JP5762694B2 - Forming method and fiber-reinforced resin molded product - Google Patents

Forming method and fiber-reinforced resin molded product Download PDF

Info

Publication number
JP5762694B2
JP5762694B2 JP2010118209A JP2010118209A JP5762694B2 JP 5762694 B2 JP5762694 B2 JP 5762694B2 JP 2010118209 A JP2010118209 A JP 2010118209A JP 2010118209 A JP2010118209 A JP 2010118209A JP 5762694 B2 JP5762694 B2 JP 5762694B2
Authority
JP
Japan
Prior art keywords
mold
laminated
molding
temperature
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010118209A
Other languages
Japanese (ja)
Other versions
JP2011245634A (en
Inventor
安田 満雄
満雄 安田
勉 小西
勉 小西
青木 秀之
秀之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Gosei Ltd
Original Assignee
Sanko Gosei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Gosei Ltd filed Critical Sanko Gosei Ltd
Priority to JP2010118209A priority Critical patent/JP5762694B2/en
Publication of JP2011245634A publication Critical patent/JP2011245634A/en
Application granted granted Critical
Publication of JP5762694B2 publication Critical patent/JP5762694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、強化炭素繊維とマトリクス樹脂とからなり、例えば、自動車や航空機などの繊維強化樹脂製部材を賦形型を使用して3次元形状に賦形する賦形成形方法及び繊維強化樹脂成形品に関する。   The present invention comprises a reinforced carbon fiber and a matrix resin. For example, a forming method for forming a fiber reinforced resin member such as an automobile or an aircraft into a three-dimensional shape using a forming mold and a fiber reinforced resin molding Related to goods.

従来より、炭素繊維を強化繊維とする繊維強化樹脂の成形法として平板状の積層成形品を型上に配置し、金型内部を真空状態にして樹脂を注入し、前記平板状の積層成形品に樹脂を拡散、含浸させるレジントランスファーモールディング成形法が知られている。   Conventionally, as a method of molding a fiber reinforced resin using carbon fiber as a reinforcing fiber, a flat laminated product is placed on a mold, the mold is evacuated, and the resin is injected into the flat laminated product. A resin transfer molding method in which a resin is diffused and impregnated is known.

特許文献1には、このレジントランスファーモールディング成形法に用いるのに好適な3次元形状を有する平板状の積層成形品を、高精度、かつ自動的に製造することのできる賦形成形方法が開示された。   Patent Document 1 discloses a forming method capable of automatically and accurately producing a flat laminated molded product having a three-dimensional shape suitable for use in this resin transfer molding method. It was.

しかしこの特許文献1に開示された賦形成形方法は強化繊維と熱硬化性樹脂とからなる平板状の積層成形品を用いるものであって、その成形性には限界があった。しかも一旦硬化後は熱で溶かすことも、溶剤に溶かすこともできずリサイクルできないという問題がある。   However, the forming method disclosed in Patent Document 1 uses a flat laminated molded product composed of reinforcing fibers and a thermosetting resin, and its moldability is limited. Moreover, once cured, there is a problem that it cannot be recycled because it cannot be dissolved by heat or dissolved in a solvent.

これに対し特許文献2には複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂材料を付着させた後に、該織物基材を構成する複数本の強化繊維束の相対位置に変動を与えることで、変形性に優れ複雑な形状に追従させることができ、かつ、その形状の保持性に優れる強化繊維織物を用いた平板積層成形品、繊維強化樹脂成形品、ならびにそれらの製造方法が開示された。   On the other hand, in Patent Document 2, a thermoplastic resin material is attached to at least one surface of a fabric base material including a plurality of reinforcing fiber bundles, and then the relative strength of the plurality of reinforcing fiber bundles constituting the fabric base material is determined. By changing the position, it is possible to follow a complex shape with excellent deformability, and a flat plate molded product, a fiber reinforced resin molded product using a reinforced fiber fabric with excellent shape retention, and those The manufacturing method of was disclosed.

特開2003−211447号公報Japanese Patent Laid-Open No. 2003-21447 特開2007−56441号公報JP 2007-56441 A

特許文献2に開示された強化繊維織物を成形原反材として積層してなる積層成形材を溶融温度に加熱後、固化温度の成形型で圧縮する成型法では、熱可塑性樹脂を炭素繊維に完全に含侵させることが困難であり、十分な成形品強度が得られないという問題がある。
本発明は以上の従来技術における問題に鑑み、成形原反材を用い強度の強い成形品を形状自由度高くかつ効率よく3次元形状に賦形することができる賦形成形方法及び繊維強化樹脂成形品を提供することを目的とする。
In a molding method in which a laminated molding material obtained by laminating a reinforcing fiber fabric disclosed in Patent Document 2 as a molding raw material is heated to a melting temperature and then compressed with a molding die at a solidification temperature, the thermoplastic resin is completely converted into carbon fibers. There is a problem that it is difficult to impregnate, and a sufficient molded product strength cannot be obtained.
In view of the above problems in the prior art, the present invention provides a forming method and a fiber reinforced resin molding which can form a strong molded article into a three-dimensional shape with a high degree of freedom by using a forming raw material. The purpose is to provide goods.

すなわち本発明の賦形成形方法は、複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有し、前記成形型による加圧方向を軸とする周回方向に上型方向と下型方向とに交互に押し切り面を設けることを特徴とする。
この本発明の賦形成形方法によって、成形型を熱可塑性樹脂材の溶融温度に加熱することによって熱可塑性樹脂を炭素繊維に完全に含侵させて繊維積層によって強化して十分な成形品強度の熱可塑性樹脂材を成形することが可能となる。しかも長い昇温時間によってサイクルタイムが過長になることを予熱することによって防止することができる。また成形型の上型方向と下型方向とに加圧方向を軸とする周回方向に交互に押し切り面を設けるので積層材を溶融温度に加熱後固化温度へ冷却することによってバリが発生しても、材料が型に付着して離型しにくくなることを防止することができ、成形品を離型しやすくすることができる。また、バリが付着した型から、バリを容易に除去することができる。
That is, the forming method according to the present invention cuts and laminates a forming raw material in which a resin material mainly composed of a thermoplastic resin is attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles. Laminate molding material is placed in the mold and pressed and heated to melt the resin material adhering to the textile substrate containing multiple reinforcing fiber bundles and bond the fibers and the layers of the molding material In the forming method, the step of raising the temperature of the mold to the melting temperature, the preheating step of preheating the laminated molded material and placing it in the mold, the step of clamping and pressurizing the mold, and the mold And a step of opening and releasing the mold after cooling to a solidification temperature, and providing a pressing surface alternately in the upper mold direction and the lower mold direction in the circumferential direction centering on the pressing direction by the molding mold. And
By this forming method of the present invention, the molding die is heated to the melting temperature of the thermoplastic resin material to completely impregnate the thermoplastic resin into the carbon fibers and strengthened by fiber lamination to obtain sufficient molded product strength. It becomes possible to mold a thermoplastic resin material. In addition, it can be prevented by preheating that the cycle time becomes excessive due to the long heating time. In addition, the pressing surface is alternately provided in the circumferential direction around the pressing direction in the upper mold direction and the lower mold direction of the mold, so that burrs are generated by heating the laminated material to the melting temperature and then cooling to the solidification temperature. However, it can be prevented that the material adheres to the mold and is difficult to release, and the molded product can be easily released. Moreover, the burr can be easily removed from the mold to which the burr is attached.

また本発明の賦形成形方法は、複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、賦形をする成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程と、を行い平板形状の平板積層成形品を成形する工程と、前記平板積層成形品を所定の形状に裁断する工程と、賦形をする成形型を溶融温度に昇温する工程と、前記平板積層成形品を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有し、前記成形型による加圧方向を軸とする周回方向に上型方向と下型方向とに交互に押し切り面を設けることを特徴とする。
炭素繊維間への熱可塑性樹脂の含浸には通常約5〜30分の時間を要する。
しかし、本発明の賦形成形方法によって、事前に平板形状の積層成形材を準備することによって、その時間を削減して賦形成形の成形サイクルタイムを短縮することができる。
In addition, the forming method of the present invention cuts and laminates a forming raw material in which a resin material mainly composed of a thermoplastic resin is attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles. Laminate molding material is placed in the mold and pressed and heated to melt the resin material adhering to the textile substrate containing multiple reinforcing fiber bundles and bond the fibers and the layers of the molding material In the forming method, the step of heating the forming mold to be shaped to the melting temperature, the preheating step of preheating and placing the laminated molding material into the mold, and the step of clamping and pressurizing the mold Cooling the mold to the solidification temperature, opening the mold and releasing the mold, forming a flat plate-shaped flat laminate product, cutting the flat plate-molded product into a predetermined shape, and applying A step of heating the forming mold to a melting temperature, and preheating the flat laminated molded product A preheating step of placing and placing in the mold, a step of clamping and pressurizing the mold, a step of cooling the mold to the solidification temperature and opening the mold, and releasing the mold, It is characterized in that push-cut surfaces are provided alternately in the upper die direction and the lower die direction in the circumferential direction as the shaft.
The impregnation of the thermoplastic resin between the carbon fibers usually takes about 5 to 30 minutes.
However, by preparing a plate-shaped laminated molded material in advance by the forming method of the present invention, the time can be reduced and the forming cycle time of the forming shape can be shortened.

押し切り面が上下交互に、型辺端へ延在するようにすることができる。これにより型に付着したバリを除去し易く、各辺より均等にガス抜きを行うことができる。   The pressing surfaces can be extended alternately up and down to the edge of the mold. As a result, it is easy to remove burrs attached to the mold, and gas can be vented evenly from each side.

押し切り面に凹凸を設けてもよい。この場合でも方形成形型の立ち壁を有する形状を、立ち壁の延在方向が炭素繊維の直行方向と一致するように賦形することで、凹凸が設けられた押し切り面の凹凸の角部においても二方向性織物の織り目のス゛レを低減して過度な強度の低下を防止した。   Concavities and convexities may be provided on the pressing surface. Even in this case, by shaping the shape having a square-shaped standing wall so that the extending direction of the standing wall coincides with the orthogonal direction of the carbon fiber, the corners of the unevenness of the pressing surface provided with the unevenness In this case, the weave of the bi-directional fabric was reduced to prevent an excessive decrease in strength.

強化繊維束が炭素繊維束であれば、軽く高強度の成形品を得ることができる。
また成形型が製品部型と、製品部型の背面に蓄熱盤を備え、製品部型のヒ−タ−と、蓄熱盤からの熱伝導で製品部型の型温を昇温させることによって、蓄熱盤の存在により、製品部型の昇温が早くなり、製品部型のヒ−タ−の容量を低減することができる。
If the reinforcing fiber bundle is a carbon fiber bundle, a light and high-strength molded product can be obtained.
In addition, the mold has a product part mold and a heat storage panel on the back of the product part mold, and by heating the product part mold heater and heat conduction from the heat storage panel, the mold temperature of the product part mold is raised. Due to the presence of the heat storage panel, the temperature of the product part mold is increased, and the capacity of the product part heater can be reduced.

成形型を水冷却によって急冷することができ、成形型を熱可塑性樹脂材の固化温度に冷却する冷却時間を要して、サイクルタイムが過長になることを防止することができる。また成形型の冷却後にエア−で水を抜き取り、成形型の昇温を開始することによって、エア−で水を除去することで、再度の昇温開始を早めることができ、さらに成形サイクルタイムを短縮することができる。   The mold can be rapidly cooled by water cooling, and a cooling time for cooling the mold to the solidification temperature of the thermoplastic resin material is required, so that the cycle time can be prevented from being excessively long. Also, after cooling the mold, water is extracted with air and the mold is started to warm up. By removing water with air, the start of temperature rise can be accelerated, and the molding cycle time can be further reduced. It can be shortened.

積層成形材又は平板積層成形品を予熱すると共に予成型した後に成形型へ投入配置することにより、簡易に効率よく成形型へ投入配置することが可能となる。また積層成形材又は平板積層成形品を予成型した予成型品を準備しておくことによって、さらに成形効率を向上することができる。予成型の態様としては、例えば成形型への積層成形材又は平板積層成形品の投入配置部分の内側形状に沿う形状に積層成形材又は平板積層成形品を予熱すると共に絞り加工を行う。   By preheating and pre-molding the laminated molding material or the flat-plate laminated molded product, it is possible to easily and efficiently place and arrange it in the molding die. Further, by preparing a pre-formed product obtained by pre-forming a laminated molded material or a flat plate-formed product, the molding efficiency can be further improved. As a form of the pre-molding, for example, the laminated molding material or the flat laminate molded product is preheated to a shape along the inner shape of the input arrangement portion of the laminated molding material or the flat laminate molded product into the mold, and the drawing process is performed.

予熱工程を、近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程とすることによって、近赤外線で、予熱対象の分子を加熱し中芯まで加熱でき、また遠赤外線センサ−によって非接触で正確な温度を検知することができる。   The preheating process is a process of heating with near infrared rays, detecting the temperature with a far infrared temperature sensor, adjusting the intensity of the near infrared rays, and raising the temperature to a predetermined temperature. It can be heated and heated to the center, and the far-infrared sensor can detect the accurate temperature without contact.

近赤外線強度を、電圧の連続降下で調整し所定の温度に昇温させることによって近赤外線で、予熱対象の分子を加熱し、予熱対象を効率よく中芯まで加熱することができる。   By adjusting the near-infrared intensity with a continuous voltage drop and raising the temperature to a predetermined temperature, the molecules to be preheated can be heated with the near infrared rays, and the preheated object can be efficiently heated to the center.

積層成形材又は平板積層成形品を熱盤上に炭素繊維面を下向きとして配置して予熱することによって、積層成形材又は平板積層成形品の樹脂が熱盤に溶融接着することを防止することができる。   By pre-heating the laminated molding material or flat plate molded product with the carbon fiber surface facing downward on the hot platen, it is possible to prevent the resin of the laminated molding material or flat plate molded product from being melt bonded to the hot platen. it can.

熱盤上に配置した積層成形材又は平板積層成形品を溶融させて耐熱部材で押圧して繊維間及び成形原反材の層間を溶融接着させ、その後耐熱部材を取り外す工程を含むことによって、耐熱部材から受ける押圧力によって繊維間及び成形原反材の層間を効率よく溶融接着し、さらに成形サイクルタイムを短縮することができる。   By including the process of melting the laminated molding material or flat plate molded article placed on the hot plate and pressing it with a heat-resistant member to melt and bond between the fibers and the interlayer of the molding raw material, and then removing the heat-resistant member By the pressing force received from the member, it is possible to efficiently melt and bond between the fibers and between the layers of the forming raw material, and further shorten the forming cycle time.

上部型と下部型とよりなる成形型によって積層成形材又は平板積層成形品を圧縮する工程を有し、下部型のブロックとこれに対抗する対抗型で挟みながら積層成形材を圧縮成形することによって、成形型へ投入した積層成形材又は平板積層成形品の移動を防止して精度の良い圧縮成形が可能となる。その結果、成形サイクルタイムを短縮することができる。   A step of compressing a laminated molded material or a flat laminated molded product with a molding die comprising an upper die and a lower die, and compressing and molding the laminated molding material while sandwiching it between the block of the lower die and the opposing die. Thus, it is possible to prevent the movement of the laminated molding material or the flat laminated molded article put into the mold and to perform compression molding with high accuracy. As a result, the molding cycle time can be shortened.

上部型のブロックと下部型のブロックとによって積層成形材又は平板積層成形品を挟持する工程と、上部型のブロックと下部型のブロックとによって挟持した積層成形材又は平板積層成形品を凹型へ移動して積層成形材又は平板積層成形品を絞り変形させる工程を有することによって、型の上下ブロックで挟んで凹へ移動し絞ることによって積層成形材又は平板積層成形品の移動を防止して効率よく精度の高い絞り加工が可能となり、複雑形状の成形品の成形サイクルタイムを短縮することができる。   The process of sandwiching the laminated molded material or flat plate molded product between the upper mold block and the lower mold block, and moving the laminated molded material or flat plate molded product sandwiched between the upper mold block and the lower mold block to the concave mold By having the step of drawing and deforming the laminated molded material or flat plate molded product, it is efficiently moved by preventing the movement of the laminated molded material or flat plate molded product by moving to the concave sandwiched between the upper and lower blocks of the mold. High-precision drawing is possible, and the molding cycle time of a molded product having a complicated shape can be shortened.

上部型のブロックを下降し、下部型のブロックを押し上げて積層成形材又は平板積層成形品を挟持することによって、型移動の相対速度を向上して、成形サイクルタイムの更なる短縮が可能となる。   By lowering the upper die block and pushing up the lower die block to sandwich the laminated molding material or flat plate molded article, the relative speed of mold movement can be improved and the molding cycle time can be further shortened. .

以上の本発明の賦形成形方法によって製造された繊維強化樹脂成形品は、高強度軽量で効率よく安価に製造でき、しかも複雑形状の附形も可能であることから、各種用途に適用が可能となる。   The fiber reinforced resin molded product produced by the above forming method of the present invention can be applied to various applications because it can be manufactured with high strength, light weight, efficiency and low cost, and also can be shaped with complex shapes. It becomes.

本発明に係る賦形成形方法及び繊維強化樹脂成形品によれば、成形原反材を用い強度の強い成形品を形状自由度高くかつ効率よく3次元形状に賦形することができる。   According to the forming method and the fiber-reinforced resin molded product according to the present invention, a molded product having a high strength can be molded into a three-dimensional shape efficiently with a high degree of freedom in shape using a molding raw material.

(a)本発明の賦形成形方法で用いる成形原反材の概念図である。(b)図1(a)に示す成形原反材を構成する織物基材の概念図である。(A) It is a conceptual diagram of the shaping | molding raw material used with the forming method of this invention. (B) It is a conceptual diagram of the textile base material which comprises the shaping | molding raw material shown to Fig.1 (a). 本発明の第一の実施の形態の賦形成形方法で用いる賦形成形装置の説明図である。It is explanatory drawing of the shaping apparatus used with the shaping method of 1st embodiment of this invention. (a)図2に示す賦形成形装置の部分拡大斜視図である。(b)図2に示す賦形成形装置の他の部分拡大斜視図である。(A) It is a partial expansion perspective view of the shaping apparatus shown in FIG. (B) It is another partial expansion perspective view of the shaping apparatus shown in FIG. (a)図3(a)矢視IVa図である。(b)図3(b)矢視IVb図である。(A) FIG. 3 (a) is an arrow IVa view. (B) FIG. 3 (b) is an IVb view. (a)本発明の第一の実施の形態の賦形成形方法で用いる他の賦形成形装置の部分拡大斜視図である。(b)本発明の第一の実施の形態の賦形成形方法で用いる他の賦形成形装置の他の部分拡大斜視図である。(A) It is a partial expansion perspective view of the other shaping apparatus used with the shaping method of 1st embodiment of this invention. (B) It is another partial expansion perspective view of the other shaping apparatus used with the shaping method of 1st embodiment of this invention. (a)図5(a)矢視VIa図である。(b)図3(b)矢視VIb図である。(A) FIG. 5 (a) is a view on arrow VIa. (B) FIG. 3 (b) is an arrow VIb view. (a)本発明の第二の実施の形態の賦形成形方法の一工程を示す説明図である。(b)本発明の実施の形態の賦形成形方法の他の工程を示す説明図である。(c)本発明の実施の形態の賦形成形方法のさらに他の工程を示す説明図である。(A) It is explanatory drawing which shows 1 process of the shaping method of 2nd embodiment of this invention. (B) It is explanatory drawing which shows the other process of the shaping method of embodiment of this invention. (C) It is explanatory drawing which shows the other process of the shaping method of embodiment of this invention. 本発明の第三の実施の形態の賦形成形方法に関する説明模式図である。It is a description schematic diagram regarding the shaping method of 3rd embodiment of this invention. 本発明の第三の実施の形態の賦形成形方法に関する他の説明模式図である。It is another explanatory schematic diagram regarding the forming method of the third embodiment of the present invention. 本発明の第四の実施の形態の賦形成形方法に関する説明模式図である。It is a description schematic diagram regarding the shaping method of the fourth embodiment of the present invention. 本発明の第四の実施の形態の賦形成形方法に関する他の説明模式図である。It is another explanatory schematic diagram regarding the forming method of the fourth embodiment of the present invention. 本発明の第七の実施の形態の賦形成形方法で用いる賦形成形装置の説明図である。It is explanatory drawing of the shaping apparatus used with the shaping method of the 7th embodiment of this invention. 本発明の第八の実施の形態の賦形成形方法で用いる賦形成形装置の説明図である。It is explanatory drawing of the shaping apparatus used with the shaping method of 8th embodiment of this invention. 本発明の実施例で製造した製品の写真である。It is a photograph of the product manufactured in the Example of this invention. 本発明の実施例で製造した他の製品の写真である。It is a photograph of the other product manufactured in the Example of this invention. 本発明の実施例の工程図である。It is process drawing of the Example of this invention.

本発明の賦形成形方法は、図1(a)に示す成形原反材1を用いて行う。図1(a)に示すように、成形原反材1は、複数本の強化繊維束2を含む織物基材3の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料4が付着してなる。   The forming method of the present invention is performed using a forming raw material 1 shown in FIG. As shown in FIG. 1 (a), in the forming raw material 1, a resin material 4 containing a thermoplastic resin as a main component adheres to at least one surface of a woven fabric base 3 including a plurality of reinforcing fiber bundles 2. It becomes.

織物基材3は、図1(b)に示すように互いに平行となるよう一方向に引き揃えられた複数本の強化繊維束2を直交する二方向に織成してなる二方向性織物である。二方向性織物は、強化繊維束2間の相対位置の変化による変形がしやすく立体形状に変形しやすいこと、少ない枚数で力学的に擬似等方性を有する積層成形材を得やすい利点がある。
強化繊維束2は、炭素繊維束、黒鉛繊維束、ガラス繊維束、または、アラミド繊維束などを用いることができ、炭素繊維束であることが好ましい。炭素繊維束を用いることにより、最終製品である繊維強化樹脂成形品の力学特性を高いものとすることができる。
As shown in FIG. 1B, the fabric base 3 is a bi-directional fabric formed by weaving a plurality of reinforcing fiber bundles 2 aligned in one direction so as to be parallel to each other in two orthogonal directions. The bi-directional woven fabric has the advantage that it is easy to be deformed due to a change in the relative position between the reinforcing fiber bundles 2 and is easily deformed into a three-dimensional shape, and that it is easy to obtain a laminated molding material that is mechanically pseudo-isotropic with a small number of sheets. .
The reinforcing fiber bundle 2 may be a carbon fiber bundle, a graphite fiber bundle, a glass fiber bundle, an aramid fiber bundle, or the like, and is preferably a carbon fiber bundle. By using the carbon fiber bundle, the mechanical properties of the fiber reinforced resin molded product as the final product can be improved.

織物基材3の表面に付着している樹脂材料4は、織物基材3の層間を接着する作用を得ることができる熱可塑性樹脂を主成分とする。熱可塑性樹脂としては、例えば、ポリアミド、ポリスルフォン、ポリエーテルイミド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミドなどがある。樹脂材料4が熱可塑性樹脂を主成分とするものとすることによって成形原反材1を積層して、立体形状へと変形させた後に織物基材3の層間を接着させる場合の取り扱い性が向上し、生産性が向上する。なお、主成分とは樹脂材料4を構成する成分の中で、その割合が最も多い成分である。   The resin material 4 adhering to the surface of the woven fabric base 3 is mainly composed of a thermoplastic resin capable of obtaining the action of bonding the layers of the woven fabric base 3. Examples of the thermoplastic resin include polyamide, polysulfone, polyetherimide, polyphenylene ether, polyimide, and polyamideimide. By making the resin material 4 a thermoplastic resin as a main component, the handling property in the case of bonding the layers of the fabric base material 3 after laminating the forming raw material 1 and deforming it into a three-dimensional shape is improved. And productivity is improved. The main component is a component having the largest ratio among the components constituting the resin material 4.

以下に本発明の第一の実施の形態の賦形成形方法を図2を参照して詳述する。
先ず成形原反材1を積層し、予備積層成形型(図示せず)で予備圧縮成形した積層成形材5を予備加熱型6で予備加熱する。
予備加熱にあたっては上部より近赤外線放射装置7によって近赤外線で予備加熱型6内の熱盤8上に載置された積層成形材5を加熱し、遠赤外線温度センサ−(図示せず)で積層成形材5の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し所定の温度に積層成形材5を昇温させる。
一方3次元形状を有する賦形型である成形型9を予熱して成形原反材1の溶融温度に昇温する。次に積層成形材5を予熱された成形型9に収納し、成形型9によって積層成形材5を圧縮する。これによって織物基材3に付着している樹脂材料4を軟化して積層成形材5の層間を接着し、形状を保持させる。
その後成形型9を固化温度に急冷して型を開き離型する。以上の各工程によって成形原反材1を積層して3次元形状に賦形する。
Hereinafter, the forming method according to the first embodiment of the present invention will be described in detail with reference to FIG.
First, the forming raw material 1 is laminated, and a laminated molding material 5 preliminarily compression-molded with a preliminary lamination mold (not shown) is preheated with a preheating mold 6.
In the preheating, the laminated molding material 5 placed on the heating plate 8 in the preheating mold 6 is heated in the near infrared by the near infrared radiation device 7 from above and laminated by a far infrared temperature sensor (not shown). The temperature of the molding material 5 is detected, the intensity of near infrared rays by the near infrared radiation device 7 is adjusted, and the laminated molding material 5 is heated to a predetermined temperature.
On the other hand, the forming die 9 which is a shaping die having a three-dimensional shape is preheated and the temperature is raised to the melting temperature of the forming raw material 1. Next, the laminated molding material 5 is accommodated in a preheated molding die 9, and the laminated molding material 5 is compressed by the molding die 9. As a result, the resin material 4 adhering to the fabric base material 3 is softened, the layers of the laminated molding material 5 are bonded, and the shape is maintained.
Thereafter, the mold 9 is rapidly cooled to the solidification temperature, and the mold is opened and released. The forming raw material 1 is laminated by the above steps and shaped into a three-dimensional shape.

積層成形材5を加熱する温度は、樹脂材料4が軟化して積層成形材5の層間を接着させる温度である。積層成形材5が加圧されながら加熱されることで、積層成形材5を構成する複数本の強化繊維束2を含む織物基材3が互いに強く押付けられ、軟化した樹脂材料4が対向する複数本の強化繊維束を含む織物基材を構成する強化繊維束の単糸の間に浸透する。次いで積層成形材5が冷却されることにより、樹脂材料4は対向する複数本の強化繊維束を含む織物基材に付着し、積層成形材5の層間を接着する。   The temperature at which the laminated molding material 5 is heated is a temperature at which the resin material 4 is softened to bond the layers of the laminated molding material 5 together. When the laminated molding material 5 is heated while being pressed, the fabric base materials 3 including the plurality of reinforcing fiber bundles 2 constituting the laminated molding material 5 are strongly pressed against each other, and the softened resin materials 4 are opposed to each other. It penetrates between the single yarns of the reinforcing fiber bundles constituting the fabric base material including the reinforcing fiber bundles of the book. Next, when the laminated molding material 5 is cooled, the resin material 4 adheres to the fabric base material including a plurality of opposing reinforcing fiber bundles, and bonds the layers of the laminated molding material 5 together.

この様に積層成形材5を立体形状に変形させ層間を接着することにより、シワが無い立体形状の成形体を製造することができる。またこの成形体は積層成形材5の層間が接着されているために、剛性が高く形状保持性に優れており、取り扱いが効率よく行える。   In this way, by deforming the laminated molding material 5 into a three-dimensional shape and bonding the layers, a three-dimensional shaped product having no wrinkles can be manufactured. Further, since this molded body is bonded between the layers of the laminated molding material 5, it has high rigidity and excellent shape retention, and can be handled efficiently.

成形型9は製品部型10と、蓄熱盤11とよりなり、製品部型10に備えたヒ−タ−12と蓄熱盤11よりの熱伝導で成形型9の型温を昇温させる。また成形型9は水冷のための冷却通水経路13を備え、成形型9は冷却通水経路13に通水することによって急冷される。冷却通水経路13はエア−を印加することによって効率的に水を抜き取り降下させることができる。すなわち成形型9の型温が所定の冷却温度に達した後、冷却通水経路13における通水を止めエア−を印加することによって、成形型9の冷却を終了し、成形型9内の製品を取り出した後に、成形型9の再度の昇温を効率的に開始することができる。   The mold 9 includes a product part mold 10 and a heat storage board 11, and raises the mold temperature of the mold 9 by heat conduction from the heater 12 and the heat storage board 11 provided in the product part mold 10. The mold 9 is provided with a cooling water passage 13 for water cooling, and the molding die 9 is rapidly cooled by passing water through the cooling water passage 13. The cooling water passage 13 can efficiently extract and lower water by applying air. That is, after the mold temperature of the mold 9 reaches a predetermined cooling temperature, the cooling of the mold 9 is finished by stopping water flow in the cooling water passage 13 and applying air. After taking out, the temperature rise of the mold 9 can be efficiently started again.

また図3及び図4に示すように成形型9の積層成形材5に対する加圧方向を軸とする周回方向に上型9aと下型9bとのそれぞれには、交互に押し切り面91a及び91bを設ける。
これにより積層成形材5を溶融温度に加熱後固化温度へ冷却することによって、バリが発生しても、材料が成形型9に付着して離型しにくくなることを防止することができ、成形品を離型しやすくすることができる。また、バリが付着した成形型9から、バリを容易に除去することができる。
Further, as shown in FIGS. 3 and 4, the upper die 9a and the lower die 9b are alternately provided with pressing surfaces 91a and 91b in the circumferential direction around the pressing direction of the molding die 9 with respect to the laminated molding material 5, respectively. Provide.
Thus, by heating the laminated molding material 5 to the melting temperature and then cooling it to the solidification temperature, even if burrs are generated, it is possible to prevent the material from adhering to the molding die 9 and becoming difficult to be released. The product can be easily released. Further, burrs can be easily removed from the mold 9 to which burrs have adhered.

上型9aと下型9bとのそれぞれに交互に押し切り面91a及び91bを設ける態様は、図5及び図6示すように、押し切り面91a及び91bが上下交互に、型辺端へ延在するようにすることができる。これにより成形型9に付着したバリを除去し易く、各辺より均等にガス抜きを行うことができる。   As shown in FIGS. 5 and 6, the cut surfaces 91a and 91b are alternately provided on the upper die 9a and the lower die 9b so that the push cut surfaces 91a and 91b extend alternately up and down. Can be. Thereby, the burr | flash adhering to the shaping | molding die 9 is easy to be removed, and it can degas from each side equally.

次に本発明の第二の実施の形態の賦形成形方法を図7を参照して詳述する。
第二の実施の形態の賦形成形方法では正方形若しくは直方形の成形原反材1を複数用い、この各成形原反材1を、最上面の成形原反材1のみ織物基材3を上側として樹脂材料4が付着した面を下側にし、それ以外は織物基材3を下側として樹脂材料4が付着した面を上側にして積層し、その積層された積層成形材14を第一の実施の形態と同様に圧縮成形して平板状の平板積層成形品15とする。
この第二の実施の形態は成形型9が正方形平板状若しくは直方形平板状の平板積層成形品15を成形する点で第一の実施の形態の賦形成形方法と異なる。
Next, the forming method according to the second embodiment of the present invention will be described in detail with reference to FIG.
In the forming method of the second embodiment, a plurality of square or rectangular forming raw material 1 is used, and each forming raw material 1 is the uppermost forming raw material 1 and the fabric base material 3 is the upper side. Are laminated with the surface of the resin material 4 attached on the lower side and the other side of the fabric base material 3 on the lower side with the surface of the resin material 4 attached on the upper side. The flat plate laminated product 15 is formed by compression molding as in the embodiment.
This second embodiment differs from the forming method of the first embodiment in that the mold 9 forms a flat plate laminated product 15 having a square flat plate shape or a rectangular flat plate shape.


次に本発明の第三の実施の形態の賦形成形方法を説明する。

第三の実施の形態の賦形成形方法では、少なくとも外側に積層される強化繊維束2として、直交する二方向が一致する複数の織物基材3を積層した積層成形材5を用い、図8に示すように積層成形材5を予熱して二方向性織物である織物基材3の直交する二方向の各々が成形型9のいずれかの押し切り面91a又は押し切り面91bと直交する位置関係で成形型9へ投入配置する予熱工程とを有する点で第二の実施の形態と異なる。

Next, the forming method according to the third embodiment of the present invention will be described.

In the forming method of the third embodiment, a laminated molding material 5 in which a plurality of fabric base materials 3 in which two orthogonal directions coincide is used as the reinforcing fiber bundle 2 laminated at least on the outside. As shown in FIG. 4, the laminated molding material 5 is preheated, and each of the two orthogonal directions of the fabric base material 3 that is a bidirectional fabric is in a positional relationship orthogonal to either the pressing surface 91a or the pressing surface 91b of the molding die 9. The second embodiment is different from the second embodiment in that it has a preheating step of placing in the mold 9.

かかる第三の実施の形態の賦形成形方法では、成形型9の押し切り面91a又は押し切り面91bを形成する立ち壁の延在方向が織物基材3の直行方向と一致した状態で賦形することで、成形型9の角部においても織物基材3の織り目のス゛レを低減して過度な強度の低下を防止することができる。すなわち図8に示すように成形型9の角部においては、賦形する過程で成形型9の中心から角部に向かう方向の負荷によって織物基材3の繊維間の間隔が増大する。しかし、織物基材3の繊維か欠損する、若しくは欠落することはない。これに対して図9に示すように成形型9の押し切り面91a又は押し切り面91bを形成する立ち壁の延在方向が織物基材3の直行方向と一致しない状態で賦形する場合には、織物基材3の繊維か欠損する、若しくは欠落する領域が生じ、得られる成形品の成形型9の角部に対応する領域の強度が低下する。   In the forming method according to the third embodiment, the forming is performed in a state in which the extending direction of the standing wall that forms the pressing surface 91a or the pressing surface 91b of the mold 9 coincides with the orthogonal direction of the woven fabric base 3. As a result, even at the corners of the mold 9, the displacement of the weave of the woven base material 3 can be reduced to prevent an excessive decrease in strength. That is, as shown in FIG. 8, at the corners of the mold 9, the spacing between the fibers of the fabric base 3 increases due to the load in the direction from the center of the mold 9 toward the corners during the shaping process. However, the fiber of the fabric base 3 is not missing or missing. On the other hand, as shown in FIG. 9, when shaping in a state in which the extending direction of the standing wall forming the pressing surface 91 a or the pressing surface 91 b of the mold 9 does not coincide with the orthogonal direction of the fabric base material 3, An area where the fiber of the woven fabric base 3 is missing or missing occurs, and the strength of the area corresponding to the corner of the mold 9 of the obtained molded product is lowered.

次に本発明の第四の実施の形態の賦形成形方法を説明する。
第四の実施の形態の賦形成形方法では、図10に示すように成形型9の押し切り面91a及び/又は押し切り面91bに凹凸を設けて賦形が行われる。この場合でも押し切り面91a及び/又は押し切り面91bを形成する立ち壁の延在方向が織物基材3の直行方向と一致した状態で賦形することで、押し切り面91a及び/又は押し切り面91bの凹凸の角部においても織物基材3の繊維か欠損する、若しくは欠落する領域が生じ過度な強度の低下を防止することができる。
この場合に図11に示すように成形型9の凹凸を設けた押し切り面91a及び/又は押し切り面91bを形成する立ち壁の延在方向が織物基材3の直行方向と一致しない状態で賦形するときには、押し切り面91a及び/又は押し切り面91bの凹凸の角部において織物基材3の繊維か欠損する、若しくは欠落する領域が生じ、得られる成形品の成形型9の角部に対応する領域の強度が低下する。
Next, a forming method according to the fourth embodiment of the present invention will be described.
In the shaping method according to the fourth embodiment, as shown in FIG. 10, shaping is performed by providing irregularities on the pressing surface 91 a and / or the pressing surface 91 b of the mold 9. Even in this case, by shaping in a state in which the extending direction of the standing wall that forms the pressing surface 91a and / or the pressing surface 91b coincides with the orthogonal direction of the fabric base material 3, the pressing surface 91a and / or the pressing surface 91b Even in the corners of the projections and depressions, the fibers of the fabric base 3 are missing or missing, and an excessive decrease in strength can be prevented.
In this case, as shown in FIG. 11, shaping is performed in a state in which the extending direction of the standing wall forming the pressing surface 91 a and / or the pressing surface 91 b provided with the unevenness of the mold 9 does not coincide with the orthogonal direction of the woven fabric base 3. When doing, the area | region where the fiber of the textile base material 3 is missing or missing occurs at the corners of the unevenness of the pressing surface 91a and / or the pressing surface 91b, and the region corresponding to the corners of the molding die 9 of the obtained molded product The strength of is reduced.

第五の実施の形態の賦形成形方法第六の実施の形態の賦形成形方法
次に本発明の第五の実施の形態の賦形成形方法を説明する。
第五の実施の形態の賦形成形方法では、積層成形材14又は平板積層成形品15の投入配置部分の成形型9内側形状に沿う形状に積層成形材14又は平板積層成形品15を予熱すると共に予成型として絞り加工を行う点で第一の実施の形態及び第二の実施の形態と異なる。第五の実施の形態の賦形成形方法では、積層成形材14又は平板積層成形品15を成形型9へ簡易に効率よく投入配置することが可能となる。
Forming Method of Fifth Embodiment Forming Method of Sixth Embodiment Next, a forming method of the fifth embodiment of the present invention will be described.
In the forming method of the fifth embodiment, the laminated molding material 14 or the flat plate molded product 15 is preheated to a shape that conforms to the inner shape of the molding die 9 of the input arrangement portion of the laminated molding material 14 or the flat plate molded product 15. In addition, it differs from the first embodiment and the second embodiment in that the drawing is performed as a pre-molding. In the forming method according to the fifth embodiment, the laminated molding material 14 or the flat laminate molded article 15 can be simply and efficiently placed and placed in the molding die 9.

次に本発明の第六の実施の形態の賦形成形方法を図2、図7を参照して詳述する。
この第六の実施の形態の賦形成形方法では、平板積層成形品15を用いて最終製品の成形を行う点で第一の実施の形態の賦形成形方法と異なる。
先ず平板積層成形品15を成形型9に収納する前に予備加熱型6で予熱する。
予備加熱にあたっては上部より近赤外線放射装置7から放射される近赤外線によって平板積層成形品15を加熱し、遠赤外線温度センサ−で平板積層成形品15の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し所定の温度に平板積層成形品15を昇温させる。
Next, the forming method according to the sixth embodiment of the present invention will be described in detail with reference to FIGS.
The forming method according to the sixth embodiment differs from the forming method according to the first embodiment in that the final product is formed using the flat plate molded product 15.
First, the flat laminated molded product 15 is preheated by the preheating mold 6 before being stored in the mold 9.
In the preliminary heating, the flat plate molded product 15 is heated by near infrared rays radiated from the near infrared radiation device 7 from above, and the temperature of the flat plate molded product 15 is detected by a far infrared temperature sensor. The intensity of near-infrared light is adjusted to raise the temperature of the flat plate molded product 15 to a predetermined temperature.

以上の近赤外線の強度は、近赤外線放射装置7への通電圧の連続降下で調整する。通電圧のON−OFFで近赤外線による加熱及びその停止を反復した場合には加熱対象の温度変化の脈動が大きく安定しない。これに対して近赤外線の強度を通電圧のON−OFFではなく電圧の連続降下で調整することによって、近赤外線が連続して照射されて温度変化に脈動が生じることはなく、加熱対象の温度を効率的に設定温度で安定させることができる。
また平板積層成形品15は予備加熱型6内の熱盤8上に炭素繊維面を下向きとして配置して予熱する。これによって平板積層成形品15の樹脂成分を近赤外線放射装置7によって効率よく軟化させることができる。
またその際、熱盤8上に配置した平板積層成形品15を耐熱部材(図示せず)で押圧して軟化させ、その後耐熱部材を取り外して予熱するようにすることもできる。この様にすることによって平板積層成形品15の予熱を効率よく行うことができる。
以上の様にして予熱された平板積層成形品15を第一の実施の形態と同様に予熱された成形型9に収納し、第一の実施の形態と同様にして圧縮成形する。
The intensity of the near infrared light described above is adjusted by a continuous drop of the conduction voltage to the near infrared radiation device 7. When the heating by near infrared rays and the stop thereof are repeated with ON / OFF of the conduction voltage, the pulsation of the temperature change of the heating target is largely unstable. On the other hand, by adjusting the intensity of the near infrared rays not by ON / OFF of the voltage but by the continuous voltage drop, the near infrared rays are continuously irradiated so that there is no pulsation in the temperature change, and the temperature of the heating target Can be efficiently stabilized at the set temperature.
The flat plate molded product 15 is preheated by placing the carbon fiber surface downward on the heating plate 8 in the preheating mold 6. As a result, the resin component of the flat laminate molded product 15 can be efficiently softened by the near infrared radiation device 7.
At that time, the flat laminated product 15 arranged on the hot platen 8 may be pressed and softened by a heat-resistant member (not shown), and then the heat-resistant member is removed and preheated. By doing in this way, the flat laminated product 15 can be preheated efficiently.
The flat laminated product 15 preheated as described above is accommodated in the preheated mold 9 as in the first embodiment, and compression molded as in the first embodiment.

次に本発明の第七の実施の形態の賦形成形方法を図12を参照して詳述する。
この第七の実施の形態の賦形成形方法では、第六の実施の形態と同様に成形型9の製品部型10を構成する上部型16と下部型17によって予熱された平板積層成形品15を圧縮するにあたって、下部型17の中央部ブロック17aとこれに対抗する対抗型18によって挟みながら平板積層成形品15を圧縮成形する。
Next, the forming method according to the seventh embodiment of the present invention will be described in detail with reference to FIG.
In the forming method according to the seventh embodiment, the flat plate molded product 15 preheated by the upper mold 16 and the lower mold 17 constituting the product part mold 10 of the mold 9 as in the sixth embodiment. , The flat plate molded product 15 is compression-molded while being sandwiched between the central block 17a of the lower die 17 and the opposing die 18 opposed thereto.

さらに第八の実施の形態では図13に示すように平板積層成形品15を成形型9に投入し、上部型16の中央部ブロック16aを下降し、下部型17の中央部ブロック17aを押し上げて平板積層成形品15を挟持する。その上部型16の中央部ブロック16aと下部型17の中央部ブロック17aとによって挟持した平板積層成形品15を凹型19へ移動して絞り変形させて圧縮成形する。   Further, in the eighth embodiment, as shown in FIG. 13, the flat plate molded product 15 is put into the mold 9, the central block 16a of the upper mold 16 is lowered, and the central block 17a of the lower mold 17 is pushed up. The flat laminated product 15 is sandwiched. The flat plate molded product 15 sandwiched between the central block 16a of the upper mold 16 and the central block 17a of the lower mold 17 is moved to the concave mold 19 and is squeezed and deformed for compression molding.

二方向性織物基材3の一方の表面に、ポリフェニレンサルファイド樹脂(PPS)を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の成形原反材1を複数用意した。この各成形原反材1は正方形の辺の方向をそれぞれ0°、90°方向としたときに、繊維軸方向が概ね0、90°方向となるものとした。
この各成形原反材1を、最上面の強化繊維織物のみ樹脂材料4が付着した面を下側にし、それ以外は樹脂材料4が付着した面を上側にして積層した積層成形材14を得た。
On one surface of the bi-directional woven fabric base 3, a plurality of 100 mm × 100 mm square forming raw material 1 having a resin material 4 mainly composed of polyphenylene sulfide resin (PPS) adhered to the surface was prepared. . Each forming raw material 1 had a fiber axis direction of approximately 0 or 90 ° when the directions of the square sides were 0 ° and 90 °, respectively.
A laminated molding material 14 is obtained by laminating each of the raw molding materials 1 with the uppermost reinforcing fiber woven fabric having the resin material 4 attached to the lower side and the other side having the resin material 4 attached to the upper side. It was.

その積層成形材14を熱盤8上に配置し、上部より近赤外線放射装置7によって近赤外線で積層成形材14を加熱し、遠赤外線温度センサ−で積層成形材14の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し積層成形材14を昇温させ予熱した。
近赤外線の強度は、近赤外線放射装置7への通電圧の連続降下で調整し、また積層成形材14は熱盤8上に炭素繊維面を下向きとして配置して予熱した。
The laminated molding material 14 is placed on the heating plate 8, the laminated molding material 14 is heated by the near infrared radiation device 7 from above, and the temperature of the laminated molding material 14 is detected by a far infrared temperature sensor. The intensity of near infrared rays by the infrared radiation device 7 was adjusted, and the laminated molding material 14 was heated and preheated.
The intensity of the near infrared ray was adjusted by a continuous drop of the conduction voltage to the near infrared radiation device 7, and the laminated molding material 14 was preheated by placing the carbon fiber surface downward on the heating plate 8.

一方、製品部型10と、蓄熱盤11とよりなり、製品部型10に備えたヒ−タ−12と蓄熱盤11よりの熱伝導で成形型9の型温を昇温させて予熱し、この予熱された成形型9に予熱した積層成形材14を収納し、加圧しながら成形型9の提供する平板状の平板積層成形品形状に変形させた。その後、成形型9を冷却通水経路13に通水することによって急冷し、さらに冷却通水経路13にエア−を印加することによって効率的に水を抜き取り降下させ、冷却によって固化した平板積層成形品15を得た。
表1に以上の各工程における温度、圧力、所要時間を示す。
On the other hand, it consists of a product part mold 10 and a heat storage board 11, preheats by raising the mold temperature of the mold 9 by heat conduction from the heater 12 and the heat storage board 11 provided in the product part mold 10, The preheated laminated molding material 14 was accommodated in the preheated mold 9 and deformed into a flat plate laminated molded product shape provided by the mold 9 while being pressed. Thereafter, the forming die 9 is rapidly cooled by passing water through the cooling water passage 13, and further, by applying air to the cooling water passage 13, water is efficiently extracted and lowered, and solidified by cooling. Product 15 was obtained.
Table 1 shows the temperature, pressure, and required time in each of the above steps.

他は実施例1と同様にして、アクリル樹脂を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の成形原反材1を用いて、実施例1と同様の賦形成形を行った。
表2にその各工程における温度、圧力、所要時間を示す。
Others were the same as in Example 1, using a 100 mm × 100 mm square molding raw material 1 having a resin material 4 having an acrylic resin as a main component adhered to the surface. Formed.
Table 2 shows the temperature, pressure, and required time in each process.

平板積層成形品15を熱盤8上に配置し、上部より近赤外線放射装置7によって近赤外線で平板積層成形品15を加熱し、遠赤外線温度センサ−で平板積層成形品15の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し所定の温度に平板積層成形品15を昇温させ予熱した。近赤外線の強度は、近赤外線放射装置7への通電圧の連続降下で調整した。
また上部型16と下部型17とよりなる製品部型10内側形状に沿う形状に平板積層成形品15の絞り加工を行なった。
The flat plate molded product 15 is placed on the heating platen 8, the flat plate molded product 15 is heated by near infrared radiation from the upper part by the near infrared radiation device 7, and the temperature of the flat plate molded product 15 is detected by a far infrared temperature sensor. Then, the intensity of near infrared rays by the near infrared radiation device 7 was adjusted, and the flat plate molded article 15 was heated to a predetermined temperature and preheated. The intensity of the near infrared ray was adjusted by a continuous drop of the conduction voltage to the near infrared radiation device 7.
Further, the flat plate molded product 15 was drawn into a shape along the inner shape of the product part mold 10 including the upper mold 16 and the lower mold 17.

一方、上部型16と下部型17とよりなる製品部型10に備えたヒ−タ−12と蓄熱盤11よりの熱伝導で上部型16と下部型17の型温を昇温させて予熱し、この予熱された上部型16と下部型17内側に予熱した平板積層成形品15を収納し、上部型16の中央部ブロック16aと下部型17の中央部ブロック17aとによって平板積層成形品15を挟持し、上部型16の中央部ブロック16aと下部型17の中央部ブロック17aとによって挟持した平板積層成形品15を凹型19へ移動して平板積層成形品15を絞り変形させ、さらに平板積層成形品15を圧縮成形した。その後、成形型9を冷却通水経路13に通水することによって急冷し、さらに冷却通水経路13にエア−を印加することによって効率的に水を抜き取り降下させ、冷却によって固化し、図14に示す製品を得た。   On the other hand, preheating is performed by raising the mold temperatures of the upper mold 16 and the lower mold 17 by heat conduction from the heater 12 and the heat storage board 11 provided in the product mold 10 including the upper mold 16 and the lower mold 17. Then, the preheated flat plate molded product 15 is accommodated inside the upper die 16 and the lower die 17, and the flat plate molded product 15 is formed by the central block 16a of the upper die 16 and the central block 17a of the lower die 17. The flat plate laminated molded product 15 sandwiched between the central block 16a of the upper die 16 and the central block 17a of the lower die 17 is moved to the concave die 19 and the flat laminated molded product 15 is squeezed and deformed. Article 15 was compression molded. Thereafter, the mold 9 is rapidly cooled by passing water through the cooling water passage 13, and further, air is efficiently extracted by applying air to the cooling water passage 13, and solidified by cooling. I got the product shown in

また同様の工程をアクリル樹脂を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の成形原反材1を用いて行った。得られた製品を図15に示す。
各製品は図14、図15に示す様に何れの場合も表面性状が良好な3次元形状の皿状製品が得られた。
図16に実施例3の各工程及び使用/設備及び使用/型と、各工程における所要時間を示す。
図に示されるようにアクリル樹脂を主成分とする樹脂材料4を用いた場合で11.5分、ポリフェニレンサルファイド樹脂(PPS)を主成分とする樹脂材料4を用いた場合で13.5分のサイクルタイムでの製造が可能となった。

A similar process was performed using a square forming raw material 1 having a size of 100 mm × 100 mm in which a resin material 4 mainly composed of an acrylic resin adhered to the surface. The obtained product is shown in FIG.
As shown in FIGS. 14 and 15, each product was a three-dimensional dish-like product having a good surface property.
FIG. 16 shows each process and use / equipment and use / type of Example 3 and the required time in each process.
As shown in the figure, 11.5 minutes when the resin material 4 mainly composed of acrylic resin is used, and 13.5 minutes when the resin material 4 mainly composed of polyphenylene sulfide resin (PPS) is used. Manufacture with cycle time became possible.

1・・・成形原反材、2・・・強化繊維束、3・・・織物基材、4・・・樹脂材料、5,14・・・積層成形材、6・・・予備加熱型、7・・・近赤外線放射装置、9・・・成形型、91a,91b・・・押し切り面、10・・・製品部型、11・・・蓄熱盤、13・・・冷却通水経路、12・・・ヒ−タ−、15・・・平板積層成形品、17・・・下部型、17a・・・下部型中央部ブロック、16・・・上部型、16a・・・上部型中央部ブロック、18・・・対抗型、19・・・凹型。 DESCRIPTION OF SYMBOLS 1 ... Molding raw material, 2 ... Reinforcement fiber bundle, 3 ... Textile base material, 4 ... Resin material, 5,14 ... Laminated molding material, 6 ... Preheating type, DESCRIPTION OF SYMBOLS 7 ... Near-infrared radiation | emission apparatus, 9 ... Mold, 91a, 91b ... Cut surface, 10 ... Product part type | mold, 11 ... Heat storage board, 13 ... Cooling water flow path, 12 ... Heater, 15 ... Flat plate molded product, 17 ... Lower mold, 17a ... Lower mold center block, 16 ... Upper mold, 16a ... Upper mold center block , 18 ... Counter type, 19 ... Concave type.

Claims (14)


複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有し、前記成形型による加圧方向を軸とする周回方向に上型方向と下型方向とに交互に押し切り面を設けることを特徴とする賦形成形方法。



A laminated molding material obtained by cutting and laminating a molding raw material having a resin material mainly composed of a thermoplastic resin attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles is placed in a molding die. In a forming method of pressurizing and heating to melt a resin material adhering to a textile substrate including a plurality of reinforcing fiber bundles to bond between the fibers and the interlayer of the forming raw material, A process for raising the temperature to the melting temperature, a preheating process for preheating the laminated molding material and placing it in the mold, a process for clamping and pressurizing the mold, and cooling the mold to the solidification temperature to open and separate the mold. A forming step, wherein a pressing surface is provided alternately in an upper die direction and a lower die direction in a circumferential direction centering on a pressing direction by the molding die.



複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程と、を行い平板形状の平板積層成形品を成形する工程と、前記平板積層成形品を所定の形状に裁断する工程と、賦形をする成形型を溶融温度に昇温する工程と、前記平板積層成形品を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有し、前記成形型による加圧方向を軸とする周回方向に上型方向と下型方向とに交互に押し切り面を設けることを特徴とする賦形成形方法。



A laminated molding material obtained by cutting and laminating a molding raw material having a resin material mainly composed of a thermoplastic resin attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles is placed in a molding die. In a forming method of pressurizing and heating to melt a resin material adhering to a textile substrate including a plurality of reinforcing fiber bundles to bond between the fibers and the interlayer of the forming raw material, A process for raising the temperature to the melting temperature, a preheating process for preheating the laminated molding material and placing it in the mold, a process for clamping and pressurizing the mold, and cooling the mold to the solidification temperature to open and separate the mold. Forming a flat plate-shaped laminated product, cutting the flat plate-shaped product into a predetermined shape, and heating the forming mold to a melting temperature. , A preheating step of preheating the flat laminated molded product and placing it in a mold, and molding A mold is clamped and pressed, and the mold is cooled to a solidification temperature, and the mold is opened and released, and the upper mold direction and the lower mold are in the circumferential direction around the pressurizing direction by the mold. A forming method characterized in that pressing surfaces are alternately provided in a direction.



押し切り面を、上下交互に、型辺端へ延長した請求項1に記載の賦形成形方法。

The forming method according to claim 1, wherein the press-cut surfaces are extended alternately to the mold edge.

強化繊維束が炭素繊維束である請求項1〜請求項3のいずれか一に記載の賦形成形方法。



The forming method according to any one of claims 1 to 3, wherein the reinforcing fiber bundle is a carbon fiber bundle.



成形型が製品部型と、製品部型の背面に蓄熱盤を備え、製品部型のヒ−タ−と、蓄熱盤からの熱伝導で製品部型の型温を昇温させることを特徴とする請求項1〜請求項4のいずれか一に記載の賦形成形方法。



The mold has a product part mold and a heat storage panel on the back of the product part mold. The product part heater and the heat conduction from the heat storage panel increase the temperature of the product part mold. The shaping method according to any one of claims 1 to 4.



成形型の冷却が水冷であり、成形型の冷却後にエア−で水を抜き取り、成形型の昇温を開始することを特徴とする請求項1〜請求項5のいずれか一に記載の賦形成形方法。

6. The forming process according to claim 1, wherein the cooling of the mold is water cooling, and water is extracted by air after the mold is cooled, and the temperature rise of the mold is started. Shape method.

積層成形材又は平板積層成形品を予熱すると共に予成型した後に成形型へ投入配置することを特徴とする請求項1〜請求項6のいずれか一に記載の賦形成形方法。



The forming method according to any one of claims 1 to 6, wherein the laminate molding material or the flat laminate molded product is preheated and pre-molded and then placed in a molding die.



予熱工程が、近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程である請求項1〜請求項7のいずれか一に記載の賦形成形方法。



The preheating step is a step of heating with near infrared rays, detecting the temperature with a far infrared ray temperature sensor, adjusting the intensity of near infrared rays, and raising the temperature to a predetermined temperature. The forming method described.



近赤外線強度を、電圧の連続降下で調整し所定の温度に昇温させることを特徴とする請求項8記載の賦形成形方法。



9. The forming method according to claim 8, wherein the near infrared intensity is adjusted to a predetermined temperature by adjusting the voltage drop continuously.



積層成形材又は平板積層成形品を熱盤上に炭素繊維面を下向きとして配置して予熱することを特徴とする請求項8又は請求項9記載の賦形成形方法。



10. The forming method according to claim 8, wherein the laminated molding material or the flat laminated molded article is preheated by placing the carbon fiber surface downward on a heating plate.



熱盤上に配置した積層成形材又は平板積層成形品を溶融させて耐熱部材で押圧して繊維間及び成形原反材の層間を溶融接着させ、その後耐熱部材を取り外す工程を含む請求項8〜請求項10のいずれか一記載の賦形成形方法。



The method includes the steps of melting a laminated molding material or a flat laminate molded article arranged on a hot platen and pressing with a heat-resistant member to melt-bond the fibers and the layers of the forming raw material, and then remove the heat-resistant member. The shaping method according to claim 10.



上部型と下部型とよりなる成形型によって積層成形材又は平板積層成形品を圧縮する工程を有し、下部型のブロックとこれに対抗する対抗型で挟みながら積層成形材を圧縮成形することを特徴とする請求項1〜請求項11のいずれか一記載の賦形成形方法。



It has a step of compressing a laminated molded material or a flat plate molded product by a molding die composed of an upper mold and a lower mold, and compression molding the laminated molded material while sandwiching it between a block of the lower mold and a counter mold opposed thereto. The shaping method according to any one of claims 1 to 11, characterized in that it is characterized in that



上部型のブロックと下部型のブロックとによって積層成形材又は平板積層成形品を挟持する工程と、上部型のブロックと下部型のブロックとによって挟持した積層成形材又は平板積層成形品を凹型へ移動して積層成形材又は平板積層成形品を絞り変形させる工程を有することを特徴とする請求項12記載の賦形成形方法。



The process of sandwiching the laminated molded material or flat plate molded product between the upper mold block and the lower mold block, and moving the laminated molded material or flat plate molded product sandwiched between the upper mold block and the lower mold block to the concave mold The forming method according to claim 12, further comprising a step of drawing and deforming the laminated molded material or the flat laminated molded product.



上部型のブロックを下降し、下部型のブロックを押し上げて積層体を挟持する請求項12又は請求項13記載の賦形成形方法。


14. The forming method according to claim 12 or 13, wherein the upper die block is lowered and the lower die block is pushed up to sandwich the laminate.

JP2010118209A 2010-05-24 2010-05-24 Forming method and fiber-reinforced resin molded product Active JP5762694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118209A JP5762694B2 (en) 2010-05-24 2010-05-24 Forming method and fiber-reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118209A JP5762694B2 (en) 2010-05-24 2010-05-24 Forming method and fiber-reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2011245634A JP2011245634A (en) 2011-12-08
JP5762694B2 true JP5762694B2 (en) 2015-08-12

Family

ID=45411512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118209A Active JP5762694B2 (en) 2010-05-24 2010-05-24 Forming method and fiber-reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP5762694B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909062B2 (en) * 2011-08-29 2016-04-26 三光合成株式会社 Forming method
JP6328973B2 (en) * 2014-03-28 2018-05-23 三光合成株式会社 Electromagnetic wave shielding plate and method for producing electromagnetic wave shielding plate
CN109536063B (en) * 2018-11-19 2020-06-23 中山大学 Fiber-reinforced functional adhesive tape and preparation method and product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935800B2 (en) * 1993-12-24 1999-08-16 積水化成品工業株式会社 Compression mold
JP2002371141A (en) * 2001-06-15 2002-12-26 Toray Ind Inc Fiber-reinforced molding material, molded article and method for producing the both
JP4899692B2 (en) * 2005-07-29 2012-03-21 東レ株式会社 Reinforcing fiber fabric and method for producing the same

Also Published As

Publication number Publication date
JP2011245634A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US9539767B2 (en) Forming of staged thermoset composite materials
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP5909062B2 (en) Forming method
JP6689377B2 (en) Method for manufacturing parts made of fiber composite material
JP2009542483A (en) Manufacturing method of composite parts
JP5568388B2 (en) Fiber-reinforced resin molded product with good appearance
JP5712038B2 (en) Forming method
JP5809484B2 (en) Forming method
JP5762694B2 (en) Forming method and fiber-reinforced resin molded product
JP5545974B2 (en) Forming method
JP2016210080A (en) Molding and method for producing the same
JP6802047B2 (en) Formed type and formed type method
JP2012224016A5 (en)
KR20210152490A (en) Method for manufacturing sandwich composite parts of pressed two-dimensional or three-dimensional shapes and such composite parts
JP6808946B2 (en) Manufacturing method of fiber reinforced composite molded product
JP5603149B2 (en) Fiber-reinforced resin molded product and forming method
JP6967130B2 (en) Formed type and formed type method
JP6054714B2 (en) Forming method and forming mold
JP5362596B2 (en) Paste composition method, pasting composite mold and pasting device
JP6026860B2 (en) Forming method
JP5671314B2 (en) Lamination method and forming method of textile base material and thermoplastic resin
JP5162227B2 (en) Preform manufacturing method
JP2014184725A (en) Shaping/molding method
JP6952856B2 (en) Formed type and formed type method
US20200391455A1 (en) Method for producing composite material, fiber base material, and shaping mold for fiber base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5762694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250