JP5759125B2 - Structure of suction part of screw compressor body - Google Patents

Structure of suction part of screw compressor body Download PDF

Info

Publication number
JP5759125B2
JP5759125B2 JP2010186462A JP2010186462A JP5759125B2 JP 5759125 B2 JP5759125 B2 JP 5759125B2 JP 2010186462 A JP2010186462 A JP 2010186462A JP 2010186462 A JP2010186462 A JP 2010186462A JP 5759125 B2 JP5759125 B2 JP 5759125B2
Authority
JP
Japan
Prior art keywords
suction
screw
face
rotor
male
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010186462A
Other languages
Japanese (ja)
Other versions
JP2012041910A (en
Inventor
幸司 竹内
幸司 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP2010186462A priority Critical patent/JP5759125B2/en
Publication of JP2012041910A publication Critical patent/JP2012041910A/en
Application granted granted Critical
Publication of JP5759125B2 publication Critical patent/JP5759125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明はスクリュ圧縮機本体の吸入部構造に関し,より詳細には低圧段の圧縮機本体で圧縮された圧縮気体を高圧段の圧縮機本体で更に圧縮する多段式スクリュ圧縮機における高圧段の圧縮機本体で採用するに適した,スクリュ圧縮機本体の吸入部構造に関する。   TECHNICAL FIELD The present invention relates to a structure of a suction portion of a screw compressor body, and more specifically, compression of a high-pressure stage in a multi-stage screw compressor that further compresses compressed gas compressed by a low-pressure stage compressor body by a high-pressure stage compressor body. The present invention relates to a structure of a suction portion of a screw compressor body suitable for use in a machine body.

なお,本明細書において多段式スクリュ圧縮機における高圧段の圧縮機本体とは,多段式スクリュ圧縮機が2段以上の圧縮機本体を有する場合,第2段目以降の圧縮機本体を言う。   In the present specification, the high-pressure stage compressor body in the multi-stage screw compressor refers to the second-stage and subsequent compressor bodies when the multi-stage screw compressor has two or more stages of compressor bodies.

空気,燃料ガス,その他の各種気体を圧縮して所定の圧力に圧縮された圧縮流体を得るためにスクリュ圧縮機が広く使用されている。   Screw compressors are widely used to obtain compressed fluid compressed to a predetermined pressure by compressing air, fuel gas, and other various gases.

このうち,圧縮作用空間の冷却,密封に潤滑油を使用することなく,雄,雌一対のスクリュロータ間,及び各スクリュロータの歯先とシリンダ内壁間に微小な間隔を介した非接触の状態でロータを高速回転させることにより被圧縮気体の圧縮を行うオイルフリースクリュ式の圧縮機本体では,1台の圧縮機本体によって最終目標とする圧力まで被圧縮気体の圧力を高めることが困難な場合があることから,複数の圧縮機本体を連結して使用し,低圧段の圧縮機本体で圧縮した圧縮気体を高圧段の圧縮機本体に導入して更に圧縮することで最終目標とする圧力の圧縮気体を得る,所謂「多段式」と呼ばれる装置構成も採用されている。   Of these, without using lubricating oil for cooling and sealing the compression working space, a non-contact state between a pair of male and female screw rotors and between the tooth tip of each screw rotor and the inner wall of the cylinder via a minute gap In the case of an oil-free screw type compressor body that compresses the compressed gas by rotating the rotor at a high speed, it is difficult to increase the pressure of the compressed gas to the final target pressure by one compressor body. Therefore, multiple compressor bodies are connected and used, and the compressed gas compressed by the low-pressure stage compressor body is introduced into the high-pressure stage compressor body and further compressed to achieve the final target pressure. A so-called “multistage type” apparatus configuration for obtaining compressed gas is also employed.

このような多段式のスクリュ圧縮機の一例として,図7に示すように圧縮機本体として低圧段の圧縮機本体100aと高圧段の圧縮機本体100bから成る二機の圧縮機本体を備えた二段式スクリュ圧縮機にあっては,低圧段の圧縮機本体100aの吐出口と,高圧段の圧縮機本体100bの吸入口とを中間段通路(中間配管220,222)を介して連通し,低圧段の圧縮機本体100aによって圧縮した後の圧縮気体を,更に高圧段の圧縮機本体100bに導入して圧縮し,このようにして高圧段の圧縮機本体100bで圧縮された圧縮気体(例えば圧縮空気)を空気作業機等の圧縮気体の消費側に供給することができるようにしている。   As an example of such a multi-stage screw compressor, as shown in FIG. 7, a compressor body having two compressor bodies comprising a low-pressure stage compressor body 100a and a high-pressure stage compressor body 100b is provided. In the stage-type screw compressor, the discharge port of the low-pressure stage compressor body 100a and the suction port of the high-pressure stage compressor body 100b are communicated with each other via an intermediate stage passage (intermediate pipes 220, 222). The compressed gas compressed by the low-pressure stage compressor body 100a is further introduced into the high-pressure stage compressor body 100b and compressed, and thus compressed gas (for example, compressed by the high-pressure stage compressor body 100b) (for example, Compressed air) can be supplied to the compressed gas consumption side such as an air working machine.

以上のように構成された二段式のスクリュ圧縮機にあっては,低圧段の圧縮機本体100aと高圧段の圧縮機本体100bに共通して設けられた単一の駆動源(例えばモータ)104からの回転駆動力を,増速機103等によってそれぞれ所定の増速比に増速して低圧段及び高圧段の圧縮機本体100a,100bにそれぞれ入力することから,このような二段式のスクリュ圧縮機において圧縮機本体を駆動する動力を減少するために,低圧段の圧縮機本体100aと高圧段の圧縮機本体100bの圧縮比を最適化して単一の駆動源によってバランス良く駆動することが行われていると共に,このような圧縮比を算出するための数式も提案されている(特許文献1)。   In the two-stage screw compressor configured as described above, a single drive source (for example, a motor) provided in common to the low-pressure stage compressor body 100a and the high-pressure stage compressor body 100b. Since the rotational driving force from 104 is increased to a predetermined speed increase ratio by the speed increaser 103 or the like and is input to the low pressure stage and high pressure stage compressor bodies 100a and 100b, respectively, such a two-stage type. In order to reduce the power for driving the compressor body in the screw compressor, the compression ratio of the low-pressure stage compressor body 100a and the high-pressure stage compressor body 100b is optimized and driven in a balanced manner by a single drive source. In addition, a mathematical formula for calculating such a compression ratio has also been proposed (Patent Document 1).

特開平6−288368号公報JP-A-6-288368

前述した二段式スクリュ圧縮機において,低圧段の圧縮機本体における圧縮比と,高圧段の圧縮機本体における圧縮比とを所定の値に設定して駆動することは,両圧縮機本体を単一の駆動源からの回転駆動力によってバランス良く運転する上で不可欠であり,前掲した特許文献1に開示されている数式によって算出された圧縮比に限らず,低圧段の圧縮機本体と高圧段の圧縮機本体の圧縮比とを所定の比率に調整することは,従来一般的に行われている(例えば特許文献1の従来技術参照)。   In the above-described two-stage screw compressor, driving with the compression ratio of the low-pressure stage compressor body and the compression ratio of the high-pressure stage compressor body set to a predetermined value makes it easy to drive both compressor bodies. It is indispensable to operate in a well-balanced manner by the rotational driving force from one drive source, and is not limited to the compression ratio calculated by the mathematical formula disclosed in the above-mentioned Patent Document 1, but the low-pressure stage compressor main body and the high-pressure stage. Conventionally, the compression ratio of the compressor body is adjusted to a predetermined ratio (see, for example, the prior art in Patent Document 1).

そして,このようにして設定された低圧段の圧縮機本体と高圧段の圧縮機本体との圧縮比に基づいて両圧縮機本体を駆動しようとすれば,前述した中間段通路内における圧縮流体の圧力(中間圧力)をこれに対応して設定して,この中間圧力に応じた吸入容量が発生するように高圧段の圧縮機本体を設計することになる。   If both compressor bodies are driven based on the compression ratio between the low-pressure stage compressor body and the high-pressure stage compressor body set in this way, the compressed fluid in the intermediate-stage passage described above The pressure (intermediate pressure) is set correspondingly, and the high-pressure stage compressor body is designed so that a suction capacity corresponding to the intermediate pressure is generated.

しかし,図8に示すようにスクリュ型の圧縮機本体100にあっては,圧縮作用空間内で圧縮された圧縮気体の漏れを少なくするために,ロータ120(130)の吐出端面121(131)と,これに対向するケーシング110の内壁112間の隙間(以下,「吐出端面隙間」という。)δ1については所定の微小な間隔に調整しているが,ロータ120(130)やシリンダ111に生じた加工誤差や組立誤差等により,前述のように吐出端面隙間δ1を所定間隔に調整すると,ロータ120,130の吸入端面122(132)とこれに対向するケーシング110の内壁155間の隙間(以下,「吸入端面隙間」という。)δ2が前述した誤差によって変動するために,圧縮機本体100毎に吸入端面隙間δ2に個体差が生じる。   However, as shown in FIG. 8, in the screw-type compressor body 100, the discharge end surface 121 (131) of the rotor 120 (130) is reduced in order to reduce the leakage of compressed gas compressed in the compression working space. The gap between the inner walls 112 of the casing 110 facing this (hereinafter referred to as “discharge end face gap”) δ1 is adjusted to a predetermined minute interval, but occurs in the rotor 120 (130) and the cylinder 111. If the discharge end face gap δ1 is adjusted to a predetermined interval as described above due to processing errors, assembly errors, etc., the gap between the suction end face 122 (132) of the rotors 120 and 130 and the inner wall 155 of the casing 110 facing this (hereinafter referred to as the gap) , Referred to as “suction end surface gap”) δ2 fluctuates due to the above-described error, so that individual differences occur in the suction end surface gap δ2 for each compressor body 100.

しかも,吸入端面隙間δ2は前述した誤差を吸収することができるように吐出端面隙間δ1に比較して大きな隙間として形成されており,一例として前述したオイルフリースクリュ圧縮機本体1において吐出端面間隔δ1が0.05mm程度であるのに対し,吸入端面隙間は約10倍の0.5mm程度となる。   Moreover, the suction end face gap δ2 is formed as a larger gap than the discharge end face gap δ1 so as to be able to absorb the error described above. As an example, the discharge end face interval δ1 in the oil-free screw compressor main body 1 described above. Is about 0.05 mm, while the suction end face gap is about 10 times 0.5 mm.

そして,このような従来のスクリュ型の圧縮機本体100にあっては,図9に示すように雄,雌のスクリュロータ120,130の吸入端面122(132)に対向するケーシングの内壁155が,雄,雌のスクリュロータ120,130の周縁部の一部に対向して配置されており,図示の例では雄のスクリュロータ120の歯先M1が回転位置m4に,雌のスクリュロータ130の歯先F1が回転位置f4に到達すると,雄ロータ120の歯先M1,M2間の歯溝と,雌ロータ130の歯先F1,F2間の歯溝,並びにシリンダ111の内壁とによって画成される圧縮作用空間の吸入側端部(図9においてグレーに着色された部分)がこの内壁155によって塞がれ,該圧縮作用空間の吸気閉じ込みが完了すると共に(図11参照),この状態から更にロータ120,130が回転することによって,前記圧縮作用空間の容積が減少して,圧縮作用空内に閉じ込まれた被圧縮流体の圧縮が行われるようになっている。   In such a conventional screw type compressor main body 100, as shown in FIG. 9, the inner wall 155 of the casing facing the suction end face 122 (132) of the male and female screw rotors 120, 130 is provided. The male and female screw rotors 120 and 130 are disposed so as to face part of the peripheral edge. In the illustrated example, the tooth tip M1 of the male screw rotor 120 is at the rotational position m4 and the teeth of the female screw rotor 130 are disposed. When the tip F1 reaches the rotational position f4, the tooth gap between the tooth tips M1 and M2 of the male rotor 120, the tooth gap between the tooth tips F1 and F2 of the female rotor 130, and the inner wall of the cylinder 111 are defined. The suction side end portion (the portion colored in gray in FIG. 9) of the compression working space is blocked by the inner wall 155, and the intake air closing of the compression working space is completed (see FIG. 11). By further rotor 120 is rotated from the state, the volume of the compression action space is reduced, the compression of the compressed fluid incorporated closed compression action in the air is to be carried out.

しかし,前述したように,雄,雌のスクリュロータ120,130の吸入端面122,132と,このロータ120,130の吸入端面122,132に対向するケーシング110の内壁155間には0.5mm程度の比較的大きな吸入端面隙間δ2が生じていることから,圧縮作用空間内に閉じ込まれた被圧縮流体が圧縮されると,この吸入端面隙間δ2を介して圧縮された被圧縮気体の漏出が起こる。   However, as described above, the gap between the suction end surfaces 122 and 132 of the male and female screw rotors 120 and 130 and the inner wall 155 of the casing 110 facing the suction end surfaces 122 and 132 of the rotors 120 and 130 is about 0.5 mm. Therefore, when the compressed fluid confined in the compression working space is compressed, leakage of the compressed gas compressed through the suction end surface gap δ2 occurs. Occur.

しかも,この吸入端面隙間δ2は,前述したように製造誤差等に基づき圧縮機本体毎に個体差があるために,吸入端面隙間δ2を介して漏出する被圧縮気体量が圧縮機本体毎に相違し,従って,圧縮機本体毎に吸入容量にもバラツキが生じるため,このようなスクリュ圧縮機本体100を多段スクリュ圧縮機の高圧段の圧縮機として使用する場合には,高圧段の圧縮機本体の吸入容量のバラツキに伴って個体毎に定格運転時の中間圧力が設定値とはならず,そのままでは低圧段の圧縮機本体と高圧段の圧縮機本体の圧縮比を予め設定した所定の圧縮比で駆動することができないために煩雑な調整作業が必要となり,圧縮機の運転効率を高める際の障害となっている。   Moreover, since the suction end face gap δ2 has individual differences for each compressor body based on manufacturing errors as described above, the amount of compressed gas leaking through the suction end face gap δ2 is different for each compressor body. Therefore, since the suction capacity varies for each compressor body, when such a screw compressor body 100 is used as a high-pressure stage compressor of a multi-stage screw compressor, the high-pressure stage compressor body. As the suction capacity varies, the intermediate pressure during rated operation does not become the set value for each individual, and the compression ratio between the low-pressure stage compressor body and the high-pressure stage compressor body is set in advance. Since it cannot be driven at a ratio, complicated adjustment work is required, which is an obstacle to increasing the operating efficiency of the compressor.

そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,圧縮機本体に製造誤差や組立誤差による個体差が生じている場合であっても,吸入容量のバラツキを可及的に低減することができる圧縮機本体の吸入部構造を提供することにより,このような吸入部構造を備えた圧縮機本体を多段スクリュ圧縮機における高圧段の圧縮機本体として使用することで,複雑な調整作業等を行うことなしに,定格運転時の中間圧力を設定値に,従って,多段式スクリュ圧縮機を効率的に運転するために必要となる低圧,高圧段圧縮機本体の所定の圧縮比による運転を比較的容易に実現することができるようにすることを目的とする。   Therefore, the present invention has been made to eliminate the above-described drawbacks of the prior art, and even if individual differences due to manufacturing errors or assembly errors occur in the compressor body, variations in suction capacity are possible. By providing a compressor main body having such a suction section structure as a high-pressure stage compressor main body in a multi-stage screw compressor, The intermediate pressure during rated operation is set to the set value without complicated adjustment work. Therefore, the specified low-pressure and high-pressure stage compressor body required for efficient operation of the multi-stage screw compressor is used. It is an object of the present invention to realize operation with a compression ratio relatively easily.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。   Hereinafter, means for solving the problem will be described together with reference numerals used in the embodiment for carrying out the invention. This code is used to clarify the correspondence between the description of the scope of claims and the description of the mode for carrying out the invention. Needless to say, it is used in a limited manner for the interpretation of the technical scope of the present invention. It is not a thing.

上記目的を達成するために,本発明のスクリュ圧縮機本体1の吸入部構造は,相互に噛み合い回転する雄,雌一対のスクリュロータ20,30と,前記一対のスクリュロータ20,30を噛み合い状態で回転可能に収容するシリンダ11が形成されたケーシング10を備え,雄,雌一対のスクリュロータ20,30の歯先と,前記スクリュロータ20,30を収容する前記シリンダ11内壁によって画成される圧縮作用空間を前記一対のスクリュロータ20,30の噛み合い回転により容積減少させて,前記一対のスクリュロータ20,30の吸入端面22,32側より前記圧縮作用空間内に取り込んだ被圧縮流体を圧縮して吐出端面21,31側より前記ケーシング10内に設けた吐出流路17に吐出可能としたスクリュ型の圧縮機本体1において,
前記圧縮機本体1が,低圧段の圧縮機本体によって圧縮された圧縮気体を,高圧段の圧縮機本体に導入して更に圧縮する多段式スクリュ圧縮機(但し,同一のケーシング内に低圧段のスクリュロータと高圧段のスクリュロータを収容すると共に,低高圧段の雄ロータの軸同士をカップリングにより連結した,タンデム型の多段式スクリュ圧縮機を除く。)における前記高圧段の圧縮機本体であると共に,前記一対のスクリュロータ20,30間に微小な間隔を介した非接触の状態で回転するオイルフリー式の圧縮機本体であり,
前記ケーシング10に設けた吸入口14と連通すると共に前記一対のスクリュロータ20,30の吸入端面22,32に向かって開口して前記圧縮作用空間に被圧縮流体を導入する吸入流路15を前記ケーシング10内に形成すると共に,
前記雄,雌一対のスクリュロータ20,30双方の前記吸入端面22,32の少なくとも周縁部分を全周に亘り前記吸入流路15内に配置したことを特徴とする(請求項1)。
In order to achieve the above object, the suction compressor structure of the screw compressor main body 1 of the present invention has a pair of male and female screw rotors 20 and 30 that mesh and rotate with each other, and the pair of screw rotors 20 and 30 mesh with each other. And a casing 10 in which a cylinder 11 is rotatably accommodated, and is defined by tooth tips of a pair of male and female screw rotors 20 and 30 and an inner wall of the cylinder 11 that accommodates the screw rotors 20 and 30. The volume of the compression working space is reduced by the meshing rotation of the pair of screw rotors 20, 30, and the fluid to be compressed taken into the compression working space from the suction end face 22, 32 side of the pair of screw rotors 20, 30 is compressed. Then, the screw-type compressor main body 1 that can discharge from the discharge end faces 21 and 31 to the discharge flow path 17 provided in the casing 10. Oite,
The compressor body 1 introduces the compressed gas compressed by the low-pressure stage compressor body into the high-pressure stage compressor body and further compresses the compressed gas (however, the low-pressure stage compressor is provided in the same casing). (Excluding tandem multi-stage screw compressors, which house the screw rotor and the high-pressure stage screw rotor and connect the shafts of the low- and high-pressure stage male rotors by coupling) And an oil-free compressor body that rotates in a non-contact state between the pair of screw rotors 20 and 30 with a minute gap therebetween,
The suction passage 15 that communicates with the suction port 14 provided in the casing 10 and opens toward the suction end surfaces 22 and 32 of the pair of screw rotors 20 and 30 and introduces the fluid to be compressed into the compression working space Formed in the casing 10,
The suction end faces 22, 32 of both the male and female screw rotors 20, 30 are arranged in the suction flow path 15 over the entire circumference (Claim 1).

上記構成の吸入部構造において,前記雄,雌一対のスクリュロータ20,30の吸入端面22,32に向かって突出し,前記一対のスクリュロータ20,30の吸入側ロータ軸25,35をそれぞれ収容するボス51,52の突出側端部における外径を前記各スクリュロータ20,30の外径(歯先迄の径)よりも小径に形成し,前記ボス51,52の外周位置の全周に亘り前記吸入流路15を形成することができる(請求項2)。   In the suction part structure having the above-described configuration, the pair of male and female screw rotors 20 and 30 protrude toward the suction end surfaces 22 and 32 and accommodate the suction-side rotor shafts 25 and 35 of the pair of screw rotors 20 and 30, respectively. The outer diameters at the projecting side ends of the bosses 51 and 52 are formed to be smaller than the outer diameters of the screw rotors 20 and 30 (the diameters up to the tooth tips), and extend over the entire circumference of the outer peripheral position of the bosses 51 and 52. The suction channel 15 can be formed (claim 2).

更に,前記雄,雌一対のスクリュロータ20,30それぞれの吸入端面22,32と,各吸入端面22,32と対向する前記ボス51,52の端面53,54間に,前記吸入流路15の一部となる間隔(δ3又はδ4:図4又は5参照)を形成することができ(請求項3),
この間隔δ3は,前記ボスの端面53,54を,前記スクリュロータ20,30の吸入端面22,32より離間して設けることにより形成しても良く(請求項4;図4),
或いは,前記間隔δ4を前記スクリュロータ20,30の吸入端面22,32を,前記ボス51,52の端面53,54より離間して設けることにより形成するものとしても良い(請求項5;図5)。
Further, between the suction end surfaces 22 and 32 of each of the male and female screw rotors 20 and 30 and between the end surfaces 53 and 54 of the bosses 51 and 52 facing the suction end surfaces 22 and 32, A part interval (δ3 or δ4: see FIG. 4 or 5) can be formed (Claim 3),
This interval δ3 may be formed by providing the end faces 53, 54 of the boss apart from the suction end faces 22, 32 of the screw rotors 20, 30 (Claim 4; FIG. 4).
Alternatively, the interval δ4 may be formed by providing the suction end faces 22 and 32 of the screw rotors 20 and 30 apart from the end faces 53 and 54 of the bosses 51 and 52 (Claim 5; FIG. 5). ).

以上説明した本発明の構成により,本発明の吸入部構造を備えたスクリュ圧縮機本体1にあっては,スクリュロータ20,30の吸入端面22,32の少なくとも周縁部が全周に亘って吸入流路15内に配置されていることにより,雄,雌のロータ20,30の噛み合いによって圧縮作用空間の吸入側端部が閉ざされる直前までは圧縮作用空間が導入通路15と連通した状態にあり,従って,雄,雌ロータ20,30の吸入端面22,32に対向するケーシング10の内壁に,圧縮作用空間の吸気閉じ込みを行う機能を持たせないように構成することができた。   With the configuration of the present invention described above, in the screw compressor body 1 having the suction portion structure of the present invention, at least the peripheral edge portions of the suction end surfaces 22 and 32 of the screw rotors 20 and 30 are sucked over the entire circumference. By being arranged in the flow path 15, the compression working space is in communication with the introduction passage 15 until just before the suction side end of the compression working space is closed by the engagement of the male and female rotors 20, 30. Therefore, the inner wall of the casing 10 facing the suction end faces 22 and 32 of the male and female rotors 20 and 30 can be configured not to have the function of closing the intake of the compression working space.

その結果,製造誤差や組立誤差によって吸入端面隙間δ2に差がある圧縮機本体が製造されたとしても,この吸入端面隙間δ2の広狭はこの圧縮機本体の吸入容量に影響を与えず,製造された圧縮機本体1間における吸入容量のバラツキを小さくすることができた,   As a result, even if a compressor body having a difference in the suction end face gap δ2 due to a manufacturing error or an assembly error is produced, the width of the suction end face gap δ2 does not affect the suction capacity of the compressor body. The variation in the suction capacity between the compressor bodies 1 could be reduced.

このように圧縮機本体1間における吸入容量の個体差,所謂バラツキを小さくすることができたことから,前述した吸入部構造を備えた圧縮機本体1を前述した多段式スクリュ圧縮機の高圧段側の圧縮機本体として使用する場合には,煩雑な調整作業等を行うことなく,多段式スクリュ圧縮機の定格運転時における中間圧力を設定値とすることができ,多段式スクリュ圧縮機における低圧段の圧縮機本体と高圧段の圧縮機本体の圧縮比を,多段式スクリュ圧縮機を最小の動力で駆動するために予め設定した所定の比率とすることが容易であった。   Thus, since the individual difference of the suction capacity between the compressor bodies 1, so-called variation, can be reduced, the compressor body 1 having the above-described suction portion structure is used as the high-pressure stage of the above-described multistage screw compressor. When using as the main compressor, the intermediate pressure during rated operation of the multi-stage screw compressor can be set to a set value without complicated adjustment work. It was easy to set the compression ratio between the compressor body of the stage and the compressor body of the high-pressure stage to a predetermined ratio set in advance to drive the multistage screw compressor with the minimum power.

前述した吸入流路15内にスクリュロータ20,30の吸入端面22,32の周縁部を配置する構成は,スクリュロータ20,30の吸入側ロータ軸25,35を取り付けるためのボス51,52の端面53,54を,前記ロータ20,30の外径(歯先迄の径)よりも小さくすると共に,このボス51,52の外周位置の全周に亘って前述の吸入流路15を設けることで比較的簡単に形成することができた。   The configuration in which the peripheral portions of the suction end faces 22 and 32 of the screw rotors 20 and 30 are arranged in the suction flow path 15 described above is that the bosses 51 and 52 for attaching the suction-side rotor shafts 25 and 35 of the screw rotors 20 and 30 are arranged. The end surfaces 53 and 54 are made smaller than the outer diameter (diameter to the tooth tip) of the rotors 20 and 30, and the above-described suction flow path 15 is provided over the entire outer circumference of the bosses 51 and 52. It was possible to form relatively easily.

なお,ボス51,52の端部外径がスクリュロータ20,30の外径に対して小さく形成されていた場合であっても,このボスの端面が雌ロータ30の歯溝の一部を覆うように設けられている場合には,スクリュロータ20,30の噛合による吸気閉じ込み前の僅かな時間,このボス52の端面54によって圧縮作用空間の端部が閉ざされることとなる場合があり,その結果,ボス52の端面54とスクリュロータ20,30の吸入端面22,32間の間隔の誤差によって圧縮機本体1毎の吸入容量に僅かなバラツキが生じうることとなるが,スクリュロータ20,30の吸入端面22,32と,これに対向するボス51,52の端面53,54間に,前記吸入流路15の一部となる間隔δ3,δ4(図4,5参照)を形成した場合には,このようなボス51,52の端面53,54による吸気閉じ込みも生じないことから,スクリュ式の圧縮機本体の吸入容量のバラツキをより一層小さくすることが可能であった。   Even if the outer diameters of the end portions of the bosses 51 and 52 are smaller than the outer diameter of the screw rotors 20 and 30, the end surfaces of the bosses cover part of the tooth grooves of the female rotor 30. In this case, the end of the compression working space may be closed by the end face 54 of the boss 52 for a short time before the intake air is closed due to the engagement of the screw rotors 20 and 30. As a result, the suction capacity of each compressor body 1 may vary slightly due to an error in the distance between the end face 54 of the boss 52 and the suction end faces 22 and 32 of the screw rotors 20 and 30. When gaps δ3 and δ4 (see FIGS. 4 and 5) that form a part of the suction flow path 15 are formed between the suction end faces 22 and 32 of 30 and the end faces 53 and 54 of the bosses 51 and 52 opposed thereto. This is Since no occur confinement intake by end surface 53, 54 of a boss 51 and 52, the variation in the intake capacity of the compressor body of the screw-type was more can be further reduced.

本発明の吸入部構造を備えたスクリュ圧縮機本体の断面図。Sectional drawing of the screw compressor main body provided with the suction | inhalation part structure of this invention. 図1のII−II線概略断面図。FIG. 2 is a schematic sectional view taken along line II-II in FIG. 1. スクリュロータの歯溝の展開説明図。Explanatory drawing of the development of the tooth groove of the screw rotor. 本発明の別の吸入部構造を備えたスクリュ圧縮機本体の断面図。Sectional drawing of the screw compressor main body provided with another suction part structure of this invention. 本発明の更に別の吸入部構造を備えたスクリュ圧縮機本体の断面図。Sectional drawing of the screw compressor main body provided with another suction part structure of this invention. 図4及び図5におけるVI−VI線概略断面図。VI-VI line schematic sectional drawing in FIG.4 and FIG.5. 二段式スクリュ圧縮機の説明図(特許文献1の図1に対応)。Explanatory drawing of a two-stage screw compressor (corresponding to FIG. 1 of Patent Document 1). スクリュ圧縮機本体の断面図(従来)。Sectional drawing of a screw compressor body (conventional). 図8のIX−IX線概略断面図。IX-IX line schematic sectional drawing of FIG. 図8のX−X線概略断面図。XX schematic sectional drawing of FIG. スクリュロータの歯溝の展開説明図(従来)。Explanatory drawing of the tooth groove of a screw rotor (conventional).

以下に,添付図面を参照しながら本発明の吸入部構造を備えたスクリュ型の圧縮機本体について説明する。   A screw type compressor body provided with a suction portion structure of the present invention will be described below with reference to the accompanying drawings.

〔圧縮機本体の全体構造〕
本発明の吸入部構造が適用されるスクリュ式の圧縮機本体1は,ケーシング10に形成されたシリンダ11内に,雄,雌一対のスクリュロータ20,30を噛み合い状態で回転可能に収容して構成されており,このスクリュロータ20,30を噛み合い状態で回転させることにより,スクリュロータ20,30の歯溝とシリンダ11の内壁とによって画成された圧縮作用空間に対して被圧縮気体の導入と閉じ込みを行うと共に,この圧縮作用空間がスクリュロータ20,30の更なる回転に伴い容積減少する結果,閉じ込まれた被圧縮気体が圧縮されて吐出されるようになっている。
[Overall structure of compressor body]
A screw-type compressor body 1 to which a suction portion structure of the present invention is applied has a pair of male and female screw rotors 20 and 30 rotatably accommodated in a cylinder 11 formed in a casing 10. Thus, by rotating the screw rotors 20 and 30 in a meshed state, the compressed gas is introduced into the compression working space defined by the tooth grooves of the screw rotors 20 and 30 and the inner wall of the cylinder 11. As a result of the volume of the compression working space being reduced as the screw rotors 20 and 30 are further rotated, the compressed gas to be compressed is compressed and discharged.

オイルフリー式のスクリュ圧縮機本体1である図示の実施形態において,このようなシリンダ11内に収容された雄,雌の各スクリュロータ20,30は,各スクリュロータ20,30間が微小な間隙を介した非接触の状態で,且つ,各スクリュロータ20,30の歯先がシリンダ11の内壁と非接触の状態で噛み合い回転するように構成されている。   In the illustrated embodiment, which is an oil-free screw compressor body 1, the male and female screw rotors 20, 30 housed in the cylinder 11 have a small gap between the screw rotors 20, 30. And the tooth tips of the screw rotors 20 and 30 mesh with each other and rotate in a non-contact state with the inner wall of the cylinder 11.

また,スクリュロータ20,30の吐出端面21(31)と,これと対向するケーシング10の内壁12間は,所定の吐出端面隙間δ1が所定の隙間(一例として0.05mm)となるように調整されていると共に,吐出端面21,31に向かって開口する吐出流路17を設け,この吐出流路17を吐出口16に連通することで,スクリュロータ20,30の回転によって圧縮された圧縮気体を,この吐出口16よりケーシング10外に取り出すことができるように構成されている。   Further, a predetermined discharge end face gap δ1 is adjusted to be a predetermined gap (as an example, 0.05 mm) between the discharge end face 21 (31) of the screw rotors 20 and 30 and the inner wall 12 of the casing 10 facing the screw end face 21 (31). In addition, a discharge channel 17 that opens toward the discharge end faces 21 and 31 is provided, and the compressed gas compressed by the rotation of the screw rotors 20 and 30 is provided by communicating the discharge channel 17 with the discharge port 16. It can be taken out from the casing 10 through the discharge port 16.

雄,雌一対のスクリュロータ20,30に形成された歯溝と前記シリンダ11の内周面とによって画成される前述の圧縮作用空間に対し被圧縮気体の導入を可能とするために,前記ケーシング10には吸気口14およびこの吸気口14に連続すると吸入流路15が設けられていると共に,この吸入流路15を雄,雌ロータ20,30の吸入端面22,32に向かって開口することにより,前述した圧縮作用空間に対する被圧縮気体の導入が可能となっている。   In order to enable the introduction of compressed gas into the compression working space defined by the tooth grooves formed in the pair of male and female screw rotors 20 and 30 and the inner peripheral surface of the cylinder 11, The casing 10 is provided with an intake port 14 and a suction passage 15 that is continuous with the intake port 14, and the suction passage 15 opens toward the suction end surfaces 22 and 32 of the male and female rotors 20 and 30. This makes it possible to introduce the compressed gas into the compression working space described above.

前述したように,雄,雌一対のスクリュロータ20,30を非接触の状態で回転させることができるようにするために,図1の圧縮機本体では,スクリュロータ20,30の吐出側ロータ軸23(33)の端部にタイミングギヤ24(34)を設けて,両ロータの回転タイミングを規制していると共に,吸入側ロータ軸25(35)のいずれか一方の軸端に従動ギヤ26を設け,図示せざるモータ等の駆動源に設けられた出力軸に取り付けた駆動ギヤ(図示せず)と噛合することにより,従動ギヤ26が取り付けられたロータ軸,本実施形態にあっては雄のスクリュロータ20の吸入側ロータ軸25によってロータ20が回転すると共に,雄のスクリュロータ20の回転に伴い,吐出側ロータ軸23,33に取り付けたタイミングギヤ24,34によって雌ロータ30が所定のタイミングで回転することにより,両スクリュロータ20,30間に微小な隙間を維持した非接触の状態で噛み合い回転させることができるようになっている。   As described above, in order to enable the pair of male and female screw rotors 20 and 30 to be rotated in a non-contact state, in the compressor body of FIG. 1, the discharge-side rotor shaft of the screw rotors 20 and 30 is used. 23 (33) is provided with a timing gear 24 (34) to regulate the rotation timing of both rotors, and the driven gear 26 of either one of the suction side rotor shafts 25 (35) is provided with a driven gear 26. A rotor shaft to which a driven gear 26 is attached by engaging with a drive gear (not shown) attached to an output shaft provided in a drive source such as a motor (not shown). The rotor 20 is rotated by the suction-side rotor shaft 25 of the screw rotor 20, and the timing gear 24 attached to the discharge-side rotor shafts 23, 33 as the male screw rotor 20 rotates. By the female rotor 30 is rotated at a predetermined timing by 4, and is capable of rotating intermeshing without contact in the state of maintaining a minute gap between both screw rotors 20, 30.

なお,本実施形態にあっては雄・雌一対のスクリュロータ20,30のうち,雄ロータ20の吸入側ロータ軸25に対して従動ギヤ26を取り付け,この従動ギヤ26を介して駆動源(例えばモータ)からの回転駆動力を入力するようにしたことで,雄のスクリュロータ20が「駆動側」,雌のスクリュロータ30が「追従側」のロータとなっているが,駆動側,従動側は上記の例に限定されず,これを逆にしても良い。   In the present embodiment, of the pair of male and female screw rotors 20 and 30, a driven gear 26 is attached to the suction side rotor shaft 25 of the male rotor 20, and a drive source ( For example, the male screw rotor 20 is a “driving side” and the female screw rotor 30 is a “following side” rotor. The side is not limited to the above example, and may be reversed.

〔ケーシングの構造〕
前述したスクリュ型圧縮機本体1の前記ケーシング10は,雄,雌一対のスクリュロータ20,30を噛み合い状態で収容するシリンダ11が形成されたロータケーシング10aと,このロータケーシング10aの吸入側に取り付けられ,あるいはこれと一体に形成される吸入側ケーシング10b,及び前記ロータケーシング10aの吐出側端部に取り付けられ又は一体に形成されている吐出側ケーシング10cで構成されており,図示の実施形態では,ロータケーシング10aと,吐出側ケーシング10cとを一体に形成している。
[Case structure]
The above-described casing 10 of the screw-type compressor body 1 is attached to a rotor casing 10a in which a cylinder 11 for accommodating a pair of male and female screw rotors 20 and 30 is engaged, and to the suction side of the rotor casing 10a. Or a suction side casing 10b formed integrally therewith and a discharge side casing 10c attached to or integrally formed with the discharge side end of the rotor casing 10a. The rotor casing 10a and the discharge side casing 10c are integrally formed.

このうち,前述のロータケーシング10aは,吸入側端部においてシリンダ11を開放していると共に,吐出側に一体的に形成された吐出側ケーシング10c内においてスクリュロータ20,30の吐出側ロータ軸23(33)を収容する軸孔18が形成されており,この軸孔18内に形成された軸受室内に軸受41を収容することで,この軸受41に雄,雌各スクリュロータ20,30の吐出側ロータ軸23(33)を支承可能としている。   Among these, the rotor casing 10a described above opens the cylinder 11 at the suction side end portion, and discharge-side rotor shafts 23 of the screw rotors 20 and 30 in the discharge-side casing 10c integrally formed on the discharge side. (33) is formed, and the bearing 41 is accommodated in a bearing chamber formed in the shaft hole 18 so that the male and female screw rotors 20 and 30 are discharged into the bearing 41. The side rotor shaft 23 (33) can be supported.

また,シリンダ11側とは反対側の吐出側ケーシング10cの端部にはギヤ室42aを形成するエンドキャップ42が取り付けられており,このエンドキャップ42内に形成されたギヤ室42a内に,前述したタイミングギヤ24(34)を収容することができるようになっている。   An end cap 42 that forms a gear chamber 42a is attached to the end of the discharge-side casing 10c opposite to the cylinder 11 side. The gear chamber 42a formed in the end cap 42 has the above-described end cap 42 therein. The timing gear 24 (34) thus prepared can be accommodated.

ロータケーシング10aの吸入側端部は,雄ロータ20及び雌ロータ30の吸入側ロータ軸25(35)を収容する軸孔19(19’)が形成された吸入側ケーシング10bで覆われており,スクリュロータ20,30の吸入側ロータ軸25,35を,前記吸入側ケーシング10bの軸孔19(19’)内に形成された軸受室内に収容された軸受43によって支承すると共に,この軸受室とシリンダ11間の前記軸孔19内に形成された軸封部に,軸孔とロータ軸25(35)間の隙間を封止する軸封装置45を設け,軸受43に注油された潤滑油が,圧縮作用空間側に入り込むことを防止している。   The suction-side end of the rotor casing 10a is covered with a suction-side casing 10b in which a shaft hole 19 (19 ′) that accommodates the suction-side rotor shaft 25 (35) of the male rotor 20 and the female rotor 30 is formed. The suction-side rotor shafts 25 and 35 of the screw rotors 20 and 30 are supported by a bearing 43 housed in a bearing chamber formed in the shaft hole 19 (19 ′) of the suction-side casing 10b. A shaft sealing device 45 for sealing a gap between the shaft hole and the rotor shaft 25 (35) is provided in a shaft sealing portion formed in the shaft hole 19 between the cylinders 11, and the lubricating oil injected into the bearing 43 is supplied to the shaft sealing device 45. , Prevents entry into the compression space.

〔吸入流路及び吐出流路〕
以上のように形成された吸入側ケーシング10bには,前述したスクリュロータ20,30の歯間とシリンダ11の内壁によって画成される前述の圧縮作用空間と連通して,前記圧縮作用空間内に被圧縮流体を導入するための吸入流路15の一部が形成されていると共に,前述した吐出側ケーシング10cには,前記圧縮作用空間とスクリュロータ20,30の吐出端面21(31)側において連通し,前記圧縮作用空間内において圧縮された圧縮流体を取り出すための吐出流路17及び吐出口16が形成されている。
[Suction and discharge channels]
The suction-side casing 10b formed as described above communicates with the aforementioned compression working space defined by the teeth of the screw rotors 20 and 30 and the inner wall of the cylinder 11, and enters the compression working space. A part of the suction flow path 15 for introducing the fluid to be compressed is formed, and the discharge side casing 10c described above has the compression working space and the discharge end face 21 (31) side of the screw rotors 20 and 30. A discharge flow path 17 and a discharge port 16 are formed for communicating and extracting compressed fluid compressed in the compression working space.

このうちの吐出流路17及び吐出口16は,前述したように圧縮作用空間内で圧縮された圧縮流体をケーシング10外に取り出すことができるものであれば既知の各種の構造を採用することができ,本実施形態における吐出流路17の構成は,図10に示した従来の圧縮機本体の構成と同様である。   Of these, the discharge channel 17 and the discharge port 16 may employ various known structures as long as the compressed fluid compressed in the compression working space can be taken out of the casing 10 as described above. The configuration of the discharge channel 17 in this embodiment is the same as the configuration of the conventional compressor body shown in FIG.

これに対し,本発明の圧縮機本体1における吸入部構造では,前述した雄,雌一対のスクリュロータ20,30の吸入端面22(32)の少なくとも周縁部が全周に亘り前述した吸入側流路15内に配置されるように構成している。   On the other hand, in the suction part structure in the compressor body 1 of the present invention, at least the peripheral part of the suction end face 22 (32) of the pair of male and female screw rotors 20 and 30 described above extends over the entire circumference. It is configured to be arranged in the path 15.

この吸入流路15は,図示の実施形態にあってはシリンダ11の上方においてロータケーシング10aに設けられた吸入口14と,前述したスクリュロータ20,30の吸入端面22(23)間を連通する吸入流路15として,ロータケーシング10aから吸入側ケーシング10b内に亘って,前述の吸入流路15を形成している。   In the illustrated embodiment, the suction passage 15 communicates between the suction port 14 provided in the rotor casing 10a above the cylinder 11 and the suction end surfaces 22 (23) of the screw rotors 20 and 30 described above. The suction flow path 15 is formed from the rotor casing 10a to the suction side casing 10b.

そして,図1及び図2に示す実施形態にあっては,吸入側ロータ軸25,35が挿入される軸孔19に設けたボス51,52の端面53,54部分を,スクリュロータ20,30の外径(歯先迄の径)に対して小径に形成し,ボス51,52の外周側における吸入側ケーシング10b内に,前記ボス51,52を取り囲むように吸入流路15を形成することで,吸入流路15内に雄,雌ロータ20,30の吸入端面22(32)の周縁部が全周に亘り配置されるようにしている。   In the embodiment shown in FIGS. 1 and 2, the end faces 53 and 54 of the bosses 51 and 52 provided in the shaft hole 19 into which the suction-side rotor shafts 25 and 35 are inserted are connected to the screw rotors 20 and 30. The suction flow path 15 is formed so as to surround the bosses 51, 52 in the suction side casing 10 b on the outer peripheral side of the bosses 51, 52. Thus, the peripheral edge portions of the suction end surfaces 22 (32) of the male and female rotors 20 and 30 are arranged in the suction passage 15 over the entire circumference.

なお,このような吸入流路15内に対する雄,雌スクリュロータ20,30の吸入端面22,32の配置は,前述のようにボス51,52の端面53,54との対向部分(図2中の斜線部分)を除き,周縁部分が全周に亘って吸入流路15内に配置されるように構成しても良く,又は,図4に示すように前述したボス51,52の端面53,54を雄,雌ロータ20,30の吸入端面22,32より離間してこの間隔δ3も吸入流路15の一部として構成し,雄,雌スクリュロータ20,30の吸入端面22,32の全体が吸入流路15内に配置されるように構成しても良く,更には,図5に示すようにシリンダ11の全長に対し,雄,雌ロータ20,30の全長を若干短く形成する等して,雄,雌ロータ20,30の吸入端面22,32を,これと対向するボス51,52の端面53,54より離間し,このようにして形成された間隔δ4を吸入流路15の一部として形成することにより,雄,雌ロータ20,30の吸入端面22,32の全体が,吸入流路15内に配置されるように構成しても良い(図6参照)。   Note that the arrangement of the suction end faces 22 and 32 of the male and female screw rotors 20 and 30 with respect to the inside of the suction passage 15 as described above is the portion facing the end faces 53 and 54 of the bosses 51 and 52 (in FIG. 2). 4), the peripheral portion may be arranged in the suction passage 15 over the entire circumference, or the end faces 53 of the bosses 51 and 52 described above as shown in FIG. 54 is separated from the suction end faces 22 and 32 of the male and female rotors 20 and 30, and this interval δ3 is also formed as a part of the suction flow path 15, so that the entire suction end faces 22 and 32 of the male and female screw rotors 20 and 30 are formed. May be arranged in the suction flow path 15, and further, the total length of the male and female rotors 20 and 30 is slightly shorter than the total length of the cylinder 11, as shown in FIG. The suction end faces 22, 32 of the male and female rotors 20, 30 are The suction end surfaces of the male and female rotors 20 and 30 are separated from the end surfaces 53 and 54 of the bosses 51 and 52 opposed to the bosses 51 and 52 and the interval δ4 thus formed is formed as a part of the suction flow path 15. You may comprise so that the whole 22 and 32 may be arrange | positioned in the suction flow path 15 (refer FIG. 6).

〔作用等〕
上記吸入部構造を備えた本発明の圧縮機本体1の作用を,従来の吸入部構造を備えた圧縮機本体(図8〜11参照)における吸入動作と比較して説明すると,従来の吸入部構造を備えた圧縮機本体にあっては,吸入側ケーシング110bに,吸入端面隙間δ2を介して対峙する内壁面が,図9中に斜線で示す範囲に設けられていたことにより,雄ロータ120の歯先M1が回転軌跡上の一点m4に至ると共に,雌ロータ130の歯先F1が回転軌跡上の一点f4に至ると,雄ロータ120の歯先M1,M2間に形成されている歯溝と,雌ロータ130の歯先F1,F2間に形成されている歯溝,及びシリンダ111の内壁によって囲まれた圧縮作用空間の吸入側端部(図9中のグレーの着色部分)が吸入側ケーシング110bの内壁155によって吸入流路115より遮断され,前述した圧縮作用空間の吸気閉じ込みが完了する(図11参照)。
[Action etc.]
The operation of the compressor body 1 of the present invention having the above suction portion structure will be described in comparison with the suction operation in the compressor body having the conventional suction portion structure (see FIGS. 8 to 11). In the compressor main body having the structure, the male rotor 120 is provided on the suction side casing 110b because the inner wall surface facing the suction end face gap δ2 is provided in the range shown by the oblique lines in FIG. When the tooth tip M1 of the female rotor 130 reaches the point m4 on the rotation locus and the tooth tip F1 of the female rotor 130 reaches the point f4 on the rotation locus, the tooth gap formed between the tooth tips M1 and M2 of the male rotor 120 The suction side end portion (gray colored portion in FIG. 9) of the compression working space surrounded by the tooth gap formed between the tooth tips F1 and F2 of the female rotor 130 and the inner wall of the cylinder 111 is the suction side. On the inner wall 155 of the casing 110b Blocked from the suction passage 115 I, intake confining completes the compression action space as described above (see FIG. 11).

その後,この圧縮作用空間は,ロータ120,130の回転に伴って容積が減少し,この圧縮作用空間内の被圧縮流体の圧縮が開始される。   Thereafter, the volume of the compression working space decreases as the rotors 120 and 130 rotate, and compression of the fluid to be compressed in the compression working space is started.

このようにして従来の圧縮機本体では,吸入側ケーシング110bの内壁155によって圧縮作用空間の吸入側端部が塞がれることにより被圧縮流体の圧縮が開始されるが,従来の圧縮機本体1では前述したように,雄,雌ロータ120,130の吸入端面122,132と,これに対向する吸入側ケーシング110bの内壁155間には,比較的大きな吸入端面隙間δ2が存在すると共に,この吸入端面隙間δ2は圧縮機本体毎に個体差があることから,圧縮された被圧縮気体の一部は,この隙間δ2を介して漏出すると共に,個々の圧縮機本体毎にこの際の漏出量が相違するために,各圧縮機本体の吸入容量に個体差,所謂バラツキが生じる。   Thus, in the conventional compressor main body, the compression of the fluid to be compressed is started by closing the suction side end of the compression working space by the inner wall 155 of the suction side casing 110b. As described above, a relatively large suction end surface gap δ2 exists between the suction end surfaces 122 and 132 of the male and female rotors 120 and 130 and the inner wall 155 of the suction side casing 110b facing the male and female rotors 120 and 130. Since the end surface gap δ2 varies depending on the compressor body, a part of the compressed gas to be compressed leaks through the gap δ2, and the amount of leakage at this time is different for each individual compressor body. Because of the difference, individual differences, so-called variations, occur in the suction capacity of each compressor body.

これに対し,本発明の吸入部構造を備えた圧縮機本体1にあっては,図1及び図2に示すように,雄,雌のスクリュロータ20,30の吸入端面22,32の少なくとも周縁部分を全周に亘り吸入流路15内に配置したことにより,図8,図9を参照して説明した圧縮機本体100の,吸入側ケーシング110bに設けられていた内壁155に対応する構成が存在しない。   On the other hand, in the compressor main body 1 having the suction portion structure of the present invention, as shown in FIGS. 1 and 2, at least the peripheral edges of the suction end faces 22, 32 of the male and female screw rotors 20, 30 are shown. Since the portion is arranged in the suction flow path 15 over the entire circumference, a configuration corresponding to the inner wall 155 provided in the suction-side casing 110b of the compressor main body 100 described with reference to FIGS. not exist.

そのため,本発明の吸入部構造を備えた圧縮機本体1にあっては,図2に示すように吸入端面22,32における雄ロータ20の歯先M1と,雌ロータ30の歯先F1が,回転軌道上の点m4,f4を越えて近付いても,雄ロータ20の歯先M1,M2間に形成された歯溝と,雌ロータの歯先F1,F2間に形成された歯溝,並びにシリンダ11の内壁によって画成された圧縮作用空間の吸気閉込は行われず,圧縮作用空間の吸入側端部の閉じ込みは,吸入端面22,23において雌ロータの歯先間に形成された歯溝内に,雄ロータの歯先が完全に噛合した回転位置(図示の例において,雌ロータ30の歯先F2,F3間に,雄ロータ20の歯先M2が噛合している位置)に至り,初めて吸気閉じ込みが行われる。   Therefore, in the compressor main body 1 having the suction portion structure of the present invention, the tooth tip M1 of the male rotor 20 and the tooth tip F1 of the female rotor 30 on the suction end surfaces 22 and 32 as shown in FIG. Even when approaching beyond the points m4 and f4 on the rotation path, the tooth groove formed between the tooth tips M1 and M2 of the male rotor 20, the tooth groove formed between the tooth tips F1 and F2 of the female rotor, and The intake space of the compression working space defined by the inner wall of the cylinder 11 is not closed, and the intake side end of the compression working space is closed between the teeth of the female rotor at the suction end surfaces 22 and 23. Rotation position where the tooth tip of the male rotor is completely meshed with the groove (in the illustrated example, the position where the tooth tip M2 of the male rotor 20 is meshed between the tooth tips F2 and F3 of the female rotor 30) is reached. For the first time, intake confinement is performed.

ここで,雄,雌スクリュロータ20,30間には,両者を非接触の状態で回転させるために所定の隙間が設けられていることから,この隙間を介して圧縮気体の漏出が生じるものの,この隙間はタイミングギヤ24(34)によって一定間隔に規制されていると共に,前述した吸入端面隙間δ2に比較して微小な隙間となっていることから,吸気閉じ込み後,圧縮に伴って圧縮作用空間より漏出する被圧縮流体の量が少ないだけでなく,各圧縮機本体1の加工精度や組立精度の相違に基づく個体差による変化が殆ど無い。   Here, since a predetermined gap is provided between the male and female screw rotors 20 and 30 in order to rotate them in a non-contact state, leakage of compressed gas occurs through this gap. This gap is regulated at a constant interval by the timing gear 24 (34) and is a minute gap compared with the suction end face gap δ2 described above. Not only is the amount of compressed fluid leaking from the space small, but there is almost no change due to individual differences based on differences in processing accuracy and assembly accuracy of each compressor body 1.

その結果,このような吸入部構造を備えた圧縮機本体1を,多段式のスクリュ圧縮機の高圧段の圧縮機本体として使用することで,吸入容量のバラツキを極めて小さくすることが容易であり,その結果,定格運転時における中間圧力を設定値にすることが容易にでき,低圧段の圧縮機本体と,高圧段の圧縮機本体を,所定の圧縮比で駆動することができるために,多段式スクリュ圧縮機の駆動に要する動力を最小化することが可能である。   As a result, by using the compressor body 1 having such a suction portion structure as a high pressure stage compressor body of a multi-stage screw compressor, it is easy to extremely reduce the variation in suction capacity. As a result, the intermediate pressure during rated operation can be easily set to the set value, and the low pressure stage compressor body and the high pressure stage compressor body can be driven at a predetermined compression ratio. It is possible to minimize the power required to drive the multistage screw compressor.

なお,図2を参照して説明した吸入部構造にあっては,ボス52の外周が雌ロータ30の歯溝の溝底よりも外側に配置されている場合,雄ロータ20と雌ロータ30の噛合によって圧縮作用空間の吸入側端部が閉じ込まれる前の僅かな時間,ボス52の端面54によって圧縮作用空間の吸気閉じ込みが行われる場合があり,これにより極僅かではあるが,圧縮機本体1の吸入容量のバラツキが生じる可能性がある。   In the suction portion structure described with reference to FIG. 2, when the outer periphery of the boss 52 is arranged outside the groove bottom of the tooth groove of the female rotor 30, the male rotor 20 and the female rotor 30 are arranged. There is a case in which the compression action space is closed by the end face 54 of the boss 52 for a short time before the suction side end of the compression action space is closed due to the meshing. There is a possibility that the suction volume of the main body 1 varies.

これに対し,前述したようの,雄,雌ロータ20,30の吸入端面22,32と,これに対向するボス51,52の端面53,54間にも比較的広い間隔(δ3又はδ4:図4,5参照)を設け,この間隔によって吸入流路15の一部を形成した構成とした場合には,ボス51,52を短く形成した場合(図4参照)であっても,ロータ20,30を短く形成した場合(図5参照)のいずれの場合であっても,雄,雌ロータ20,30の吸入端面22,32は,その全体が吸入流路15内に配置されることとなり,雄,雌ロータ20,30の噛み合いによって圧縮作用空間の吸入側端部が閉ざされる迄は,吸気閉じ込みが行われないこととなることから,より一層,圧縮機本体1間における吸入容量のバラツキを生じ難くすることができる。   On the other hand, as described above, a relatively wide space (δ3 or δ4: FIG. 5) is also formed between the suction end surfaces 22 and 32 of the male and female rotors 20 and 30 and the end surfaces 53 and 54 of the bosses 51 and 52 opposed thereto. 4 and 5), and a part of the suction flow path 15 is formed by this interval, the rotor 20 and the bosses 51 and 52 are formed short (see FIG. 4). In any case where 30 is formed short (see FIG. 5), the suction end faces 22 and 32 of the male and female rotors 20 and 30 are entirely arranged in the suction flow path 15. Since the intake air is not closed until the suction side end of the compression working space is closed by the engagement of the male and female rotors 20 and 30, the variation in the suction capacity between the compressor bodies 1 is further increased. Can be made difficult to occur.

以上の説明では本発明の吸入部構造を備えた圧縮機本体を,多段式スクリュ圧縮機の高圧段の圧縮機本体に使用する場合を例として説明したが,本発明の吸入部構造を備えた圧縮機本体は,前述した多段式スクリュ圧縮機の高圧段の圧縮機本体に使用する場合に限定されず,吸入容量のバラツキを小さくする必要がある,各種圧縮機本体の構造として採用可能である。   In the above description, the case where the compressor body having the suction portion structure of the present invention is used for the high pressure stage compressor body of the multi-stage screw compressor has been described as an example, but the suction portion structure of the present invention is provided. The compressor body is not limited to use in the high-pressure stage compressor body of the multi-stage screw compressor described above, and can be adopted as a structure of various compressor bodies that require a small variation in suction capacity. .

1 圧縮機本体
10 ケーシング
10a ロータケーシング
10b 吸入側ケーシング
10c 吐出側ケーシング
11 シリンダ
12 内壁(吐出側)
14 吸入口
15 吸入流路
16 吐出口
17 吐出流路
18 軸孔(吐出側)
19 軸孔(吸入側)
20 スクリュロータ(雄)
21 吐出端面(雄ロータの)
22 吸入端面(雄ロータの)
23 吐出側ロータ軸(雄ロータの)
24 タイミングギヤ(雄ロータの)
25 吸入側ロータ軸(雄ロータの)
26 従動ギヤ
30 スクリュロータ(雌)
31 吐出端面(雌ロータの)
32 吸入端面(雌ロータの)
33 吐出側ロータ軸(雌ロータの)
34 タイミングギヤ(雌ロータの)
35 吸入側ロータ軸(雌ロータの)
41 軸受
42 エンドキャップ
42a ギヤ室
43 軸受
44,45 軸封装置
51,52 ボス
53,54 端面(ボスの)
100 圧縮機本体
100a 低圧段の圧縮機本体
100b 高圧段の圧縮機本体
103 増速機
104 駆動源(例えばモータ)
110 ケーシング
111 シリンダ
112 内壁
120,130 ロータ
121,131 吐出端面
122,132 吸入端面
155 内壁
220,222 中間段通路(中間配管)
δ1 吐出端面隙間
δ2 吸入端面隙間
f1〜f4 雌ロータの回転位置
m1〜m4 雄ロータの回転位置
F1〜F6 雌ロータの歯先
M1〜M5 雄ロータの歯先
DESCRIPTION OF SYMBOLS 1 Compressor body 10 Casing 10a Rotor casing 10b Suction side casing 10c Discharge side casing 11 Cylinder 12 Inner wall (discharge side)
14 Suction Port 15 Suction Channel 16 Discharge Port 17 Discharge Channel 18 Shaft Hole (Discharge Side)
19 Shaft hole (intake side)
20 Screw rotor (male)
21 Discharge end face (male rotor)
22 Suction end face (male rotor)
23 Discharge-side rotor shaft (male rotor)
24 Timing gear (male rotor)
25 Suction side rotor shaft (male rotor)
26 driven gear 30 screw rotor (female)
31 Discharge end face (female rotor)
32 Suction end face (female rotor)
33 Discharge side rotor shaft (female rotor)
34 Timing gear (female rotor)
35 Suction side rotor shaft (female rotor)
41 Bearing 42 End cap 42a Gear chamber 43 Bearing 44, 45 Shaft seal device 51, 52 Boss 53, 54 End face (of boss)
DESCRIPTION OF SYMBOLS 100 Compressor main body 100a Low pressure stage compressor main body 100b High pressure stage compressor main body 103 Speed increaser 104 Drive source (for example, motor)
110 Casing 111 Cylinder 112 Inner wall 120, 130 Rotor 121, 131 Discharge end face 122, 132 Suction end face 155 Inner wall 220, 222 Intermediate stage passage (intermediate piping)
δ1 Discharge end face clearance δ2 Suction end face clearance f1 to f4 Female rotor rotational position m1 to m4 Male rotor rotational position F1 to F6 Female rotor tooth tip M1 to M5 Male rotor tooth tip

Claims (5)

相互に噛み合い回転する雄,雌一対のスクリュロータと,前記一対のスクリュロータを噛み合い状態で回転可能に収容するシリンダが形成されたケーシングを備え,前記雄,雌一対のスクリュロータの歯先と,前記スクリュロータを収容する前記シリンダ内壁によって画成される圧縮作用空間を前記一対のスクリュロータの噛み合い回転により容積減少させて,前記一対のスクリュロータの吸入端面側より前記圧縮作用空間内に取り込んだ被圧縮流体を圧縮して吐出端面側より前記ケーシング内に設けた吐出流路に吐出可能としたスクリュ型の圧縮機本体において,
前記圧縮機本体が,低圧段の圧縮機本体によって圧縮された圧縮気体を,高圧段の圧縮機本体に導入して更に圧縮する多段式スクリュ圧縮機(但し,同一のケーシング内に低圧段のスクリュロータと高圧段のスクリュロータを収容すると共に,低高圧段の雄ロータの軸同士をカップリングにより連結した,タンデム型の多段式スクリュ圧縮機を除く。)における前記高圧段の圧縮機本体であると共に,前記一対のスクリュロータ間に微小な間隔を介した非接触の状態で回転するオイルフリー式の圧縮機本体であり,
前記ケーシングに設けた吸入口と連通すると共に前記一対のスクリュロータの吸入端面に向かって開口して前記圧縮作用空間に被圧縮流体を導入する吸入流路を前記ケーシング内に形成すると共に,
前記雄,雌一対のスクリュロータ双方の吸入端面の少なくとも周縁部分を全周に亘り前記吸入流路内に配置したことを特徴とするスクリュ圧縮機本体の吸入部構造。
A pair of male and female screw rotors that mesh and rotate with each other, and a casing formed with a cylinder that rotatably accommodates the pair of screw rotors in meshing condition; and tooth tips of the male and female screw rotors; The volume of the compression working space defined by the inner wall of the cylinder accommodating the screw rotor is reduced by the meshing rotation of the pair of screw rotors, and taken into the compression working space from the suction end face side of the pair of screw rotors. A screw-type compressor body that compresses a fluid to be compressed and discharges it from a discharge end face side to a discharge passage provided in the casing.
The compressor body introduces the compressed gas compressed by the low-pressure stage compressor body into the high-pressure stage compressor body for further compression (however, the low-pressure stage screw in the same casing). The compressor body of the high-pressure stage according to the present invention except for a tandem type multi-stage screw compressor in which a rotor and a high-pressure stage screw rotor are accommodated and the shafts of the low- and high-pressure male rotors are coupled to each other by coupling. And an oil-free compressor body that rotates in a non-contact state with a minute gap between the pair of screw rotors,
A suction passage that communicates with a suction port provided in the casing and opens toward a suction end surface of the pair of screw rotors and introduces a fluid to be compressed into the compression working space;
A suction part structure of a screw compressor main body, wherein at least a peripheral part of the suction end faces of both the male and female screw rotors is disposed in the suction flow path over the entire circumference.
前記雄,雌一対のスクリュロータの吸入端面に向かって突出し,前記一対のスクリュロータの吸入側ロータ軸をそれぞれ収容するボスの突出側端部における外径を前記各スクリュロータの外径よりも小径に形成し,前記ボスの外周位置の全周に亘り前記吸入流路を形成したことを特徴とする請求項1記載のスクリュ圧縮機本体の吸入部構造。   Projecting toward the suction end face of the pair of male and female screw rotors, the outer diameter at the projecting side end of the boss accommodating the suction side rotor shaft of the pair of screw rotors is smaller than the outer diameter of each screw rotor. 2. The suction part structure of a screw compressor main body according to claim 1, wherein the suction passage is formed over the entire circumference of the outer peripheral position of the boss. 前記雄,雌一対のスクリュロータそれぞれの吸入端面と,各吸入端面と対向する前記ボスの端面間に,前記吸入流路の一部となる間隔を形成したことを特徴とする請求項2記載のスクリュ圧縮機本体の吸入部構造。   The space which becomes a part of the suction flow path is formed between the suction end face of each of the male and female screw rotors and the end face of the boss facing each suction end face. The structure of the suction part of the screw compressor body. 前記雄,雌一対のスクリュロータそれぞれの吸入端面と,前記ボスの端面間の間隔を,前記ボスの端面を,前記スクリュロータの吸入端面より離間して設けることにより形成したことを特徴とする請求項3記載のスクリュ圧縮機本体の吸入部構造。   The space between the suction end face of each of the male and female screw rotors and the end face of the boss is formed by providing the end face of the boss away from the suction end face of the screw rotor. Item 4. The suction part structure of the screw compressor body according to Item 3. 前記雄,雌一対のスクリュロータそれぞれの吸入端面と,前記ボスの端面間の間隔を,前記スクリュロータの吸入端面を,前記ボスの端面より離間して設けることにより形成したことを特徴とする請求項3記載のスクリュ圧縮機本体の吸入部構造。   The space between the suction end face of each of the male and female screw rotors and the end face of the boss is formed by providing the suction end face of the screw rotor away from the end face of the boss. Item 4. The suction part structure of the screw compressor body according to Item 3.
JP2010186462A 2010-08-23 2010-08-23 Structure of suction part of screw compressor body Active JP5759125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186462A JP5759125B2 (en) 2010-08-23 2010-08-23 Structure of suction part of screw compressor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186462A JP5759125B2 (en) 2010-08-23 2010-08-23 Structure of suction part of screw compressor body

Publications (2)

Publication Number Publication Date
JP2012041910A JP2012041910A (en) 2012-03-01
JP5759125B2 true JP5759125B2 (en) 2015-08-05

Family

ID=45898499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186462A Active JP5759125B2 (en) 2010-08-23 2010-08-23 Structure of suction part of screw compressor body

Country Status (1)

Country Link
JP (1) JP5759125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189749B2 (en) * 2018-12-04 2022-12-14 株式会社日立産機システム screw compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117191U (en) * 1984-07-04 1986-01-31 株式会社神戸製鋼所 Screw compressor
JPH0236957Y2 (en) * 1986-06-16 1990-10-05
JP4127670B2 (en) * 2003-08-25 2008-07-30 株式会社日立産機システム Oil-free screw compressor

Also Published As

Publication number Publication date
JP2012041910A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US3414189A (en) Screw rotor machines and profiles
US11248606B2 (en) Rotor pair for a compression block of a screw machine
KR20070027558A (en) Screw rotor and screw type fluid machine
JP2008196390A (en) Variable volume fluid machine
CN108884832B (en) Oil-cooled screw compressor
WO2020162046A1 (en) Multi-stage screw compressor
JP2008514865A (en) Screw compressor seal
JP5759125B2 (en) Structure of suction part of screw compressor body
CN107208635B (en) Scroll fluid machine having a plurality of scroll members
CN209761718U (en) Screw compressor
US7722345B2 (en) Screw compressor
JP4321206B2 (en) Gas compression device
CN112780553A (en) Rotor subassembly, compressor and air conditioner
JP6130271B2 (en) Scroll compressor
JP6184837B2 (en) Screw compressor
WO2020165561A1 (en) Screw compressor
WO2020053976A1 (en) Screw compressor
CN113167275A (en) Screw compressor
JP4325702B2 (en) Screw compressor
WO1993017223A1 (en) Screw rotors type machine
CN217632945U (en) Element and device for compressing gas
JP2000110760A (en) Oil cooled screw compressor
JP2004138056A (en) Scroll type fluid machine
JPH01167492A (en) Volume type hydraulic machine having built-in variable compression ratio mechanism
JP3551758B2 (en) Oiled two-stage screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5759125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250