JP5752528B2 - Rotating damper - Google Patents

Rotating damper Download PDF

Info

Publication number
JP5752528B2
JP5752528B2 JP2011186733A JP2011186733A JP5752528B2 JP 5752528 B2 JP5752528 B2 JP 5752528B2 JP 2011186733 A JP2011186733 A JP 2011186733A JP 2011186733 A JP2011186733 A JP 2011186733A JP 5752528 B2 JP5752528 B2 JP 5752528B2
Authority
JP
Japan
Prior art keywords
torque generating
generating member
cam
shaft
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011186733A
Other languages
Japanese (ja)
Other versions
JP2013050117A (en
Inventor
孝行 坂巻
孝行 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOK Bearing Co Ltd
Original Assignee
TOK Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOK Bearing Co Ltd filed Critical TOK Bearing Co Ltd
Priority to JP2011186733A priority Critical patent/JP5752528B2/en
Priority to CN201210311031.XA priority patent/CN102966282B/en
Publication of JP2013050117A publication Critical patent/JP2013050117A/en
Application granted granted Critical
Publication of JP5752528B2 publication Critical patent/JP5752528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、吊り戸、引き戸、ロールスクリーン、手動シャッター等に使用される回転ダンパに関する。   The present invention relates to a rotary damper used for a hanging door, a sliding door, a roll screen, a manual shutter, and the like.

従来、ハウジング内に粘性流体を封じ込めると共に回転部材及び静止部材を近接させて対向配置し、回転部材の回転時に、双方の部材間に介在する粘性流体の剪断摩擦抵抗を利用して回転部材に制動力を与える回転ダンパは公知である。例えば、回転ダンパ内の粘性流体の温度変化による剪断抵抗の変動に伴う制動力の変動を軽減するための技術は既に知られている。(特許文献1)。また、回転ダンパの使用態様や使用目的に応じて、適正な制動力が得られるように回転部材と静止部材との対向面積を微調整する機能を持つ回転ダンパも知られている。このような微調整は回転ダンパの外部から行われ、その調整は一旦設定された後は固定されたままである(特許文献2、特許文献3)。一方、回転部材の回転速度の大小により制動力の大きさを自動的に調整し得る回転ダンパがある(特許文献4)。この点で特許文献4の開示技術は特許文献1ないし3の開示技術とは異なる。   Conventionally, a viscous fluid is confined in a housing, and a rotating member and a stationary member are arranged close to each other so as to face each other, and when the rotating member rotates, the rotating member is controlled using the shear frictional resistance of the viscous fluid interposed between the two members. Rotating dampers that provide power are known. For example, a technique for reducing fluctuations in braking force due to fluctuations in shear resistance due to changes in temperature of the viscous fluid in the rotary damper is already known. (Patent Document 1). There is also known a rotary damper having a function of finely adjusting the facing area between the rotary member and the stationary member so that an appropriate braking force can be obtained in accordance with the use mode and purpose of use of the rotary damper. Such fine adjustment is performed from the outside of the rotary damper, and the adjustment is fixed once set (Patent Documents 2 and 3). On the other hand, there is a rotary damper that can automatically adjust the magnitude of the braking force depending on the rotational speed of the rotating member (Patent Document 4). In this respect, the disclosed technique of Patent Document 4 is different from the disclosed techniques of Patent Documents 1 to 3.

特開平03−163232JP 03-163232 A 特開2010−190268JP2010-190268 実開昭64−000736Akira Shokai 64-000736 特許4529059号Patent 4529059

特許文献4の回転ダンパにおいては、スライド部材を粘性流体内で遠心力により径方向にスライドさせるため、粘性流体の抵抗を受け、遠心力によるスライド部材のスライド動作が円滑確実に行われないという問題点がある。また、回転部材の回転速度の大小により制動力の大きさを自動的に調整し得る利点はあるが、しかし回転速度の変化と制動力の大きさとの関係は二次関数となっている。この場合、回転部材に急激な負荷が掛かったとき、大きな制動力が速やかに得られるので、特に問題はないが、例えば、吊り戸を閉鎖する際に、閉鎖速度に応じた適切な制動力を得ようとした場合には、低速だと充分な制動力を得られず、高速だと制動力が効きすぎるという問題点がある。
そこで、本発明は、上記問題点を解決することを目的とする。
In the rotary damper of Patent Document 4, since the slide member is slid radially in the viscous fluid by centrifugal force, the slide member is subjected to the resistance of the viscous fluid, and the sliding operation of the slide member by the centrifugal force is not smoothly performed. There is a point. Further, there is an advantage that the magnitude of the braking force can be automatically adjusted by the magnitude of the rotational speed of the rotating member, but the relationship between the change in the rotational speed and the magnitude of the braking force is a quadratic function. In this case, when a sudden load is applied to the rotating member, a large braking force can be obtained quickly, so there is no particular problem.For example, when closing the suspension door, an appropriate braking force according to the closing speed is applied. When trying to obtain, there is a problem that a sufficient braking force cannot be obtained at a low speed and a braking force is too effective at a high speed.
Therefore, an object of the present invention is to solve the above problems.

上記目的を達成するため、本発明は、内部に粘性流体を充填させた室を有するハウジングと、少なくとも一部が前記室内に収容され、前記ハウジングに対して相対的に回転自在なシャフトと、前記ハウジング及び前記シャフトのいずれか一方に設けられ、少なくとも前記シャフトの軸方向に展延する第1トルク発生面を備えた第1トルク発生部材と、前記ハウジング及び前記シャフトの他方に設けられ、前記第1トルク発生面と対向し得る第2トルク発生面を備えた第2トルク発生部材とを有し、前記第1トルク発生面と前記第2トルク発生面との間の粘性流体の粘性抵抗によりトルクを発生させる回転ダンパにおいて、前記第1トルク発生面及び第2トルク発生面の対向面積を可変とすべく、前記第1トルク発生部材及び前記第2トルク発生部材の少なくとも一方のトルク発生部材は他方のトルク発生部材に対して軸方向に移動可能な可動部材として構成され、前記回転ダンパは、前記ハウジング及び前記シャフトのいずれか一方が回転駆動されるとき、その回転速度に応じて前記対向面積を変化させるトルク自動調整機構をさらに有し、前記トルク自動調整機構は、前記可動部材を前記他方のトルク発生部材から軸方向に離れる方向に付勢する弾性手段と、前記軸方向に対して傾いたカム面を有するカムと、前記カムのカム面に係合して設けられた係合体とからなり、前記カムは、前記シャフトとハウジングとの相対回転により、前記係合体を前記シャフトの前記ハウジングに対する相対回転方向と前記シャフトの軸方向に沿ったスラスト方向に押圧するようにし、前記スラスト方向の力により前記可動部材が前記他方のトルク発生部材の方向に移動するようにしたことを特徴とする。
また本発明は、前記第1トルク発生部材は、盤状部に突出板が1列または同心状に複数列突出して形成され、前記第2トルク発生部材は、盤状部に突出板が1列または同心状に複数列突出して形成され、前記第1トルク発生部材と第2トルク発生部材の突出板は互いの軸方向の相対移動により対向するように、互いの径方向の位置がずれており、前記第1トルク発生部材と前記第2トルク発生部材の突出板の互いに対向する面が前記第1トルク発生面と第2トルク発生面を構成するようにしたことを特徴とする。
また本発明は、前記第1トルク発生部材を前記ハウジング側に設け、前記カム及び係合体のいずれか一方を前記シャフト側にこれと連動して回転するように設け、前記第2トルク発生部材を前記シャフト側に軸方向に移動自在に設け、前記カム及び係合体のいずれか他方を前記第2トルク発生部材側に設け、該係合体を前記カムに係合し、前記シャフトの前記ハウジングに対する相対回転により前記カムが前記係合体を回転方向とスラスト方向に押圧し、該スラスト方向の力により前記第2トルク発生部材が前記第1トルク発生部材の方向に移動するようにしたことを特徴とする。
また本発明は、前記回転速度に比例して前記カムと該カムに係合する係合体とのスラスト方向の圧力が変化するように前記カムのカム面を形成し、前記ハウジング及び前記シャフトのいずれか一方が回転駆動されるとき、その回転速度に比例して、前記可動部材が他方のトルク発生部材に対して軸方向に移動するようにしたことを特徴とする。
また本発明は、前記可動部材に対向する他方のトルク発生部材を、前記可動部材に対して軸方向に移動させるための移動調整機構を設けたことを特徴とするものである。
In order to achieve the above object, the present invention includes a housing having a chamber filled with a viscous fluid therein, a shaft at least partially housed in the chamber and rotatable relative to the housing, A first torque generating member provided on one of the housing and the shaft and having a first torque generating surface extending at least in the axial direction of the shaft; and provided on the other of the housing and the shaft; A second torque generating member having a second torque generating surface that can face the one torque generating surface, and torque is generated by viscous resistance of the viscous fluid between the first torque generating surface and the second torque generating surface. In the rotary damper for generating the first torque generating member and the second torque generating surface, the opposing area of the first torque generating surface and the second torque generating surface can be made variable. When at least one of the torque generating member member is constructed as a movable member movable axially relative to the other of the torque generating member, the rotary damper, the one of the housing and the shaft is rotated, It further has an automatic torque adjustment mechanism that changes the facing area according to the rotation speed, and the automatic torque adjustment mechanism biases the movable member in a direction away from the other torque generating member in the axial direction. And a cam having a cam surface inclined with respect to the axial direction, and an engaging body provided to engage with the cam surface of the cam, the cam being rotated by relative rotation of the shaft and the housing, The engaging body is pressed in a thrust direction along a direction of relative rotation of the shaft with respect to the housing and an axial direction of the shaft; Wherein the movable member by the direction of the force is to move in the direction of the other torque generating member.
Further, in the present invention, the first torque generating member is formed such that protruding plates protrude in one row or a plurality of concentric rows on the plate-like portion, and the second torque generating member has one row of protruding plates in the plate-like portion. Alternatively, the first torque generating member and the second torque generating member are formed so as to protrude in a plurality of rows concentrically, and the protruding positions of the first torque generating member and the second torque generating member are displaced from each other in the radial direction so as to face each other by relative movement in the axial direction. The surfaces of the first torque generating member and the projecting plate of the second torque generating member facing each other constitute the first torque generating surface and the second torque generating surface.
According to the present invention, the first torque generating member is provided on the housing side, and either the cam or the engaging body is provided on the shaft side so as to rotate in conjunction with the first torque generating member. An axially movable shaft is provided on the shaft side, and either the cam or the engagement body is provided on the second torque generating member side, the engagement body is engaged with the cam, and the shaft is relative to the housing. The cam presses the engaging body in the rotational direction and the thrust direction by rotation, and the second torque generating member is moved in the direction of the first torque generating member by a force in the thrust direction. .
According to the present invention, the cam surface of the cam is formed so that the thrust pressure between the cam and the engaging body engaged with the cam changes in proportion to the rotational speed, and either the housing or the shaft is formed. When one of them is rotationally driven, the movable member is moved in the axial direction relative to the other torque generating member in proportion to the rotational speed.
Further, the present invention is characterized in that a movement adjusting mechanism for moving the other torque generating member facing the movable member in the axial direction with respect to the movable member is provided.

本発明は、可動側のトルク発生部材のスラスト方向の移動を、ハウジング内の粘性流体の抵抗をほとんど受けないカムとこれに係合する係合体によりスラスト方向に駆動するようにしたので、トルク自動調整動作を粘性流体に影響されないで確実に行うことができる。また、ハウジング及びシャフト間の相対回転速度に応じて第1トルク発生部材と第2トルク発生部材のトルク発生面間の対向面積を変化させることができるので、吊り戸等の開閉速度に応じたトルクを発揮することができる。   According to the present invention, the movement of the movable torque generating member in the thrust direction is driven in the thrust direction by the cam that hardly receives the resistance of the viscous fluid in the housing and the engaging body engaged therewith. The adjusting operation can be reliably performed without being affected by the viscous fluid. Further, since the facing area between the torque generating surfaces of the first torque generating member and the second torque generating member can be changed according to the relative rotational speed between the housing and the shaft, the torque according to the opening / closing speed of the suspension door or the like Can be demonstrated.

本発明に係る回転ダンパの縦断面図である。It is a longitudinal cross-sectional view of the rotary damper which concerns on this invention. 同縦断面図である。It is the longitudinal cross-sectional view. 本発明の説明図である。It is explanatory drawing of this invention. 同説明図である。FIG. 本発明に係る回転ダンパの縦断面図である。It is a longitudinal cross-sectional view of the rotary damper which concerns on this invention. 同縦断面図である。It is the longitudinal cross-sectional view. 本発明の説明図である。It is explanatory drawing of this invention.

以下に本発明の実施の形態を添付した図面を参照して詳細に説明する。
図1は、本発明に係る回転ダンパ2を示している。回転ダンパ2は、ハウジング4を備え、このハウジング4は、円筒形の本体4aと、この本体4aの開放端を塞ぐキャップ4bとから構成される。本体4a及びキャップ4bは共に適当な合成樹脂材料から一体成形品として成形されるが、金属で構成しても良い。本体4aとキャップ4bとによって形成された室内には、粘性流体が充填されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 shows a rotary damper 2 according to the present invention. The rotary damper 2 includes a housing 4, and the housing 4 includes a cylindrical main body 4a and a cap 4b that closes an open end of the main body 4a. The main body 4a and the cap 4b are both molded as an integrally molded product from a suitable synthetic resin material, but may be made of metal. The chamber formed by the main body 4a and the cap 4b is filled with a viscous fluid.

回転ダンパ2は、合成樹脂材料或いは金属材料から形成されたシャフト6を具備する。シャフト6は、その一端部は、ハウジング本体4aの閉塞端に軸方向に移動しないように定位置で回転可能に装着された、円柱状のアジャスタ8の軸受部8aに回転自在に支持される。更に、シャフト6は、ハウジング4のキャップ4bに形成された中央孔を貫通し、その中間部はハウジング4の室内に収納される。一方キャップ4bの中央の外面側に形成された凹部にはボール軸受10が設けられ、これにシャフト6が回転自在に支持されている。 The rotary damper 2 includes a shaft 6 formed from a synthetic resin material or a metal material. One end portion of the shaft 6 is rotatably supported by a bearing portion 8a of a columnar adjuster 8 that is rotatably mounted at a fixed position so as not to move in the axial direction at the closed end of the housing body 4a. Further, the shaft 6 passes through a central hole formed in the cap 4 b of the housing 4, and an intermediate portion thereof is accommodated in the chamber of the housing 4. On the other hand, a ball bearing 10 is provided in a recess formed on the outer surface side of the center of the cap 4b, and the shaft 6 is rotatably supported by the ball bearing 10.

また、キャップ4bの中央の内面側に形成された凹部内では、シャフト6を囲むようにOリングシール12が設けられ、これによりシャフト6に沿うキャップ4bからの粘性流体の漏れが防止される。なお、本実施形態において、回転ダンパ2は、ハウジング4が固定側、シャフト6が回転側として吊り戸等に取り付けられる。ハウジング本体4aの閉塞端側には、第1トルク発生部材14が配置され、該部材14の外周面に図7に示すように、軸方向にキー16が形成されている。一方、ハウジング本体4aの内径部に図7に示すように、軸方向にキー溝18が形成され、該キー溝18に前記キー16がスライド自在に嵌合している。 Further, an O-ring seal 12 is provided so as to surround the shaft 6 in the recess formed on the inner surface side of the center of the cap 4 b, thereby preventing leakage of viscous fluid from the cap 4 b along the shaft 6. In this embodiment, the rotary damper 2 is attached to a hanging door or the like with the housing 4 as a fixed side and the shaft 6 as a rotary side. A first torque generating member 14 is disposed on the closed end side of the housing body 4a, and a key 16 is formed in the axial direction on the outer peripheral surface of the member 14 as shown in FIG. On the other hand, as shown in FIG. 7, a key groove 18 is formed in the axial direction on the inner diameter portion of the housing body 4 a, and the key 16 is slidably fitted in the key groove 18.

これにより、第1トルク発生部材14は、ハウジング本体4aに対して軸方向にスライド自在となっている。第1トルク発生部材14の内径部は、アジャスタ8の外周部に軸方向にスライド自在に嵌合し、第1トルク発生部材14の内径部に形成された2つの係合体20,21が図7に示すように、アジャスタ8の外周部に形成された2つのカムのカム面22,24に当接している。アジャスタ8のカムはそれぞれ同一形状に構成され、各カムのカム面22,24は、これらに当接する係合体20,21を軸方向に移動するための傾斜面を有している。第1トルク発生部材14の係合体20,21の各先端Fは、初期状態において、圧縮コイルばね48のばね圧により対応するカム面22,24の各始点Sに当接している。 Thus, the first torque generating member 14 is slidable in the axial direction with respect to the housing body 4a. The inner diameter portion of the first torque generating member 14 is fitted to the outer peripheral portion of the adjuster 8 so as to be slidable in the axial direction, and two engaging bodies 20 and 21 formed on the inner diameter portion of the first torque generating member 14 are shown in FIG. As shown in FIG. 2, the cam surfaces 22 and 24 of the two cams formed on the outer peripheral portion of the adjuster 8 are in contact with each other. The cams of the adjuster 8 have the same shape, and the cam surfaces 22 and 24 of the cams have inclined surfaces for moving the engaging members 20 and 21 in contact with them in the axial direction. The front ends F of the engagement bodies 20 and 21 of the first torque generating member 14 are in contact with the corresponding starting points S of the corresponding cam surfaces 22 and 24 by the spring pressure of the compression coil spring 48 in the initial state.

アジャスタ8の2つのカムのカム面22,24は、それぞれアジャスタ8の軸方向の最も後方を始点Sとし、最も前方を終点Eとして、その間を、アジャスタ8の外周面に沿って結んだ線上に傾斜面が形成されている。アジャスタ8を回転させることにより係合体20,21の先端Fに対して、カム面22,24の位置を、その始点Sと、終点Eの間で変化させることができる。第1トルク発生部材14の盤状部14aには、ハウジング本体4aの内周方向に沿って同心状に複数列、4つの環状の突出板26が形成されている。各突出板26は図7に示すように、切り欠き部が形成され、軸方向及び径方向に環状に展延して形成されている。 The cam surfaces 22, 24 of the two cams of the adjuster 8 are on the line connecting the outermost surface of the adjuster 8 between the start point S and the front end of the adjuster 8 in the axial direction. An inclined surface is formed. By rotating the adjuster 8, the positions of the cam surfaces 22, 24 can be changed between the start point S and the end point E with respect to the tips F of the engagement bodies 20, 21. A plurality of rows and four annular protruding plates 26 are formed concentrically along the inner circumferential direction of the housing body 4a on the disk-like portion 14a of the first torque generating member 14. As shown in FIG. 7, each protruding plate 26 is formed with a notch and annularly extending in the axial direction and the radial direction.

これら突出板26はシャフト6の半径方向に等間隔で配置され、各突出板26の表面は後述するようにトルク発生面26aとして機能する。なお、突出板26は同心状に複数列設けた構成を説明したが単数列であっても良い。また、突出板26は環状でなくともよく、半環状その他、シャフト6の軸方向かつ該シャフト6の中心軸線を中心とする周方向に展延した形状であればどのような形状でも良い。シャフト6には、図3に示すように、外周に複数のカム32が形成された管体40が被着され、この管体40の内面側には、シャフト6の軸方向に沿って少なくとも1つの凸条即ちキー(図示省略)が形成されこれらキーはシャフト6に形成されたキー溝(図示省略)と係合され、これにより、管体40は、シャフト6と共に一体的に回転する。管体40の外周部に形成された4個のカム32は、互いに等間隔を有している。尚、カム32は特に4個でなくともよい。各カム32は、略二等辺三角形の外径の周面部32aと該周面部32aの両側部に位置して、図3に示すように、管体40の径方向に所定の幅を有する第1のカム面F1と第2のカム面F2が形成されている。 These protruding plates 26 are arranged at equal intervals in the radial direction of the shaft 6, and the surface of each protruding plate 26 functions as a torque generating surface 26a as described later. In addition, although the structure which provided the protrusion plate 26 in multiple rows concentrically was demonstrated, a single row may be sufficient. Further, the protruding plate 26 does not have to be annular, and may be any shape as long as it is a semi-annular shape or any other shape that extends in the axial direction of the shaft 6 and in the circumferential direction around the central axis of the shaft 6. As shown in FIG. 3, a tube body 40 having a plurality of cams 32 formed on the outer periphery thereof is attached to the shaft 6, and at least one of the tube bodies 40 is provided on the inner surface side along the axial direction of the shaft 6. Two ridges or keys (not shown) are formed, and these keys are engaged with key grooves (not shown) formed in the shaft 6, whereby the tube body 40 rotates together with the shaft 6. The four cams 32 formed on the outer periphery of the tube body 40 are equally spaced from each other. Note that the number of cams 32 is not particularly limited to four. Each of the cams 32 is positioned on both sides of a substantially isosceles triangle outer diameter peripheral surface 32a and the peripheral surface 32a, and has a predetermined width in the radial direction of the tubular body 40 as shown in FIG. The cam surface F1 and the second cam surface F2 are formed.

カム32はシャフト6の回転トルクによる、該カム32のカム面F1,F2に係合する後述する第2トルク発生部材44の係合体42対する圧力を、カム面F1,F2の傾きによって、シャフト6の回転方向とシャフト6の軸方向に沿ったスラスト方向の二方向の力に変換するように構成され、各カム32のカム面F1,F2は、係合体42を回転方向に押圧するとともにスラスト方向にスライド自在に案内する、軸方向に対して角度を有する案内面を構成している。互いに隣接する一対のカム32は、一方のカム32の第1のカム面F1が、他方のカム32の第2のカム面F2に第3図に示すように所定の間隔を存して対向している。前記第1のカム面F1と第2のカム面F2は、管体40の外周面に軸方向に角度を有してその略全長にわたって形成され、第1と第2のカム面F1,F2は、互いの対向間隔が軸方向に広がるように、傾斜している。 In the cam 32, the pressure on the engaging body 42 of the second torque generating member 44, which will be described later, engaged with the cam surfaces F1, F2 of the cam 32 due to the rotational torque of the shaft 6, is changed by the inclination of the cam surfaces F1, F2. The cam surfaces F1 and F2 of the cams 32 press the engaging body 42 in the rotation direction and the thrust direction, and are converted to two forces in the thrust direction along the axial direction of the shaft 6 and the axial direction of the shaft 6. A guide surface having an angle with respect to the axial direction is slidably guided. In a pair of adjacent cams 32, the first cam surface F1 of one cam 32 faces the second cam surface F2 of the other cam 32 with a predetermined interval as shown in FIG. ing. The first cam surface F1 and the second cam surface F2 are formed on the outer peripheral surface of the tubular body 40 over the substantially entire length with an angle in the axial direction, and the first and second cam surfaces F1 and F2 are Inclined so that the interval between each other is spread in the axial direction.

第1のカム面F1の傾斜は、これに接する係合体42に対して一方向の回転力と、スラスト方向Gの力を付与する。また、第2のカム面F2の傾斜は、これに接する係合体42に対して他方向の回転力と、スラスト方向Gの力を付与する。2つのカム32の第1と第2のカム面F1,F2間に、圧縮コイルばね48の弾発力により、圧接配置される係合体42は、第2トルク発生部材44の内径部にくさび状に形成されている。第1のカム面F1と第2のカム面F2の間に当接配置される係合体42は、前記カム32の数に対応してこれらと同数設けられ、各係合体42の両側部には、第1のカム受け面H1と第2のカム受け面H2が形成されている。各カム32の各円周面部32aは、同一周面上に形成され、各係合体42の周面部42aも同一円周面上に形成されている。管体40に第2トルク発生部材44が嵌合した状態において、係合体42の両側部は、第1のカム面F1と第1のカム受面H1とが対向して面接触し、第2のカム面F2と第2のカム受面H2とが対向して面接触し、対応する一対のカム32間に図3Aのように配置される。該状態において、各カム32の周面部32aは、係合体42間に形成された第2トルク発生部材44の内周面44bに面接触し、各係合体42の末広がり形状の周面部42aは、各カム32間の管体40の外周面40aに面接触する。 The inclination of the first cam surface F1 applies a rotational force in one direction and a force in the thrust direction G to the engaging body 42 in contact therewith. Further, the inclination of the second cam surface F <b> 2 gives a rotational force in the other direction and a force in the thrust direction G to the engaging body 42 in contact therewith. The engaging body 42 that is press-contacted between the first and second cam surfaces F1 and F2 of the two cams 32 by the elastic force of the compression coil spring 48 is wedge-shaped on the inner diameter portion of the second torque generating member 44. Is formed. The same number of engagement bodies 42 arranged in contact with each other between the first cam surface F1 and the second cam surface F2 are provided corresponding to the number of the cams 32. A first cam receiving surface H1 and a second cam receiving surface H2 are formed. Each circumferential surface portion 32a of each cam 32 is formed on the same circumferential surface, and the circumferential surface portion 42a of each engaging body 42 is also formed on the same circumferential surface. In a state in which the second torque generating member 44 is fitted to the tube body 40, the first cam surface F1 and the first cam receiving surface H1 face each other on both sides of the engaging body 42, and the second side The cam surface F2 and the second cam receiving surface H2 face each other and come into surface contact with each other, and are arranged between a pair of corresponding cams 32 as shown in FIG. 3A. In this state, the peripheral surface portion 32a of each cam 32 is in surface contact with the inner peripheral surface 44b of the second torque generating member 44 formed between the engaging bodies 42, and the peripheral surface portion 42a of each engaging body 42 having a divergent shape is Surface contact is made with the outer peripheral surface 40 a of the tube 40 between the cams 32.

シャフト6が停止した状態において、係合体42は、図3(A)に示すように、圧縮コイルばね48のばね力により第1と第2のカム面F1,F2間の幅狭方向の奥端に位置し、該状態において、係合体42の一側部の第1のカム受け面H1は、対応する第1のカム面F1に当接し、他側部の第2のカム受け面H2は対応する第2のカム面F2に当接する。管体40が一方向に回転すると、この回転は第1のカム面F1を介して、係合体42の第1のカム受け面H1に伝達され、係合体42は、図3(B)に示すように、回転速度に応じて、カム面F1に沿ってスラスト方向Gに移動する。管体40が他方向に回転すると、この回転は、第2のカム面F2を介して係合体42の第2のカム受け面H2に伝達され、回転速度に応じて、カム面F2に沿ってスラスト方向Gに移動する。。第2トルク発生部材44は、カム32を介してシャフト6と共に回転するように、管体40上に装着され、この第2トルク発生部材44は合成樹脂材料で成形される。 In the state where the shaft 6 is stopped, the engagement body 42 is connected to the rear end in the narrow direction between the first and second cam surfaces F1 and F2 by the spring force of the compression coil spring 48 as shown in FIG. In this state, the first cam receiving surface H1 on one side of the engaging body 42 abuts on the corresponding first cam surface F1, and the second cam receiving surface H2 on the other side corresponds. Abuts against the second cam surface F2. When the tube body 40 rotates in one direction, this rotation is transmitted to the first cam receiving surface H1 of the engagement body 42 via the first cam surface F1, and the engagement body 42 is shown in FIG. As described above, it moves in the thrust direction G along the cam surface F1 according to the rotational speed. When the tube body 40 rotates in the other direction, this rotation is transmitted to the second cam receiving surface H2 of the engaging body 42 via the second cam surface F2, and along the cam surface F2 according to the rotational speed. Move in thrust direction G. . The second torque generating member 44 is mounted on the tubular body 40 so as to rotate together with the shaft 6 via the cam 32, and the second torque generating member 44 is formed of a synthetic resin material.

第2トルク発生部材44は、図1に示す最左方位置と、第2図に示す最右方位置との間で、管体40の外周面に沿って移動自在とされる。本実施形態では、第2トルク発生部材44は、シャフト6の中心軸線方向に移動可能な可動部材として定義することができる。第2トルク発生部材44の盤状部44aにはハウジング本体4aの閉塞端内面側に向かって軸方向かつシャフト6の中心軸線を中心とする周方向に沿って同心状に3つの環状の突出板46が形成されている。これら突出板46は、第1トルク発生部材14の突出板26と同様に同心状に等間隔に複数列配置され、各突出板46の表面は、軸方向及び円周方向に展延した形状を備え、該表面は後述するようにトルク発生面46aとして機能する。尚、突出板43は環状でなくともよく、半環状その他、シャフト6の軸方向かつ該シャフト6の中心軸線を中心とする周方向に展延した形状であればどのような形状でも良い。 The second torque generating member 44 is movable along the outer peripheral surface of the tubular body 40 between the leftmost position shown in FIG. 1 and the rightmost position shown in FIG. In the present embodiment, the second torque generating member 44 can be defined as a movable member that can move in the central axis direction of the shaft 6. The disk-shaped portion 44a of the second torque generating member 44 has three annular projecting plates that are concentrically along the circumferential direction about the central axis of the shaft 6 and axially toward the inner surface of the closed end of the housing body 4a. 46 is formed. These protruding plates 46 are arranged in a plurality of rows at equal intervals in a concentric manner like the protruding plate 26 of the first torque generating member 14, and the surface of each protruding plate 46 has a shape extending in the axial direction and the circumferential direction. The surface functions as a torque generating surface 46a as described later. The protruding plate 43 does not have to be annular, and may have any shape as long as it is a semi-annular shape or any other shape that extends in the axial direction of the shaft 6 and in the circumferential direction around the central axis of the shaft 6.

第2トルク発生部材44が第1トルク発生部材14に向かってスラスト方向に移動させられた際には、第1トルク発生部材14の突出板26と、第2トルク発生部材44の突出板46とは、図2に示すように互いに対向配置されて係合し合うことになる。すなわち、第2トルク発生部材44の突出板46の厚さは第1トルク発生部材14の突出板26との厚さとほぼ同じであり第2トルク発生部材44の突出板46の配置ピッチは第1トルク発生部材14の突出板26の配置ピッチに対して半ピッチ分だけ外側にずらされ、このため、図2に示すような係合状態が得られる。 When the second torque generating member 44 is moved in the thrust direction toward the first torque generating member 14, the protruding plate 26 of the first torque generating member 14, the protruding plate 46 of the second torque generating member 44, Are opposed to each other and engaged with each other as shown in FIG. That is, the thickness of the protruding plate 46 of the second torque generating member 44 is substantially the same as the thickness of the protruding plate 26 of the first torque generating member 14, and the arrangement pitch of the protruding plates 46 of the second torque generating member 44 is the first. The torque generating member 14 is shifted outward by a half pitch with respect to the arrangement pitch of the protruding plates 26 of the torque generating member 14, and therefore, an engaged state as shown in FIG. 2 is obtained.

なお、突出板46は同心状に複数列設けた構成を説明したが、単数列であっても良い。第1トルク発生部材14と第2トルク発生部材44の対向部には、ばね収納用凹部がそれぞれ形成され、これらに、弾性手段即ち圧縮コイルばね48が保持されている。圧縮コイルばね48は、第2トルク発生部材44を第1トルク発生部材14から弾性的に引き離すように機能し、このため第2トルク発生部材44は図1に示す最左方位置に通常は弾性的に留められる。
尚、図中、符号5はシール部材、7はワッシャ、27はスナップリング、28はばね用座金、30はシール部材である。
次に本実施形態の動作について説明する。
In addition, although the structure which provided the protrusion board 46 in multiple rows concentrically was demonstrated, a single row may be sufficient. Spring accommodating recesses are formed in the opposing portions of the first torque generating member 14 and the second torque generating member 44, respectively, and elastic means, that is, compression coil springs 48 are held therein. The compression coil spring 48 functions to elastically separate the second torque generating member 44 from the first torque generating member 14, and therefore the second torque generating member 44 is usually elastic at the leftmost position shown in FIG. Will be fastened.
In the figure, reference numeral 5 is a seal member, 7 is a washer, 27 is a snap ring, 28 is a spring washer, and 30 is a seal member.
Next, the operation of this embodiment will be described.

回転ダンパのシャフト2が非回転状態におかれているとき、図1に示すように、圧縮コイルばね48の弾性力により第2トルク発生部材44は、第1トルク発生部材14から引き離されて、各係合体42の両側面の第1のカム受面H1,第2のカム受面H2が、対向間隔の最も狭い部分の第1のカム面F1と第2のカム面F2に密着する。このとき、第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面との対向面積は実質的にゼロ若しくはゼロに近い状態とされる。 When the shaft 2 of the rotary damper is in a non-rotating state, the second torque generating member 44 is pulled away from the first torque generating member 14 by the elastic force of the compression coil spring 48 as shown in FIG. The first cam receiving surface H1 and the second cam receiving surface H2 on both side surfaces of each engagement body 42 are in close contact with the first cam surface F1 and the second cam surface F2 in the portion with the narrowest facing distance. At this time, the facing area between the torque generating surface of the protruding plate 26 of the first torque generating member 14 and the torque generating surface of the protruding plate 46 of the second torque generating member 44 is substantially zero or close to zero.

シャフト6がいずれかの回転方向に回転させられると、その回転速度がきわめて小さいときは、カム面F1,F2の傾斜面により係合体42に発生するスラスト方向の力は、ほとんどなく、従って第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面との対向面積がゼロ若しくはゼロに近い状態で回転する。シャフト6が一方向に回転させられて、その回転速度が徐々に速くなると、係合体42の、カム面F1から受けるスラスト方向の力が増大し、係合体42が、カム32の回転と連動して回転しながら圧縮コイルばね48の弾発力に抗して、第1のカム面F1に押圧されてスラスト方向Gに移動させられる。 When the shaft 6 is rotated in any rotation direction, when the rotation speed is very low, there is almost no thrust force generated in the engaging body 42 by the inclined surfaces of the cam surfaces F1 and F2, and therefore the first The torque generating member 14 rotates in a state where the facing area between the torque generating surface of the protruding plate 26 of the torque generating member 14 and the torque generating surface of the protruding plate 46 of the second torque generating member 44 is zero or close to zero. When the shaft 6 is rotated in one direction and the rotational speed is gradually increased, the thrust force received from the cam surface F1 of the engaging body 42 is increased, and the engaging body 42 is interlocked with the rotation of the cam 32. The first cam surface F1 is pressed against the elastic force of the compression coil spring 48 while being rotated and moved in the thrust direction G.

このとき、第2トルク発生部材44は回転しつつ第1トルク発生部材14側に移動させられて、第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面とが互いに対向することになる。その結果、双方のトルク発生面間に粘性流体を介した摩擦抵抗によりトルクが発生させられ、シャフト6には制動力が加わることになる。シャフト6の回転速度が大きくなるにつれ、係合体42は、次第に大きくなるスラスト方向の力を受け、第1トルク発生部材14に向かう第2トルク発生部材44の移動量も大きくなり、第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面との間の対向面積も次第に増大し、双方のトルク発生面間に発生するトルク、即ちシャフト6に加わる制動力も増大する。 At this time, the second torque generating member 44 is rotated and moved to the first torque generating member 14 side, and the torque generating surface of the protruding plate 26 of the first torque generating member 14 and the protruding plate of the second torque generating member 44 are moved. 46 torque generating surfaces face each other. As a result, torque is generated between the two torque generation surfaces by frictional resistance via a viscous fluid, and a braking force is applied to the shaft 6. As the rotational speed of the shaft 6 increases, the engaging body 42 receives a gradually increasing force in the thrust direction, and the amount of movement of the second torque generating member 44 toward the first torque generating member 14 also increases, thereby generating the first torque. The opposing area between the torque generating surface of the projecting plate 26 of the member 14 and the torque generating surface of the projecting plate 46 of the second torque generating member 44 also increases gradually, that is, the torque generated between the two torque generating surfaces, that is, the shaft 6. The braking force applied to the vehicle also increases.

シャフト6の回転速度が上限速度に到達すると、図2に示すように、上述の対向面積は最大となり、その間に発生するトルク、即ちシャフト6に加わる制動力も最大となる。カム32のカム面が傾斜面として形成されているので、第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面との間の対向面積の変化はシャフト6の回転速度に比例することになる。従って、双方のトルク発生面間に発生するトルク、即ちシャフト6に加わる制動力もシャフト6の回転速度に比例することになる。 When the rotational speed of the shaft 6 reaches the upper limit speed, as shown in FIG. 2, the above-mentioned facing area becomes maximum, and the torque generated during that time, that is, the braking force applied to the shaft 6 becomes maximum. Since the cam surface of the cam 32 is formed as an inclined surface, the facing area between the torque generating surface of the protruding plate 26 of the first torque generating member 14 and the torque generating surface of the protruding plate 46 of the second torque generating member 44. Is proportional to the rotational speed of the shaft 6. Therefore, the torque generated between the two torque generating surfaces, that is, the braking force applied to the shaft 6 is also proportional to the rotational speed of the shaft 6.

かくして、例えば、回転ダンパ2が吊り戸に組み込まれ(このときシャフト6が吊り戸の回転軸に連結され、ハウジング4が吊り戸に隣接した壁等に固着される)、しかも開放された吊り戸が重力によって閉鎖位置まで移動する場合を想定すると、吊り戸は重力加速度によって加速されるがシャフト6に加わる制動力はシャフト6の回転速度に比例するので、吊り戸は一定の速さで閉鎖位置まで移動することになる。また、本件発明に係る上記実施形態の装置を引き戸等に使用したときには、引き戸を通常の軽い力で開閉方向に移動させるときには、引き戸は小さな力で軽く移動させることができ、引き戸を大きな力で開閉方向に移動させた場合には、大きな制動力がかかり、開閉終端部に強く当たることがない。即ち、引き戸の開閉のために加えられた力の大きさにかかわらず常に一定の移動速度で開閉動作が行われることになる。 Thus, for example, the rotary damper 2 is incorporated in the suspension door (at this time the shaft 6 is connected to the rotation shaft of the suspension door and the housing 4 is fixed to a wall or the like adjacent to the suspension door). Is assumed to move to the closed position by gravity, the suspension door is accelerated by gravitational acceleration, but the braking force applied to the shaft 6 is proportional to the rotational speed of the shaft 6, so the suspension door is closed at a constant speed. Will move to. In addition, when the apparatus of the above embodiment according to the present invention is used for a sliding door or the like, when the sliding door is moved in the opening and closing direction with a normal light force, the sliding door can be moved lightly with a small force, and the sliding door can be moved with a large force. When it is moved in the opening / closing direction, a large braking force is applied and it does not hit the opening / closing terminal part strongly. That is, the opening / closing operation is always performed at a constant moving speed regardless of the magnitude of the force applied to open / close the sliding door.

以上の記載から明らかなように、本実施形態にあっては、第1トルク発生部材14、第2トルク発生部材44、圧縮コイルばね48、カム32、係合体42等によって、トルク自動調整機構が構成され、このトルク自動調整機構により、第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面との対向面積をシャフト6の回転速度に比例して変化させることが可能となる。 As is clear from the above description, in the present embodiment, the automatic torque adjusting mechanism is configured by the first torque generating member 14, the second torque generating member 44, the compression coil spring 48, the cam 32, the engaging body 42, and the like. With this automatic torque adjustment mechanism, the opposing area between the torque generating surface of the protruding plate 26 of the first torque generating member 14 and the torque generating surface of the protruding plate 46 of the second torque generating member 44 is set to the rotational speed of the shaft 6. It becomes possible to change in proportion.

次に、第1トルク発生部材44を初期位置からシャフト6の軸方向に移動し、初期状態の第1トルク発生部材14と第2トルク発生部材44との対向間隔を調整する作業について説明する。
アジャスタ8をその穴8aを使用して、手操作若しくは回転工具を用いて、所定の方向に回転させると、カム面22,24が、係合体20,21の先端をスラスト方向に押圧し、この押圧力によって、第1トルク発生部材14は、圧縮コイルばね48の弾発力に抗して、軸方向に移動する。この移動によって、初期状態における、第1トルク発生部材14と第2トルク発生部材44との位置関係を調整することができる。図5は、第1トルク発生部材14を、最も、ハウジング本体4aの閉塞端側に移動した状態を示している。
Next, the operation of moving the first torque generating member 44 from the initial position in the axial direction of the shaft 6 and adjusting the facing distance between the first torque generating member 14 and the second torque generating member 44 in the initial state will be described.
When the adjuster 8 is rotated in a predetermined direction using the hole 8a by manual operation or a rotating tool, the cam surfaces 22 and 24 press the tips of the engaging bodies 20 and 21 in the thrust direction, By the pressing force, the first torque generating member 14 moves in the axial direction against the elastic force of the compression coil spring 48. By this movement, the positional relationship between the first torque generating member 14 and the second torque generating member 44 in the initial state can be adjusted. FIG. 5 shows a state in which the first torque generating member 14 is moved to the closed end side of the housing body 4a.

この状態において、第1トルク発生部材14と第2トルク発生部材44間に発生するトルクは、低く、この位置状態において、初期状態即ちシャフト6の回転力が小さいとき、回転ダンパはシャフト6の回転に作用する制動力はきわめて小さい。図6は第1トルク発生部材14を最も第2トルク発生部材44側に移動した状態を示し、この状態において、第1トルク発生部材14の突出板26のトルク発生面と第2トルク発生部材44の突出板46のトルク発生面との間の対向面積が最大となり、初期状態即ちシャフト6の回転力が小さいとき、回転ダンパは高い制動力を発生する。回転ダンパ2は、アジャスタ8を回転させることで、第1トルク発生部材14の位置を図5に示す、最も右方向の位置から、図6に示す最も左方向の位置の間で任意の位置に調整することができる。 In this state, the torque generated between the first torque generating member 14 and the second torque generating member 44 is low. In this position state, when the initial state, that is, the rotational force of the shaft 6 is small, the rotary damper rotates the shaft 6. The braking force acting on is extremely small. FIG. 6 shows a state where the first torque generating member 14 is moved most toward the second torque generating member 44, and in this state, the torque generating surface of the protruding plate 26 of the first torque generating member 14 and the second torque generating member 44. In the initial state, that is, when the rotational force of the shaft 6 is small, the rotary damper generates a high braking force. The rotary damper 2 rotates the adjuster 8 so that the position of the first torque generating member 14 is changed to an arbitrary position between the rightmost position shown in FIG. 5 and the leftmost position shown in FIG. Can be adjusted.

尚、本発明の実施に際し、係合体42は、一対のカム32,32間の第1カム面F1と第2カム面F2に密着する図示する形状に特に限定されるものでなく、図4に示すように、カム面F1,F2に点接触する形状のものや線接触する形状のもの等任意の形状のものを用いることができる。また、ハウジング4側がシャフト6に対して回転する構成としても良い。また、係合体42を管体40側に設け、カム32を第2トルク発生部材44側に設け、両者の管体40と第2トルク発生部材44に対する取り付け関係を逆にしても良い。また、第2トルク発生部材44、カム32、係合体42をハウジング4側に設け、第1トルク発生部材14をシャフト6側に設け、シャフト6に対してハウジング4を回転させる構成としても良い。また、アジャスタ8はなくてもよく、この場合、第1トルク発生部材14はハウジング本体4aと一体となる。なお、上記説明において、スラスト方向と軸方向は同一の方向を示すものとして用いている。 In the implementation of the present invention, the engaging body 42 is not particularly limited to the shape shown in the figure which is in close contact with the first cam surface F1 and the second cam surface F2 between the pair of cams 32, 32. As shown, an arbitrary shape such as a shape that makes point contact with the cam surfaces F1 and F2 or a shape that makes line contact can be used. Moreover, it is good also as a structure which the housing 4 side rotates with respect to the shaft 6. FIG. Further, the engagement body 42 may be provided on the tube body 40 side, the cam 32 may be provided on the second torque generating member 44 side, and the attachment relationship between the tube body 40 and the second torque generating member 44 may be reversed. The second torque generating member 44, the cam 32, and the engaging body 42 may be provided on the housing 4 side, the first torque generating member 14 may be provided on the shaft 6 side, and the housing 4 may be rotated with respect to the shaft 6. Further, the adjuster 8 may not be provided, and in this case, the first torque generating member 14 is integrated with the housing body 4a. In the above description, the thrust direction and the axial direction are used to indicate the same direction.

2 回転ダンパ
4 ハウジング
4a 本体
4b キャップ
6 シャフト
8 アジャスタ
8a 軸受部
10 ボール軸受
12 Oリングシール
14 第1トルク発生部材
14a 盤状部
16 キー
18 キー溝
20 係合体
21 係合体
22 カム面
24 カム面
26 突出板
32 カム
40 管体
42 係合体
44 第2トルク発生部材
46 突出板
48 圧縮コイルばね
2 Rotating damper 4 Housing 4a Body 4b Cap 6 Shaft 8 Adjuster 8a Bearing
10 Ball bearing 12 O-ring seal 14 First torque generating member 14a Disc-shaped portion 16 Key 18 Key groove 20 Engaging body 21 Engaging body 22 Cam surface 24 Cam surface 26 Projecting plate 32 Cam 40 Tubing body 42 Engaging body 44 Second torque generation Member 46 Projection plate 48 Compression coil spring

Claims (4)

内部に粘性流体を充填させた室を有するハウジングと、少なくとも一部が前記室内に収容され、前記ハウジングに対して相対的に軸受を介して回転自在に支持されたシャフトと、前記ハウジング及び前記シャフトのいずれか一方に設けられ、少なくとも前記シャフトの軸方向に展延する第1トルク発生面を備えた第1トルク発生部材と、前記ハウジング及び前記シャフトの他方に設けられ、前記第1トルク発生面と対向し得る第2トルク発生面を備えた第2トルク発生部材とを有し、前記第1トルク発生面と前記第2トルク発生面との間の粘性流体の粘性抵抗によりトルクを発生させる回転ダンパにおいて、前記第1トルク発生面及び第2トルク発生面の対向面積を可変とすべく、前記第1トルク発生部材及び前記第2トルク発生部材の少なくとも一方のトルク発生部材は他方のトルク発生部材に対して軸方向に移動可能な可動部材として構成され、他方のトルク発生部材は該可動部材に対してこれと連動して回転しないようにハウジング側に保持され、該可動部材には、前記ハウジング及び前記シャフトのいずれか一方が回転駆動されるとき、その回転速度に応じて前記対向面積を変化させるトルク自動調整機構が設けられ、該トルク調整機構は、前記可動部材を前記他方のトルク発生部材から軸方向に離れる方向に付勢する弾性手段と、内径部が前記シャフトに軸方向にスライド自在に且つ回転方向に連動するように装着され外周面に前記可動部材の内径部が嵌合する管体と、該管体の外周面と該管体の外周面に嵌合する前記可動部材の内径部のいずれか一方に形成された、前記軸方向に対して傾いたカム面を有する第1のカムと、前記可動部材の内径部と前記管体のいずれか他方に前記第1のカムのカム面に係合して設けられた第1の係合体とからなり、前記第1のカムは、前記シャフトとハウジングとの相対回転により、前記第1の係合体を前記シャフトの前記ハウジングに対する相対回転方向と前記シャフトの軸方向に沿ったスラスト方向に押圧するようにし、前記スラスト方向の力により前記可動部材が前記他方のトルク発生部材の方向に移動するようにし、前記可動部材に対向する他方のトルク発生部材を、前記可動部材に対して軸方向に移動させるための移動調整機構を設け、該移動調整機構を、前記ハウジングの閉塞端に軸方向に移動しないように定位置で回転可能に円柱状のアジャスタを装着し、前記他方のトルク発生部材の内径部を前記アジャスタの外周部に軸方向にスライド自在に嵌合し、前記アジャスタの外周部にカム面を形成し、該カム面に前記弾性手段の弾発力により前記他方のトルク発生部材の内径部に形成した第2の係合体を弾接し、前記アジャスタを回転させると前記アジャスタのカム面に案内されて前記他方のトルク発生部材が軸方向に移動するようにし、前記シャフトの一端部を前記アジャスタに設けた軸受部によって回転自在に支持した構成としたことを特徴とする回転ダンパ。 A housing having a chamber filled with a viscous fluid therein; a shaft at least partially housed in the chamber and supported rotatably with respect to the housing via a bearing ; the housing and the shaft A first torque generating member provided on at least one of the first torque generating surface extending in the axial direction of the shaft, and the first torque generating surface provided on the other of the housing and the shaft. A second torque generating member having a second torque generating surface that can be opposed to the first torque generating surface, and generating a torque by a viscous resistance of a viscous fluid between the first torque generating surface and the second torque generating surface In the damper, a small amount of the first torque generating member and the second torque generating member are provided so that the opposing area of the first torque generating surface and the second torque generating surface can be made variable. And also one of the torque generating member is constructed as a movable member movable axially relative to the other of the torque generating member, the other of the torque generating member housing side so as not to rotate in conjunction with the hand movable member The movable member is provided with an automatic torque adjustment mechanism that changes the facing area according to the rotation speed when either the housing or the shaft is rotationally driven, and the torque adjustment mechanism Is provided with elastic means for urging the movable member in the axial direction away from the other torque generating member , and an outer peripheral surface mounted so that the inner diameter portion is slidable in the axial direction and interlocked with the rotational direction. wherein the tube inside diameter portion of the movable member is fitted, it is formed in one of an inner diameter portion of the movable member fitted to the outer peripheral surface of the outer peripheral surface and the tube body of the tube body, before A first cam having a cam surface inclined with respect to the axial direction, the provided engaged with the cam surface of the first cam to the other of the tubular body and the inner diameter portion of the movable member 1 consists of a engager, said first cam, the relative rotation between the shaft and the housing, along the first engager in the axial direction of the shaft and relative rotation direction relative to the housing of the shaft thrust The movable member is moved in the direction of the other torque generating member by the thrust force, and the other torque generating member facing the movable member is moved relative to the movable member. A movement adjustment mechanism for moving in the axial direction is provided, and the movement adjustment mechanism is mounted on the closed end of the housing with a columnar adjuster that is rotatable in a fixed position so as not to move in the axial direction, The inner diameter portion of the other torque generating member is fitted to the outer peripheral portion of the adjuster so as to be slidable in the axial direction, a cam surface is formed on the outer peripheral portion of the adjuster, and the cam surface is subjected to the elastic force of the elastic means. When the second engagement body formed on the inner diameter portion of the other torque generating member is elastically contacted and the adjuster is rotated, the other torque generating member is moved in the axial direction by being guided by the cam surface of the adjuster, A rotary damper characterized in that one end portion of the shaft is rotatably supported by a bearing portion provided on the adjuster . 前記第1トルク発生部材は、盤状部に突出板が1列または同心状に複数列突出して形成され、前記第2トルク発生部材は、盤状部に突出板が1列または同心状に複数列突出して形成され、前記第1トルク発生部材と第2トルク発生部材の突出板は互いの軸方向の相対移動により対向するように、互いの径方向の位置がずれており、前記第1トルク発生部材と前記第2トルク発生部材の突出板の互いに対向する面が前記第1トルク発生面と第2トルク発生面を構成するようにしたことを特徴とする請求項1に記載の回転ダンパ。 The first torque generating member is formed by projecting a plurality of rows of projecting plates in a row or concentrically on the disk-shaped portion, and the second torque generating member is formed of a plurality of projecting plates in a row or concentric by the plate-shaped portion. The first torque generating member and the second torque generating member are formed so as to protrude from each other, and the protruding positions of the first torque generating member and the second torque generating member are offset from each other in the radial direction so as to face each other by relative movement in the axial direction. 2. The rotary damper according to claim 1, wherein surfaces of the generating member and the projecting plate of the second torque generating member facing each other constitute the first torque generating surface and the second torque generating surface. 前記第1トルク発生部材を前記ハウジング側に設け、前記第1のカム及び第1の係合体のいずれか一方を前記シャフト側にこれと連動して回転するように設け、前記第2トルク発生部材を前記シャフト側に軸方向に移動自在に設け、前記第1のカム及び第1の係合体のいずれか他方を前記第2トルク発生部材側に設け、該第1の係合体を前記第1のカムに係合し、前記シャフトの前記ハウジングに対する相対回転により前記第1のカムが前記第1の係合体を回転方向とスラスト方向に押圧し、該スラスト方向の力により前記第2トルク発生部材が前記第1トルク発生部材の方向に移動するようにしたことを特徴とする請求項1に記載の回転ダンパ。 Wherein the first torque generating member is provided on the housing side, said first cam and one of the first engager disposed so as to rotate in conjunction therewith to the shaft side, the second torque generating member the provided movably in the axial direction on the shaft side, provided with the first cam and the first other one of the engaging body to the second torque generating member, said first engager of said first Engaging with the cam, the first cam presses the first engaging body in the rotational direction and the thrust direction by the relative rotation of the shaft with respect to the housing, and the second torque generating member is caused by the force in the thrust direction. The rotary damper according to claim 1, wherein the rotary damper moves in the direction of the first torque generating member. 前記回転速度に比例して前記第1のカムと該カムに係合する第1の係合体とのスラスト方向の圧力が変化するように前記第1のカムのカム面を形成し、前記ハウジング及び前記シャフトのいずれか一方が回転駆動されるとき、その回転速度に比例して、前記可動部材が他方のトルク発生部材に対して軸方向に移動するようにしたことを特徴とする請求項1に記載の回転ダンパ。
Wherein in proportion to the rotational speed to form a cam surface of the first cam so that the pressure in the thrust direction is changed between the first engager for engaging the first cam and the cam, the housing and 2. When one of the shafts is driven to rotate, the movable member moves in the axial direction relative to the other torque generating member in proportion to the rotational speed thereof. The described rotary damper.
JP2011186733A 2011-08-30 2011-08-30 Rotating damper Active JP5752528B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011186733A JP5752528B2 (en) 2011-08-30 2011-08-30 Rotating damper
CN201210311031.XA CN102966282B (en) 2011-08-30 2012-08-28 Rotary damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186733A JP5752528B2 (en) 2011-08-30 2011-08-30 Rotating damper

Publications (2)

Publication Number Publication Date
JP2013050117A JP2013050117A (en) 2013-03-14
JP5752528B2 true JP5752528B2 (en) 2015-07-22

Family

ID=47796689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186733A Active JP5752528B2 (en) 2011-08-30 2011-08-30 Rotating damper

Country Status (2)

Country Link
JP (1) JP5752528B2 (en)
CN (1) CN102966282B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486517A4 (en) * 2016-07-15 2019-11-27 Wakayama Prefecture Torque transmission device, braking apparatus and power transmission apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314403A (en) * 2014-10-21 2015-01-28 王俭俭 Door operating device
US9657790B2 (en) * 2015-01-14 2017-05-23 Nelson Irrigation Corporation Viscous rotational speed control device
JP6386666B2 (en) * 2015-05-25 2018-09-12 株式会社Tok Rotating damper
JP7018629B2 (en) * 2018-03-12 2022-02-14 リョービ株式会社 Parallel rotary damper with double row torque adjustment mechanism and one-way moving braking device using it
CN111561538B (en) * 2020-06-11 2022-12-16 蔡燕辉 Rotary damper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733486B2 (en) * 1986-09-09 1998-03-30 日本発条株式会社 Speed adjustment mechanism
DE20212335U1 (en) * 2002-08-09 2003-12-18 Arturo Salice S.P.A., Novedrate lag damper
ITTO20030058U1 (en) * 2003-03-27 2004-09-28 Antonino Cultraro DEVICE FOR BRAKING THE MOVEMENT OF A DOOR, DRAWER, OR SIMILAR MOBILE PART, PROVIDED WITH RELEASABLE LOCKING VEHICLES.
JP2008144779A (en) * 2006-12-06 2008-06-26 Fuji Latex Kk Rotary damper device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486517A4 (en) * 2016-07-15 2019-11-27 Wakayama Prefecture Torque transmission device, braking apparatus and power transmission apparatus

Also Published As

Publication number Publication date
JP2013050117A (en) 2013-03-14
CN102966282B (en) 2016-02-03
CN102966282A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5752528B2 (en) Rotating damper
US5769188A (en) Rotary damper with self-standing mechanism
US10619703B2 (en) Torque fluctuation inhibiting device, torque converter and power transmission device
US10718403B1 (en) Rotary device
US10648533B2 (en) Torque fluctuation inhibiting device, torque converter and power transmission device
JPH10238592A (en) Device having buffer device laid between at least two flywheel mass bodies capable of relatively turning for each other
CA2566767A1 (en) Pulley structure
US9689436B2 (en) Torque limiter
US20210131525A1 (en) Torque fluctuation inhibiting device and power transmission device
WO2016181832A1 (en) Damper device
US10808797B2 (en) Torque fluctuation inhibiting device, torque converter and power transmission device
JP2018013153A (en) Torque fluctuation suppression device, torque converter, and power transmission device
US6264019B1 (en) Clutch cover assembly
JP5690576B2 (en) Speed-dependent rotary damper
EP0850382B1 (en) Improvements in or relating to rotary drag devices
US7686148B2 (en) Clutch component
JP2733200B2 (en) Rotary friction device
JP6386666B2 (en) Rotating damper
JP6755024B2 (en) Rotating damper and braking device using it
JP6629586B2 (en) Rotary damper and door braking device using the same
JP6573906B2 (en) Friction clutch device
CN108869570B (en) Torque limiter used for building and based on centrifugal block control steel ball driving
JP7018629B2 (en) Parallel rotary damper with double row torque adjustment mechanism and one-way moving braking device using it
KR20160035207A (en) Pumping device for vehicle seat
JP2012117563A (en) Mechanism for restricting movement in one direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250