JP5762237B2 - Multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger Download PDF

Info

Publication number
JP5762237B2
JP5762237B2 JP2011219790A JP2011219790A JP5762237B2 JP 5762237 B2 JP5762237 B2 JP 5762237B2 JP 2011219790 A JP2011219790 A JP 2011219790A JP 2011219790 A JP2011219790 A JP 2011219790A JP 5762237 B2 JP5762237 B2 JP 5762237B2
Authority
JP
Japan
Prior art keywords
chamber
exhaust gas
temperature
tube
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011219790A
Other languages
Japanese (ja)
Other versions
JP2013079757A (en
Inventor
尊憲 紫垣
尊憲 紫垣
洋 鈴木
洋 鈴木
幸弘 武田
幸弘 武田
慎也 西畑
慎也 西畑
邦茂 若松
邦茂 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arvos Technology Ltd
Original Assignee
Arvos Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arvos Technology Ltd filed Critical Arvos Technology Ltd
Priority to JP2011219790A priority Critical patent/JP5762237B2/en
Publication of JP2013079757A publication Critical patent/JP2013079757A/en
Application granted granted Critical
Publication of JP5762237B2 publication Critical patent/JP5762237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、高温側の管板(チューブシート)に冷却装置を有する多管式熱交換器に関する。       The present invention relates to a multi-tube heat exchanger having a cooling device on a high-temperature side tube sheet (tube sheet).

一般に、下水汚泥焼却設備における流動用空気の予熱を目的として使用される多管式熱交換器は、850℃〜900℃の焼却炉からの排ガスを利用して、該焼却炉用の予熱空気を650℃〜700℃に予熱するようになっている。このような環境で使用される多管式熱交換器には、特開2005−114218公報に記載されているように、管板の高温化に伴う材料強度の低下による損傷や、熱疲労による割れ等が発生し易い。そのために、この種の設備において使用される多管式熱交換器には、特許第3296257号公報に開示されるような管板を冷却する構造が採用されることが多い。   In general, a multi-tube heat exchanger used for preheating flow air in a sewage sludge incineration facility uses exhaust gas from an incinerator at 850 ° C. to 900 ° C. to generate preheated air for the incinerator. Preheating is performed at 650 ° C to 700 ° C. As described in Japanese Patent Application Laid-Open No. 2005-114218, the multi-tube heat exchanger used in such an environment is damaged due to a decrease in material strength accompanying a high temperature of the tube sheet, or cracks due to thermal fatigue. Etc. are likely to occur. Therefore, a multi-tube heat exchanger used in this type of equipment often employs a structure for cooling a tube sheet as disclosed in Japanese Patent No. 3296257.

しかしながら、上記多管式熱交換器でも、排ガスの入口温度や予熱空気の出口温度が、更に高温化した場合など、管板の周辺の温度環境が更に高温化すると、材料の温度上昇に伴う強度低下により、機器の耐久性の維持が困難となり、多管式熱交換器による温度回収は、多管式熱交換器を単独で使用した場合で、焼却炉からの排ガスの温度が850℃〜900℃である条件において約600℃〜680℃程度、輻射型の排ガス冷却器を併用して、多管式熱交換器の排ガスの入口温度を約800℃程度に冷却した場合においても、管板に発生する応力の増大と高温化で材料強度が著しく低下することから、700℃が限界と認識されている。   However, even in the above multi-tube heat exchanger, when the temperature environment around the tube plate is further increased, such as when the exhaust gas inlet temperature or the preheated air outlet temperature is further increased, the strength accompanying the temperature rise of the material. Due to the decrease, it becomes difficult to maintain the durability of the equipment, and the temperature recovery by the multi-tube heat exchanger is a case where the multi-tube heat exchanger is used alone, and the temperature of the exhaust gas from the incinerator is 850 ° C to 900 ° C. Even when the inlet temperature of the exhaust gas of the multi-tube heat exchanger is cooled to about 800 ° C. by using a radiation type exhaust gas cooler in combination with a radiation type exhaust gas cooler at about 600 ° C. to 680 ° C. under the condition of 700 ° C. is recognized as the limit because the strength of the material and the strength of the material are significantly reduced by increasing the temperature.

一方、実際の運転においては、負荷変動等によって排ガスの入口温度が設計値以上の高温状態で空気予熱器に投入されることもあり、この時には、空気予熱器の入口の排ガス温度を強制的に下げる処置が行われるが、その場合、シェルアンドチューブ型空気予熱器の伝熱面積(熱回収性能)は一定であるため、排ガス温度の変化により予熱空気温度が変動してしまう等の問題点があった。
また、何らかの要因、例えば焼却炉に投入される汚泥ケーキの成分が計画時と異なる場合など、予熱空気と排ガスの流量バランスが計画値と異なった場合にも、空気予熱器の空気出口温度は、その時の運転条件に成り行きの形でしか確保できず、条件によっては、計画された回収温度(例えば700℃)を確保できないことや、逆に、計画値を超えた回収温度となることもあり、熱交換器の耐久性にも大きな影響を与えてしまう。
On the other hand, in actual operation, the exhaust gas inlet temperature may be charged into the air preheater at a high temperature exceeding the design value due to load fluctuations, etc., and at this time, the exhaust gas temperature at the inlet of the air preheater is forcibly set. In this case, the heat transfer area (heat recovery performance) of the shell-and-tube type air preheater is constant, so that the preheated air temperature fluctuates due to changes in the exhaust gas temperature. there were.
Also, if the flow balance of preheated air and exhaust gas is different from the planned value, for example, when the composition of the sludge cake charged into the incinerator is different from the planned value, the air outlet temperature of the air preheater is The operating conditions at that time can only be ensured in the expected form, and depending on the conditions, the planned recovery temperature (for example, 700 ° C.) cannot be secured, and conversely, the recovery temperature may exceed the planned value. The durability of the heat exchanger is also greatly affected.

これらの問題を解決するために、空気予熱器の後段に空気冷却器を設置する方式や、特開2008−224173号公報に記載されているように、シェルアンドチューブ型熱交換器を一部バイパスして予熱空気出口温度を制御する方式が開発されているが、これらの方式の場合、複数の熱交換器を要し、また、前段の熱交換器が輻射型であるため、輻射型熱交換器の付近における排ガス側の温度条件と空気側の温度条件が拮抗し、望ましい平均温度差を得られないことから、輻射型熱交換器が大型化してしまい、設備費が嵩むという副作用が発生する。   In order to solve these problems, a method in which an air cooler is installed after the air preheater or a shell-and-tube heat exchanger is partially bypassed as described in Japanese Patent Application Laid-Open No. 2008-224173. In order to control the preheated air outlet temperature, these systems require multiple heat exchangers, and the heat exchanger in the previous stage is a radiant type. The temperature condition on the exhaust gas side and the temperature condition on the air side in the vicinity of the heat exchanger are antagonized, and a desirable average temperature difference cannot be obtained, resulting in the side effect of increasing the size of the radiant heat exchanger and increasing the equipment cost. .

図3および図4は、上述のような複数の熱交換器を要しない従来の多管式熱交換器を示すものであり、
焼却炉S等の熱源装置の高温排ガスF1(例えば、850〜900℃)を導入する排ガス導入室1と、外筒2′内に形成されると共に高温排ガスF1と予熱用低温空気P1を熱交換する熱交換室2と、熱交換された低温排ガスF2を排出する排ガス排出室3から成り、上記排ガス導入室1と熱交換室2を隔てる上側の管板4と、上記熱交換室2と排ガス排出室3を隔てる低温側管板5と、上下端部が上記高温側管板4と低温側管板5にそれぞれ接続されて、上記排ガス導入室1および上記排ガス排出室3に連通する複数の伝熱管6と、上記熱交換室2に予熱用低温空気P1を導入する予熱空気導入口9と、上記熱交換室2から予熱用高温空気P3(例えば、650〜700℃)を排出して上記焼却炉Sに供給する予熱空気排出口11aと、上記高温側管板4の上記熱交換室2側に設置される副室13から構成され、上記排ガス導入室1に導入される上記高温排ガスF1は、上記伝熱管6を通って上記排ガス排出室3から低温排ガスとして排出され、一方、送風器V1により上記予熱空気導入口9aから上記熱交換室2に導入される予熱用低温空気P1は、該熱交換室2において上記伝熱管6内を流れる高温排ガスと熱交換されて昇温され、予熱用高温空気P3として上記予熱空気排出口11から上記焼却炉S等の熱源装置に供給される。なお、上記熱交換室2には数枚のバッフルプレート(邪魔板)14が設置されていて、導入された予熱用低温空気P1を上記伝熱管6に対して直交および並行の流れに整流して、熱交換効率を高めるようにしている。
3 and 4 show a conventional multi-tube heat exchanger that does not require a plurality of heat exchangers as described above.
Exhaust gas introduction chamber 1 for introducing high-temperature exhaust gas F1 (for example, 850 to 900 ° C.) of a heat source device such as incinerator S, and heat exchange between high-temperature exhaust gas F1 and preheating low-temperature air P1 formed in outer cylinder 2 ′ A heat exchanging chamber 2, an exhaust gas exhausting chamber 3 for discharging the heat-exchanged low temperature exhaust gas F 2, an upper tube plate 4 separating the exhaust gas introducing chamber 1 and the heat exchanging chamber 2, the heat exchanging chamber 2 and the exhaust gas A plurality of low temperature side tube plates 5 that separate the discharge chamber 3, and upper and lower ends thereof are connected to the high temperature side tube plate 4 and the low temperature side tube plate 5, respectively, and communicate with the exhaust gas introduction chamber 1 and the exhaust gas discharge chamber 3. The heat transfer tube 6, the preheating air introduction port 9 for introducing the preheating low temperature air P1 into the heat exchange chamber 2, and the preheating high temperature air P3 (for example, 650 to 700 ° C.) are discharged from the heat exchange chamber 2 to Preheated air discharge port 11a supplied to the incinerator S and above The high-temperature exhaust gas F1 which is composed of the sub chamber 13 installed on the high-temperature side tube plate 4 on the heat exchange chamber 2 side and is introduced into the exhaust gas introduction chamber 1 passes through the heat transfer tube 6 and the exhaust gas discharge chamber 3. On the other hand, the preheating low-temperature air P1 that is discharged from the preheating air introduction port 9a by the blower V1 into the heat exchange chamber 2 is high-temperature that flows in the heat transfer pipe 6 in the heat exchange chamber 2. The temperature is raised by exchanging heat with the exhaust gas, and the preheated high-temperature air P3 is supplied from the preheated air discharge port 11 to a heat source device such as the incinerator S. In addition, several baffle plates (baffle plates) 14 are installed in the heat exchange chamber 2, and the introduced preheating low-temperature air P 1 is rectified into a flow perpendicular to and parallel to the heat transfer tube 6. The heat exchange efficiency is improved.

図5は、上記副室13および管板4付近の図4の拡大図であって、該副室13は、上側の管板4と、下側の管板4′と、それらの周囲を取り巻くコニカルリング16により形成されている。該コニカルリング16の上部は、上記熱交換室2を形成する外筒2′の上部に一体的に取り付けられている。上記副室13には、上記予熱用低温空気P1から分岐される予熱用低温空気P2が、その導入口17から送り込まれるようになっている。該副室13内に送り込まれた予熱用低温空気(冷却空気)は、多数の上記伝熱管6の間を通過しながら、これを冷却し、下側の管板4′の中央部に設けられたリターンパイプ15を通って上記熱交換室2内に流出し、上記予熱用低温空気P1と合流する。 FIG. 5 is an enlarged view of FIG. 4 in the vicinity of the sub chamber 13 and the tube plate 4. The sub chamber 13 surrounds the upper tube plate 4, the lower tube plate 4 ′, and the periphery thereof. It is formed by a conical ring 16. The upper part of the conical ring 16 is integrally attached to the upper part of the outer cylinder 2 ′ that forms the heat exchange chamber 2. Preheating low-temperature air P2 branched from the preheating low-temperature air P1 is fed into the sub chamber 13 through the introduction port 17. The preheating low-temperature air (cooling air) sent into the sub chamber 13 is cooled while passing through a large number of the heat transfer tubes 6, and is provided at the center of the lower tube sheet 4 ′. Then, it flows out into the heat exchange chamber 2 through the return pipe 15 and merges with the preheating low-temperature air P1.

しかしながら、上記従来の構造では、次のような問題点があった。
1) 副室を構成する上下2つの管板に温度差が生じ、この温度差によって、管板に発生する内部応力が大きくなるという、問題点があった。
上下2つの管板は、それぞれ排ガスと予熱空気に接している。このため管板の温度は、排ガスと予熱空気の両流体の温度と冷却空気の温度に支配される。熱交換器である以上、これら2つの流体には、少なからず温度差が生じるため、2つの管板の温度は、同一とはならず、排ガス側に接している管板の温度が、予熱空気側に接している管板に比べて温度が高くなる。この温度差によって、2つの管板には熱膨張量に差が生じるが、管板の周方向をコニカルリングで拘束しているため、管板同士の熱膨張差を吸収することができなくなり、管板には大きな応力が発生する。特に、従来の汚泥焼却炉において使用される多管式熱交換器だけの回収温度は、650℃〜680℃が限界とされていたが、これは管板の熱膨張の拘束によって発生する応力値が高くなることが原因と考えられている。
2) また、冷却空気導入口と管群との距離が近すぎるため、冷却空気が管板全体に均一に流れないという問題点があった。
従来の構造の場合、冷却空気は、ノズル上の導入口によって管近傍もしくは管群の中央部に直接導入されている。そのため、管導入口近傍と導入口からある程度の距離のある範囲には、冷却空気の影響を受けやすいか、そうでないかによって、必ず温度差が生じ、この温度差によって管板には内部応力が発生する。
3) 2つの管板に損傷が生じた場合、管板のみを取り換えることが困難であるという問題点があった。
管板における損傷の発生頻度は、管板以外の部位における損傷確率に比べて非常に高いが、上の管板と下の管板とを保持するコニカルリングが、管群を溶接によって支えている構造上、これを取り換えることは非常に困難であり、大掛かりな復旧工事となってしまう。
However, the conventional structure has the following problems.
1) There is a problem that a temperature difference is generated between the upper and lower tube sheets constituting the sub chamber, and the internal stress generated in the tube sheet increases due to the temperature difference.
The two upper and lower tube sheets are in contact with exhaust gas and preheated air, respectively. For this reason, the temperature of the tube sheet is governed by the temperature of both the exhaust gas and the preheated air fluid and the temperature of the cooling air. As long as it is a heat exchanger, a temperature difference occurs between these two fluids. Therefore, the temperature of the two tube sheets is not the same, and the temperature of the tube sheet in contact with the exhaust gas side is the preheated air. The temperature is higher than the tube sheet in contact with the side. Due to this temperature difference, there is a difference in the amount of thermal expansion between the two tube sheets, but since the circumferential direction of the tube sheet is constrained by a conical ring, it becomes impossible to absorb the difference in thermal expansion between the tube sheets. A large stress is generated in the tube sheet. In particular, the recovery temperature of only the multi-tube heat exchanger used in the conventional sludge incinerator was limited to 650 ° C. to 680 ° C., but this is a stress value generated by restraint of thermal expansion of the tube sheet. Is considered to be the cause of the increase.
2) Further, since the distance between the cooling air inlet and the tube group is too short, there is a problem that the cooling air does not flow uniformly over the entire tube plate.
In the case of the conventional structure, the cooling air is directly introduced into the vicinity of the tube or the central portion of the tube group by the introduction port on the nozzle. Therefore, there is a temperature difference between the vicinity of the pipe inlet and a certain distance from the inlet, depending on whether it is susceptible to cooling air or not, and this temperature difference causes internal stress in the tube sheet. Occur.
3) When two tube sheets are damaged, there is a problem that it is difficult to replace only the tube sheets.
The frequency of damage in the tube sheet is very high compared to the damage probability in parts other than the tube sheet, but the conical ring that holds the upper tube sheet and the lower tube sheet supports the tube group by welding. It is very difficult to replace this because of the structure, and it becomes a large-scale restoration work.

特開2005−114218公報JP 2005-114218 A 特許第3296257号公報Japanese Patent No. 3296257 特開2008−224173号公報JP 2008-224173 A

本発明は、上記従来の問題点を解決して、上下2つの管板が他方の管板の影響を受けることなく、管板同士の熱膨張差によって管板に応力が発生することがなく、また、副室内の管群に冷却空気を均等に流入せしめて管板の温度差を少なくすることができ、さらに、上下の管板を独立して取り換えることができる多管式熱交換器を提供することを課題とする。 The present invention solves the above-mentioned conventional problems, the upper and lower two tube plates are not affected by the other tube plate, and stress is not generated in the tube plate due to the difference in thermal expansion between the tube plates, In addition, a multi-tube heat exchanger is provided that allows cooling air to flow evenly into the tube group in the sub chamber to reduce the temperature difference between the tube plates, and that the upper and lower tube plates can be replaced independently. The task is to do.

本発明の多管式熱交換器は、焼却炉等の熱源装置から高温排ガスを導入する排ガス導入室と、該排ガス導入室に上端が接続されると共に内部に熱交換室を形成する外筒と、該外筒の下端に接続される排ガス排出室と、上記排ガス導入室と熱交換室を隔てる高温側管板と、上記排ガス排出室と熱交換室を隔てる低温側管板と、上記熱交換室内に配管されると共に上記排ガス導入室内に流入する高温排ガスを上記排ガス排出室に流通させる多数本の伝熱管と、上記熱交換室内に予熱用低温空気を導入する予熱空気導入口と、上記熱交換室から予熱用高温空気を排出して上記熱源装置等に供給する予熱空気排出口と、上記高温側管板の上記熱交換室側に設置されると共に上記予熱用低温空気の一部を導入する副室と、該副室と熱交換室の間に設置される管板と、から構成される多管式熱交換器において、上記外筒の上部に固定されると共に上記高温側管板であって上記副室の上側の管板の周囲を保持するコニカルリングと、上記外筒の上部に固定されると共に上記副室の下側の管板の周囲を保持する別のコニカルリングと、から成ることを特徴とする。 The multi-tube heat exchanger of the present invention includes an exhaust gas introduction chamber for introducing high-temperature exhaust gas from a heat source device such as an incinerator, an outer cylinder having an upper end connected to the exhaust gas introduction chamber and forming a heat exchange chamber therein. An exhaust gas discharge chamber connected to the lower end of the outer cylinder, a high temperature side tube plate separating the exhaust gas introduction chamber and the heat exchange chamber, a low temperature side tube plate separating the exhaust gas discharge chamber and the heat exchange chamber, and the heat exchange A plurality of heat transfer pipes that are piped indoors and flow high-temperature exhaust gas flowing into the exhaust gas introduction chamber into the exhaust gas discharge chamber, a preheating air inlet for introducing preheating low-temperature air into the heat exchange chamber, and the heat A preheating air outlet for discharging the preheating high temperature air from the exchange chamber and supplying it to the heat source device, etc., and a part of the preheating low temperature air are installed on the heat exchange chamber side of the high temperature side tube sheet Installed between the subchamber and the heat exchange chamber A conical ring that is fixed to the upper portion of the outer cylinder and that holds the periphery of the upper tube plate of the sub chamber. And another conical ring that is fixed to the upper portion of the outer cylinder and holds the periphery of the tube plate on the lower side of the sub chamber.

本発明の多管式熱交換器は、下記の効果を奏する。
1)上下2つの管板を、2つのコニカルリングにより、それぞれ保持せしめることにより、それぞれの管板が他方の管板の影響を受けることなく、自由に周方向へ膨張することができ、そのため、管板同士の熱膨張差によって管板に応力が発生しない。
2)コニカルリングをテーパー状とし、2つに分けて構成したことで、2つのコニカルリングと管群の間に、大きな空隙が形成されている。この空隙に一定のピッチで冷却空気導入口を配置すると、空隙を通過する冷却空気は低速となり、ヘッダー効果により、冷却空気が整流される。この空隙によって整流された冷却空気は、管群に均等に流入することができるようになり、管板の温度差は少なくなる。
3)上下2つの管板を、2つのコニカルリングにより、それぞれ保持せしめることにより、損傷の発し頻度が高い上部の管板の取り換えが容易になる。上部の管板を保持するコニカルリングと空気ヘッダーとの接合をフランジ構造としてことで、上部の管板に損傷が発生した場合には、この上部の管板と管とを繋いでいるカラーを全部取り外し、コニカルリングと空気ヘッダーとを繋ぐフランジを外すことで、上部の管板を上方に容易に取り外すことが可能になる。なお、下部の管板にも、上述の構造を採用すれば、下部の管板も、上部の管板と同様に容易に取り換えることができる。
4)コニカルリングを2つに分けて熱応力を低減させると共に、管板の温度を均等にしたことで、管板の発生応力が低くなり、多管式熱交換器単独で700℃以上の高温回収が可能となった。
The multitubular heat exchanger of the present invention has the following effects.
1) By holding the two upper and lower tube sheets respectively by two conical rings, each tube sheet can be freely expanded in the circumferential direction without being affected by the other tube sheet. No stress is generated in the tube sheet due to the difference in thermal expansion between the tube plates.
2) Since the conical ring is tapered and divided into two parts, a large gap is formed between the two conical rings and the tube group. When the cooling air inlets are arranged in the gap at a constant pitch, the cooling air passing through the gap becomes low speed, and the cooling air is rectified by the header effect. The cooling air rectified by the air gap can flow uniformly into the tube group, and the temperature difference between the tube plates is reduced.
3) By holding the two upper and lower tube sheets by two conical rings, the upper tube sheet, which is frequently damaged, can be easily replaced. By connecting the conical ring that holds the upper tube sheet to the air header as a flange structure, if the upper tube sheet is damaged, all the collars that connect the upper tube sheet and the tube are connected. The upper tube sheet can be easily removed upward by removing the flange connecting the conical ring and the air header. If the above-described structure is adopted for the lower tube sheet, the lower tube sheet can be easily replaced in the same manner as the upper tube sheet.
4) Dividing the conical ring into two parts to reduce the thermal stress and making the temperature of the tube sheet uniform reduces the generated stress of the tube sheet, and the multi-tube heat exchanger alone has a high temperature of 700 ° C or higher. Recovery became possible.

本発明の多管式熱交換器の一実施例を示す拡大断面図である。It is an expanded sectional view showing one example of the multitubular heat exchanger of the present invention. 図1のイ−イ線に沿った断面図である。It is sectional drawing along the II line of FIG. 従来の多管式熱交換器を焼却炉に組み合わせた説明図である。It is explanatory drawing which combined the conventional multi-tube heat exchanger with the incinerator. 図3の多管式熱交換器の断面図である。It is sectional drawing of the multitubular heat exchanger of FIG. 図4の多管式熱交換器の要部の拡大断面図である。It is an expanded sectional view of the principal part of the multitubular heat exchanger of FIG.

以下、本発明の多管式熱交換器の一実施例について、図面を参照しながら説明する。
図1において、2は熱交換室、2′は外筒、4は上側の管板(高温側管板とも称する)、4′は下側の管板、6は伝熱管、11aは予熱空気排出口、13は副室、14はバッフルプレート、15はリターンパイプ、P2は予熱用低温空気、P3は予熱用高温空気であって、上記従来の部材等とほぼ同じ構造および機能を有する。
Hereinafter, an embodiment of the multi-tube heat exchanger of the present invention will be described with reference to the drawings.
In FIG. 1, 2 is a heat exchange chamber, 2 'is an outer cylinder, 4 is an upper tube plate (also called a high temperature side tube plate), 4' is a lower tube plate, 6 is a heat transfer tube, and 11a is a preheated air exhaust. An outlet, 13 is a sub chamber, 14 is a baffle plate, 15 is a return pipe, P2 is preheating low-temperature air, and P3 is preheating high-temperature air, and has substantially the same structure and function as the above-described conventional members.

上記上側の管板4の周囲は、コニカルリング18に固定保持されている。該コニカルリング18は、上方に拡がったコーン状(裁頭円錐状)に形成されていて、その外周端縁は、上記熱交換室2を形成する外筒2′の上部に一体的に取り付け固定されている。   The periphery of the upper tube sheet 4 is fixedly held by a conical ring 18. The conical ring 18 is formed in a cone shape (truncated cone shape) extending upward, and an outer peripheral edge thereof is integrally attached and fixed to an upper portion of the outer cylinder 2 ′ forming the heat exchange chamber 2. Has been.

一方、上記下側の管板4′の周囲は、コニカルリング19に固定保持されている。該コニカルリング19は、下方に拡がったコーン状(裁頭円錐状)に形成されていて、その外周端縁も、上記熱交換室2を形成する外筒2′の上部に一体的に取り付け固定されている。 On the other hand, the periphery of the lower tube sheet 4 ′ is fixedly held by a conical ring 19. The conical ring 19 is formed in a cone shape (cut-off cone shape) that extends downward, and its outer peripheral edge is also integrally attached and fixed to the upper portion of the outer cylinder 2 ′ that forms the heat exchange chamber 2. Has been.

上記上側の管板4と下側の管板4′の間には、環状の空間である冷却空気整流部20が形成されていて、上記副室13に連通している。 Between the upper tube plate 4 and the lower tube plate 4 ′, a cooling air rectifying unit 20, which is an annular space, is formed and communicated with the sub chamber 13.

図2に示すように、上記環状の冷却空気整流部20には、複数(本実施例では8個)の冷却空気導入口21がほぼ均等に配設されている。該冷却空気導入口21の排出口は左右方向に向いていて、冷却空気を上記冷却空気整流部20の周方向に噴出するようになっている。 As shown in FIG. 2, a plurality (eight in the present embodiment) of cooling air inlets 21 are arranged substantially evenly in the annular cooling air rectifying unit 20. The discharge port of the cooling air introduction port 21 faces in the left-right direction, and the cooling air is ejected in the circumferential direction of the cooling air rectifying unit 20.

本実施例の多管式熱交換器は以上のように構成されているので、上記上側の管板4と下側の管板4′は、それぞれのコニカルリング18,19により独立して保持されているので、各管板4,4′の熱応力は相互に影響し合う恐れはない。また、破損等による修理においても、それぞれ独立して取り換えることができ、修理期間が短く、コスト等も安価となる利点がある。 Since the multi-tube heat exchanger of the present embodiment is configured as described above, the upper tube plate 4 and the lower tube plate 4 'are independently held by the conical rings 18 and 19, respectively. Therefore, there is no fear that the thermal stresses of the tube sheets 4 and 4 'influence each other. In addition, repairs due to damage or the like can be replaced independently, and there is an advantage that the repair period is short and the cost is low.

さらに、上記副室13内に入る冷却空気は、上記冷却空気整流部20で均等に整流されるので、副室13内の管群に均等に流入するので、上下それぞれの管板4、4′を均質に冷却することができる利点がある。 Further, since the cooling air entering the sub chamber 13 is evenly rectified by the cooling air rectifying unit 20, it flows equally into the tube group in the sub chamber 13, so that the upper and lower tube plates 4, 4 ' There is an advantage that can be cooled uniformly.

なお、図4(副室およびその周囲の構造は、図1および図2)に示す装置の排ガス導入室と排ガス排出室を上下逆に位置せしめると共に、低温側予熱空気導入口と予熱空気排出口を逆に配置し、その結果、下方に位置する副室を形成する高温側管板(上記上側の管板)を該副室の下側に、下側の管板を副室の上側に位置せしめ、これら上下の管板をそれぞれコニカルリングにより支持せしめる構造(第2実施例という)でも、上記第1実施例と同じように機能し使用することができる。従って、本願特許請求の範囲の解釈において、本発明の各構成要素を上記第1実施例と第2実施例に対応させて読み替えて解釈する。   Note that the exhaust gas introduction chamber and the exhaust gas discharge chamber of the apparatus shown in FIG. 4 (the sub chamber and its surrounding structure are FIGS. 1 and 2) are positioned upside down, and the low temperature side preheating air introduction port and the preheating air discharge port are located. As a result, the high temperature side tube sheet (the upper tube sheet) forming the lower sub-chamber is positioned below the sub chamber, and the lower tube sheet is positioned above the sub chamber. The structure (referred to as the second embodiment) in which the upper and lower tube plates are supported by conical rings can function and be used in the same manner as in the first embodiment. Accordingly, in interpreting the scope of claims of the present application, each component of the present invention is interpreted in correspondence with the first and second embodiments.

1 排ガス導入室
2 熱交換室
2′ 外筒
3 排ガス排出室
4 上側の管板(高温側管板)
4′ 下側の管板
5 低温側管板
6 伝熱管
9 低温側予熱空気導入口
11 予熱空気排出口
13 副室
14 バッフルプレート
15 リターンパイプ
16 コニカルリング
17 導入口
18 コニカルリング
19 コニカルリング
20 冷却空気整流部
21 冷却空気導入口
F1 高温排ガス
F2 低温排ガス
P1 予熱用低温空気
P2 予熱用低温空気
P3 予熱用高温空気
S 焼却炉
V1 送風器
1 exhaust gas introduction chamber 2 heat exchange chamber 2 'outer cylinder 3 exhaust gas discharge chamber 4 upper tube sheet (high temperature side tube sheet)
4 'Lower tube plate 5 Low temperature side tube plate 6 Heat transfer tube 9 Low temperature side preheated air inlet 11 Preheated air outlet 13 Sub chamber 14 Baffle plate 15 Return pipe 16 Conical ring 17 Inlet 18 Conical ring 19 Conical ring 20 Cooling Air rectifier 21 Cooling air inlet F1 High temperature exhaust gas F2 Low temperature exhaust gas P1 Preheating low temperature air P2 Preheating low temperature air P3 Preheating high temperature air S Incinerator V1 Blower

Claims (3)

源装置から高温排ガスを導入する排ガス導入室と、
前記排ガス導入室に上端が接続されると共に内部に熱交換室を形成する外筒と、
前記外筒の下端に接続される排ガス排出室と、
前記排ガス導入室と前記熱交換室を隔てる高温側管板と、
前記排ガス排出室と前記熱交換室を隔てる低温側管板と、
前記熱交換室内に配管されると共に前記排ガス導入室内に流入する高温排ガスを前記排ガス排出室に流通させる多数本の伝熱管と、
前記熱交換室内に予熱用低温空気を導入する予熱空気導入口と、
前記熱交換室から予熱用高温空気を排出して前記熱源装置に供給する予熱空気排出口と、
前記高温側管板の前記熱交換室側に設置されると共に前記予熱用低温空気の一部を導入する副室と、
前記副室と前記熱交換室の間に設置される下側の管板と、
前記副室に前記予熱用低温空気の一部を導入する冷却空気導入口と、を備える多管式熱交換器において、
前記外筒の上部に固定されると共に、前記高温側管板である前記副室の上側の管板の周囲を保持する、上方に拡がった裁頭円錐状に形成される第1のコニカルリングと、
前記外筒の上部に固定されると共に、前記副室の下側の管板の周囲を保持する、下方に拡がった裁頭円錐状に形成される第2のコニカルリングと、を更に備え、
前記第1及び第2のコニカルリングの間には、前記副室に連通する、環状の空間である冷却空気整流部が形成され、
前記冷却空気導入口の排出口は、前記冷却空気整流部内に配置されることを特徴とする多管式熱交換器。
An exhaust gas introducing chamber for introducing a high-temperature exhaust gas from the heat source unit,
An outer cylinder forming the heat exchange chamber therein with the upper end of which is connected to the exhaust gas introducing chamber,
An exhaust gas discharge chamber which is connected to the lower end of the outer cylinder,
And the high-temperature-side tube plate separating said heat exchange chamber and the exhaust gas introducing chamber,
And the low temperature-side pipe plate separating said heat exchange chamber and the exhaust gas discharge chamber,
Multiplicity of the heat transfer tubes of the high-temperature exhaust gas circulating in the exhaust gas discharge chamber flowing into the exhaust gas introduction chamber together with the piping to the heat exchange chamber,
A preheated air inlet for introducing a preheating temperature air to the heat exchange chamber,
A preheated air outlet supplied to the heat source equipment to drain preheating hot air from the heat exchange chamber,
A sub-chamber for introducing a part of the preheating cold air while being installed in the heat exchange chamber side of the high temperature side tube plate,
And a lower tube plate which is installed between the heat exchange chamber and the auxiliary chamber,
Wherein a cooling air inlet for introducing a part of the preheating cold air to the secondary chamber, in a multi-tube heat exchanger that comprises a,
Is fixed to an upper portion of the outer tube, the hot-side tube plate der Ru said to hold the periphery of the upper tube plate of the auxiliary chamber, a first conical ring formed in spread was frusto conical upwardly When,
Is fixed to an upper portion of said barrel, said holding the periphery of the lower tube plate of the auxiliary chamber further comprises a second conical ring formed in spread was frusto conical downward and,
Between the first and second conical rings, a cooling air rectification unit that is an annular space communicating with the sub chamber is formed,
The outlet of the cooling air inlet, the disposed cooling air guide portion and said Rukoto, multitubular heat exchanger.
前記第1及び第2のコニカルリングにより、前記上側の管板および前記下側の管板を、それぞれ独立して保持せしめるように構成したことを特徴とする請求項1記載の多管式熱交換器。 By the first and second conical ring, the upper tube plate and the lower tube plate, characterized by being configured as allowed to hold independently, multi-tube according to claim 1 Symbol placement Heat exchanger. 前記冷却空気導入口の排出口は、前記予熱用低温空気の一部を前記冷却空気整流部内に周方向に噴出するように形成されていることを特徴とする、請求項1又は2記載の多管式熱交換器。The discharge port of the cooling air introduction port is formed so as to eject a part of the preheating low-temperature air into the cooling air rectifying unit in a circumferential direction. Tube heat exchanger.
JP2011219790A 2011-10-04 2011-10-04 Multi-tube heat exchanger Active JP5762237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219790A JP5762237B2 (en) 2011-10-04 2011-10-04 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219790A JP5762237B2 (en) 2011-10-04 2011-10-04 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2013079757A JP2013079757A (en) 2013-05-02
JP5762237B2 true JP5762237B2 (en) 2015-08-12

Family

ID=48526268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219790A Active JP5762237B2 (en) 2011-10-04 2011-10-04 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP5762237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514037A (en) * 2019-09-02 2019-11-29 青岛德固特节能装备股份有限公司 A kind of tube-shell type high-temperature air preheater lower perforated plate cooling structure
CN115560586B (en) * 2022-10-17 2023-07-21 广东昊达智能装备科技有限公司 Quick cooling atmosphere bell jar furnace and cooling method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1488349A (en) * 1974-11-29 1977-10-12 Haldor Topsoe As Heat exchange apparatus
US4207944A (en) * 1978-02-15 1980-06-17 Joseph Oat Corporation Heat exchanger for withstanding cyclic changes in temperature
SE510240C3 (en) * 1996-10-14 1999-05-25 Edmeston Ab Pipe heat exchanger with beam plate divided into a number of channels
JP3999966B2 (en) * 2001-08-10 2007-10-31 株式会社神戸製鋼所 Shell and tube heat exchanger
JP4785550B2 (en) * 2006-02-10 2011-10-05 株式会社ティラド High temperature heat exchanger

Also Published As

Publication number Publication date
JP2013079757A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP2006170607A (en) Exhaust gas heat exchanger in cogeneration system
JP5522950B2 (en) Multi-tube heat exchanger
US10760001B2 (en) Straight fin for device for recovering waste heat of raw coke oven gas in ascension pipe of coke oven, and heat recovering device
EP2820366A2 (en) Heat exchanger adapted for the production of carbon black
JP5322142B2 (en) 2-tower exhaust heat recovery system
KR102506094B1 (en) Single pass cross-flow heat exchanger
JP2013539006A (en) Waste heat boiler
JP5762237B2 (en) Multi-tube heat exchanger
US20180112925A1 (en) Tube-nest heat exchanger with improved structure
JP2007192535A (en) Heat exchanger device
EP3286512B1 (en) Tube-bundle heat exchanger with improved structure
CN108072287A (en) A kind of heat exchanger
JP2013092260A (en) Waste heat boiler
JP2010144999A (en) Multitubular heat exchanger
CN207622577U (en) A kind of heat exchanger
JP4906430B2 (en) Air preheater
JP6585631B2 (en) Heat exchange apparatus for cooling synthesis gas and method of assembling the same
JP6309315B2 (en) Heat recovery device and heat recovery adjustment method for waste incineration facility
JP2937988B1 (en) Heat exchanger
JPH1062079A (en) Multitube type heat exchanger
CN211012584U (en) Novel high-temperature gas-gas pipe shell type heat exchanger
US20140124179A1 (en) Heat Exchanger
RU215818U1 (en) Air cooled heat exchanger
JP6081110B2 (en) Combined condenser
CN107796012A (en) A kind of heat exchanger of improvement

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250