JP5754686B2 - Cathode platinum catalyst for highly active fuel cells - Google Patents

Cathode platinum catalyst for highly active fuel cells Download PDF

Info

Publication number
JP5754686B2
JP5754686B2 JP2011106138A JP2011106138A JP5754686B2 JP 5754686 B2 JP5754686 B2 JP 5754686B2 JP 2011106138 A JP2011106138 A JP 2011106138A JP 2011106138 A JP2011106138 A JP 2011106138A JP 5754686 B2 JP5754686 B2 JP 5754686B2
Authority
JP
Japan
Prior art keywords
platinum
carbon
supported
catalyst
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106138A
Other languages
Japanese (ja)
Other versions
JP2012236138A (en
Inventor
井上 秀男
秀男 井上
小栗 雅之
雅之 小栗
純一 尾崎
純一 尾崎
和寿 細谷
和寿 細谷
尚克 神成
尚克 神成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Ishifuku Metal Industry Co Ltd
Original Assignee
Gunma University NUC
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47459550&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5754686(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gunma University NUC, Ishifuku Metal Industry Co Ltd filed Critical Gunma University NUC
Priority to JP2011106138A priority Critical patent/JP5754686B2/en
Publication of JP2012236138A publication Critical patent/JP2012236138A/en
Application granted granted Critical
Publication of JP5754686B2 publication Critical patent/JP5754686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は低白金含有量でも高い活性を有する燃料電池用のカソード白金触媒に関する。   The present invention relates to a cathode platinum catalyst for fuel cells having high activity even with a low platinum content.

固体高分子型燃料電池は、クリーンで高いエネルギー変換効率を有することから、自動車用、家庭用、携帯用の電源としての利用が期待されている。   Since the polymer electrolyte fuel cell is clean and has high energy conversion efficiency, it is expected to be used as a power source for automobiles, homes, and portables.

この固体高分子形燃料電池には白金を主とした貴金属粒子をカーボン上に担持した触媒が用いられている。しかし、白金は高価であるため、担持した白金を有効活用し、電極触媒の活性を高める必要がある。そこで、触媒の活性を高めるために、合金化、白金粒子の微細化、高分散化などが提案されている。   In this polymer electrolyte fuel cell, a catalyst in which noble metal particles mainly composed of platinum are supported on carbon is used. However, since platinum is expensive, it is necessary to effectively use the supported platinum and increase the activity of the electrode catalyst. Therefore, in order to increase the activity of the catalyst, alloying, refinement of platinum particles, high dispersion, and the like have been proposed.

しかし、合金触媒は、白金重量当たりの活性は向上するが、白金の合金化に熱処理が必要であるため、白金粒子が成長し、結果的に低白金化が難しいという問題がある(特許文献1)。また、白金粒子の微粒子化及び高分散化は、単位白金重量当たりの活性点の数を増やすことができるが、粒子を小さくしすぎると白金の活性が低下することが報告されている(非特許文献1参照)。しかも、粒子サイズが小さくなると、白金粒子は酸化され易くなり、溶解再析出機構による白金触媒の劣化が進むことが知られている(非特許文献2参照)。   However, although the activity per platinum weight of the alloy catalyst is improved, since a heat treatment is required for alloying of platinum, there is a problem that platinum particles grow and as a result, it is difficult to reduce the platinum (Patent Document 1). ). In addition, fine particles and high dispersion of platinum particles can increase the number of active sites per unit platinum weight, but it has been reported that the activity of platinum decreases if the particles are made too small (non-patent). Reference 1). Moreover, it is known that when the particle size is reduced, the platinum particles are easily oxidized, and the platinum catalyst is deteriorated by the dissolution and reprecipitation mechanism (see Non-Patent Document 2).

特開平08−057317号公報Japanese Patent Laid-Open No. 08-057317

Y.Takasu et.al.,Electrochimica Acta,Vol.41,No.16,pp.2595−2600,1996Y. Takasu et. al. , Electrochimica Acta, Vol. 41, no. 16, pp. 2595-2600, 1996 Hubert A.Gasteiger et.al.,Applied Catalysis B:Environmental,56(2005)9−35Hubert A. Gasteiger et. al. , Applied Catalysis B: Environmental, 56 (2005) 9-35.

本発明の目的は、燃料電池用のカソード白金触媒における白金の使用量を低減するために、白金の触媒特性を十分に引き出し、触媒の質的な活性を表す表面積あたりの活性(比活性)を向上させることである。   The object of the present invention is to sufficiently bring out the catalytic characteristics of platinum in order to reduce the amount of platinum used in the cathode platinum catalyst for fuel cells, and to obtain the activity per unit surface area (specific activity) representing the qualitative activity of the catalyst. It is to improve.

本発明者らは、上記の目的を達成すべく、白金をカーボン担体に担持させてなる白金担持カーボン触媒の特性につき鋭意検討を行った結果、今回、特定の光電子強度特性をもつカーボン担体に白金を担持させると、得られる白金担持カーボン触媒は、白金含有量が少なくても、非常に高い触媒活性を発揮することを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors have conducted intensive studies on the characteristics of a platinum-supported carbon catalyst in which platinum is supported on a carbon support. As a result, this time, platinum is applied to a carbon support having specific photoelectron intensity characteristics. As a result, it was found that the platinum-supported carbon catalyst obtained exhibited a very high catalytic activity even when the platinum content was small, and the present invention was completed.

かくして、本発明は、白金をカーボン担体に担持させてなる白金担持カーボン触媒であって、X線光電子分光装置(XPS)で測定される、カーボン担体のsp混成軌道とsp混成軌道の光電子強度の積分強度比sp/spが1.8〜3.3の範囲内にある白金担持カーボン触媒を提供するものである。 Thus, the present invention is a platinum-supported carbon catalyst in which platinum is supported on a carbon support, and the photoelectrons of the sp 2 hybrid orbital and sp 3 hybrid orbit of the carbon support measured by an X-ray photoelectron spectrometer (XPS). A platinum-supported carbon catalyst having an integrated intensity ratio sp 2 / sp 3 in the range of 1.8 to 3.3 is provided.

本発明の白金担持カーボン触媒は、白金含有量が少なくても、非常に高い触媒活性を有しており、例えば、通常の白金担持カーボン触媒と比較して、1.3倍以上という高い比活性を有する。   The platinum-supported carbon catalyst of the present invention has a very high catalytic activity even when the platinum content is small, for example, a specific activity that is 1.3 times or more higher than that of a normal platinum-supported carbon catalyst. Have

電気化学測定により得られる白金担持カーボン触媒の0.85Vでの酸素還元電流値を、水素脱離波から算出した白金表面積で割ることにより得られる比活性(縦軸)と、各温度で熱処理したカーボン担体のC1s内殻スペクトルにより分離されるsp混成軌道とsp混成軌道の光電子強度の積分強度比(横軸)との間の関係を示すグラフである。The specific activity (vertical axis) obtained by dividing the oxygen reduction current value at 0.85 V of the platinum-supported carbon catalyst obtained by electrochemical measurement by the platinum surface area calculated from the hydrogen desorption wave, and heat treatment at each temperature. is a graph showing the relationship between the integrated intensity ratio of photoelectron intensity of sp 2 hybrid orbital and sp 3 hybrid orbital separated by C1s inner shell spectrum of the carbon support (horizontal axis).

本発明の白金担持カーボン触媒は、径が2〜5nmの範囲内にある白金粒子がカーボン担体上に分散・担持された構造を有する。かかる白金担持カーボン触媒においては、白金粒子は分子間力によってカーボン担体上に吸着していると言われている。本発明者らは、活性点を有する白金粒子の活性が、白金が吸着しているカーボン担体の電子状態によって変化することを発見し、カーボン担体の電子状態を変化させることにより、通常の白金担持カーボン触媒と比較して1.3倍以上という高い比活性を有する白金担持カーボン触媒を提供することに成功した。   The platinum-supported carbon catalyst of the present invention has a structure in which platinum particles having a diameter in the range of 2 to 5 nm are dispersed and supported on a carbon support. In such a platinum-supported carbon catalyst, the platinum particles are said to be adsorbed on the carbon support by intermolecular force. The present inventors discovered that the activity of platinum particles having an active site changes depending on the electronic state of the carbon carrier on which platinum is adsorbed, and by changing the electronic state of the carbon carrier, The present inventors have succeeded in providing a platinum-supported carbon catalyst having a high specific activity of 1.3 times or more compared with a carbon catalyst.

カーボン担体の電子状態は、X線光電子分光装置(XPS)によって測定されるC1sスペクトルのsp混成軌道とsp混成軌道の光電子強度の積分強度比(面積比)(sp/sp)から求めることができ、本発明の白金担持カーボン触媒は、該積分強度比(sp/sp)が1.8〜3.3、好ましくは1.9〜3.2、さらに好ましくは2.1〜3.1の範囲内にあることができる。 The electronic state of the carbon support is determined from the integrated intensity ratio (area ratio) (sp 2 / sp 3 ) of the photoelectron intensity of the sp 2 hybrid orbit of the C1s spectrum and the sp 3 hybrid orbit measured by an X-ray photoelectron spectrometer (XPS) In the platinum-supported carbon catalyst of the present invention, the integrated intensity ratio (sp 2 / sp 3 ) is 1.8 to 3.3, preferably 1.9 to 3.2, more preferably 2.1. It can be in the range of ~ 3.1.

本発明において使用しうるカーボン担体としては、例えば、導電性カーボンとして市販されているもののほか、活性炭、グラファイト、カーボンナノチューブ、カーボンナノホーン、フラーレン等が挙げられる。   Examples of the carbon support that can be used in the present invention include activated carbon, graphite, carbon nanotubes, carbon nanohorns, fullerenes and the like in addition to those commercially available as conductive carbon.

カーボン担体の電子状態は、熱処理によって変化させることができる。該熱処理は、例えば、真空又は不活性ガス雰囲気中にて、通常1000〜1800℃、好ましくは1200〜1500℃の温度で加熱することにより行うことができ、熱処理条件を変えて操作することにより、カーボンの消耗を抑制しつつ、電子状態の異なるカーボン担体を得ることができる。   The electronic state of the carbon support can be changed by heat treatment. The heat treatment can be performed, for example, by heating at a temperature of usually 1000 to 1800 ° C., preferably 1200 to 1500 ° C. in a vacuum or an inert gas atmosphere. By operating by changing the heat treatment conditions, It is possible to obtain carbon carriers having different electronic states while suppressing carbon consumption.

前記不活性ガスとしては、例えば、窒素、アルゴン、ヘリウム等を用いることができ、なかでもアルゴンが適している。   As said inert gas, nitrogen, argon, helium etc. can be used, for example, Argon is especially suitable.

XPSによって測定されるC1sスペクトルのsp混成軌道とsp混成軌道の光電子強度の積分強度比(面積比)(sp/sp)が1.8〜3.3の範囲内にあるカーボン担体は、上記熱処理の温度及び時間を調節することにより、経験的に得ることができる。 Carbon support in which the integrated intensity ratio (area ratio) (sp 2 / sp 3 ) of the photoelectron intensity of the sp 2 hybrid orbit and sp 3 hybrid orbit of the C1s spectrum measured by XPS is in the range of 1.8 to 3.3 Can be obtained empirically by adjusting the temperature and time of the heat treatment.

かくして得られるカーボン担体への白金粒子の担持方法は、特に限定されるものではなく、それ自体既知の各種方法を用いることができるが、一般には、白金化合物をカーボン担体上に担持させた状態で、その白金化合物を還元してカーボン担体上に白金粒子を析出させる方法が好適である。該白金化合物としては、例えば、塩化白金、酸化白金、硝酸白金、ジニトロジアミン白金、酢酸白金、シュウ酸白金等が挙げられ、なかでも塩素を含まない化合物が適している。白金粒子をカーボン担体上に担持させる方法としては、具体的に、例えば、含浸法に従い、上記の如き白金化合物の溶液をカーボン担体に含浸させ、場合により乾燥した後、担持された白金化合物を還元する方法が挙げられる。その際の還元は、例えば、熱分解による還元方法、水素や一酸化炭素による気体の還元剤による還元方法、エタノール、メタノール、ヒドラジン、水素化ホウ素ナトリウムのような液体の還元剤による還元方法により行うことができる。また、液相還元法を使用することにより、カーボン担体への白金化合物の担持と還元を同時的に行うこともでき、それにより白金担持カーボン触媒を得ることができる。該液相還元法は、具体的には、例えば、カーボン担体にジニトロジアンミンPtエタノール溶液、クエン酸及びエタノールを添加し、加熱還流することにより行うことができる。   The method for supporting the platinum particles on the carbon carrier thus obtained is not particularly limited, and various methods known per se can be used, but in general, the platinum compound is supported on the carbon carrier. A method of reducing the platinum compound and precipitating platinum particles on the carbon support is preferable. Examples of the platinum compound include platinum chloride, platinum oxide, platinum nitrate, dinitrodiamine platinum, platinum acetate, platinum oxalate and the like, and among them, a compound containing no chlorine is suitable. Specifically, the platinum particles are supported on the carbon support by, for example, impregnating the platinum support as described above in accordance with the impregnation method, and optionally drying the supported platinum compound after reduction. The method of doing is mentioned. In this case, the reduction is performed by, for example, a reduction method using thermal decomposition, a reduction method using a gaseous reducing agent such as hydrogen or carbon monoxide, or a reduction method using a liquid reducing agent such as ethanol, methanol, hydrazine, or sodium borohydride. be able to. Further, by using the liquid phase reduction method, it is possible to simultaneously support and reduce the platinum compound on the carbon carrier, thereby obtaining a platinum-supported carbon catalyst. Specifically, the liquid phase reduction method can be performed, for example, by adding a dinitrodiammine Pt ethanol solution, citric acid and ethanol to a carbon support and heating to reflux.

本発明の白金担持カーボン触媒における白金の担持量は、触媒の重量を基準にして、一般に10〜70重量%、特に20〜60重量%、さらに特に30〜50重量%の範囲内であることが好ましい。   The supported amount of platinum in the platinum-supported carbon catalyst of the present invention is generally in the range of 10 to 70% by weight, particularly 20 to 60% by weight, more particularly 30 to 50% by weight, based on the weight of the catalyst. preferable.

本発明の白金担持カーボン触媒の酸素還元特性は、回転電極法にて測定することにより、1.05Vから0.05Vまで走査した時の0.85Vでの電流値から求めることができる。そのときの測定条件としては、電解質:0.5M−硫酸水溶液、測定温度:60℃、回転電極の回転速度:2000rpmを採用することができる。測定される結果から、図1に示すグラフが得られる。   The oxygen reduction characteristics of the platinum-supported carbon catalyst of the present invention can be determined from the current value at 0.85 V when scanning from 1.05 V to 0.05 V by measuring by the rotating electrode method. As measurement conditions at that time, electrolyte: 0.5 M-sulfuric acid aqueous solution, measurement temperature: 60 ° C., rotation speed of the rotating electrode: 2000 rpm can be employed. The graph shown in FIG. 1 is obtained from the measured result.

市販されている通常の白金担持触媒の比活性は0.13A/mであるが、sp混成軌道とsp混成軌道の積分強度比(sp/sp)が1.8〜3.3の範囲内にあるカーボン担体を用いた本発明の白金担持カーボン触媒の比活性は0.17A/m以上であって、通常の白金担持触媒の比活性の1.3倍以上という高い触媒活性を有する。 The specific activity of a commercially available platinum-supported catalyst is 0.13 A / m 2 , but the integrated intensity ratio (sp 2 / sp 3 ) between the sp 2 hybrid orbitals and sp 3 hybrid orbitals is 1.8-3. The specific activity of the platinum-supported carbon catalyst of the present invention using the carbon support in the range of 3 is 0.17 A / m 2 or more, and is a catalyst having a high specific activity of 1.3 times or more of the specific activity of the usual platinum-supported catalyst. Has activity.

以下、実施例および比較例により本発明をさらに具体的に説明するが、これらの実施例により本発明の範囲は何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, the scope of the present invention is not restrict | limited at all by these Examples.

実施例1
ケッチェンブラックEC300J(導電性カーボン、ケッチェン・ブラック・インターナショナル株式会社社製、商品名)をアルゴン雰囲気中にて1500℃で熱処理し、熱処理カーボン:KBEC300J−1500を得た。このKBEC300J−1500を0.6g、ジニトロジアンミンPtエタノール溶液をPt換算で0.4g、クエン酸を2.0g及びエタノールを100g還流装置に仕込み混合し、16時間還流還元することにより、触媒重量を基準にして40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC300J−1500を得た。
Example 1
Ketjen Black EC300J (conductive carbon, manufactured by Ketjen Black International Co., Ltd., trade name) was heat treated at 1500 ° C. in an argon atmosphere to obtain heat treated carbon: KBEC300J-1500. This KBEC300J-1500 is 0.6 g, dinitrodiammine Pt ethanol solution is 0.4 g in terms of Pt, citric acid is 2.0 g, and ethanol is 100 g. The mixture is refluxed for 16 hours to reduce the catalyst weight. A platinum-supported carbon catalyst on which 40% by weight of platinum was supported on the basis was obtained: 40 wt% Pt / KBEC300J-1500.

実施例2
ケッチェンブラックEC300J(導電性カーボン、ケッチェン・ブラック・インターナショナル社製、商品名)をアルゴン雰囲気中にて1800℃で熱処理し、熱処理カーボン:KBEC300J−1800を得た。このKBEC300J−1800を実施例1と同様に処理して、触媒重量を基準にして40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC300J−1800を得た。
Example 2
Ketjen Black EC300J (conductive carbon, manufactured by Ketjen Black International Co., Ltd., trade name) was heat treated at 1800 ° C. in an argon atmosphere to obtain heat treated carbon: KBEC300J-1800. This KBEC300J-1800 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported based on the catalyst weight: 40 wt% Pt / KBEC300J-1800.

実施例3
ケッチェンブラックEC600JDを真空雰囲気中にて1000℃で熱処理し、熱処理カーボン:KBEC600JD−1000を得た。このKBEC600JD−1000を実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC600JD−1000を得た。
Example 3
Ketjen black EC600JD was heat-treated at 1000 ° C. in a vacuum atmosphere to obtain heat-treated carbon: KBEC600JD-1000. This KBEC600JD-1000 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC600JD-1000.

実施例4
ケッチェンブラックEC600JDをアルゴン雰囲気中にて1500℃で熱処理し、熱処理カーボン:KBEC600JD−1500を得た。このKBEC600JD−1500に実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC600JD−1500を得た。
Example 4
Ketjen black EC600JD was heat-treated at 1500 ° C. in an argon atmosphere to obtain heat-treated carbon: KBEC600JD-1500. This KBEC600JD-1500 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC600JD-1500.

比較例1
熱処理していないケッチェンブラックEC300Jを実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC300Jを得た。
Comparative Example 1
Untreated Ketjen Black EC300J was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC300J.

比較例2
ケッチェンブラックEC300Jを1000℃、真空雰囲気で熱処理し、熱処理カーボン:KBEC300J−1000を得た。このKBEC300J−1000に実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC300JD−1000を得た。
Comparative Example 2
Ketjen black EC300J was heat-treated at 1000 ° C. in a vacuum atmosphere to obtain heat-treated carbon: KBEC300J-1000. This KBEC300J-1000 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC300JD-1000.

比較例3
ケッチェンブラックEC300Jを真空雰囲気中にて1200℃で熱処理し、熱処理カーボン:KBEC300J−1200を得た。このKBEC300J−1200に実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC300J−1200を得た。
Comparative Example 3
Ketjen Black EC300J was heat-treated at 1200 ° C. in a vacuum atmosphere to obtain heat-treated carbon: KBEC300J-1200. This KBEC300J-1200 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC300J-1200.

比較例4
ケッチェンブラックEC300Jをアルゴン雰囲気中にて2000℃で熱処理し、熱処理カーボン:KBEC300J−2000を得た。このKBEC300J−2000に実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC300J−2000を得た。
Comparative Example 4
Ketjen Black EC300J was heat-treated at 2000 ° C. in an argon atmosphere to obtain heat-treated carbon: KBEC300J-2000. This KBEC300J-2000 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC300J-2000.

比較例5
熱処理をしていないケッチェンブラックEC600JDに実施例1と同様にして、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC600JDを得た。
Comparative Example 5
In the same manner as in Example 1, platinum-supported carbon catalyst in which 40 wt% platinum was supported: 40 wt% Pt / KBEC 600 JD was obtained.

比較例6
ケッチェンブラックEC600JDをアルゴン雰囲気中にて2000℃で熱処理し、熱処理カーボン:KBEC600JD−2000を得た。このKBEC600JD−2000に実施例1と同様に処理して、40重量%の白金が担持された白金担持カーボン触媒:40wt%Pt/KBEC600JD−2000を得た。
Comparative Example 6
Ketjen black EC600JD was heat-treated at 2000 ° C. in an argon atmosphere to obtain heat-treated carbon: KBEC600JD-2000. This KBEC600JD-2000 was treated in the same manner as in Example 1 to obtain a platinum-supported carbon catalyst on which 40% by weight of platinum was supported: 40 wt% Pt / KBEC600JD-2000.

上記実施例1〜4及び比較例1〜6で得られたカーボン担体のsp混成軌道とsp混成軌道の光電子強度の積分強度比ならびに白金担持カーボン触媒の白金粒子径、白金の比表面積及び比活性は以下の方法で測定した。 The integrated intensity ratio of the photoelectron intensities of the sp 2 hybrid orbitals and sp 3 hybrid orbitals of the carbon supports obtained in Examples 1 to 4 and Comparative Examples 1 to 6, the platinum particle diameter of the platinum-supported carbon catalyst, the specific surface area of platinum, and Specific activity was measured by the following method.

C1s X線光電子分光(XPS)測定で得られたスペクトルに対し、下記の解析を行うことで決定した。測定には、KRATOS社製AXIS−NOVAを使用し、X線源としてAl Kα線(印加電圧15kV、エミッション電流10mA)を用い、高エネルギー分解条件で、試料を導電性カーボンテープ上に固定して測定を行った。なお、帯電補正はC1sのピークトップを284.5eVとすることにより行った。   It determined by performing the following analysis with respect to the spectrum obtained by C1s X-ray photoelectron spectroscopy (XPS) measurement. For measurement, AXIS-NOVA manufactured by KRATOS was used, Al Kα ray (applied voltage 15 kV, emission current 10 mA) was used as an X-ray source, and the sample was fixed on a conductive carbon tape under high energy decomposition conditions. Measurements were made. The charge correction was performed by setting the C1s peak top to 284.5 eV.

C1sスペクトルは5種類の状態(sp混成軌道炭素:ピーク位置284.543±0.106eV、sp混成軌道炭素:ピーク位置285.051±0.096eV、フェノール・アルコール型炭素:ピーク位置285.766±0.083eV、カルボニル・キノン型炭素:ピーク位置286.892±0.089eV、カルボキシル型炭素:ピーク位置289.305±0.167eV)をとり得るため、それぞれの状態にピーク分離を行った。ピーク分離は、ピーク位置を固定したガウス−ローレンツ混合関数の線形結合により、スペクトルを近似することにより行った。 The C1s spectrum has five states (sp 3 hybrid orbital carbon: peak position 284.543 ± 0.106 eV, sp 2 hybrid orbital carbon: peak position 285.051 ± 0.096 eV, phenol / alcohol type carbon: peak position 285. 766 ± 0.083 eV, carbonyl quinone type carbon: peak position 286.892 ± 0.089 eV, carboxyl type carbon: peak position 289.305 ± 0.167 eV), and peak separation was performed in each state. . Peak separation was performed by approximating the spectrum by linear combination of Gauss-Lorentz mixing functions with fixed peak positions.

白金の粒子径の測定には、リガク社製、RINT Ultima IIIを用い、X線回折測定を行い、得られた回折パターンからPtの220回折線の半価幅に下記のシェラーの式を適用することにより結晶子径を算出した。

D=K・λ/βcosθ
D:結晶子径
λ:測定X線波長
β:半価幅
θ:回折線のブラッグ角
K:シェラー定数=0.9
For the measurement of the particle diameter of platinum, X-ray diffraction measurement is performed using RINT Ultimate III manufactured by Rigaku Corporation, and the following Scherrer equation is applied to the half-value width of 220 diffraction lines of Pt from the obtained diffraction pattern. Thus, the crystallite diameter was calculated.

D = K · λ / βcos θ
D: Crystallite diameter λ: Measurement X-ray wavelength β: Half width θ: Bragg angle of diffraction line K: Scherrer constant = 0.9

白金の比表面積は、大倉理研社製R6015を用いて以下の手順で測定した。白金担持カーボンを0.15g採取し、水素雰囲気、130℃の条件で前処理し、前処理後、測定系内に一酸化炭素をパルス法にて導入し、360秒間保持する操作を一酸化炭素が白金表面上に飽和吸着に達するまで繰り返す。その際、一酸化炭素の導入量と排出量の差が3回連続±2%以下になった場合に飽和吸着に達したと判定した。一酸化炭素の白金表面への吸着量を導入量と排出量の差から算出し、その一酸化炭素吸着量から白金比表面積を以下の式にしたがって算出した。

Pt=(VCO×N×nPt×10−18×100)/(22414×ksf×c)
Pt:白金比表面積(m・g−1
CO:一酸化炭素の吸着量(ml)
:アボガドロ定数=6.022×1023
Pt:白金1原子が占める断面積=0.08nm・atom−1
sf:化学両論比(白金原子1個と反応するガス分子の個数)=1
The specific surface area of platinum was measured by the following procedure using R6015 manufactured by Okura Riken. 0.15 g of platinum-supported carbon was sampled, pretreated under conditions of hydrogen atmosphere and 130 ° C., and after pretreatment, carbon monoxide was introduced into the measurement system by a pulse method and held for 360 seconds. Repeat until saturated adsorption is reached on the platinum surface. At that time, it was determined that saturated adsorption was reached when the difference between the amount of carbon monoxide introduced and the amount of discharge was continuously ± 2% or less three times. The adsorption amount of carbon monoxide on the platinum surface was calculated from the difference between the introduction amount and the discharge amount, and the platinum specific surface area was calculated from the carbon monoxide adsorption amount according to the following formula.

a Pt = (V CO × N A × n Pt × 10 -18 × 100) / (22414 × k sf × c)
a Pt : Platinum specific surface area (m 2 · g −1 )
V CO : Adsorption amount of carbon monoxide (ml)
N A : Avogadro constant = 6.022 × 10 23
n Pt : Cross-sectional area occupied by one platinum atom = 0.08 nm 2 · atom -1
k sf : stoichiometric ratio (number of gas molecules reacting with one platinum atom) = 1

白金担持カーボンの比活性は以下のようにして測定した:試験電極は一般的にSchmidt法(U.A.Paulus et.al.,Journal of Electroanalytical Chemistry 495(2001)134-145)と呼ばれる方法により作製した。Pt/Cを10mg採取し、窒素雰囲気下でエタノール10mlに浸漬する。これに超音波で30minかけて、Pt/Cを分散させてPt/C分散溶液を作製した。回転電極のグラシーカーボン上にPt/C分散溶液を10μl採取し、室温にて乾燥させる。メタノール(MeOH)で150倍に希釈したNafion(登録商標)溶液(30wt%、アルドリッチ製)を塗布して、室温乾燥、80℃の乾燥機で乾燥サイクルを2回繰り返す。電解質溶液は0.5Mの硫酸水溶液、測定温度は60℃、参照電極はAg/AgClとした。電極の電気化学的な酸化還元による前処理条件は0.05V〜1.2V、50mV/sec、O雰囲気とし、水素吸着によるPt表面積(ECSA)の測定条件は0.05V〜1.2V、5mV/sec、N雰囲気とし、酸素還元活性の測定条件は1.05V→0.05V、5mV/sec、N雰囲気、2000rpmとした。なお、ECSA測定には、標準的に用いられている担持白金触媒の持つ水素吸着に関わる電気量(210μC・cm−2)を用いた。 The specific activity of the platinum-supported carbon was measured as follows: The test electrode was generally measured by a method called Schmidt method (UA Paulus et. Al., Journal of Electrochemical Chemistry 495 (2001) 134-145). Produced. 10 mg of Pt / C is collected and immersed in 10 ml of ethanol under a nitrogen atmosphere. A Pt / C dispersion solution was prepared by dispersing Pt / C with ultrasonic waves for 30 minutes. 10 μl of Pt / C dispersion is collected on the glassy carbon of the rotating electrode and dried at room temperature. A Nafion (registered trademark) solution (30 wt%, manufactured by Aldrich) diluted 150-fold with methanol (MeOH) is applied, and the drying cycle is repeated twice in a dryer at room temperature and 80 ° C. The electrolyte solution was a 0.5 M sulfuric acid aqueous solution, the measurement temperature was 60 ° C., and the reference electrode was Ag / AgCl. The pretreatment conditions by electrochemical oxidation-reduction of the electrodes are 0.05 V to 1.2 V, 50 mV / sec, an O 2 atmosphere, and the measurement conditions of the Pt surface area (ECSA) by hydrogen adsorption are 0.05 V to 1.2 V, 5 mV / sec, and N 2 atmosphere, measurement conditions of the oxygen reduction activity was 1.05V → 0.05V, 5mV / sec, N 2 atmosphere, and 2000 rpm. For the ECSA measurement, the quantity of electricity (210 μC · cm −2 ) related to hydrogen adsorption of a supported platinum catalyst used as a standard was used.

その結果を下記表1に示す。   The results are shown in Table 1 below.

図1は、表1に示した比活性を光電子強度の積分強度比(sp/sp)に対してプロットしたものであり、異なる炭素担体上に担持された白金触媒の示す酸素還元活性は、担体カーボンの有するsp/sp混成軌道の比に大きく支配されていることを示す。sp混成軌道はグラファイトに代表されるカーボン材料に含まれる炭素原子に代表的な結合形態である。これに対して、sp混成軌道はダイヤモンドや脂肪族炭化水素に含まれる炭素原子に代表的な結合形態である。前者はπ電子を含むため高い導電性をもたらす。これに対して、後者はそのような電子を含まないため導電性は低い。sp/sp強度比が高くなるということは、カーボン材料の導電性が高いことを意味する。 FIG. 1 is a plot of the specific activities shown in Table 1 against the integrated intensity ratio of photoelectron intensity (sp 2 / sp 3 ), and the oxygen reduction activity exhibited by platinum catalysts supported on different carbon supports is This shows that it is largely governed by the ratio of sp 2 / sp 3 hybrid orbital possessed by the carrier carbon. The sp 2 hybrid orbital is a bonding form typical of carbon atoms contained in a carbon material typified by graphite. On the other hand, sp 3 hybrid orbitals are a typical bonding form for carbon atoms contained in diamond and aliphatic hydrocarbons. The former brings high conductivity because it contains π electrons. On the other hand, since the latter does not contain such electrons, the conductivity is low. An increase in the sp 2 / sp 3 intensity ratio means that the carbon material has high conductivity.

本触媒は、電気化学反応を促進するものであるから、担体には高い導電性が求められる。このことが強く反映されているのが、sp/sp比が2.8(実施例1)までの傾向である。さらに、sp/sp比が増加することにより、カーボン表面には、グラファイト構造のベーサル面が多く形成されることが予測される。このようなカーボン表面は、その上に担持される白金の分散状態および電子状態に影響を及ぼす可能性がある。まず、分散性であるが、sp/sp強度比と白金粒子径もしくは比表面積の間には相関はない。このことより、sp/sp比が分散性を変化させ、それにより比活性が低下するという仮説は棄却される。次に、電子状態であるが、白金の電子状態をXPS Pt4fスペクトルにより検討した結果、高い活性を示す触媒の白金は還元状態にあることが見いだされている。これは、カーボン表面の炭素原子の結合状態が白金の電子状態に影響を及ぼす、いわゆる金属−担体相互作用の発現である。sp混成炭素原子の発達はこのような状態の白金を示さなくなると仮定することにより、sp/sp>2.8領域における比活性の低下を説明することができる。 Since this catalyst promotes an electrochemical reaction, the support is required to have high conductivity. This is strongly reflected in the tendency for the sp 2 / sp 3 ratio to reach 2.8 (Example 1). Furthermore, it is predicted that a large number of basal surfaces having a graphite structure are formed on the carbon surface by increasing the sp 2 / sp 3 ratio. Such a carbon surface can affect the dispersion and electronic state of platinum supported thereon. First, with respect to dispersibility, there is no correlation between the sp 2 / sp 3 intensity ratio and the platinum particle diameter or specific surface area. This rejects the hypothesis that the sp 2 / sp 3 ratio changes dispersibility and thereby reduces specific activity. Next, as a result of examining the electronic state of platinum by XPS Pt4f spectrum, it has been found that platinum of a catalyst exhibiting high activity is in a reduced state. This is the expression of a so-called metal-support interaction in which the bonding state of carbon atoms on the carbon surface affects the electronic state of platinum. By assuming that the development of sp 2 hybrid carbon atoms no longer shows platinum in this state, the decrease in specific activity in the region of sp 2 / sp 3 > 2.8 can be explained.

Claims (1)

白金をカーボン担体に担持させてなる白金担持カーボン触媒であって、X線光電子分光装置(XPS)で測定される、カーボン担体のsp2混成軌道とsp3混成軌道の光電子強度の積分強度比sp2/sp3が1.8〜3.3の範囲内にある燃料電池用のカソード触媒として使用するための白金担持カーボン触媒。 A platinum-supported carbon catalyst in which platinum is supported on a carbon support, and an integrated intensity ratio sp of the photoelectron intensity of the sp 2 hybrid orbit of the carbon support and the sp 3 hybrid orbit measured by an X-ray photoelectron spectrometer (XPS). A platinum-supported carbon catalyst for use as a cathode catalyst for a fuel cell having a 2 / sp 3 in the range of 1.8 to 3.3.
JP2011106138A 2011-05-11 2011-05-11 Cathode platinum catalyst for highly active fuel cells Active JP5754686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106138A JP5754686B2 (en) 2011-05-11 2011-05-11 Cathode platinum catalyst for highly active fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106138A JP5754686B2 (en) 2011-05-11 2011-05-11 Cathode platinum catalyst for highly active fuel cells

Publications (2)

Publication Number Publication Date
JP2012236138A JP2012236138A (en) 2012-12-06
JP5754686B2 true JP5754686B2 (en) 2015-07-29

Family

ID=47459550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106138A Active JP5754686B2 (en) 2011-05-11 2011-05-11 Cathode platinum catalyst for highly active fuel cells

Country Status (1)

Country Link
JP (1) JP5754686B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411770B2 (en) * 2014-04-15 2018-10-24 トヨタ自動車株式会社 Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
JP6232505B2 (en) 2014-10-24 2017-11-15 株式会社キャタラー Fuel cell electrode catalyst and method for producing the same
JP6635976B2 (en) 2017-04-28 2020-01-29 株式会社キャタラー Electrode catalyst for fuel cell and method for producing the same
WO2019177060A1 (en) 2018-03-16 2019-09-19 株式会社キャタラー Electrode catalyst for fuel cell, and fuel cell using same
CN109888284B (en) * 2018-12-29 2020-05-01 湖南晋烨高科股份有限公司 Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426973C1 (en) * 1994-07-29 1996-03-28 Degussa Method for producing a platinum alloy catalyst that can be used as a fuel cell electrode
JP4590937B2 (en) * 2003-07-02 2010-12-01 日産自動車株式会社 Electrode catalyst and method for producing the same
JP2005209615A (en) * 2003-11-14 2005-08-04 Nissan Motor Co Ltd Gas diffusion layer and solid polyelectrolyte fuel cell
WO2006137893A2 (en) * 2004-10-01 2006-12-28 Board Of Regents Of The University Of Texas System Polymer-free carbon nanotube assemblies (fibers, ropes, ribbons, films)
JP2006213569A (en) * 2005-02-04 2006-08-17 Tokyo Institute Of Technology Surface-treated carbon nanofiber and manufacturing method thereof
JP4855758B2 (en) * 2005-10-19 2012-01-18 東海旅客鉄道株式会社 Method for producing diamond having acicular protrusion arrangement structure on surface
TW200801223A (en) * 2006-06-01 2008-01-01 Ritek Corp Method of preparing single wall carbon nanotubes
JP2008041253A (en) * 2006-08-01 2008-02-21 Nissan Motor Co Ltd Electrocatalyst and power generation system using the same
JP2008189997A (en) * 2007-02-05 2008-08-21 Kensuke Honda Method for producing conductive diamond-like carbon
JP5240978B2 (en) * 2007-04-13 2013-07-17 国立大学法人電気通信大学 Method for producing diamond-like carbon film
JP2009184859A (en) * 2008-02-04 2009-08-20 Meiji Univ Metallic member, producing apparatus of dlc film, and producing method of metallic member
JP5560736B2 (en) * 2009-01-30 2014-07-30 株式会社エクォス・リサーチ Fuel cell

Also Published As

Publication number Publication date
JP2012236138A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
Schmies et al. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts
Qin et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium
Chetty et al. Effect of reduction temperature on the preparation and characterization of Pt− Ru nanoparticles on multiwalled carbon nanotubes
Modibedi et al. Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium
Zhao et al. Electrodeposition of Pt–Ru and Pt–Ru–Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell
MoghadamEsfahani et al. A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC
Chen et al. A binary palladium–bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation
JP2008041253A (en) Electrocatalyst and power generation system using the same
Moura Souza et al. Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions
JP4764866B2 (en) Catalyst carrier, catalyst, method for producing catalyst carrier, and method for producing catalyst
Choudhary et al. Addition of rhenium (Re) to Pt-Ru/f-MWCNT anode electrocatalysts for enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell
JP6392490B1 (en) Oxygen reduction catalyst, membrane electrode assembly, and fuel cell
JP5754686B2 (en) Cathode platinum catalyst for highly active fuel cells
Kolla et al. Methanol oxidation on hybrid catalysts: PtRu/C nanostructures promoted with cerium and titanium oxides
Su et al. Preparation of PtSn2–SnO2/C nanocatalyst and its high performance for methanol electro-oxidation
JP2008210572A (en) Electrocatalyst and power generation system using it
Romero-Cano et al. Solvent effect in the synthesis of nanostructured Pt–Sn/CNT as electrocatalysts for the electrooxidation of ethanol
Amin et al. Synthesis of Pt–Co nanoparticles on multi-walled carbon nanotubes for methanol oxidation in H2SO4 solution
Sun et al. Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction
Centi et al. The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell
Kireeti et al. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell
Knani et al. A methanol–Tolerant carbon supported Pt–Sn cathode catalysts
Jin et al. Effect of MoO3 on Pd nanoparticles for efficient formic acid electrooxidation
JP2009193956A (en) Electrode catalyst for fuel cell, and solid polymer fuel cell using the same
Van der Ham et al. Improved electrocatalytic activity of Pt on carbon nanofibers for glucose oxidation mediated by support oxygen groups in Pt perimeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5754686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250