JP5767466B2 - Highly compounded rubber particles of carbon nanotubes and method for producing the same - Google Patents

Highly compounded rubber particles of carbon nanotubes and method for producing the same Download PDF

Info

Publication number
JP5767466B2
JP5767466B2 JP2010281046A JP2010281046A JP5767466B2 JP 5767466 B2 JP5767466 B2 JP 5767466B2 JP 2010281046 A JP2010281046 A JP 2010281046A JP 2010281046 A JP2010281046 A JP 2010281046A JP 5767466 B2 JP5767466 B2 JP 5767466B2
Authority
JP
Japan
Prior art keywords
rubber
cnt
suspension
weight
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010281046A
Other languages
Japanese (ja)
Other versions
JP2012126853A (en
Inventor
久 英之
英之 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DRGOO
Original Assignee
DRGOO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DRGOO filed Critical DRGOO
Priority to JP2010281046A priority Critical patent/JP5767466B2/en
Publication of JP2012126853A publication Critical patent/JP2012126853A/en
Application granted granted Critical
Publication of JP5767466B2 publication Critical patent/JP5767466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブ(以下CNTと記す)高配合ゴム粒状物およびその製造方法に関する。   The present invention relates to a carbon nanotube (hereinafter referred to as CNT) highly blended rubber granular material and a method for producing the same.

CNTは直径が数nm〜約500nmで、長さが10nm〜数10μm程度でアスペクト比が大きく、チューブ状構造の炭素の結晶である。その種類は多岐にわたり、単層構造を有するシングルウォールカーボンナノチューブ、多層構造を有するマルチウォールカーボンナノチューブ、マルチウォールカーボンナノチューブの範疇に入る二層のダブルウォールカーボンナノチューブなどがあり、また、その両端が封鎖されているものから、片末端のみが封鎖されているもの、両末端とも開いているものがあり、また、その丸め方の構造にもアームチェアー型等いくつか種類がある。CNTの製造方法もアーク放電型、触媒気相製造法、レーザーアブレーション法やその他の方法があり、それぞれ一長一短がある。
また、CNTは次世代材料として注目を浴びており、帯電防止剤や導電性付与材としての使用はもちろん、半導体、燃料電池電極、ディスプレーの陰極線等に用途開発されている。
CNTs are carbon crystals having a diameter of several nm to about 500 nm, a length of about 10 nm to several tens of μm, a large aspect ratio, and a tubular structure. There are various types, including single-wall carbon nanotubes with a single-layer structure, multi-wall carbon nanotubes with a multi-layer structure, and double-walled carbon nanotubes that fall within the category of multi-wall carbon nanotubes. There are some that are sealed at one end and those that are open at both ends, and there are several types of rounding structures such as an armchair type. CNT production methods include arc discharge type, catalytic gas phase production method, laser ablation method and other methods, each having advantages and disadvantages.
In addition, CNT is attracting attention as a next-generation material, and has been developed for use as an antistatic agent or conductivity imparting material, as well as for semiconductors, fuel cell electrodes, display cathode wires, and the like.

一般に、種々の合成樹脂(以下樹脂と略す)や各種ゴムにCNTを配合して、樹脂やゴムに電気伝導性や高強度、高弾性、熱伝導性等を付与することが知られている。
ところが、CNTは嵩密度が1〜5g/100ccと非常に低く、多量の空気を巻き込んでいるため飛散性が高い。製造業者においては、飛散による環境汚染に対する取り扱いの困難性、空送時等の貯蔵タンク内でのブリッジの発生、嵩密度の低さゆえ工程内での輸送時間および梱包時の充填時間が長い等安全上、作業上の多くの課題を抱えている。一方、使用する顧客においては、運搬時および樹脂や液体ポリマーマトリックスへの配合・混合・混練時における取り扱いにおいて定量性を確保することは困難である。さらに、CNTのポリマーマトリックスとの濡れ性が悪く、特に樹脂への配合においては、配合の初期段階において非常に馴染みにくいため、両者の混練には長時間を要し併せて分散性も悪い等の課題がある。
In general, it is known that CNT is blended with various synthetic resins (hereinafter abbreviated as resins) and various rubbers to impart electrical conductivity, high strength, high elasticity, thermal conductivity, and the like to the resin and rubber.
However, CNT has a very low bulk density of 1 to 5 g / 100 cc, and has a high scattering property because it contains a large amount of air. For manufacturers, it is difficult to handle environmental pollution due to scattering, the occurrence of bridges in storage tanks during air transportation, etc., the low bulk density, so the transportation time in the process and the filling time during packaging are long, etc. It has many safety and work issues. On the other hand, it is difficult for customers to use it to ensure quantitativeness during handling and handling during compounding, mixing and kneading into a resin or liquid polymer matrix. Furthermore, the wettability of the CNT with the polymer matrix is poor, especially in the compounding with the resin, and it is very difficult to adapt to the initial stage of the compounding. There are challenges.

CNTと同様に嵩密度の低い粉体としては、カーボンブラックがあり、これを樹脂やエラストマー等の固体もしくは液体エラストマーマトリックスへ高配合する場合、コンパクターに掛けたり、固体マトリックスをパウダー状態にしたりと様々な工夫がなされている。一方、カーボンブラックを始めとする導電性フィラーの製造者においては、従来これらを造粒化し嵩密度を上げ、粒硬度を高めて使用してきた。   Like CNT, powder with low bulk density is carbon black. When this is highly blended into a solid or liquid elastomer matrix such as a resin or elastomer, it can be applied to a compactor or the solid matrix can be powdered. Have been devised. On the other hand, manufacturers of conductive fillers such as carbon black have been used by granulating them to increase the bulk density and increasing the particle hardness.

このような状況から、CNTの造粒化も容易に想像されるものの、一次粒子が球状であるカーボンブラックと比較してCNTは結晶構造が大きく発達しており、表面官能基が少なく、チューブ状かつ繊維状で大きなアスペクト比を持ち、弾力性が高く、嵩密度がカーボンブラックに比較してさらに低いため、造粒化技術には大きな課題があった。
この課題を解決するため、(特許文献1)には、「高速気流中でCNTの凝集体を解砕し、再凝集させた球状カーボンナノチューブ集合体及びその製造方法」が開示されている。
また、ゴムCNTを混合したマスターバッチとして、(特許文献2)には、「エラストマー樹脂のベースと、カーボンナノチューブを5重量〜70重量%と、を混合した液体状のポリマー組成物をコンパウンディング装置中に導入し、混合して複合材料を形成する、エラストマーの複合材料の製造方法」が開示されている。
From this situation, although CNT granulation can be easily imagined, CNT has a large crystal structure compared to carbon black with spherical primary particles, has few surface functional groups, and has a tubular shape. In addition, since it is fibrous and has a large aspect ratio, high elasticity, and a bulk density that is even lower than that of carbon black, there has been a major problem in granulation technology.
In order to solve this problem, (Patent Document 1) discloses “a spherical carbon nanotube aggregate obtained by pulverizing and reaggregating CNT aggregates in a high-speed air stream and a method for producing the same”.
Moreover, as a master batch prepared by mixing CNT rubber, (Patent Document 2), "and based e last mer resin, and 5 wt to 70 wt% of carbon nanotubes, and mixed to a liquid polymer composition introduced into compounding apparatus, mixed to form a composite material, manufacturing method "is disclosed a composite material d last mer.

特開2005−239531号公報Japanese Patent Laid-Open No. 2005-239531 特開2010−222582号公報JP 2010-222582 A

しかしながら上記従来の技術においては、次の様な課題を有していた。
(1)(特許文献1)に開示の技術においては、装置の本来の用途は、粉体母粒子表面に異種の粉体微粒子を高速気流衝撃により付着させるというものであり、一種類のCNTのみの造粒化は極めて困難であるだけでなく、もし出来たとしてもその造粒物の粒子径は200μm以下と非常に小さいものであり、ミリメートルオーダーの粒状化は困難であるという課題を有していた。
(2)(特許文献2)に開示の技術においては、コンパウンディング装置中にCNTを導入するので、混合時に飛散しやすく、人体への安全性や環境汚染等の問題があるとともに、飛散性が高いので、合成ゴムや天然ゴムとの混合性が悪く、定量性が確保し難いという課題を有していた。
(3)10μm以上の凝集物を形成させずに、ゴム中に分散させることは極めて困難で、CNTの分散が悪いと、それから得られた複合物は脆く、ナノ亀裂を生じやすい。
However, the above conventional techniques have the following problems.
(1) In the technology disclosed in (Patent Document 1), the original use of the apparatus is to attach different kinds of fine powder particles to the surface of the powder base particles by high-speed air current impact, and only one type of CNT is used. In addition to being extremely difficult to granulate, the particle size of the granulated product is very small, such as 200 μm or less, even if it is possible, and it is difficult to granulate on the order of millimeters. It was.
(2) In the technology disclosed in (Patent Document 2), since CNTs are introduced into the compounding device, they are easily scattered during mixing, and there are problems such as safety to the human body and environmental pollution, as well as scattering properties. Since it is high, the mixing with synthetic rubber and natural rubber is poor, and there is a problem that it is difficult to ensure quantitativeness.
(3) It is extremely difficult to disperse in a rubber without forming an aggregate of 10 μm or more. If the dispersion of CNTs is poor, the composite obtained therefrom is brittle and easily causes nanocracks.

本発明は上記従来の課題を解決するもので、官能基の導入など煩雑な作業がなく、各種のゴムをバインダーとしてCNTを被覆(コーティング)し集合体の内部へ浸透させることで、CNTを高配合で粒状化させ、飛散性の大幅な低減とともに加工性・ハンドリング性等の作業性・ポリマーマトリックスとの濡れ性・分散性・導電性・機械的物性を著しく向上させたCNT高配合ゴム粒状物を提供する事を目的としている。
また、本発明は、官能基の導入など煩雑な作業がなく、各種のゴムをバインダーとしてCNTを被覆(コーティング)し、更にCNT内部へゴムを浸透させることで、CNTを高配合で粒状化させ、飛散性の大幅な低減とともに加工性・ハンドリング性等の作業性・ポリマーマトリックスとの濡れ性・分散性・導電性・機械的物性を著しく向上させ、低原価で量産性に優れたCNT高配合ゴム粒状物の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems. There is no complicated operation such as introduction of functional groups, and CNTs are coated (coated) with various rubbers as a binder and penetrated into the assembly to increase the CNTs. Granulated by blending, CNT high-blend rubber granules with significantly reduced scatter properties and significantly improved workability such as processability and handling properties, wettability with polymer matrix, dispersibility, conductivity and mechanical properties The purpose is to provide.
In addition, the present invention does not involve complicated operations such as introduction of functional groups, and CNTs are coated (coated) with various rubbers as binders, and the rubber is infiltrated into the interior of the CNTs, so that the CNTs are granulated with high blending. , High CNT blending with low cost and excellent mass productivity, with significant reduction in scatterability, remarkably improved workability such as workability and handling properties, wettability with polymer matrix, dispersibility, electrical conductivity and mechanical properties It aims at providing the manufacturing method of a rubber granular material.

上記課題を解決するために本発明のCNT高配合ゴム粒状物及びその製造方法は以下の構成を有している。
本発明の請求項1に記載のCNT高配合ゴム粒状物は、ゴム100重量部に対して、100〜1500重量部のカーボンナノチューブを配合し、前記カーボンナノチューブが前記ゴムでコーティングされた構成を有している。
この構成により、以下のような作用が得られる。
(1)CNTの表面をゴムがコーティングし、更にCNTの集合体の内部にもゴムが浸透し被覆するので、CNTの粉体が粒状化されCNTの飛散度合が極端に低くなり、取扱性を著しく向上させる。
(2)本発明のCNT高配合ゴム粒状物はCNTの外表面はゴムで被覆されており、かつCNT−CNT間での強い凝集のない状態で嵩密度の大きい造粒物となっているので、分散媒体である合成樹脂やゴム等のポリマーマトリックス(以下基体樹脂または基体ゴムと記す)に分散させた場合、著しく優れた濡れ性・分散性を発揮する。
(3)基体樹脂や基体ゴムへ配合した場合、高い分散性や濡れ性のため高い導電性の付与や機械物性の向上などの優れた物性を付与することができ、また加工性に優れる。
(4)CNTの基体ゴム等への分散性が極めて良いので、ナノ亀裂の発生を防ぎ、物性の向上性に優れる。
In order to solve the above-mentioned problems, the CNT high-blend rubber granules and the production method thereof according to the present invention have the following configurations.
The high-CNT rubber compound according to claim 1 of the present invention has a structure in which 100 to 1500 parts by weight of carbon nanotubes are blended with 100 parts by weight of rubber, and the carbon nanotubes are coated with the rubber. doing.
With this configuration, the following effects can be obtained.
(1) Since the surface of CNT is coated with rubber, and the rubber penetrates and coats the inside of the CNT aggregate, the CNT powder is granulated and the scattering degree of CNT becomes extremely low, which makes handling easier. Remarkably improve.
(2) Since the CNT high-blend rubber granule of the present invention is a granulated product with a large bulk density in which the outer surface of the CNT is coated with rubber and there is no strong aggregation between CNT-CNTs. When dispersed in a polymer matrix (hereinafter referred to as base resin or base rubber) such as a synthetic resin or rubber as a dispersion medium, remarkably excellent wettability and dispersibility are exhibited.
(3) When blended in a base resin or base rubber, excellent physical properties such as imparting high conductivity and improving mechanical properties can be imparted due to high dispersibility and wettability, and processability is also excellent.
(4) Since the dispersibility of the CNTs in the base rubber or the like is very good, the occurrence of nanocracks is prevented and the properties are improved.

ここで、CNTをコーテイングするバインダーゴムとしては、固形状ゴムとゴムラテックスいずれでも使用できる。固形状ゴムとしては、ポリブタジエン、スチレンブタジエン共重合体、ポリイソプレン、ブタジエンアクリロニトリル共重合体、フッ化ゴム、シリコーンゴム、ポリウレタンゴム、ブチルゴム、エチレン・プロピレンゴム、クロロプレンゴム、アクリルゴム、多硫化ゴム、エチレン・酢酸ビニルゴム、エピクロルヒドリンゴム、クロロスルホン化ポリエチレン等が用いられ、ポリブタジエンの市販品の例としては、ポリブタジエンBR01(JSR社商標)等が挙げられる。また、ゴムラテックスとしては、例えば、ポリブタジエンラテックス0700(JSR社商標)やスチレンブタジエン共重合体ラテックスSBR2108(JSR社商標)等がある。これを希釈、分散する際の分散液としては、ほとんどの場合、水を用いるが有機溶媒を用いることもできる。   Here, as the binder rubber for coating CNT, either solid rubber or rubber latex can be used. As solid rubber, polybutadiene, styrene butadiene copolymer, polyisoprene, butadiene acrylonitrile copolymer, fluorinated rubber, silicone rubber, polyurethane rubber, butyl rubber, ethylene / propylene rubber, chloroprene rubber, acrylic rubber, polysulfide rubber, Ethylene / vinyl acetate rubber, epichlorohydrin rubber, chlorosulfonated polyethylene and the like are used, and examples of commercially available polybutadiene include polybutadiene BR01 (trademark of JSR). Examples of the rubber latex include polybutadiene latex 0700 (trademark of JSR) and styrene-butadiene copolymer latex SBR2108 (trademark of JSR). In most cases, water is used as a dispersion when diluting and dispersing the organic solvent, but an organic solvent can also be used.

本発明のCNT高配合ゴム粒状物中のCNT配合量は、ゴム100重量部に対して100〜1500重量部、好ましくは200〜1200重量部である。
本発明のCNT高配合ゴム粒状物(以下、ゴム粒状物と略す)は、例えばゴム粒状物がフィラーとして使用されるゴムと同種のゴムまたは異種のゴム、さらには、各種の基体樹脂と混練して用いられる。本発明のゴム粒状物中のCNT配合量が200重量部より少なくなるにつれ、基体ゴムや基体樹脂に混練する際に、マスターバッチとして利用する際に多量のゴム粒状物を要し、ハンドリング性に欠ける傾向があり、100重量部よりも少ないとその傾向が著しいので好ましくない。
一方、本発明のCNT高配合ゴム粒状物中のCNT配合量が1200重量部を超えるにつれ、他の樹脂と混練するとき、粒状物が粉化しゴム粒状物中のCNTの一部が飛散し易くなり、環境面や安全面で好ましくない傾向があり、1500重量部を超えるとこの傾向が強まるので好ましくない。
本発明のゴム粒状物を異種の基体ゴムや基体樹脂と混練する場合には、異種の基体ゴムや基体樹脂に対する本発明のゴム粒状物の混合割合が多くなると、衝撃強度などの機械的物性が低下することがある。従って、基体ゴムや基体樹脂に対する本発明のゴム粒状物の混合割合は少ないことが望ましいが、本発明は、CNTが著しく高配合されたゴム粒状物なので本発明の組成物を少量配合するだけでCNTの配合量は可及的に多くすることができる。
The amount of CNT blended in the CNT high-blend rubber granule of the present invention is 100 to 1500 parts by weight, preferably 200 to 1200 parts by weight with respect to 100 parts by weight of rubber.
The CNT high-mixed rubber granules (hereinafter abbreviated as rubber granules) of the present invention are kneaded with, for example, the same type of rubber or different types of rubber used as fillers, and various base resins. Used. As the amount of CNT blended in the rubber granule of the present invention is less than 200 parts by weight, a large amount of rubber granule is required for use as a master batch when kneaded into the base rubber or base resin, thereby improving handling properties. If the amount is less than 100 parts by weight, the tendency is remarkable, which is not preferable.
On the other hand, as the amount of CNT blended in the CNT high-blend rubber granule of the present invention exceeds 1200 parts by weight, when kneaded with other resin, the granule is pulverized and a part of the CNT in the rubber granule is easily scattered. Therefore, there is a tendency that it is not preferable in terms of environment and safety.
When the rubber granular material of the present invention is kneaded with a different type of base rubber or base resin, the mechanical properties such as impact strength are increased when the mixing ratio of the rubber granular material of the present invention to the different type of base rubber or base resin is increased. May decrease. Accordingly, it is desirable that the mixing ratio of the rubber granule of the present invention to the base rubber or base resin is small, but the present invention is a rubber granule in which CNTs are remarkably highly blended, so only a small amount of the composition of the present invention is blended. The compounding quantity of CNT can be increased as much as possible.

本発明のCNT高配合ゴム粒状物と基体ゴムや基体樹脂との混練は両者を適当な割合で配合し、130〜270℃に加熱してゴムや樹脂を柔軟または溶融させた状態でミキシングロール、エキストルーダー、バンバリーミキサー等を用いて行われる。
本発明のゴム粒状物を用いることにより、作業現場でのCNTの飛散がなく安全性に優れ、且つ、短い混練時間で基体樹脂や基体ゴムに所望量のCNTを高分散させることができ作業性に優れる
基体樹脂としては、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、アクリルニトリルスチレン樹脂、ナイロン6、ナイロン66、酢酸ビニル、アクリルニトリルスチレンブタジエン樹脂等が使用される。特にアクリルニトリルスチレンブタジエン樹脂やナイロン6、ナイロン66などの熱可塑性樹脂に本発明のCNT高配合ゴム粒状物を配合、混練すると熱可塑性樹脂の成型性の低下を防止できる。
基体ゴムとしては、天然ゴム、ポリブタジエン、スチレンブタジエン共重合体、ブタジエンアクリロニトリル共重合体、ポリイソプレン、フッ素ゴム、シリコーンゴム、ウレタンゴム、ブチルゴム、エチレン・プロピレンゴム、クロロプレンゴム、アクリルゴム、多硫化ゴム、エチレン・酢酸ビニルゴム、ヒドリンゴム、エピクロルヒドリンゴム、クロロスルホン化ポリエチレン等が使用される。
The kneading of the CNT high-blend rubber particles of the present invention with the base rubber and base resin is carried out by mixing them at an appropriate ratio, heated to 130 to 270 ° C. and softened or melted the rubber or resin, Performed using an extruder, Banbury mixer, etc.
By using the rubber granular material of the present invention, there is no scattering of CNTs at the work site, it is excellent in safety, and a desired amount of CNTs can be highly dispersed in the base resin or base rubber in a short kneading time. As the base resin excellent in the above, polyvinyl chloride, polyethylene, polypropylene, polystyrene, acrylonitrile styrene resin, nylon 6, nylon 66, vinyl acetate, acrylonitrile styrene butadiene resin and the like are used. In particular, blending and kneading the CNT high-blend rubber particles of the present invention with a thermoplastic resin such as acrylonitrile styrene butadiene resin, nylon 6, nylon 66, etc. can prevent a decrease in moldability of the thermoplastic resin.
Base rubber includes natural rubber, polybutadiene, styrene butadiene copolymer, butadiene acrylonitrile copolymer, polyisoprene, fluororubber, silicone rubber, urethane rubber, butyl rubber, ethylene / propylene rubber, chloroprene rubber, acrylic rubber, polysulfide rubber Ethylene / vinyl acetate rubber, hydrin rubber, epichlorohydrin rubber, chlorosulfonated polyethylene and the like are used.

請求項2に記載の発明は、請求項1に記載のCNT高配合ゴム粒状物であって、前記カーボンナノチューブの繊維径が1〜200nm、繊維長が1〜100μmである構成を有している。
この構成により、請求項1で得られる作用に加え、以下の様な作用が得られる。
(1)CNTへのゴムによる被覆が斑なく、均一に行われ、この結果粒状化により嵩密度が増大し飛散性の改善が著しく、また、基体ゴムや基体樹脂への分散性を著しく向上させることができる。
なお、CNTの繊維径が200nm、または繊維長が100μmを超えると、造粒化は可能なものの、CNTによる導電性の付与・機械的物性の向上が低下する傾向があり、CNT高配合ゴム粒状物とした場合に基体ゴムや基体樹脂へ混錬等により配合しても物性を向上させることが出来ないので好ましくない。CNTの繊維径が1nm、または繊維長が1μmより小さくなるにつれ、生産性に欠ける傾向があり好ましくない。
The invention according to claim 2 is the CNT high-blend rubber granular material according to claim 1, wherein the carbon nanotube has a fiber diameter of 1 to 200 nm and a fiber length of 1 to 100 μm. .
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) The coating of CNT with rubber is uniform and uniform. As a result, the bulk density is increased by granulation, and the scattering property is remarkably improved, and the dispersibility to the base rubber and base resin is remarkably improved. be able to.
In addition, when the fiber diameter of CNT exceeds 200 nm or the fiber length exceeds 100 μm, although granulation is possible, there is a tendency that the imparting of electrical conductivity and improvement of mechanical properties by CNT tend to be reduced, and CNT high-blend rubber granules When it is made into a product, even if it is blended into the base rubber or base resin by kneading or the like, the physical properties cannot be improved, which is not preferable. As the fiber diameter of CNT becomes 1 nm or the fiber length becomes smaller than 1 μm, productivity tends to be lacking, which is not preferable.

請求項3に記載の発明は、CNT高配合ゴム粒状物の製造方法であって、
(1)溶剤に固形状ゴムを溶解させてゴムバインダー溶液を調製する溶解工程と、(2)前記ゴムバインダー溶液中の前記固形状ゴム100重量部に対して100〜1500重量部に相当するカーボンナノチューブを水に添加し、均一に懸濁して懸濁液を得る懸濁工程と、(3)前記溶解工程で得られた前記ゴムバインダー溶液を前記懸濁工程で得られた前記懸濁液に添加して混合液を調製する混合工程と、(4)前記混合液を撹拌することで前記カーボンナノチューブを水相からゴム相へ移行させる移行工程と、(5)その後前記混合液から水相とゴム相とを分離除去し、ゴム相を乾燥することでカーボンナノチューブ高配合ゴム粒状物を得る分離・乾燥工程と、を備えた構成を有している。
この構成により以下の様な作用が得られる。
(1)固形状ゴムを溶解させて、CNTと水との均一懸濁液に添加・撹拌することで、十分に解きほぐされたCNTがフラッシング作用により、水相からゴム相へ移行し、このときCNTが十分に解きほぐされた状態でゴムバインダーによって被覆されながらこの移行が進行していくので、CNTの固形状ゴムによる被覆(コーティング)が斑なく均一に得られ易い。
(2)撹拌工程では、撹拌によってゴム相を整粒する効果が得られるので、CNT高配合ゴム粒状物が、CNTの取り扱い上有利となる大きさの粒状物にまで造粒化でき、使用時の飛散性の改善・ハンドリング性、作業性などの取扱性の向上・及び基体ゴムや基体樹脂中への成型時における分散性の向上を図ることができ、かつ後の分離・乾燥工程で水とCNT高配合ゴム粒状物の分離をごく簡単に行えるので生産性に優れる。
(3)CNTの周囲をゴムで被覆(コーティング)し造粒化しているので、粉体強度が高く飛散し難いCNTが高配合されたCNT高配合ゴム粒状物が得られる。
Invention of Claim 3 is a manufacturing method of CNT high compounding rubber granular material,
(1) a dissolution step of dissolving a solid rubber in a solvent to prepare a rubber binder solution; and (2) carbon corresponding to 100 to 1500 parts by weight with respect to 100 parts by weight of the solid rubber in the rubber binder solution. A suspension step in which nanotubes are added to water and uniformly suspended to obtain a suspension; and (3) the rubber binder solution obtained in the dissolution step is added to the suspension obtained in the suspension step. A mixing step of adding and preparing a mixed solution; (4) a transition step of transferring the carbon nanotubes from an aqueous phase to a rubber phase by stirring the mixed solution; and (5) an aqueous phase from the mixed solution thereafter. The rubber phase is separated and removed, and the rubber phase is dried to obtain a carbon nanotube highly blended rubber granular material.
With this configuration, the following operation can be obtained.
(1) By dissolving solid rubber and adding and stirring to a uniform suspension of CNT and water, CNTs that have been sufficiently unwound are transferred from the aqueous phase to the rubber phase by the flushing action. Since this transition proceeds while being covered with a rubber binder in a state where the CNTs are sufficiently unraveled, the coating (coating) of the CNTs with a solid rubber is easily obtained uniformly.
(2) In the stirring step, the effect of regulating the size of the rubber phase by stirring can be obtained, so that the CNT high-blend rubber granules can be granulated to a size that is advantageous for handling CNTs. Can improve dispersibility, handling, workability, etc., and dispersibility during molding into base rubber and base resin, and can be separated with water in the subsequent separation / drying process. Since the separation of CNT high-blend rubber particles can be performed very easily, the productivity is excellent.
(3) Since the periphery of CNT is coated (coated) with granulation and granulated, a CNT high-mixed rubber granular material in which CNTs having high powder strength and difficult to fly is highly blended is obtained.

溶剤は、固形状ゴムを溶解し得る種々任意のものを使用できる。溶解の程度を簡易的に調べる方法としては、アドバンテック社製の円形ろ紙#5Cで全ての液がろ過できる程度が目安となり、ろ過残が少しでも存在する場合は溶剤を変更する必要がある。
溶剤の例としては、トルエン、キシレン、ヘキサン、テトラヒドロフラン、ベンゼン、シクロヘキサン、ナフチルアミン、イソオクタン、イソプロピルエーテル、エチルベンゼン、クレゾール、クロロスルホン酸、クロロトルエン、クロロナフタレン、クロロホルム、ジエチルエーテル、ジオキサン、シクロヘキサン、ジクロロベンゼン、フタル酸ジブチル、ジベンジルエーテル、ジペンテン、テトラリン、テルピネオール、トリクロロエチレン、ジクロロメタン、ジクロロエタン、ニトロベンゼン、二硫化炭素、テトラクロロエチレン、ピネン、ピペリジン、ピリジン、フラン、ベンジン、チオール、モノクロロベンゼン、メタクリル酸メチル、四塩化炭素等の有機溶剤等がある
溶剤の添加量は、前記カーボンナノチューブ(CNT)の対DBP吸収量比の0.8〜1.5倍容量添加することが好ましい。カーボンナノチューブのDBP吸収量は、JIS K 6221A法によって測定した。
これにより、以下のような作用を得ることできる。
(1)固形状ゴムによるCNTへのゴム被覆とその組成物の造粒化は、添加した溶剤の量に左右され、CNTの対DBP吸収量比の0.8倍容量より少ないとCNT内部への溶剤浸透が弱く、ゴムのコーティング性が悪くなる。1.5倍容量よりも多いとエマルジョン化して、造粒化が困難となってしまう。しかし、カーボンナノチューブのDBP吸収量比の0.8〜1.5倍容量の間で添加することによって、CNT周辺を極めて薄いゴムの層でコーティングし、更に造粒化することが可能となることがわかった。
As the solvent, various arbitrary solvents capable of dissolving the solid rubber can be used. As a method for simply examining the degree of dissolution, the degree to which all the liquid can be filtered with a circular filter paper # 5C manufactured by Advantech Co., Ltd. is used as a guideline.
Examples of solvents include toluene, xylene, hexane, tetrahydrofuran, benzene, cyclohexane, naphthylamine, isooctane, isopropyl ether, ethylbenzene, cresol, chlorosulfonic acid, chlorotoluene, chloronaphthalene, chloroform, diethyl ether, dioxane, cyclohexane, dichlorobenzene. , Dibutyl phthalate, dibenzyl ether, dipentene, tetralin, terpineol, trichloroethylene, dichloromethane, dichloroethane, nitrobenzene, carbon disulfide, tetrachloroethylene, pinene, piperidine, pyridine, furan, benzine, thiol, monochlorobenzene, methyl methacrylate, tetrachloride There is an organic solvent such as carbon. The amount of the solvent added is the same as that of the carbon nanotube (CNT). It is preferable to add 0.8 to 1.5 times the DBP absorption ratio. The DBP absorption amount of the carbon nanotube was measured by the JIS K 6221A method.
Thereby, the following actions can be obtained.
(1) The coating of rubber on CNT with solid rubber and the granulation of the composition depend on the amount of solvent added, and if the volume is less than 0.8 times the DBP absorption ratio of CNT, the inside of the CNT The solvent penetration of the rubber is weak, and the coating property of the rubber is deteriorated. If it is more than 1.5 times the volume, it is emulsified and granulation becomes difficult. However, by adding between 0.8 and 1.5 times the DBP absorption ratio of carbon nanotubes, it becomes possible to coat the periphery of the CNT with a very thin rubber layer and further granulate it. I understood.

懸濁工程では、前記固形状ゴム100重量部に対し、100〜1500重量部、好ましくは200〜1200重量部に相当するCNTを水へ投入し、均一に懸濁する。懸濁液中のCNT濃度は、0.1〜10重量%が好ましく、より好ましくは0.5〜5重量%である。0.5重量%より少なくなるにつれ、CNTの基体樹脂への分散性や、基体ゴムや基体樹脂への混錬時間に長時間を要す傾向があり、0.1質量%以下ではその傾向が著しいので好ましくない。5重量%より多くなるにつれ、水―CNT懸濁液の粘度が上昇し、CNTの分散を十分に行うことができず大きなCNT凝集塊が出来やすくなり、樹脂被覆が十分に行えないためCNT高配合ゴム粒状物として性能が悪くなる傾向があり、10重量%以上ではその傾向が著しいので好ましくない。
CNTの水への分散の程度は、懸濁液をスポイトで硝子板上に取り、ヘラで展色(展開)し、未分散塊を目視と指で調べて、ザラザラとした質感・感触がなくなるまで懸濁させる。この処理によりCNTは凝集塊の状態から十分に解きほぐされた状態になる。
懸濁方法は、水等の分散媒に、CNTを機械的撹拌によって行うのが好ましい。また、超音波照射を併用してもよい。
この懸濁工程によって、CNTの凝集が解きほぐされゴム被覆が斑なく均一に行われ、CNTが高配合されたゴム粒状物になっても、基体ゴムや基体樹脂に混錬などにより分散する際、十分にCNTが解きほぐされた状態で均一に分散される。
In the suspending step, CNTs corresponding to 100 to 1500 parts by weight, preferably 200 to 1200 parts by weight are added to water with respect to 100 parts by weight of the solid rubber, and uniformly suspended. The CNT concentration in the suspension is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight. As the content becomes less than 0.5% by weight, the dispersibility of CNTs in the base resin and the kneading time in the base rubber and base resin tend to take a long time. Since it is remarkable, it is not preferable. As the amount exceeds 5% by weight, the viscosity of the water-CNT suspension increases, the CNTs cannot be sufficiently dispersed and large CNT aggregates are easily formed, and the resin coating cannot be sufficiently performed. The performance tends to deteriorate as a compounded rubber granule, and if it is 10% by weight or more, the tendency is remarkable, which is not preferable.
The degree of dispersion of CNTs in water is as follows: Remove the suspension on a glass plate with a dropper, color (develop) it with a spatula, and examine the undispersed mass with the eyes and fingers to eliminate the rough texture and feel. Suspend until. By this treatment, the CNT is sufficiently unraveled from the aggregated state.
The suspension method is preferably performed by mechanically stirring CNTs in a dispersion medium such as water. Moreover, you may use ultrasonic irradiation together.
By this suspension process, the CNTs are agglomerated and the rubber coating is uniformly performed without unevenness. Even when the CNTs are highly blended rubber particles, they are dispersed in the base rubber or base resin by kneading. CNTs are uniformly dispersed in a sufficiently undissolved state.

分離・乾燥工程では、CNT高配合ゴム粒状物がCNTの取り扱い上有利となるほどまでに大きな粒子に造粒化成長しているので、分離作業は篩を使用して簡単に行うことができる。乾燥は蒸気乾燥や真空乾燥などの方法で行うことができる。この際の温度としては蒸気乾燥器の場合は200℃以下または真空乾燥は150℃以下が好ましい。これよりも高い場合はCNTを被覆(コーティング)したゴムが劣化し、最終性能が悪くなる。この乾燥温度は、使用するゴムによって適宜適切な温度に設定する必要がある。また、乾燥機で乾燥する前に、バット等に造粒物を広げドラフト等で常温、自然乾燥させると後の工程が容易となる。   In the separation / drying step, since the CNT high-blend rubber granules are granulated and grown to such a large size that it is advantageous in handling CNTs, the separation operation can be easily performed using a sieve. Drying can be performed by a method such as steam drying or vacuum drying. The temperature at this time is preferably 200 ° C. or lower in the case of a steam dryer or 150 ° C. or lower in vacuum drying. If it is higher than this, the rubber coated (coated) with CNT deteriorates and the final performance deteriorates. This drying temperature needs to be appropriately set depending on the rubber used. Further, before drying with a dryer, a granulated product is spread on a bat or the like and naturally dried at room temperature with a draft or the like, thereby facilitating the subsequent steps.

請求項4記載の発明は、ゴムラテックスを用いたCNT高配合ゴム粒状物の製造方法であって、
(1)ゴムラテックスを水に分散させゴム分散液を作る分散工程と、(2)前記ゴムラテックス100重量部に対して100〜1500重量部に相当するカーボンナノチューブを水に添加し、均一に懸濁して懸濁液を得る懸濁工程と、(3)前記懸濁工程で得たカーボンナノチューブの前記懸濁液に前記分散工程で得た前記ゴム分散液を添加し、攪拌することで直径0.1〜3mmの羽毛状塊を生成する移行工程と、(4)前記羽毛状塊を脱水して、ゴムおよびカーボンナノチューブからなる組成物を得る脱水工程と、(5)脱水により含水率40〜80質量%とした塊状物を湿式造粒法により直径0.2〜2mmの粒状物を得る造粒工程と、(6)前記粒状物を乾燥する乾燥工程と、を備える構成を有している。
この構成によって、以下の様な作用を得ることができる
(1)ゴムラテックスの希釈や分散に水を使用できるので、製造コスト面でも環境面でもまた、設備コスト面でも極めて有利なCNT高配合ゴム粒状物を得ることができる。
Invention of Claim 4 is a manufacturing method of the CNT high compounding rubber granular material using rubber latex,
(1) A dispersion step in which rubber latex is dispersed in water to form a rubber dispersion, and (2) 100 to 1500 parts by weight of carbon nanotubes corresponding to 100 parts by weight of the rubber latex are added to water and uniformly suspended. A suspension step for obtaining a suspension by turbidity, and (3) adding the rubber dispersion obtained in the dispersion step to the suspension of carbon nanotubes obtained in the suspension step, and stirring to add a diameter of 0 (1) a dehydration step for dehydrating the feathery lump to obtain a composition comprising rubber and carbon nanotubes; (5) a water content of 40 to 40 by dehydration; It has a configuration comprising a granulation step of obtaining a granular material having a diameter of 0.2 to 2 mm by a wet granulation method with a mass of 80% by mass, and (6) a drying step of drying the granular material. .
With this configuration, the following actions can be obtained. (1) Since water can be used for diluting and dispersing the rubber latex, the highly compounded CNT rubber is extremely advantageous in terms of manufacturing cost, environment and equipment cost. Granules can be obtained.

この構成をさらに詳しく説明する。
本発明のゴム粒状物を製造するには、まず水に分散したゴム、いわゆるゴムラテックスを、ゴム100重量部に対し100〜1500重量部、好ましくは200〜1200重量部となる範囲で水にCNTを添加して攪拌して得られたCNTと水の均一懸濁液に、ゴムラテックスを加えて撹拌する。懸濁液中のCNT濃度は、0.1〜10重量%が好ましく、より好ましくは、0.5〜5重量%である。
水媒体に分散されたゴムラテックスをCNTと水の均一懸濁液に添加し、攪拌するとゴム相と水相の2相が形成される。CNTは、初めは主に水相中に存在するが、さらに攪拌を続けると水相中のCNTの周囲にゴムが付着し、直径0.1〜3mmの羽毛状塊が生成する。羽毛状塊が生成したのち、脱水して、ゴムおよびCNTをからなる組成物を得る。脱水は、たとえば、羽毛状塊を含む水溶液をろ過し、次いでこれを真空脱水または遠心脱水することにより行われる。このとき、脱水により含水率40〜80重量%の塊状物とし、さらに、これを湿式造粒法により0.2〜2mmのゴム粒状物とすれば、ハンドリング性が良好となる。湿式造粒は、例えば、攪拌ピンを有するシャフトを備えたドラム内部に含水率40〜80重量%の塊状物を入れ、シャフトを回転させることにより行うか、又は、小さい孔から強制的に上記塊状物を押し出すことによって行うことができる。
This configuration will be described in more detail.
In order to produce the rubber granular material of the present invention, first, a rubber dispersed in water, so-called rubber latex, is added to water in a range of 100 to 1500 parts by weight, preferably 200 to 1200 parts by weight with respect to 100 parts by weight of rubber. A rubber latex is added to and stirred in a uniform suspension of CNT and water obtained by adding and stirring. The CNT concentration in the suspension is preferably 0.1 to 10% by weight, and more preferably 0.5 to 5% by weight.
When rubber latex dispersed in an aqueous medium is added to a uniform suspension of CNT and water and stirred, two phases of a rubber phase and an aqueous phase are formed. CNT initially exists mainly in the aqueous phase, but when stirring is continued, rubber adheres around the CNT in the aqueous phase, and a feathery lump having a diameter of 0.1 to 3 mm is generated. After the feather-shaped lump is formed, it is dehydrated to obtain a composition comprising rubber and CNT. Dehydration is performed, for example, by filtering an aqueous solution containing a feather-like lump and then vacuum dehydrating or centrifugal dehydrating it. At this time, if it is made into a lump with a water content of 40 to 80% by dehydration and further made into a rubber granule of 0.2 to 2 mm by a wet granulation method, the handling properties will be good. The wet granulation is performed by, for example, putting a mass having a water content of 40 to 80% by weight inside a drum having a shaft having a stirring pin and rotating the shaft, or forcibly forming the mass from a small hole. This can be done by extruding objects.

前記撹拌工程の後、整粒工程を備えた場合、以下の様な作用が得られる。
(1)整粒工程を有することによって造粒物の形状を均一に揃え、これによって生成されたCNT高配合ゴム粒状物の使用時における飛散性の改善・ハンドリング性、作業性などの取扱性の向上・及び分散性の向上を図ることができる。
When the sizing step is provided after the stirring step, the following effects are obtained.
(1) By having a sizing step, the shape of the granulated material is made uniform, and the CNT high-blend rubber granules produced thereby are improved in scattering properties, handling properties such as workability and workability. Improvement and dispersibility can be improved.

以上の様に、本発明のCNT高配合ゴム粒状物によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)粉体状で存在するCNTを単に粒状化し安全性を高めるだけではなく、CNT粒子の周りを極めて少量のゴムでコーテイング(マイクロカプセル化)した造粒物とすることにより、CNT自体の飛散度合いが極端に低くなり、取り扱い性が著しく向上する結果、CNT製造業者およびこれを使用する顧客における、取り扱い現場での作業環境が大幅に改善され、さらに、定量供給を要するさまざまな工程で著しい定量精度を確保できる様なCNT高配合ゴム粒状物を提供することができる。
(2)ポリマーマトリックスとの濡れ性が飛躍的に改善され、マトリックスへの濡れが良くなり分散時間が短縮でき、破断を抑えることもできるうえ、ゴムを被覆(コーテイング)していない造粒物や非造粒化物と比較して安定して高い導電性や他の物性を得ることができるし、ポリマーマトリックス中への高配合が可能となる、工業的利用価値が極めて高い、CNT高配合ゴム粒状物を提供することができる。
As described above, according to the CNT high-blend rubber granule of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) In addition to simply granulating CNTs present in powder form to improve safety, the CNTs themselves are granulated by coating (microencapsulating) with a very small amount of rubber around the CNT particles. As a result of extremely low scattering and significantly improved handling, the work environment at the handling site for CNT manufacturers and customers who use them is greatly improved, and it is also remarkable in various processes that require quantitative supply. It is possible to provide a CNT highly blended rubber granular material that can ensure quantitative accuracy.
(2) The wettability with the polymer matrix is dramatically improved, the wettability to the matrix is improved, the dispersion time can be shortened, breakage can be suppressed, and a granulated product not coated with rubber (coating) Compared with non-granulated products, high conductivity and other physical properties can be obtained stably, and high compounding in polymer matrix is possible. Things can be provided.

請求項2に記載の発明によれば、
(1)CNTのゴム被覆を阻害されることがないので、CNT内部まで全体的に均一にゴム被覆することが可能となり、物性が安定化するので、飛散性・分散性・取扱性・定量供給性に優れたCNT高配合ゴム粒状物を提供することができる。
According to invention of Claim 2,
(1) Since the CNT rubber coating is not obstructed, it is possible to coat the rubber uniformly throughout the CNT, and the physical properties are stabilized, so scattering, dispersibility, handling, and quantitative supply are possible. It is possible to provide a CNT high-mixed rubber granule excellent in properties.

請求項3に記載の発明によれば、
(1)CNTの固形状ゴムによるコーティングが斑なく均一に得られ易いので、物性が安定化し、他のバインダーを使用しないCNT造粒化物や粉体物よりも飛散性・分散性・取扱性が著しく向上するうえ、定量供給を要するさまざまな工程で著しい定量精度を確保できる様なCNT高配合ゴム粒状物の製造方法を提供することができる。
(2)CNTが十分に解きほぐされた状態でゴムにより被覆され、かつ嵩密度を高く造粒化でき、そのうえCNT−CNT間の強い凝集がないので、従来のCNTゴム組成物に比べて著しくCNTを高配合でき、かつ基体樹脂や基体ゴムへの分散性に優れたCNT高配合ゴム粒状物の製造方法を提供することができる。
(3)懸濁液中のCNTをほとんど失うことなく高収率でコーティングしてCNT高配合固形状ゴム粒状物を生成し、かつ被覆に使用するゴムが従来のCNTゴム組成物に比べて少なくて済むので生産性に優れたCNT高配合ゴム粒状物の製造方法を提供することができる。
(4)固形状ゴムを溶解する溶剤量の条件を定めることで、CNT周辺をごく薄いゴムの層で被覆(コーティング)してCNTを高配合させたゴム組成物を生成し、かつCNTの取り扱い上有利となる大きさの粒状物にまで造粒化されたCNT高配合ゴム粒状物の製造方法を提供することができる。
According to invention of Claim 3,
(1) Since the coating of CNT solid rubber is easy to be obtained without unevenness, the physical properties are stabilized, and the scatterability, dispersibility, and handling properties are more stable than CNT granulated products and powders that do not use other binders. It is possible to provide a method for producing a highly CNT rubber compounded granule that can be remarkably improved and that can ensure remarkable quantitative accuracy in various processes that require constant supply.
(2) CNT is covered with rubber in a sufficiently unwound state, and can be granulated with a high bulk density. Moreover, since there is no strong aggregation between CNT-CNT, it is remarkably compared with conventional CNT rubber compositions. It is possible to provide a method for producing highly granular CNT rubber particles that can be highly compounded with CNTs and have excellent dispersibility in a base resin or a base rubber.
(3) The CNT in the suspension is coated with a high yield with almost no loss, and a solid rubber granular material with high CNT content is produced, and the rubber used for coating is less than that of the conventional CNT rubber composition. Therefore, it is possible to provide a method for producing CNT high-blend rubber granules having excellent productivity.
(4) By defining the conditions for the amount of solvent that dissolves the solid rubber, the CNT periphery is coated (coated) with a very thin rubber layer to produce a rubber composition in which CNTs are highly blended, and the handling of CNTs It is possible to provide a method for producing a CNT high-blend rubber granule that has been granulated to a granule having an advantageous size.

請求項4の発明によれば、請求項3の効果に加え、
(1)ゴムラテックスの希釈、分散に水を使用できるので、製造コスト面でも環境面でもまた、設備コスト面でも極めて有利なCNT高配合ゴム粒状物を得るCNT高配合ゴム粒状物の製造方法を提供することができる。
According to the invention of claim 4, in addition to the effect of claim 3,
(1) Since water can be used for dilution and dispersion of rubber latex, a method for producing CNT high-blend rubber granules that can provide extremely advantageous CNT high-blend rubber granules in terms of production cost, environment and equipment cost Can be provided.

以下本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
CNTとして、触媒気相製造法により製造された表1に示すA、B2種類を準備した。尚、マルチウォールカーボンナノチューブについては、その直径や長さが製法や後処理法により分布をもちうるが、ここでは、その平均値を、そのCNTの直径と長さとして表記する。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
As CNTs, two types A and B shown in Table 1 produced by a catalytic gas phase production method were prepared. In addition, about the multiwall carbon nanotube, although the diameter and length may have distribution by a manufacturing method or a post-processing method, the average value is described as the diameter and length of the CNT here.

Figure 0005767466
Figure 0005767466

(実施例1)
バインダー用の固形状ゴムとして、スチレンブタジエン共重合体ゴム(JSR社の商品名JSRドライSBR1502)を常温のトルエンに溶解し、3重量%のゴムを含む分散液を作ったゴムバインダー溶液を調整した(溶解工程)。この液は、円形濾紙#5Cで濾過した結果、濾過残物は皆無であった。
次に、表1に示したAのCNT50gと純水4950gを10Lのステンレス製丸型容器に入れホモジナイザー型撹拌機を用い6000rpmで30分撹拌し懸濁させ、懸濁液を得た(懸濁工程)。CNT分散液を数滴スポイトで硝子板上に取りヘラで展色し、未分散塊を目視と指で調べた結果ザラザラした未分散塊は皆無であった。
次いで、撹拌機の羽根をパドル翼に変更し、1000rpmで撹拌しながら、スチレンブタジエン共重合体を溶解したゴムバインダー溶液300gを均一速度で5分間滴下し混合した(混合工程)。全て滴下後撹拌機の回転を600rpmに落とし約5分間撹拌を続け(移行工程)、ゴム粒状物を整粒し(整粒工程)、1.0〜1.2mm径のCNT高配合ゴム粒状物を得た。得られた該ゴム粒状物を60mesh篩で水とCNTを分離後、ドラフト内で常温にて約20時間自然乾燥した後、真空乾燥機を用い90〜110℃で加熱し溶媒と残存する水が、150℃1時間における加熱減量として0.5%以下になるまで乾燥しCNT高配合ゴム粒状物を得た(分離・乾燥工程)。次いで、このゴム粒状物を表2に示す基体樹脂や基体ゴムに配合して混練した。
Example 1
As a solid rubber for the binder, a styrene butadiene copolymer rubber (trade name: JSR Dry SBR1502 manufactured by JSR Corporation) was dissolved in toluene at room temperature to prepare a rubber binder solution that produced a dispersion containing 3% by weight of rubber. (Dissolution process). As a result of filtering this liquid with circular filter paper # 5C, there was no filtration residue.
Next, 50 g of CNT A shown in Table 1 and 4950 g of pure water were placed in a 10 L stainless steel round container and suspended using a homogenizer-type stirrer at 6000 rpm for 30 minutes to obtain a suspension (suspension). Process). A few drops of the CNT dispersion was taken on a glass plate and developed with a spatula, and the undispersed lump was examined visually and with a finger. As a result, there was no rough undispersed lump.
Next, the blade of the stirrer was changed to a paddle blade, and while stirring at 1000 rpm, 300 g of a rubber binder solution in which a styrene-butadiene copolymer was dissolved was dropped at a uniform rate for 5 minutes and mixed (mixing step). After all the dripping, the rotation of the stirrer is reduced to 600 rpm and stirring is continued for about 5 minutes (transition process), the rubber granules are sized (granulation process), and 1.0 to 1.2 mm diameter CNT high-mixed rubber granules Got. The rubber granules thus obtained were separated from water and CNTs with a 60 mesh sieve, and then naturally dried in a fume hood at room temperature for about 20 hours, and then heated at 90-110 ° C. using a vacuum dryer to remove the solvent and the remaining water. Then, drying was performed until the weight loss by heating at 150 ° C. for 1 hour was 0.5% or less to obtain highly CNT-blended rubber granules (separation / drying step). Next, this rubber granular material was blended with the base resin and base rubber shown in Table 2 and kneaded.

Figure 0005767466
Figure 0005767466

(実施例2)
CNTとして表1に示したBを用い、ゴムバインダー溶液の添加量は147gとする以外は実施例1と同様にした。
(Example 2)
The same procedure as in Example 1 was conducted except that B shown in Table 1 was used as CNT and the amount of the rubber binder solution added was 147 g.

(実施例3)
スチレンブタジエン共重合体ラテックス(JSR社製の商品名JSRラテックス2108。固形分濃度4.0重量%)を水で希釈し、ゴム含有量3重量%のゴムラテックス分散液を作った。
次いで、表1のAのCNTと水とを実施例1と同様な条件、方法でCNT濃度1重量%の均一懸濁液を作った。この懸濁液を攪拌しながら、上記のゴムラテックス分散液を添加した。全体をさらに攪拌していくことでCNTとゴムが結合した羽毛状塊を生成させた。
この後、この羽毛状塊を減圧式脱水機または遠心脱水機を用いて脱水し、含水率を80重量%以下とした。
続いて、この羽毛状塊を造粒機により造粒して、直径が0.8〜1.5mmの粒状体とし、この粒状体を熱風乾燥機にて90℃で5時間乾燥することでCNT高配合ゴム粒状物を作成した。
(Example 3)
Styrene butadiene copolymer latex (trade name JSR latex 2108 manufactured by JSR Corporation, solid concentration 4.0 wt%) was diluted with water to prepare a rubber latex dispersion having a rubber content of 3 wt%.
Next, a uniform suspension having a CNT concentration of 1% by weight was prepared using the CNT of A in Table 1 and water under the same conditions and method as in Example 1. The rubber latex dispersion was added while stirring the suspension. By further stirring the whole, a feathery lump in which CNT and rubber were combined was generated.
Thereafter, the feather-like lump was dehydrated using a vacuum dehydrator or a centrifugal dehydrator, and the water content was adjusted to 80% by weight or less.
Subsequently, the feather-like lump is granulated with a granulator to form granules having a diameter of 0.8 to 1.5 mm, and the granules are dried at 90 ° C. for 5 hours with a hot air dryer. Highly compounded rubber granules were prepared.

(実施例4)
ゴムバインダーの添加量を250g、ゴムバインダー溶液中のゴム濃度を10wt%とする以外は、実施例1と同様にした。
Example 4
The procedure of Example 1 was repeated except that the amount of rubber binder added was 250 g and the rubber concentration in the rubber binder solution was 10 wt%.

(比較例1、2)
実施例1に対し、ゴムバインダー溶液中のゴム濃度とゴムバインダー溶液の添加量を変えることにより、対DBP吸収量を比較例1は1.66、比較例2は0.67とした以外は実施例1と同様した。 しかし、比較例1は泥状の懸濁液になり粒状とならなかった。また、比較例2はCNTが水分散液から溶剤側に移行せず粒状とならなかった。
実施例1〜及び比較例1及び2の結果を表3に示す。
(Comparative Examples 1 and 2)
Compared to Example 1, the rubber concentration in the rubber binder solution and the addition amount of the rubber binder solution were changed, so that the absorption amount against DBP was 1.66 in Comparative Example 1 and 0.67 in Comparative Example 2. Same as Example 1. However, Comparative Example 1 became a mud suspension and did not become granular. Further, in Comparative Example 2, the CNT did not move from the aqueous dispersion to the solvent side and did not become granular.
Table 3 shows the results of Examples 1 to 4 and Comparative Examples 1 and 2.

Figure 0005767466
Figure 0005767466

(実施例5〜7、比較例3及び4)
実施例1、2、4のCNT高配合ゴム粒状物と、表2の合成樹脂イ、ロ、ハの所定量を、直径3インチの前ロールおよび後ロールの二本のロール(ロール間隙1.5mm)を有するミキシングロールを用いて混練し、それぞれ実施例とした。混練方法としては、まず、ミキシングロールの前ロールおよび後ロールをそれぞれ15rpmおよび17rpm回転させた。次いで、前ロールに幅10cmで50gの基体樹脂を巻きつけ、両ロール間に本発明のCNT高配合ゴム粒状物を少量ずつ投入しながら、両ロールの回転により160℃で基体樹脂とゴム粒状物の混練を行った。比較例3及び4は、ゴム粒状物でない表1のA、Bをそのまま、実施例と同様に混練して得た。
所定量のゴム粒状物を両ロール間に投入するのに要する時間を配合所要時間とした。また、混練後、得られた混練物を、150〜180℃、15〜20tのプレス機により押圧し、それぞれCNT含有合成樹脂(ゴムと配合する場合は、CNT含有ゴム)の試験片(100×100×2mm)を作成し体積固有抵抗を測定した。
(Examples 5-7, Comparative Examples 3 and 4)
A predetermined amount of the CNT high-blend rubber granules of Examples 1, 2, and 4 and the synthetic resins (a), (b), and (c) shown in Table 2 were mixed into two rolls (roll gap 1. 5 mm), and kneaded using Examples 5 to 7 respectively. As a kneading method, first, the front roll and the rear roll of the mixing roll were rotated by 15 rpm and 17 rpm, respectively. Next, a base resin of 10 g in width and 50 g of the base resin is wound around the front roll, and the base resin and the rubber granular material are rotated at 160 ° C. by rotating both rolls while charging the CNT high-mixed rubber granular material of the present invention little by little between both rolls. Kneading was performed. Comparative Examples 3 and 4 were obtained by kneading A and B in Table 1 that are not rubber granules as they were in Examples 5 to 7 .
The time required to put a predetermined amount of the rubber granular material between both rolls was defined as the required mixing time. Moreover, after kneading, the obtained kneaded material was pressed with a press at 150 to 180 ° C. and 15 to 20 t, and each was a test piece of CNT-containing synthetic resin (CNT containing rubber when blended with rubber) (100 × 100 × 2 mm) and volume resistivity was measured.

(実施例、比較例5)
実施例として、実施例3のCNT高配合ゴム粒状物をPVC樹脂(ヴィテック社製の商品名P450。ジオクチルフタレート30wt%含有)に混練(混練温度130℃)する以外、実施例と同様とした。また、表1のAのCNTをゴム粒状物化せず、上記PVC樹脂と混練したものを比較例5とした。
(Example 8 , Comparative Example 5)
As Example 8 , Examples 5 to 7 except that the CNT high-blend rubber particles of Example 3 were kneaded (kneading temperature 130 ° C.) with PVC resin (trade name P450 manufactured by Vitec Co., Ltd. containing 30 wt% dioctyl phthalate). Same as above. Further, Comparative Example 5 was prepared by kneading the CNTs of A in Table 1 with the above PVC resin without making the rubber granules.

(実施例及び10、比較例6)
実施例1及び3の高配合ゴム粒状物をスチレンブタジエン共重合体ゴム(JSR社の商品名JSRドライSBR1502)に混練する以外、実施例と同様にした。また、表1のAのCNTをゴム粒状化せず、上記スチレンブタジエン共重合体ゴムに混練したものを比較例6とした。
(Examples 9 and 10 and Comparative Example 6)
Except for kneading the highly compounded rubber granules of Examples 1 and 3 with a styrene butadiene copolymer rubber (trade name JSR Dry SBR1502 from JSR), the same procedure as in Examples 5 to 7 was performed. Further, Comparative Example 6 was prepared by kneading the styrene butadiene copolymer rubber with the CNT of A in Table 1 without granulating the rubber.

〈試験例1(体積固有抵抗の測定)〉
体積固有抵抗は、試験片の抵抗が106Ω以上の場合は、ハイレスターUP(HT−450)(三菱化学製)を、また106Ω以下の場合はロレスターGP(T610)(三菱化学製)を用いて25℃、湿度60%の雰囲気で測定し、これより下記式に従って算出した。
体積固有抵抗(Ω・cm)=試験片の抵抗×RCF×t(cm)
RCF:抵抗率補正係数
t :試験片の厚み(cm)
<Test Example 1 (Measurement of Volume Specific Resistance)>
When the resistance of the test piece is 106Ω or more, the volume specific resistance is measured using High Lester UP (HT-450) (manufactured by Mitsubishi Chemical), and if it is 106Ω or less, Lorester GP (T610) (manufactured by Mitsubishi Chemical) is used. The measurement was performed in an atmosphere of 25 ° C. and a humidity of 60%, and the calculation was performed according to the following formula.
Volume resistivity (Ω · cm) = Test piece resistance × RCF × t (cm)
RCF: Resistivity correction coefficient t: Test piece thickness (cm)

〈試験例2(飛散率の測定)〉
混練作業時に飛散したCNTの飛散率(D)を以下の数1により求めた。
(数1)
D=((R+C)−K)/(R+C)×100
ここで、Dは飛散量(%)、Rは基体樹脂の重量(g)、Cは本発明ゴム粒状物又は配合重量(g)である。
実施例5〜10及び、比較例3〜6の試験結果(体積固有抵抗及び配合時の飛散率)を表4に示す。
<Test Example 2 (Measurement of scattering rate)>
The scattering rate (D) of CNTs scattered during the kneading operation was determined by the following formula 1.
(Equation 1)
D = ((R + C) −K) / (R + C) × 100
Here, D is the scattering amount (%), R is the weight (g) of the base resin, and C is the rubber granule of the present invention or the compounding weight (g).
Table 4 shows the test results (volume resistivity and scattering rate at the time of blending) of Examples 5 to 10 and Comparative Examples 3 to 6.

〈試験例3(CNTの流動性測定)〉
実施例1〜4のCNT高配合ゴム粒状物及び表1−A,BのCNTの試料を各々10g用い、各試料を、各100ccビーカーの上にセットした最細部の内径が5mmパイのガラス製ロートに入れ、次いで、全てがビーカーに流出するまでの時間を測定した。この際、粒状化処理をしていない粉状のCNTは流出性が悪かったのでロートに振動を与え流出させた。その結果を表5に示す。
<Test Example 3 (Measurement of fluidity of CNT)>
10 g of each of the CNT high-blend rubber granules of Examples 1 to 4 and the samples of CNTs of Tables 1-A and B were used, and each sample was set on a 100 cc beaker and made of glass with the smallest inner diameter of 5 mm pie. It was placed in the funnel and then the time until everything spilled into the beaker was measured. At this time, the powdered CNTs that had not been granulated had poor flowability, so the funnel was vibrated and flowed out. The results are shown in Table 5.

Figure 0005767466
Figure 0005767466

Figure 0005767466
Figure 0005767466

表4及び表5から、本発明のCNT高配合ゴム粒状物とポリマーマトリックスとの濡れ性・分散性が著しく高いので、ゴムバインダーを用いなかったCNTと同じCNT配合濃度でも導電性が高く優れていることが分かった。
また、本発明のCNT高配合ゴム粒状物は、ポリマーマトリックスへの濡れ性に優れ、飛散性が著しく低く、さらに流動性にも優れていること等から取扱性に優れているので、樹脂バインダーを用いなかったCNTよりも配合所要時間も配合時の飛散率も大幅に低減できていることが分かった。
From Table 4 and Table 5, since the wettability and dispersibility of the CNT high-blend rubber granules of the present invention and the polymer matrix are remarkably high, the conductivity is high and excellent even at the same CNT blend concentration as CNT without using a rubber binder. I found out.
In addition, the CNT high-blend rubber particles of the present invention have excellent wettability to the polymer matrix, remarkably low scattering properties, and excellent fluidity. It was found that the time required for blending and the scattering rate at the time of blending were significantly reduced compared to CNT that was not used.

本発明は、CNTの内部や外表面を固形状ゴムやゴムラテックスで被覆(コーティング)することにより、CNTのハンドリング性が著しく向上し、基体樹脂や基体ゴムとの密着性が著しく向上し電気的物性などが良くなり、さらに混錬時のCNTの定量供給性が著しく向上するので、コンパウンドのロット内の品質バラツキが著しく安定し、また飛散性を大幅に低減するのでCNTのロスがなくなり、CNTを理論上の配合率まで確実に配合できるのでコンパウンドの物性が向上し、かつ人体に対する安全性も向上すると共に、粒状物の機械的強度が大きくハンドリング性・作業性などの取扱性に優れ、CNTのポリマーマトリックスとの濡れ性や分散性向上による、マトリックスへの分散時間の短縮と、ポリマーマトッリクスに配合した際に高い導電性や機械物性などの物性に優れたCNT高配合ゴム粒状物を提供することができ、また、飛散させることなくCNTを定量でポリマーマトリックス中に供給できるとともに、ポリマーマトリックスとの濡れ性や分散性に優れ、ポリマーマトリックスの電気的・機械的物性を著しく向上させるCNT高配合ゴム粒状物を低原価で量産できるCNT高配合ゴム粒状物の製造方法を提供することができる。   In the present invention, by coating (coating) the inside and outer surfaces of CNTs with solid rubber or rubber latex, the handling properties of CNTs are remarkably improved, and the adhesion to the base resin or base rubber is remarkably improved. The physical properties are improved, and the quantitative supply of CNTs during kneading is remarkably improved, so that the quality variation within the compound lot is remarkably stable, and the scattering properties are greatly reduced, so there is no loss of CNTs. Can be blended reliably up to the theoretical blending ratio, improving the physical properties of the compound and improving the safety to the human body, as well as the high mechanical strength of the granular material and excellent handling properties such as handling and workability. Reduced dispersion time in the matrix by improving the wettability and dispersibility of the polymer matrix and blended with the polymer matrix In addition, it is possible to provide highly CNT high-blend rubber granules that have excellent physical properties such as electrical conductivity and mechanical properties, and can supply CNTs quantitatively into the polymer matrix without being scattered, and wettability with the polymer matrix. In addition, it is possible to provide a method for producing a highly CNT-blended rubber granule that can be mass-produced at a low cost with a highly CNT-blended rubber granule having excellent dispersibility and significantly improving the electrical and mechanical properties of the polymer matrix.

Claims (4)

ゴム100重量部に対して、100〜1500重量部のカーボンナノチューブを配合し、前記カーボンナノチューブが前記ゴムでコーティングされていることを特徴とするカーボンナノチューブ高配合ゴム粒状物。   A carbon nanotube high-mixed rubber granular material, wherein 100 to 1500 parts by weight of carbon nanotubes are blended with 100 parts by weight of rubber, and the carbon nanotubes are coated with the rubber. 前記カーボンナノチューブの繊維径が1〜200nm、繊維長が1〜100μmであることを特徴とする請求項1に記載のカーボンナノチューブ高配合ゴム粒状物。   The carbon nanotube high-blend rubber granule according to claim 1, wherein the carbon nanotube has a fiber diameter of 1 to 200 nm and a fiber length of 1 to 100 µm. (1)溶剤に固形状ゴムを溶解させてゴムバインダー溶液を調製する溶解工程と、(2)前記ゴムバインダー溶液中の前記固形状ゴム100重量部に対して100〜1500重量部に相当するカーボンナノチューブを水に添加し、均一に懸濁して懸濁液を得る懸濁工程と、(3)前記溶解工程で得られた前記ゴムバインダー溶液を前記懸濁工程で得られた前記懸濁液に添加して混合液を調製する混合工程と、(4)前記混合液を撹拌することで前記カーボンナノチューブを水相からゴム相へ移行させる移行工程と、(5)その後前記混合液から水相とゴム相とを分離除去し、ゴム相を乾燥することでカーボンナノチューブ高配合ゴム粒状物を得る分離・乾燥工程と、を備えたことを特徴とするカーボンナノチューブ高配合ゴム粒状物の製造方法。   (1) a dissolution step of dissolving a solid rubber in a solvent to prepare a rubber binder solution; and (2) carbon corresponding to 100 to 1500 parts by weight with respect to 100 parts by weight of the solid rubber in the rubber binder solution. A suspension step in which nanotubes are added to water and uniformly suspended to obtain a suspension; and (3) the rubber binder solution obtained in the dissolution step is added to the suspension obtained in the suspension step. A mixing step of adding and preparing a mixed solution; (4) a transition step of transferring the carbon nanotubes from an aqueous phase to a rubber phase by stirring the mixed solution; and (5) an aqueous phase from the mixed solution thereafter Separating and removing the rubber phase, and separating and drying the carbon phase to obtain a high-carbon rubber compound with carbon nanotubes by drying the rubber phase. . (1)ゴムラテックスを水に分散させゴム分散液を作る分散工程と、(2)前記ゴムラテックス100重量部に対して100〜1500重量部に相当するカーボンナノチューブを水に添加し、均一に懸濁して懸濁液を得る懸濁工程と、(3)前記懸濁工程で得たカーボンナノチューブの前記懸濁液に前記分散工程で得た前記ゴム分散液を添加し、攪拌することで直径0.1〜3mmの羽毛状塊を生成する移行工程と、(4)前記羽毛状塊を脱水して、ゴムおよびカーボンナノチューブからなる組成物を得る脱水工程と、(5)脱水により含水率40〜80質量%とした塊状物を湿式造粒法により直径0.2〜2mmの粒状物を得る造粒工程と、(6)前記粒状物を乾燥する乾燥工程と、を備えたことを特徴とするカーボンナノチューブ高配合ゴム粒状物の製造方法   (1) A dispersion step in which rubber latex is dispersed in water to form a rubber dispersion, and (2) 100 to 1500 parts by weight of carbon nanotubes corresponding to 100 parts by weight of the rubber latex are added to water and uniformly suspended. A suspension step for obtaining a suspension by turbidity, and (3) adding the rubber dispersion obtained in the dispersion step to the suspension of carbon nanotubes obtained in the suspension step, and stirring to add a diameter of 0 (1) a dehydration step for dehydrating the feathery lump to obtain a composition comprising rubber and carbon nanotubes; (5) a water content of 40 to 40 by dehydration; A granulation step of obtaining a granular material having a diameter of 0.2 to 2 mm by a wet granulation method from a mass of 80% by mass, and (6) a drying step of drying the granular material. High carbon nanotube content Method for producing a beam granules
JP2010281046A 2010-12-16 2010-12-16 Highly compounded rubber particles of carbon nanotubes and method for producing the same Active JP5767466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281046A JP5767466B2 (en) 2010-12-16 2010-12-16 Highly compounded rubber particles of carbon nanotubes and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281046A JP5767466B2 (en) 2010-12-16 2010-12-16 Highly compounded rubber particles of carbon nanotubes and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012126853A JP2012126853A (en) 2012-07-05
JP5767466B2 true JP5767466B2 (en) 2015-08-19

Family

ID=46644253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281046A Active JP5767466B2 (en) 2010-12-16 2010-12-16 Highly compounded rubber particles of carbon nanotubes and method for producing the same

Country Status (1)

Country Link
JP (1) JP5767466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777133A (en) * 2019-01-25 2019-05-21 华研(佛山)纳米材料有限公司 A kind of carbon nanotube enhancing pitch and preparation method thereof
WO2019172399A1 (en) * 2018-03-08 2019-09-12 三菱商事株式会社 Method for producing carbon-nanotube-rich rubber granules

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313900A4 (en) * 2000-08-24 2011-12-07 Univ Rice William M Polymer-wrapped single wall carbon nanotubes
JP4273726B2 (en) * 2002-03-26 2009-06-03 東レ株式会社 Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite
JP2004210830A (en) * 2002-12-27 2004-07-29 Jsr Corp Elastomer composition and method for producing the same
BRPI0407495A (en) * 2003-02-13 2006-02-14 Stichting Dutch Polymer Inst reinforced polymer
JP2006312673A (en) * 2005-05-09 2006-11-16 Toray Ind Inc Carbon nanotube-dispersed paste, and carbon nanotube-dispersed composite
JP4433488B2 (en) * 2007-06-22 2010-03-17 日精樹脂工業株式会社 Manufacturing method of carbon nano composite resin molded product
JP5057513B2 (en) * 2007-09-06 2012-10-24 大日精化工業株式会社 Carbon nanotube resin composition, carbon nanotube dispersion composition, method of using them, and article using them
WO2010007705A1 (en) * 2008-07-18 2010-01-21 株式会社イノアック技術研究所 Process for combining one-dimensional structures with zero-dimensional structures and composites obtained by the process
JP4787892B2 (en) * 2009-06-16 2011-10-05 株式会社ナノストラクチャー研究所 Carbon nanotube high compounding resin granular material and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172399A1 (en) * 2018-03-08 2019-09-12 三菱商事株式会社 Method for producing carbon-nanotube-rich rubber granules
JP2019156911A (en) * 2018-03-08 2019-09-19 三菱商事株式会社 Manufacturing method of carbon nanotube high blended rubber particle
CN109777133A (en) * 2019-01-25 2019-05-21 华研(佛山)纳米材料有限公司 A kind of carbon nanotube enhancing pitch and preparation method thereof

Also Published As

Publication number Publication date
JP2012126853A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP4787892B2 (en) Carbon nanotube high compounding resin granular material and manufacturing method thereof
KR101996071B1 (en) Carbon nanostructure preliminary blend and its application
US7943065B2 (en) Conductive carbon nanotube-polymer composite
KR101748142B1 (en) Latex composition, production method therefor, composite material and conductive compact
JP6630905B2 (en) Method for granulating carbon having different bulk densities and method for producing granulated carbon
CN110467782A (en) A kind of carbon nanotube Plastic conductive composite material and its wet method preparation process
JP2011042538A (en) Carbon nanotube resin composition and method for producing the same
JP5767466B2 (en) Highly compounded rubber particles of carbon nanotubes and method for producing the same
JP6499781B1 (en) Manufacturing method of carbon nanotube high compounding rubber granular material
JPS625939B2 (en)
JP2012167216A (en) Conductive rubber composition and master batch as raw material of the same
JP6694412B2 (en) Method for producing composite resin particles, resin molded body, and composite resin particles
JP2018177586A (en) Method of granulating carbon nano-tube
JP2020176186A (en) Rubber composition for tire vulcanization bladder and tire vulcanization bladder using the same
JP6816893B2 (en) Method for manufacturing carbon nanotube granules
TWI822573B (en) Carbon material granules, method for producing carbon material granules, and conductive resin composition
JP7151563B2 (en) Rubber composition for tire and pneumatic tire using the same
JP7151595B2 (en) Rubber composition for tire and pneumatic tire using the same
JP2020172575A (en) Tire rubber composition and pneumatic tire including the same
JPS6289751A (en) Production of rubber composition compounded with large amount of carbon black

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20131213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150619

R150 Certificate of patent or registration of utility model

Ref document number: 5767466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350