JP5761775B2 - Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same - Google Patents

Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same Download PDF

Info

Publication number
JP5761775B2
JP5761775B2 JP2010001663A JP2010001663A JP5761775B2 JP 5761775 B2 JP5761775 B2 JP 5761775B2 JP 2010001663 A JP2010001663 A JP 2010001663A JP 2010001663 A JP2010001663 A JP 2010001663A JP 5761775 B2 JP5761775 B2 JP 5761775B2
Authority
JP
Japan
Prior art keywords
bisphenol
propylene oxide
diβ
oxide adduct
phase transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010001663A
Other languages
Japanese (ja)
Other versions
JP2011140458A (en
Inventor
小川 亮
亮 小川
光紀 井出
光紀 井出
健一 玉祖
健一 玉祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2010001663A priority Critical patent/JP5761775B2/en
Priority to CN2010800607796A priority patent/CN102712611A/en
Priority to KR1020127014140A priority patent/KR101728577B1/en
Priority to PCT/JP2010/007322 priority patent/WO2011083537A1/en
Priority to TW099145912A priority patent/TWI487729B/en
Publication of JP2011140458A publication Critical patent/JP2011140458A/en
Application granted granted Critical
Publication of JP5761775B2 publication Critical patent/JP5761775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • C07D303/30Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はジβ−メチルグリシジルエーテルの製造方法に関し、特に、相間移動触媒の存在下に、ビスフェノールのプロピレンオキシド付加物、β−メチルエピクロルヒドリン及びアルカリを反応させる、塩素含有量の少ないジβ−メチルグリシジルエーテルに関する。 The present invention relates to a method of manufacturing a di beta-methyl glycidyl ether, in particular, in the presence of a phase transfer catalyst, propylene oxide adduct of bisphenol, beta-methyl epichlorohydrin and reacting the alkali, less di beta-methyl chlorine content It relates to glycidyl ether.

ポリエポキシ化合物から得られる硬化物は、各種基材に対する接着性、耐熱性、耐薬品性、電気特性、機械特性等に比較的優れているため、広い産業分野、特に、塗料や接着剤の分野で使用されている。   Cured products obtained from polyepoxy compounds are relatively excellent in adhesion to various substrates, heat resistance, chemical resistance, electrical properties, mechanical properties, etc., so they can be used in a wide range of industrial fields, especially paints and adhesives. Used in.

ビスフェノールのような多価アルコールとエピクロルヒドリンを、アルカリ及び相関移動触媒の存在下に反応させるポリグリシジルエーテルの製造方法はよく知られている(例えば特許文献1〜4)が、エピクロルヒドリンの代わりにβ-メチルエピクロルヒドリンを使用した場合に付いての詳細は知られていない。
そこで本発明者等は、エピクロルヒドリンの代わりにβ-メチルエピクロルヒドリンを使用した場合に付いて鋭意検討したところ、驚くべきことに、ビスフェノールのプロピレンオキシド付加物とβ−メチルエピクロルヒドリンから得られるジβ−メチルグリシジルエーテルが、カチオン硬化系で優れた硬化性を有し、接着性にも優れていることが判明した。
A method for producing a polyglycidyl ether in which a polyhydric alcohol such as bisphenol and epichlorohydrin are reacted in the presence of an alkali and a phase transfer catalyst is well known (for example, Patent Documents 1 to 4). However, instead of epichlorohydrin, β- Details regarding the use of methyl epichlorohydrin are not known.
Thus, the present inventors have conducted an extensive study on the use of β-methylepichlorohydrin instead of epichlorohydrin. Surprisingly, the present inventors surprisingly found that diβ-methyl obtained from a propylene oxide adduct of bisphenol and β -methylepichlorohydrin. It has been found that glycidyl ether has excellent curability in a cationic curing system and has excellent adhesion .

一方、例えば、多価フェノール化合物とβ−メチルエピクロルヒドリン及びエピクロルヒドリンとを水酸化ナトリウム水溶液の存在下で反応させる従来の方法(特許文献5)によって前記特定のポリグリシジルエーテルを製造しようとしても、目的物を得ることは困難である。また、1段目にルイス酸触媒等を用いる付加反応を実施し、続く2段目にアルカリを用いる鹸化反応を行わせるという一般的な高アルコール又はグリコールの製造方法を転用した場合には副反応が避けられず、塩素含有量が高くなるという欠点を有していた。 On the other hand, if example embodiment, even if an attempt is prepared polyhydric phenolic compound and β- methyl epichlorohydrin and the conventional method (Patent Document 5) Therefore the particular polyglycidyl ethers and epichlorohydrin are reacted in the presence of sodium hydroxide solution, It is difficult to obtain the object. In addition, when a general high alcohol or glycol production method in which an addition reaction using a Lewis acid catalyst or the like is performed in the first stage and a saponification reaction using an alkali is performed in the subsequent second stage is diverted, a side reaction Is unavoidable and has the disadvantage that the chlorine content is high.

特開昭59−206429号公報JP 59-206429 A 特開平2−202883号公報JP-A-2-202883 特開平8−333356号公報JP-A-8-333356 特開平10−7761号公報JP-A-10-7761 特許第3579959号公報Japanese Patent No. 3579959

そこで本発明者等は、ビスフェノールのプロピレンオキシド付加物とβ−メチルエピクロルヒドリンから得られるジβ−メチルグリシジルエーテルを製造すべく鋭意検討を重ねた結果、ビスフェノールのプロピレンオキシド付加物とβ−メチルエピクロルヒドリンとをアルカリで閉環させるに際し、相間移動触媒を用いた場合には、全塩素含有量が低減された上記ジβ−メチルグリシジルエーテルを収率良く製造することができ、また、得られたジβ−メチルグリシジルエーテルがカチオン硬化系で優れた硬化性を有するだけでなく、予想以上に強力な接着力を実現し得ることを見出し、本発明に到達した。
従って本発明の目的は、カチオン硬化系で優れた硬化性を有するだけでなく、強力な接着力を実現し得る、全塩素含有量が低減されたジβ−メチルグリシジルエーテルを提供することにある。
Therefore, the present inventors have conducted extensive studies to produce diβ -methylglycidyl ether obtained from propylene oxide adduct of bisphenol and β-methylepichlorohydrin . As a result, propylene oxide adduct of bisphenol and β-methylepichlorohydrin In the case of using a phase transfer catalyst when ring-closing with alkali, the diβ -methylglycidyl ether having a reduced total chlorine content can be produced with good yield, and the obtained diβ- The present inventors have found that methyl glycidyl ether not only has excellent curability in a cationic curing system but also can realize stronger adhesive force than expected .
An object of the present invention is therefore not only has excellent curability in cationic curing systems, can realize strong adhesion, the total chlorine content is in providing Hisage a reduced di β- methyl glycidyl ether .

即ち本発明は、下記一般式(I)で表される多価アルコール100質量部に対して0.1〜10.0質量部の相間移動触媒の存在下に、前記多価アルコールの水酸基1等量(モル)に対して、1.0〜10.0等量のβ−メチルエピクロルヒドリン及び1.0〜2.0等量のアルカリを反応させてなることを特徴とする、下記一般式(II)で表されるビスフェノールA-プロピレンオキシド付加物のジβ−メチルグリシジルエーテルである。 That is, the present invention is the presence of a phase transfer catalyst from 0.1 to 10.0 parts by weight with respect to the polyhydric alcohol 100 parts by mass represented by the following formula (I), the polyhydric hydroxyl 1 or the like alcohol relative to the amount (moles), characterized by comprising reacting a 1.0-10.0 equivalent amounts of β- methyl epichlorohydrin and 1.0 to 2.0 equivalent amount of alkali, the following general formula (II ) di β- methyl Gurishijiruete Le bisphenol A- propylene oxide adduct represented by.

一般式(I)

Figure 0005761775
但し、式中のR及びRはそれぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、m及びnはそれぞれ独立に1〜10の数を表す;
一般式(II)
Figure 0005761775
但し、式中のR及びR 、並びに、m及びnはそれぞれ、一般式(I)中のR及びR 、並びに、m及びnと同じである。
Formula (I)
Figure 0005761775
However, each of R 1 and R 2 in the formula independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, m and n represents the number of independently 1 to 10;
Formula (II)
Figure 0005761775
However, R 1 and R 2 in the formula , and m and n are the same as R 1 and R 2 in the general formula (I) , and m and n , respectively.

本発明においては、前記相間移動触媒が第四級アンモニウム塩基又は第四級アンモニウム塩であることが好ましく、特に第四級アンモニウム塩が好ましい。   In the present invention, the phase transfer catalyst is preferably a quaternary ammonium base or a quaternary ammonium salt, and particularly preferably a quaternary ammonium salt.

本発明によれば、電子材料或いは電気絶縁材料への使用に適した、塩素含有率が極めて低く、また、エポキシ当量の小さいポリグリシジルエーテルを簡便な操作で容易に製造することができる。   According to the present invention, polyglycidyl ether having a very low chlorine content and a small epoxy equivalent suitable for use as an electronic material or an electrical insulating material can be easily produced by a simple operation.

以下、本発明のジβ−メチルグリシジルエーテルについて詳細に説明する。 It will be described in detail with di β- methyl Gurishijiruete Le of the present invention.

本発明において出発原料として用いられる前記一般式(I)で表される多価アルコールは、ビスフェノールにプロピレンオキシドを付加させる等の常法によって得ることができるものであり、また、市販品として容易に入手することもできる。 Polyhydric alcohol represented by the general formula to be used as Oite starting material present onset bright (I) are those can be obtained by conventional methods, such as for adding propylene oxide to bisphenol, also commercially available Can also be easily obtained.

本発明の前記一般式(II)で表されるジβ−メチルグリシジルエーテルは、上記多価アルコール、β−メチルエピクロルヒドリン及びアルカリを反応させて製造する。ここで、上記多価アルコールの水酸基1等量に対する上記β−メチルエピクロルヒドリンの使用比率は1.0〜10.0当量であり、特に2.0〜8.0当量の範囲であることが好ましい。上記β−メチルエピクロルヒドリンの比率が1.0当量(等当量)未満であると、ジβ−メチルグリシジルエーテル化されない水酸基が残存して純度が低下する。また、10.0当量を超えた場合にはβ−メチルエピクロルヒドリンが無駄となるばかりでなく、反応速度が低下したり、副反応によってエポキシ当量が大きくなったりするので好ましくない。 Di β- methyl glycidyl ether represented by the above general formula (II) of the present invention, the polyhydric alcohol, manufacture by reacting β- methyl epichlorohydrin and alkali. Here, the use ratio of the β-methylepichlorohydrin to 1 equivalent of the hydroxyl group of the polyhydric alcohol is 1 . It is 0-10.0 equivalent, It is especially preferable that it is the range of 2.0-8.0 equivalent. When the ratio of the β-methylepichlorohydrin is less than 1.0 equivalent (equal equivalent), a hydroxyl group that is not diβ -methylglycidyl ether remains and the purity is lowered. On the other hand, if it exceeds 10.0 equivalents, not only β-methylepichlorohydrin is wasted, but also the reaction rate is lowered and the epoxy equivalent is increased by side reactions, which is not preferable.

また前記アルカリとしては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩等があげられる。本発明においてはこれらのアルカリの中でも、特に水酸化ナトリウムが好ましい。本発明においてはこれらのアルカリを水溶液として用いることが好ましいが、場合によっては粉末又は固形のアルカリを、水と同時に或いは別々に加えることもできる。   Examples of the alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and the like. In the present invention, among these alkalis, sodium hydroxide is particularly preferable. In the present invention, these alkalis are preferably used as an aqueous solution, but in some cases, a powder or solid alkali can be added simultaneously with water or separately.

上記アルカリの使用量は、前記多価アルコールの水酸基に対して1.0〜2.0当量であり、特に1.0〜1.5当量の範囲であることが好ましい。アルカリの使用量が脂肪族多価アルコールの水酸基に対して当量未満であるとジβ−メチルグリシジルエーテル化されないクロルヒドリンエーテル基が残存して純度が低下し、また、2.0当量を超えても無駄となるばかりでなく、副反応によって製品の純度が低下するので好ましくない。 The amount of the alkali is with respect to the polyhydric alcohol hydroxyl groups 1. It is 0-2.0 equivalent, It is especially preferable that it is the range of 1.0-1.5 equivalent. If the amount of alkali used is less than the equivalent of the hydroxyl group of the aliphatic polyhydric alcohol, a chlorohydrin ether group that is not di-β-methylglycidyl etherified remains and the purity decreases, and exceeds 2.0 equivalents. However, not only is it wasted, but the purity of the product is reduced by side reactions, which is not preferable.

本発明の特徴は、前記多価アルコール、β−メチルエピクロルヒドリン及びアルカリの反応を、相間移動触媒の存在下に行わせる点にあり、この相間移動触媒は、水に不溶性の有機化合物と、有機溶媒に不溶性の試薬とを反応させるために使用される試薬として知られている。   A feature of the present invention is that the reaction of the polyhydric alcohol, β-methylepichlorohydrin, and alkali is performed in the presence of a phase transfer catalyst. The phase transfer catalyst includes an organic compound insoluble in water and an organic solvent. It is known as a reagent used for reacting with an insoluble reagent.

前記相間移動触媒としては、トリメチルアミン、トリオクチルアミン、トリデシルアミンのような第三級アミン、テトラメチルアンモニウム、メチルトリオトクチルアンモニウム、メチルトリデシルアンモニウム、ベンジルトリメチルアンモニウムのような第四級アンモニウム塩基、塩化テトラメチルアンモニウム、塩化メチルトリオクチルアンモニウム、塩化メチルトリデシルアンモニウム、塩化ベンジルトリメチルアンモニウムのような第四級アンモニウム塩があげられるが、本発明においては、特に第四級アンモニウム塩が好ましい。   Examples of the phase transfer catalyst include tertiary amines such as trimethylamine, trioctylamine and tridecylamine, quaternary ammonium bases such as tetramethylammonium, methyltrioctylammonium, methyltridecylammonium and benzyltrimethylammonium. Quaternary ammonium salts such as tetramethylammonium chloride, methyltrioctylammonium chloride, methyltridecylammonium chloride, and benzyltrimethylammonium chloride are exemplified. In the present invention, a quaternary ammonium salt is particularly preferable.

上記相間移動触媒の使用量は、多価アルコールの種類、β−メチルエピクロルヒドリンの過剰率、反応溶媒の使用量、反応温度等を考慮すると、多価アルコール100質量部に対して0.1〜10.0質量部であり、0.5〜5.0質量部の範囲であることが好ましい。相間移動触媒の使用量が0.1質量部未満であると反応速度が著しく遅くなったり、副反応が進行してエポキシ当量が小さくなったりするため実用的ではなく、また、10.0質量部を超えても相間移動触媒が無駄となる上、場合によっては反応を阻害することすらあるので好ましくない。 The amount of the phase transfer catalyst, the type of polyhydric alcohol, excess of β- methyl epichlorohydrin, the amount of the reaction solvent, and to account Thus, polyhydric alcohol 100 parts by weight of the reaction temperature and the like 0. It is 1-10.0 mass parts, and it is preferable that it is the range of 0.5-5.0 mass parts. When the amount of the phase transfer catalyst used is less than 0.1 parts by mass, the reaction rate is remarkably slow or side reaction proceeds and the epoxy equivalent becomes small, which is not practical, and 10.0 parts by mass Above this, the phase transfer catalyst is wasted and, in some cases, the reaction may be hindered.

また、本発明においては、一段の反応で塩素含有率の著しく低いジβ−メチルグリシジルエーテルが得られるという利点もある。ここで、一段の反応とは、全ての原料及び触媒を一括して仕込んで反応させる方法のみならず、一般式(I)で表される多価アルコール、β−メチルエピクロルヒドリン並びに触媒を仕込み、次いでアルカリを添加して反応させる方法を包含する。本発明においては、反応制御の容易さの観点から、後者の方法が好ましい。 Further, Oite this onset Ming, there is an advantage that a significantly lower di β- methyl glycidyl ether of chlorine content is obtained by the reaction of one step. Here, the one-step reaction is not only a method in which all raw materials and catalysts are charged and reacted together, but also a polyhydric alcohol represented by the general formula (I) , β-methylepichlorohydrin and a catalyst are charged, It includes a method of reacting by adding an alkali. In the present invention, the latter method is preferable from the viewpoint of easy reaction control.

上記の反応は、約30℃〜約100℃で行われるが、約40℃〜約80℃で行うことが好ましい。また、反応に際しては、炭化水素、エーテル又はケトンのような反応に不活性な溶媒を用いることもできるが、β−メチルエピクロルヒドリンを過剰に用いた場合には、β−メチルエピクロルヒドリンが溶媒としても機能するため、上記したような、反応に不活性な溶媒を使用することは必須ではない。   The above reaction is carried out at about 30 ° C. to about 100 ° C., preferably about 40 ° C. to about 80 ° C. In the reaction, a solvent inert to the reaction such as hydrocarbon, ether or ketone can be used. However, when β-methylepichlorohydrin is excessively used, β-methylepichlorohydrin also functions as a solvent. Therefore, it is not essential to use a solvent inert to the reaction as described above.

反応終了後の、目的とするジβ−メチルグリシジルエーテルの単離は、例えば、過剰のβ−メチルエピクロルヒドリンを留去した後、必要に応じて炭化水素等の非水溶性溶媒を加えた後水洗し、生成した食塩、触媒及び未反応或いは副生するアルコール成分を除去する等の、通常操作によって行うことができる。 Isolation of the desired di-β-methyl glycidyl ether after completion of the reaction is carried out, for example, by distilling off excess β-methyl epichlorohydrin, and then adding a water-insoluble solvent such as hydrocarbon as necessary, followed by washing with water. The generated salt, catalyst, and unreacted or by-produced alcohol components can be removed by a normal operation.

本発明によって得られたジβ−メチルグリシジルエーテルは、電子・電気絶縁材料として用いられる他、種々の用途に使用することができる。 Di β- methyl glycidyl ether thus obtained to the onset Ming, except that used as the electronic and electrical insulating materials, can be used for various applications.

以下、実施例及び比較例によって本発明を更に詳細に説明するが、本発明はこれらによって制限を受けるものではない。尚、以下の実施例等において、エポキシ当量とはエポキシ基1個当たりのエポキシ化合物(樹脂)の分子量を表す。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by these. In the following examples and the like, the epoxy equivalent represents the molecular weight of an epoxy compound (resin) per one epoxy group.

温度計、攪拌機及び冷却管を備えたガラス製フラスコに、水酸基価が314のビスフェノールAのプロピレンオキシド付加物(株式会社ADEKA製BPX−11)178.9g(0.5モル)、β−メチルエピクロルヒドリン462.5g(5.0モル)、塩化テトラメチルアンモニウム1.5g(多価アルコール100質量部に対して0.84質量部)を仕込み、フラスコ内を60℃に昇温し、内部圧力を11.3kPaに保って環流させた。   In a glass flask equipped with a thermometer, a stirrer and a condenser tube, 178.9 g (0.5 mol) of propylene oxide adduct of bisphenol A having a hydroxyl value of 314 (ADEKA BPX-11), β-methylepichlorohydrin 462.5 g (5.0 mol) and tetramethylammonium chloride 1.5 g (0.84 parts by mass with respect to 100 parts by mass of polyhydric alcohol) were charged, the temperature in the flask was raised to 60 ° C., and the internal pressure was 11 The mixture was refluxed at 3 kPa.

反応系の温度及び圧力を保ちながら、48.5質量%の水酸化ナトリウム水溶液108.3g(水酸化ナトリウムとして1.3モル)を90分掛けて滴下し、60℃で150分間熟成した後、反応系内に生成した塩を濾別した。濾液中の過剰なβ−メチルエピクロルヒドリンを減圧下の120℃で留去した後、トルエンを加えて十分に水洗し、次いで減圧下にトルエンを留去した後再度濾過して、淡黄色液体の生成物(MEP−1:ビスフェノールA−プロピレンオキシド付加物のジβ−メチルグリシジルエーテル)222gを得た。   While maintaining the temperature and pressure of the reaction system, 108.3 g of a 48.5 mass% aqueous sodium hydroxide solution (1.3 mol as sodium hydroxide) was added dropwise over 90 minutes, and after aging at 60 ° C. for 150 minutes, The salt produced in the reaction system was filtered off. Excess β-methylepichlorohydrin in the filtrate was distilled off at 120 ° C under reduced pressure, and then toluene was added and washed thoroughly. Then, toluene was distilled off under reduced pressure and filtered again to form a pale yellow liquid. 222 g of a product (MEP-1: diβ-methylglycidyl ether of bisphenol A-propylene oxide adduct) was obtained.

分析の結果、全塩素含有率は0.23質量%(内、可鹸化塩素0.01質量%)と著しく低く、また、エポキシ当量は286(計算値242)であり、副反応による高分子量化が極めて少ないことが分かった。また、ビスフェノールA−プロピレンオキシド付加物を基準とした収率は90%であった。   As a result of the analysis, the total chlorine content was as low as 0.23% by mass (including 0.01% by mass of saponifiable chlorine), and the epoxy equivalent was 286 (calculated value 242). Was found to be extremely small. The yield based on the bisphenol A-propylene oxide adduct was 90%.

比較例1
温度計、攪拌機及び冷却管を備えたガラス製フラスコに、水酸基価314のビスフェノールAのプロピレンオキシド付加物(旭電化工業株式会社製BPX−11)178.9g(0.5モル)及び四塩化錫水和物2.0gを仕込み、70℃に加温した。70〜75℃に保ちながら、β−メチルエピクロルヒドリン127.8g(1.2モル)を2時間掛けて滴下し、滴下終了後更に1時間、70〜75℃で攪拌してβ−メチルエピクロルヒドリンによるエーテル化を行った。この段階におけるβ−メチルエピクロルヒドリン付加エーテルの生成率は理論値通りであり、100%(ビスフェノールAのプロピレンオキシド付加物基準)であった。
Comparative Example 1
In a glass flask equipped with a thermometer, a stirrer, and a condenser tube, 178.9 g (0.5 mol) of propylene oxide adduct of bisphenol A having a hydroxyl value of 314 (BPX-11 manufactured by Asahi Denka Kogyo Co., Ltd.) and tin tetrachloride The hydrate 2.0g was prepared and it heated at 70 degreeC. While maintaining 70-75 [° C., was added dropwise over 2 hours β- methyl epichlorohydrin 127.8g (1.2 mol), further 1 hour after completion of the dropwise addition, by stirring to β- methyl-epi chlorohydrin at 70-75 [° C. Etherification was performed. Yield of β- methyl-epi chlorohydrin added ether at this stage are theoretical values as, was 100% (propylene oxide adducts criteria of bisphenol A).

次いでトルエン60gを加え、60〜65℃に保ちながら、48.5量%の水酸化ナトリウム水溶液91.6g(水酸化ナトリウムとして1.1モル)を1時間掛けて滴下し、60〜65℃で30分間攪拌した。更に100gのトルエンを加え、十分に水洗した後、減圧下にトルエンを留去して淡黄色の液体生成物(MEP−2:ビスフェノールA−プロピレンオキシド付加物のβ−メチルグリシジルエーテル)209gを得た。得られた生成物の全塩素含有率は4.55質量%(内、可鹸化塩素0.05%)、エポキシ当量は365(計算値263)であり、副反応による高分子量化等が著しいものであった。 Then Toluene 60g was added, while maintaining the 60 to 65 ° C., was added dropwise over 1 hour (1.1 mol as sodium hydroxide) 48.5 mass% of aqueous sodium 91.6g hydroxide, 60 to 65 ° C. For 30 minutes. Further addition of toluene 100 g, sufficiently washed with water, a pale yellow liquid product was distilled off toluene under reduced pressure: a (MEP-2 Bisphenol A- di β- methyl glycidyl ethers of propylene oxide adducts) 209 g Obtained. The total chlorine content of the obtained product is 4.55% by mass (including 0.05% saponifiable chlorine), the epoxy equivalent is 365 (calculated value 263), and the high molecular weight due to side reaction is remarkable. Met.

〔表1〕に示した配合で調製した実施例及び比較例の組成物を用いて以下の試験を実施した。 The following tests were carried out using the compositions of Examples and Comparative Examples prepared with the formulations shown in [Table 1].

(ゲル化時間)
各測定温度に保たれた熱盤上に、得られた組成物を0.5g滴下し、スパチュラ等でかき混ぜながら、流動性がなくなるまでの時間を測定した。
(Gel time)
0.5 g of the obtained composition was dropped on a hot plate maintained at each measurement temperature, and the time until fluidity was lost was measured while stirring with a spatula or the like.

(ガラス転移点、Tg)
SIIナノテクノロジーズ社製の示差走査熱量計DSC6220を用いて、昇温速度10℃/分、走査温度範囲25〜300℃としてDSCチャートを得た。更に、2次昇温を同じ条件で行い、熱容量の変曲点からガラス転移点を測定した。
(Glass transition point, Tg)
A DSC chart was obtained using a differential scanning calorimeter DSC 6220 manufactured by SII Nano Technologies, Inc. with a heating rate of 10 ° C./min and a scanning temperature range of 25 to 300 ° C. Further, the secondary temperature increase was performed under the same conditions, and the glass transition point was measured from the inflection point of the heat capacity.

(剪断接着力)
JIS K 6850に準拠した方法により、100℃で1時間硬化させた、硬化後の鋼板/鋼板の剪断接着力を求めた。
(Shearing adhesive strength)
By the method according to JIS K 6850, the shear adhesive strength of the steel plate / steel plate after curing, which was cured at 100 ° C. for 1 hour, was determined.

Figure 0005761775
Figure 0005761775

上記の結果から明らかなように、脂肪族多価アルコールとβ−メチルエピクロルヒドリン相間移動触媒の存在下で、反応を一段で行わせた本発明の場合には、塩素含有率が低くエポキシ当量の小さいジβ−メチルグリシジルエーテルを高収率で製造できること、また、得られた樹脂は、反応性及び接着性に優れていることが実証された。 As is clear from the above results, in the case of the present invention in which the reaction is carried out in the presence of an aliphatic polyhydric alcohol and a β-methylepichlorohydrin phase transfer catalyst, the chlorine content is low and the epoxy equivalent is small. It was demonstrated that diβ -methylglycidyl ether can be produced in a high yield, and that the obtained resin is excellent in reactivity and adhesiveness.

これに対し、相間移動触媒を用いずに金属錯体触媒又はルイス酸触媒のみを用いた場合には、得られるジβ−メチルグリシジルエーテルの塩素含有率が高い上、エポキシ当量が大きく、純度が低下するので、反応性及び接着性が低下することが確認された。また、β位にメチル基を持たないエポキシ樹脂と比較しても(比較例2、3)、本発明で得られたジβ−メチルグリシジルエーテルはより高い反応性と接着性を有していることが実証された。

On the other hand, when only a metal complex catalyst or Lewis acid catalyst is used without using a phase transfer catalyst, the chlorine content of the obtained diβ-methylglycidyl ether is high, and the epoxy equivalent is large and the purity is lowered. Therefore, it was confirmed that the reactivity and the adhesiveness were lowered. Even when compared with an epoxy resin having no methyl group at the β-position (Comparative Examples 2 and 3), the diβ-methylglycidyl ether obtained in the present invention has higher reactivity and adhesiveness. It was proved.

本発明は、電子・電気絶縁材料に適した、塩素含有率が極めて低い上エポキシ当量の小さいポリグリシジルエーテルを簡便な操作で容易に製造することができるので、産業上極めて有意義である。   INDUSTRIAL APPLICATION Since this invention can manufacture easily polyglycidyl ether with a very low chlorine content and a small epoxy equivalent suitable for an electronic / electrical insulating material by simple operation, it is very significant industrially.

Claims (4)

下記一般式(I)で表される多価アルコール100質量部に対して0.1〜10.0質量部の相間移動触媒の存在下に、前記多価アルコールの水酸基1等量(モル)に対して、1.0〜10.0等量のβ−メチルエピクロルヒドリン及び1.0〜2.0等量のアルカリを反応させてなることを特徴とする、下記一般式(II)で表されるビスフェノールA-プロピレンオキシド付加物のジβ−メチルグリシジルエーテル;
一般式(I)
Figure 0005761775
但し、式中のR及びRはそれぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、m及びnはそれぞれ独立に1〜10の数を表す;
一般式(II)
Figure 0005761775
但し、式中のR及びR 、並びに、m及びnはそれぞれ、一般式(I)中のR及びR 、並びに、m及びnと同じである。
In the presence of 0.1 to 10.0 parts by mass of a phase transfer catalyst with respect to 100 parts by mass of the polyhydric alcohol represented by the following general formula (I), 1 equivalent (mol) of hydroxyl group of the polyhydric alcohol. In contrast, 1.0 to 10.0 equivalents of β-methylepichlorohydrin and 1.0 to 2.0 equivalents of alkali are reacted, represented by the following general formula (II) Diβ-methylglycidyl ether of bisphenol A-propylene oxide adduct;
Formula (I)
Figure 0005761775
However, each of R 1 and R 2 in the formula independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, m and n represents the number of independently 1 to 10;
Formula (II)
Figure 0005761775
However, R 1 and R 2 in the formula , and m and n are the same as R 1 and R 2 in the general formula (I) , and m and n , respectively.
前記相間移動触媒が第四級アンモニウム塩基及び第四級アンモニウム塩から選択された少なくとも1種の化合物である、請求項1に記載されたビスフェノールA-プロピレンオキシド付加物のジβ−メチルグリシジルエーテル。   The diβ-methyl glycidyl ether of bisphenol A-propylene oxide adduct according to claim 1, wherein the phase transfer catalyst is at least one compound selected from a quaternary ammonium base and a quaternary ammonium salt. 前記相間移動触媒が第四級アンモニウム塩から選択された少なくとも1種の化合物である、請求項2に記載されたビスフェノールA-プロピレンオキシド付加物のジβ−メチルグリシジルエーテル。   The diβ-methyl glycidyl ether of bisphenol A-propylene oxide adduct according to claim 2, wherein the phase transfer catalyst is at least one compound selected from quaternary ammonium salts. 前記相間移動触媒が、塩化テトラメチルアンモニウム、塩化メチルトリオクチルアンモニウム、塩化メチルトリデシルアンモニウム、及び塩化ベンジルトリメチルアンモニウムから選択された少なくとも1種の化合物である、請求項2に記載されたビスフェノールA-プロピレンオキシド付加物のジβ−メチルグリシジルエーテル。   The bisphenol A- according to claim 2, wherein the phase transfer catalyst is at least one compound selected from tetramethylammonium chloride, methyltrioctylammonium chloride, methyltridecylammonium chloride, and benzyltrimethylammonium chloride. Diβ-methyl glycidyl ether of propylene oxide adduct.
JP2010001663A 2010-01-07 2010-01-07 Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same Expired - Fee Related JP5761775B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010001663A JP5761775B2 (en) 2010-01-07 2010-01-07 Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same
CN2010800607796A CN102712611A (en) 2010-01-07 2010-12-17 Process for producing polyglycidyl ether
KR1020127014140A KR101728577B1 (en) 2010-01-07 2010-12-17 Process for producing polyglycidyl ether
PCT/JP2010/007322 WO2011083537A1 (en) 2010-01-07 2010-12-17 Process for producing polyglycidyl ether
TW099145912A TWI487729B (en) 2010-01-07 2010-12-24 Method for manufacturing polyglycidyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001663A JP5761775B2 (en) 2010-01-07 2010-01-07 Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same

Publications (2)

Publication Number Publication Date
JP2011140458A JP2011140458A (en) 2011-07-21
JP5761775B2 true JP5761775B2 (en) 2015-08-12

Family

ID=44305284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001663A Expired - Fee Related JP5761775B2 (en) 2010-01-07 2010-01-07 Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same

Country Status (5)

Country Link
JP (1) JP5761775B2 (en)
KR (1) KR101728577B1 (en)
CN (1) CN102712611A (en)
TW (1) TWI487729B (en)
WO (1) WO2011083537A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483696B2 (en) * 2010-01-07 2014-05-07 株式会社Adeka Curable resin composition
JP5956159B2 (en) * 2012-01-13 2016-07-27 株式会社Adeka Method for producing glycidyl ether
JP6007022B2 (en) * 2012-08-06 2016-10-12 デクセリアルズ株式会社 Circuit connection material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU571499B2 (en) * 1983-04-01 1988-04-21 Dow Chemical Company, The Preparing epoxy resins
CN1003516B (en) * 1986-06-17 1989-03-08 武汉大学 Synthesis of polyglycol-bis-(epoxy propyl ether)
JPH07116171B2 (en) * 1987-12-08 1995-12-13 三洋化成工業株式会社 Method for producing glycidyl ether
JPH02202883A (en) * 1989-02-01 1990-08-10 Sanyo Chem Ind Ltd Production of glycidyl ether
JP3458465B2 (en) * 1994-07-26 2003-10-20 大日本インキ化学工業株式会社 Manufacturing method of high purity epoxy resin
JPH08333356A (en) * 1995-06-09 1996-12-17 Asahi Chiba Kk New glycidyl compound, its production and curable composition containing the same compound
JP3644761B2 (en) * 1996-06-21 2005-05-11 旭電化工業株式会社 Process for producing aliphatic polyglycidyl ether
CN1073581C (en) * 1998-09-04 2001-10-24 巴陵石化岳阳石油化工总厂 Injection epxoy resin for high voltage switch and its mfg. method
JP2003246837A (en) * 2002-02-26 2003-09-05 Asahi Kasei Epoxy Kk Epoxy resin and curable resin composition
WO2004090621A1 (en) * 2003-04-08 2004-10-21 Nippon Kayaku Kabushiki Kaisha Liquid crystal sealing agent and liquid crystalline display cell using the same
CN100469812C (en) * 2006-09-26 2009-03-18 蓝星化工新材料股份有限公司无锡树脂厂 Preparing method for epoxy resin active diluent of low organic chlorine content
BRPI0809769A2 (en) * 2007-04-27 2015-02-10 Dow Global Technologies Inc PROCESS FOR PREPARING 1,3-DIALKYLXI-2-PROPANOL AND TENSIVE COMPOSITION
CN101130582A (en) * 2007-08-07 2008-02-27 重庆拓桑生物科技有限公司 Polyvinyl alcohol glycidyl ether crosslinking agent and synthesis method of the same
CN101519489A (en) * 2009-02-24 2009-09-02 江苏工业学院 Method for preparing epoxy resin

Also Published As

Publication number Publication date
WO2011083537A1 (en) 2011-07-14
TWI487729B (en) 2015-06-11
KR101728577B1 (en) 2017-04-19
TW201129608A (en) 2011-09-01
JP2011140458A (en) 2011-07-21
KR20120115239A (en) 2012-10-17
CN102712611A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5754731B2 (en) Epoxy resin, method for producing epoxy resin, and use thereof
CN102317341B (en) Epoxy resin, epoxy resin composition, and cured object
JP2013087173A (en) Novel epoxy compound and method for producing the same
CN108137785B (en) Epoxy-terminated butadiene and butadiene acrylonitrile copolymers
JP3294624B2 (en) Method for producing cyclic carbonate
JP5761775B2 (en) Diβ-methylglycidyl ether of bisphenol A propylene oxide adduct and curable resin composition using the same
KR20150088612A (en) Method for preparing epoxy reactive diluent
JP4354242B2 (en) Novel crystalline epoxy resin, curable epoxy resin composition and cured product thereof
JP2014129510A (en) Polymerized rosin glycidyl ester and its manufacturing method
JP2009209117A (en) Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof
JP2008285544A (en) Epoxy compound containing fluorene ring and its manufacturing method
JP6736051B2 (en) Epoxy resin, completely modified epoxy resin and curable composition containing them
JP4334044B2 (en) Method for producing liquid epoxy resin
WO2008035514A1 (en) Liquid curable composition and cured product thereof
JP5051150B2 (en) Method for producing crystalline epoxy resin
JPS627719A (en) Production of expoxy resin
JPS629128B2 (en)
JPH07242683A (en) Quaternary phosphorus compound and its production and curing catalyst
JP4671018B2 (en) Method for producing glycidyl 2-hydroxyisobutyrate
JPS59175482A (en) Preparation of epoxy compound
JP2022102229A (en) Process for producing epoxy compound
JP6487233B2 (en) Polyfunctional epoxy compound and method for producing the same
JPS61171728A (en) Novel bromine-containing epoxy resin and production thereof
JPH1025286A (en) New polyepoxy compound and its production
JP5956159B2 (en) Method for producing glycidyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140428

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5761775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees