the silicon coarse particles is measured for coarse particles having a diameter of 10 μm or more, and the average value is defined as the average diameter. The field of view for measuring the average particle diameter is desirably 10 mm 2 or more.

本発明の珪化バリウム多結晶体は、放電の安定性や表層から起きる酸化の防止の観点からその密度が3.0g/cm以上であることが必要であり、3.2g/cm以上であることが好ましい。多結晶体の密度を3.0g/cm以上とすることでバルク体中に開気孔が少なくなり、表面の酸化が進みにくくなる。 The barium silicide polycrystal of the present invention needs to have a density of 3.0 g / cm 3 or more from the viewpoint of stability of discharge and prevention of oxidation occurring from the surface layer, and 3.2 g / cm 3 or more. Preferably there is. By setting the density of the polycrystalline body to 3.0 g / cm 3 or more, open pores are reduced in the bulk body, and surface oxidation is difficult to proceed.

また、本発明の珪化バリウム多結晶体は、多結晶体中の含有酸素量が10mol%以下である事が好ましく、5mol%以下であることがより好ましく、3mol%以下であることが更に好ましい。多結晶体中の酸素含有量を10mol%以下とすることで、多結晶体中の酸素が偏析する部分が少なくなり、強度が向上するからである。   In the barium silicide polycrystal of the present invention, the oxygen content in the polycrystal is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less. This is because by setting the oxygen content in the polycrystal to 10 mol% or less, the portion in which the oxygen in the polycrystal is segregated is reduced and the strength is improved.

多結晶体中の含有酸素量の測定は、珪化バリウムを熱分解させ、炭素・窒素・水素分析装置を用いて酸素量を熱伝導度法により測定を行うことで求めることができる。また、XPS(X線光電子分光)、EPMAなどの元素分析により測定する方法なども挙げられる。   The oxygen content in the polycrystal can be determined by thermally decomposing barium silicide and measuring the oxygen content by a thermal conductivity method using a carbon / nitrogen / hydrogen analyzer. Moreover, the method etc. which measure by elemental analysis, such as XPS (X-ray photoelectron spectroscopy) and EPMA, are also mentioned.

本発明の珪化バリウム多結晶体の製造方法について説明する。   The manufacturing method of the barium silicide polycrystal of this invention is demonstrated.

本発明の珪化バリウム多結晶体の製造方法は、バリウムと平均粒径が5mm以下であるシリコン粉末から珪化バリウム合金を合成する工程と、前記珪化バリウム合金を粉砕して珪化バリウム粉末とする工程と、前記珪化バリウム粉末を600℃〜1100℃でホットプレス処理する工程とを含んでなる。   The method for producing a barium silicide polycrystal according to the present invention includes a step of synthesizing a barium silicide alloy from barium and silicon powder having an average particle size of 5 mm or less, a step of pulverizing the barium silicide alloy to obtain a barium silicide powder, And a step of hot pressing the barium silicide powder at 600 ° C. to 1100 ° C.

以下に、本発明の珪化バリウム多結晶体の製造方法について詳細に説明する。   Below, the manufacturing method of the barium silicide polycrystal of this invention is demonstrated in detail.

まず、バリウムと平均粒径が5mm以下であるシリコン粉末から珪化バリウム合金を合成する。合成方法は特に限定されないが、極力酸素を含有させないような合成方法が好ましく、そのためには容器などに酸素を含有する機材をなるべく使用しない装置であるアーク溶解法が好ましい。   First, a barium silicide alloy is synthesized from barium and silicon powder having an average particle size of 5 mm or less. The synthesis method is not particularly limited, but a synthesis method that does not contain oxygen as much as possible is preferable. For this purpose, an arc melting method that is an apparatus that uses as little oxygen-containing equipment as possible in a container is preferable.

原料であるシリコン粉末の平均粒径は5mm以下のものを使用し、3mm以下であることがより好ましく、1mm以下である事が更に好ましい。平均粒径とは粉末もしくは破砕物の平均粒子径を示しており、その粒径は例えば粒度分布計などで測定される粒径における平均粒径を指す。粒径が5mmより大きくとなると溶解時に未溶解や未反応のシリコンの残渣が残ることで珪化バリウム合金体中に発生するシリコン粗粒によって割れが生じるため、珪化バリウム多結晶体を製造する事が困難となる。   The raw material silicon powder has an average particle size of 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less. The average particle diameter indicates the average particle diameter of the powder or crushed material, and the particle diameter refers to the average particle diameter in the particle diameter measured by, for example, a particle size distribution meter. When the particle size is larger than 5 mm, undissolved or unreacted silicon residue remains at the time of dissolution, and cracks occur due to silicon coarse particles generated in the barium silicide alloy body. Therefore, it is possible to produce a barium silicide polycrystal. It becomes difficult.

また、原料であるバリウム及びシリコン粉末中の酸素含有量は極力少ないことが望ましく、具体的には10mol%以下であることが好ましく、5mol%以下であることがより好ましい。原料中の酸素含有量を少なくすることで、多結晶体に残留する酸素が減少し、成膜した珪化バリウム膜の純度も向上する。   The oxygen content in the raw material barium and silicon powder is desirably as low as possible, specifically 10 mol% or less, and more preferably 5 mol% or less. By reducing the oxygen content in the raw material, oxygen remaining in the polycrystalline body is reduced, and the purity of the deposited barium silicide film is improved.

次に、得られた珪化バリウム合金を粉砕して粉末状とする。珪化バリウム粉末中の酸素含有量は10mol%以下であることが好ましく、珪化バリウム合金の合成後から酸素含有量を増加させないため、粉砕作業は不活性ガス雰囲気で行うことが好ましい。珪化バリウム粉末表面の酸化を防ぎ、酸素含有量を低く抑えることができるからである。   Next, the obtained barium silicide alloy is pulverized into powder. The oxygen content in the barium silicide powder is preferably 10 mol% or less. In order not to increase the oxygen content after the synthesis of the barium silicide alloy, the pulverization operation is preferably performed in an inert gas atmosphere. This is because the oxidation of the barium silicide powder surface can be prevented and the oxygen content can be kept low.

次に、珪化バリウム粉末を600℃〜1100℃でホットプレス処理する。ホットプレス法は粉末を加圧しながら温度を与えることで焼結を進める装置であり、加熱時に一軸加圧を行なうことで焼成時の拡散を補助し、拡散係数が低い場合や、金属など粒子径が大きい場合など焼結しにくい材料を焼結できるようにする焼成法である。ホットプレス法により焼成を行なうことで従来よりも密度が向上し、3.0g/cm以上の珪化バリウム多結晶体を得ることが可能となる。 Next, the barium silicide powder is hot pressed at 600 ° C. to 1100 ° C. The hot press method is a device that advances sintering by applying temperature while pressing powder. By uniaxial pressing during heating, it assists diffusion during firing, and when the diffusion coefficient is low or the particle size of metals, etc. This is a firing method that makes it possible to sinter materials that are difficult to sinter, such as when the material has a large value. By baking by the hot press method, the density is improved as compared with the conventional case, and it becomes possible to obtain a barium silicide polycrystal of 3.0 g / cm 3 or more.

ホットプレス処理における焼成温度は600℃以上1100℃以下であり、好ましくは、700℃以上1000℃以下で焼成する。600℃より低い温度では焼結が進まず密度が成形体密度と同程度にしか向上しない。また、1100℃よりも高い温度にて焼成を行なうと融点が近いために珪化バリウムが溶融する可能性がある。   The firing temperature in the hot press treatment is 600 ° C. or higher and 1100 ° C. or lower, and preferably 700 ° C. or higher and 1000 ° C. or lower. At temperatures lower than 600 ° C., sintering does not proceed and the density is improved only to the same extent as the density of the molded body. Further, if firing is performed at a temperature higher than 1100 ° C., barium silicide may be melted because the melting point is close.

焼成時の圧力は10MPa以上100MPa以下である事が好ましい。10MPa以下の圧力では圧力が不足し、多結晶体の密度が向上しない傾向があり、また、100MPa以上では一般的に用いられるカーボン製の金型では耐久力に欠けるために型の割れを生じる危険性があるからである。焼結の雰囲気は酸素を含まない雰囲気で行なう事が好ましい。   The pressure during firing is preferably 10 MPa or more and 100 MPa or less. When the pressure is 10 MPa or less, the pressure tends to be insufficient, and the density of the polycrystalline body tends not to be improved. When the pressure is 100 MPa or more, the carbon mold generally used lacks durability and may cause cracking of the mold. Because there is sex. The sintering atmosphere is preferably performed in an atmosphere containing no oxygen.

本発明の珪化バリウム多結晶体は、所定のターゲット寸法に加工してもよい。加工方法は特に限定しないが、平面研削法、ロータリー研削法または円筒研削法等を用いることができる。水と反応するために加工時の水の取扱には注意を要する。   The barium silicide polycrystal of the present invention may be processed into a predetermined target size. The processing method is not particularly limited, and a surface grinding method, a rotary grinding method, a cylindrical grinding method, or the like can be used. Be careful when handling water during processing because it reacts with water.

本発明の珪化バリウム多結晶体は、必要に応じて平板状または円筒状の支持体にハンダ材等の接着剤により固定(ボンディング)しても良い。支持体の材質は、熱伝導率が高く成型物を支持できる強度があれば特に限定されないが、熱伝導率が高く強度が高いことからCu、SUSまたはTiなどの金属が好ましい。支持体の形状は平板形状の成形物には平板形状の支持体を用い、円筒形状の成形物には円筒形状の支持体を用いる。成形物と支持体を接着する接着材(ボンディング材)は、支持するために十分な接着強度があれば特に限定されないが、導電性の樹脂、スズ系ハンダ材またはインジウム系のハンダ材を使用することが出来る。導電性、熱伝導性が高く、かつ柔らかく変形しやすいことからインジウムハンダが好ましい。その理由は、ターゲット表面の熱を効率的に冷却でき、熱膨張により発生した多結晶体と支持体の間の応力を吸収し多結晶体の割れを防止することができるためである。   The barium silicide polycrystal of the present invention may be fixed (bonded) to a flat or cylindrical support with an adhesive such as a solder material, if necessary. The material of the support is not particularly limited as long as it has a high thermal conductivity and can support the molded product, but a metal such as Cu, SUS or Ti is preferable because of its high thermal conductivity and high strength. As the shape of the support, a flat plate-shaped support is used for a flat plate-shaped molded product, and a cylindrical support is used for a cylindrical molded product. The adhesive (bonding material) for adhering the molded product and the support is not particularly limited as long as it has sufficient adhesive strength to support, but a conductive resin, a tin solder material or an indium solder material is used. I can do it. Indium solder is preferable because it has high conductivity and thermal conductivity, and is soft and easily deformed. The reason is that the heat of the target surface can be efficiently cooled, and the stress between the polycrystalline body and the support generated by the thermal expansion can be absorbed and cracking of the polycrystalline body can be prevented.

以下、本発明の実施例をもって説明するが、本発明はこれに限定されるものではない。(密度)
バルク体の密度はバルクの寸法から求めた体積と重量から計算して求めた。
(シリコン粗粒の粒径)
SEM−EDSを用いて珪化バリウム多結晶体を観察することでシリコン粗粒を識別し、直径は粗粒の最も長い直径と最も短い直径との平均値にて求めた。
(酸素含有量の測定)
珪化バリウムを熱分解させ、炭素・窒素・水素分析装置(Leco社製)を用いて酸素量を熱伝導度法により測定した。
Examples of the present invention will be described below, but the present invention is not limited thereto. (density)
The density of the bulk body was calculated from the volume and weight determined from the bulk dimensions.
(Grain size of silicon coarse particles)
By observing the barium silicide polycrystal using SEM-EDS, the silicon coarse particles were identified, and the diameter was determined by the average value of the longest and shortest diameters of the coarse particles.
(Measurement of oxygen content)
Barium silicide was pyrolyzed, and the amount of oxygen was measured by a thermal conductivity method using a carbon / nitrogen / hydrogen analyzer (manufactured by Leco).

(実施例1)
バリウムとシリコン粉末(5N 平均粒径130μm)をモル比が1:2になるように100g秤量し、アーク溶解を行なった。アーク溶解は銅製の水冷鋳型に混合原料を約10gずつ投入し、真空処理後、アルゴンを封入しアーク放電を行ないながら材料を溶融し合金を作製した。アーク溶解を行なった後、窒素ガス雰囲気にて合成した珪化バリウム合金をメノウ乳鉢を用いて粉砕した。作製した珪化バリウム粉末の酸素含有量は2.6mol%であった。
Example 1
100 g of barium and silicon powder (5N average particle size 130 μm) were weighed so that the molar ratio was 1: 2, and arc melting was performed. In the arc melting, about 10 g of mixed raw materials were put into a copper water-cooled mold, and after vacuum treatment, argon was enclosed and the material was melted while performing arc discharge to produce an alloy. After arc melting, the barium silicide alloy synthesized in a nitrogen gas atmosphere was pulverized using an agate mortar. The produced barium silicide powder had an oxygen content of 2.6 mol%.

次に、作製した珪化バリウム粉末75gを75mmφのカーボン製の金型を用いてホットプレス処理を行なった。温度は200℃/hにて昇温し、最終的に800℃まで温度を増加させ、その際の加圧条件は800℃保持の際に40MPaまで上昇させ、保持時間2時間にてホットプレス処理を行った。降温は5時間で約50℃まで降温し、金型を取り出し、多結晶体の回収を行なった。多結晶体の密度3.40g/cmであった。 Next, 75 g of the produced barium silicide powder was subjected to hot pressing using a 75 mmφ carbon mold. The temperature is raised at 200 ° C./h, and finally the temperature is increased to 800 ° C. The pressurization condition at that time is increased to 40 MPa when holding at 800 ° C. Went. The temperature was lowered to about 50 ° C. in 5 hours, the mold was taken out, and the polycrystal was recovered. The density of the polycrystal was 3.40 g / cm 3 .

その後、前記多結晶体を75mmφ×4mmtの形状に加工した。多結晶体中の酸素含有量は2.8mol%であった。多結晶体の加工面をSEM−EDSで分析したところ、シリコン粗粒の直径は最大で41μmのものが確認された。シリコン粗粒の平均直径は18μmであった。図1に示されるX線回折により珪化バリウムの多結晶体である事が確認できた。   Thereafter, the polycrystalline body was processed into a shape of 75 mmφ × 4 mmt. The oxygen content in the polycrystal was 2.8 mol%. When the processed surface of the polycrystalline body was analyzed by SEM-EDS, it was confirmed that the silicon coarse particles had a maximum diameter of 41 μm. The average diameter of the silicon coarse particles was 18 μm. It was confirmed by X-ray diffraction shown in FIG. 1 that it was a polycrystal of barium silicide.

ボンディング材料としてインジウムハンダを用いて、Cu製のバッキングプレート上に前記多結晶体をボンディングして、珪化バリウムスパッタリングターゲットを得た。   The indium solder was used as a bonding material, and the polycrystalline body was bonded onto a Cu backing plate to obtain a barium silicide sputtering target.

得られたターゲットについて放電評価を行なった。
放電方式:RFスパッタ
成膜装置:マグネトロンスパッタ装置
ターゲットサイズ:75mmφ
成膜圧力:0.5Pa
添加ガス:アルゴン
放電パワー:100W
基板温度:室温
以上の条件にて成膜を行なった結果、珪素−バリウム混合薄膜を作製する事が可能であることを確認した。
Discharge evaluation was performed about the obtained target.
Discharge method: RF sputter deposition system: magnetron sputtering system Target size: 75mmφ
Deposition pressure: 0.5 Pa
Additive gas: Argon discharge power: 100W
Substrate temperature: Room temperature As a result of film formation at room temperature or higher, it was confirmed that a silicon-barium mixed thin film could be produced.

(実施例2)
焼成温度を900℃とした以外は実施例1と同様の方法で珪化バリウム多結晶体を製造した。
(Example 2)
A barium silicide polycrystal was produced in the same manner as in Example 1 except that the firing temperature was 900 ° C.

珪化バリウム粉末の酸素含有量は3.3mol%、珪化バリウム多結晶体の密度は3.44g/cm、珪化バリウム多結晶体中の酸素含有量3.5mol%であった。多結晶体の断面をSEM−EDSで分析したところ、シリコン粗粒の直径は最大で45μmのものが確認された。シリコン粗粒の平均直径は平均20μmであった。 The oxygen content of the barium silicide powder was 3.3 mol%, the density of the barium silicide polycrystal was 3.44 g / cm 3 , and the oxygen content in the barium silicide polycrystal was 3.5 mol%. When the cross section of the polycrystal was analyzed by SEM-EDS, it was confirmed that the silicon coarse particles had a maximum diameter of 45 μm. The average diameter of the silicon coarse particles was 20 μm on average.

(実施例3)
焼成温度を700℃とした以外は実施例1と同様の方法で珪化バリウム多結晶体を製造した。
(Example 3)
A barium silicide polycrystal was produced in the same manner as in Example 1 except that the firing temperature was 700 ° C.

珪化バリウム粉末の酸素含有量は2.8mol%、珪化バリウム多結晶体の密度は3.20g/cm、珪化バリウム多結晶体中の酸素含有量3.0mol%であった。多結晶体の断面をSEM−EDSで分析したところ、シリコン粗粒の直径は最大で123μmのものが確認された。シリコン粗粒の平均直径は平均39μmであった。 The oxygen content of the barium silicide powder was 2.8 mol%, the density of the barium silicide polycrystal was 3.20 g / cm 3 , and the oxygen content in the barium silicide polycrystal was 3.0 mol%. When the cross section of the polycrystal was analyzed by SEM-EDS, it was confirmed that the silicon coarse particles had a maximum diameter of 123 μm. The average diameter of the silicon coarse particles was 39 μm on average.

(比較例1)
平均粒径7mmのシリコン粉末を用いた以外は実施例1と同様の方法で珪化バリウム多結晶体を製造した。
(Comparative Example 1)
A barium silicide polycrystal was produced in the same manner as in Example 1 except that silicon powder having an average particle diameter of 7 mm was used.

珪化バリウム多結晶体の密度は3.42g/cm、珪化バリウム多結晶体中の酸素含有量は3.5mol%であったが、焼結時に割れを生じた。多結晶体の断面をSEM−EDSで分析したところ、シリコン粗粒の直径は最大で370μmのものが確認された。シリコン粗粒の平均直径は平均192μmであった。 The density of the barium silicide polycrystal was 3.42 g / cm 3 , and the oxygen content in the barium silicide polycrystal was 3.5 mol%, but cracking occurred during sintering. When the cross section of the polycrystal was analyzed by SEM-EDS, it was confirmed that the silicon coarse particles had a maximum diameter of 370 μm. The average diameter of the silicon coarse particles was 192 μm on average.

(比較例2)
焼成温度を500℃とした以外は実施例1と同様の方法で珪化バリウム多結晶体を製造した。
(Comparative Example 2)
A barium silicide polycrystal was produced in the same manner as in Example 1 except that the firing temperature was 500 ° C.

珪化バリウム多結晶体の密度は2.70g/cm、珪化バリウム多結晶体中の酸素含有量は7.5mol%であった。多結晶体の断面をSEM−EDSで分析したところ、シリコン粗粒の直径は最大で40μmのものが確認された。シリコン粗粒の平均直径は20μmであった。 The density of the barium silicide polycrystal was 2.70 g / cm 3 , and the oxygen content in the barium silicide polycrystal was 7.5 mol%. When the cross section of the polycrystal was analyzed by SEM-EDS, it was confirmed that the silicon coarse particles had a maximum diameter of 40 μm. The average diameter of the silicon coarse particles was 20 μm.

(比較例3)
珪化バリウム粉末を作製するまでは実施例1と同様に作製を行なった。作製した粉末を30MPaにて一軸プレス成形し、できた成形体を大気中1000℃にて焼成を行なった。得られた多結晶体をX線回折で確認したところ、珪酸バリウムを多く含んだ多結晶体に変化していた事が確認された。
(Comparative Example 3)
Production was performed in the same manner as in Example 1 until the production of barium silicide powder. The produced powder was uniaxial press-molded at 30 MPa, and the resulting molded body was fired at 1000 ° C. in the atmosphere. When the obtained polycrystal was confirmed by X-ray diffraction, it was confirmed that the polycrystal was changed to a polycrystal containing a large amount of barium silicate.

Figure 0005768446
Figure 0005768446

1:シリコン粗粒
2:シリコン凝集物
1: Silicon coarse particles 2: Silicon aggregate

Claims (7)

珪化バリウム多結晶体中に存在するシリコン粗粒の最大直径が150μm以下であって、密度が3.0g/cm以上であることを特徴とするBaSi 結晶を主とする珪化バリウム多結晶体からなるバルク体The barium silicide polycrystal mainly composed of BaSi 2 crystal characterized in that the maximum diameter of the silicon coarse grains existing in the barium silicide polycrystal is 150 μm or less and the density is 3.0 g / cm 3 or more A bulk body consisting of 珪化バリウム多結晶体中の酸素含有量が10mol%以下であることを特徴とする請求項1記載の珪化バリウム多結晶体からなるバルク体The bulk body comprising the barium silicide polycrystal according to claim 1, wherein the oxygen content in the barium silicide polycrystal is 10 mol% or less. 珪化バリウム多結晶体中に存在するシリコン粗粒の平均直径が40μm以下であることを特徴とする請求項1または2に記載の珪化バリウム多結晶体からなるバルク体3. The bulk body comprising a barium silicide polycrystal according to claim 1 or 2, wherein the average diameter of the silicon coarse grains present in the barium silicide polycrystal is 40 [mu] m or less. バリウムと平均粒径が5mm以下であるシリコン粉末から珪化バリウム合金を合成する工程と、前記珪化バリウム合金を粉砕して珪化バリウム粉末とする工程と、前記珪化バリウム粉末を600℃〜1100℃でホットプレス処理する工程とを含んでなる請求項1〜3のいずれかに記載の珪化バリウム多結晶体からなるバルク体の製造方法。 A step of synthesizing a barium silicide alloy from barium and silicon powder having an average particle size of 5 mm or less; a step of pulverizing the barium silicide alloy to obtain a barium silicide powder; and hot heating the barium silicide powder at 600 ° C. to 1100 ° C. The manufacturing method of the bulk body which consists of a barium silicide polycrystal in any one of Claims 1-3 which comprises the process to press-process. バリウムと平均粒径が5mm以下であるシリコン粉末をアーク溶解法によって珪化バリウム合金を合成することを特徴とする請求項4に記載の珪化バリウム多結晶体からなるバルク体の製造方法。 The method for producing a bulk body comprising a barium silicide polycrystal according to claim 4, wherein a barium silicide alloy is synthesized from barium and silicon powder having an average particle diameter of 5 mm or less by an arc melting method. 珪化バリウム粉末中の酸素含有量が10mol%以下である事を特徴とする請求項4または5に記載の珪化バリウム多結晶体からなるバルク体の製造方法。 The method for producing a bulk body comprising a barium silicide polycrystal according to claim 4 or 5, wherein the oxygen content in the barium silicide powder is 10 mol% or less. 請求項1〜3のいずれかに記載の珪化バリウム多結晶体からなるバルク体を用いることを特徴とする珪化バリウムスパッタリングターゲット。 The barium silicide sputtering target characterized by using the bulk body which consists of a barium silicide polycrystal in any one of Claims 1-3.
JP2011079546A 2011-03-31 2011-03-31 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target Active JP5768446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079546A JP5768446B2 (en) 2011-03-31 2011-03-31 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079546A JP5768446B2 (en) 2011-03-31 2011-03-31 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target

Publications (2)

Publication Number Publication Date
JP2012214310A JP2012214310A (en) 2012-11-08
JP5768446B2 true JP5768446B2 (en) 2015-08-26

Family

ID=47267538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079546A Active JP5768446B2 (en) 2011-03-31 2011-03-31 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target

Country Status (1)

Country Link
JP (1) JP5768446B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201536679A (en) * 2014-02-27 2015-10-01 Tosoh Corp Silicide barium-based bulk body and silicide barium-based film, and manufacturing method thereof
JP2016000674A (en) * 2014-06-12 2016-01-07 東ソー株式会社 Barium silicide polycrystal and sputtering target or thermoelectric transducer comprising the barium silicide polycrystal
JP2016084262A (en) * 2014-10-28 2016-05-19 東ソー株式会社 Barium silicide-based polycrystal and its use
JP6478369B2 (en) * 2014-02-27 2019-03-06 東ソー株式会社 Barium silicide film and method for producing the same
JP6428439B2 (en) * 2014-04-30 2018-11-28 東ソー株式会社 Barium silicide bulk body, barium silicide sputtering target, and method for producing barium silicide crystal film using the same
JP6347041B2 (en) * 2014-08-22 2018-06-27 東ソー株式会社 Barium silicide laminated material and method for producing the same
JP6740671B2 (en) * 2016-03-31 2020-08-19 東ソー株式会社 Barium silicide bulk polycrystal and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214523A (en) * 1992-02-05 1993-08-24 Toshiba Corp Sputtering target and its manufacture
JP4554033B2 (en) * 2000-05-24 2010-09-29 株式会社Ihi Clathrate compound semiconductor and method for producing the same
JP2005294810A (en) * 2004-03-12 2005-10-20 Japan Science & Technology Agency Manufacturing method and equipment of mixed crystal semiconductor thin film using alkaline earth metal
JP5732978B2 (en) * 2011-03-31 2015-06-10 東ソー株式会社 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target

Also Published As

Publication number Publication date
JP2012214310A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5768446B2 (en) Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target
JP5024226B2 (en) Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
US8795489B2 (en) Sputtering target and method for producing the same
KR101418076B1 (en) Magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module each comprising or including the composite material
JP4489842B2 (en) Composite oxide sintered body, method for producing amorphous composite oxide film, amorphous composite oxide film, method for producing crystalline composite oxide film, and crystalline composite oxide film
EP2703519A1 (en) Sputtering target and method for producing same
JP5732978B2 (en) Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target
JP4976567B2 (en) Thermoelectric conversion material
WO2018012369A1 (en) Polycrystalline magnesium silicide and use thereof
TWI565679B (en) Oxide sintered body and sputtering target
US9273389B2 (en) Cu—In—Ga—Se quaternary alloy sputtering target
TWI546273B (en) In-Ga-Zn-based oxide sputtering target and a method for manufacturing the same
TWI572725B (en) Method for producing moti target
JP6428439B2 (en) Barium silicide bulk body, barium silicide sputtering target, and method for producing barium silicide crystal film using the same
TW201333230A (en) Oxide sintered compact and sputtering target, and method for producing same
JP7076093B2 (en) Thin film containing strontium and its manufacturing method
WO2013065784A1 (en) Oxide sintered compact and sputtering target, and method for producing same
CN106435492A (en) Oxide sputtering target material
CN114717441B (en) Method for preparing diamond/copper composite material with low density and high thermal conductivity at low cost
TWI611028B (en) Sputtering target and producing method thereof
JP2016000674A (en) Barium silicide polycrystal and sputtering target or thermoelectric transducer comprising the barium silicide polycrystal
JP2015045060A (en) MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME
CN110317053B (en) Sputtering target member and method for producing same
WO2020075661A1 (en) Gallium nitride-based sintered body and method for manufacturing same
JP6740671B2 (en) Barium silicide bulk polycrystal and its application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151