JP5750810B2 - New dendrimer - Google Patents

New dendrimer Download PDF

Info

Publication number
JP5750810B2
JP5750810B2 JP2013004689A JP2013004689A JP5750810B2 JP 5750810 B2 JP5750810 B2 JP 5750810B2 JP 2013004689 A JP2013004689 A JP 2013004689A JP 2013004689 A JP2013004689 A JP 2013004689A JP 5750810 B2 JP5750810 B2 JP 5750810B2
Authority
JP
Japan
Prior art keywords
group
dendrimer
carbon nanotubes
general formula
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013004689A
Other languages
Japanese (ja)
Other versions
JP2013136755A (en
Inventor
豊 高口
豊 高口
亮太 池内
亮太 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2013004689A priority Critical patent/JP5750810B2/en
Publication of JP2013136755A publication Critical patent/JP2013136755A/en
Application granted granted Critical
Publication of JP5750810B2 publication Critical patent/JP5750810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、分散剤として有用な新規デンドリマーに関する。   The present invention relates to novel dendrimers useful as dispersants.

カーボンナノチューブに代表される炭素材料、特にカーボンナノチューブ薄膜に期待される用途は広く、例えば、半導体色素としての性質を利用した太陽電池用薄膜、導電性を利用した透明電極用薄膜、生体適合性を利用したバイオインターフェース薄膜などの研究開発が行われている。カーボンナノチューブは、単層カーボンナノチューブ(以下「SWNTs」と略記することがある)、二層カーボンナノチューブをはじめとする比較的安価で導電性の高い多層カーボンナノチューブ(以下「MWNTs」と略記することがある)、ピーポッドと呼ばれる分子内包カーボンナノチューブなどに分類される。分子内包カーボンナノチューブは、様々な分子を内包することができ、半導体的な性質を自在にチューニングすることが可能なことから次世代の半導体材料として期待されている。   Applications for carbon materials typified by carbon nanotubes, especially carbon nanotube thin films, are expected to be wide.For example, thin films for solar cells using properties as semiconductor dyes, thin films for transparent electrodes using conductivity, biocompatibility Research and development of bio-interface thin films that have been used is underway. Carbon nanotubes may be abbreviated as single-walled carbon nanotubes (hereinafter sometimes abbreviated as “SWNTs”) and double-walled carbon nanotubes and relatively inexpensive and highly conductive multi-walled carbon nanotubes (hereinafter referred to as “MWNTs”). It is classified as a molecularly encapsulated carbon nanotube called peapod. Molecularly encapsulated carbon nanotubes are expected as next-generation semiconductor materials because they can encapsulate various molecules and freely tune semiconductor properties.

ここで、カーボンナノチューブは炭素材料特有の高い凝集力のため分散性や混和性が低いことが知られている。カーボンナノチューブの分散性や混和性を向上させる方法として、非特許文献1には、ドデシルスルホン酸ナトリウムに代表される低分子界面活性剤を分散剤として用いることが記載されている。また、ポリマーとの相互作用を利用するポリマーラッピングと呼ばれる方法(非特許文献2)やポルフィリン誘導体とカーボンナノチューブ表面とのπ−π相互作用によりカーボンナノチューブを可溶化させる方法(非特許文献3)等も知られている。   Here, it is known that carbon nanotubes have low dispersibility and miscibility due to the high cohesive force unique to carbon materials. As a method for improving the dispersibility and miscibility of carbon nanotubes, Non-Patent Document 1 describes the use of a low molecular surfactant represented by sodium dodecyl sulfonate as a dispersant. Further, a method called polymer wrapping utilizing interaction with a polymer (Non-patent Document 2), a method of solubilizing carbon nanotubes by π-π interaction between a porphyrin derivative and the carbon nanotube surface (Non-patent Document 3), etc. Is also known.

しかしながら、これら非特許文献に記載された方法では、長さが1μm未満のカーボンナノチューブ(以下「短いカーボンナノチューブ」と略記することがある。)や、直径が0.8〜1.2nm未満の範囲にあるカーボンナノチューブ(以下「細いカーボンナノチューブ」と略記することがある。)を分散することはできても、長さが1μm以上のカーボンナノチューブ(以下「長いカーボンナノチューブ」と略記することがある。)、分散剤との相互作用が比較的弱いとされる直径が1.2〜1.8nmの範囲にある直径の大きなカーボンナノチューブ(以下「太いカーボンナノチューブ」と略記することがある。)、二層カーボンナノチューブをはじめとする多層カーボンナノチューブ、及びピーポッドと呼ばれる分子内包カーボンナノチューブ等を高濃度でかつ安定的に分散することが困難であった。特に、カーボンナノチューブ薄膜を透明電極として用いる場合には、高い導電性が要求される観点から長いカーボンナノチューブが分散されたカーボンナノチューブ薄膜が望まれていた。   However, in the methods described in these non-patent documents, a carbon nanotube having a length of less than 1 μm (hereinafter sometimes abbreviated as “short carbon nanotube”) or a diameter having a diameter of 0.8 to 1.2 nm or less. The carbon nanotubes (hereinafter sometimes abbreviated as “thin carbon nanotubes”) may be dispersed but may be abbreviated as carbon nanotubes having a length of 1 μm or more (hereinafter abbreviated as “long carbon nanotubes”). ), A carbon nanotube having a large diameter in the range of 1.2 to 1.8 nm, which is considered to have a relatively weak interaction with the dispersant (hereinafter sometimes abbreviated as “thick carbon nanotube”), and Multi-walled carbon nanotubes including single-walled carbon nanotubes and molecularly encapsulated carbon nano-particles called peapods It was difficult to stably disperse tubes and the like at a high concentration. In particular, when a carbon nanotube thin film is used as a transparent electrode, a carbon nanotube thin film in which long carbon nanotubes are dispersed has been desired from the viewpoint of requiring high conductivity.

上記ポリマーラッピングによる分散は、比較的多くのカーボンナノチューブに適用できるとされているが、この方法ではカーボンナノチューブのバンドル構造をバラバラにすることは困難で、分散の際にバンドル構造が保たれたままであるとされている。したがって、透明電極など、高濃度での分散かつカーボンナノチューブを一本一本バラバラにした形での分散状態が要求される用途への応用が困難であった。   Dispersion by polymer wrapping is said to be applicable to a relatively large number of carbon nanotubes. However, it is difficult to separate the bundle structure of carbon nanotubes by this method, and the bundle structure remains maintained during dispersion. It is said that there is. Therefore, it has been difficult to apply to applications such as transparent electrodes, which require a high concentration of dispersion and a dispersion state in which carbon nanotubes are separated one by one.

このように、上述の低分子界面活性剤を分散剤として用いる方法やポリマーラッピングによる分散では、カーボンナノチューブ表面への分散剤の吸着を厳密にコントロールすることが難しく、また、超分子複合体と呼ばれるカーボンナノチューブが低分子分散剤や高分子分散剤で包まれた状態において、カーボンナノチューブ表面に存在する官能基やその官能基密度を制御することも困難であった。   As described above, in the method using the above-described low molecular surfactant as a dispersant or dispersion by polymer wrapping, it is difficult to strictly control the adsorption of the dispersant to the surface of the carbon nanotube, and it is called a supramolecular complex. It is also difficult to control the functional groups present on the surface of the carbon nanotubes and the density of the functional groups in a state where the carbon nanotubes are wrapped with the low molecular dispersant or the polymer dispersant.

また、本発明者らは、カーボンナノチューブの分散性や混和性を向上させる観点から、狙い通りの官能基を表面に多数配置することが可能なデンドリマー型分散剤について報告している。具体的には、アントラセン骨格を焦点部位に持つポリアミドアミンデンドロン(非特許文献4)、フラーレン骨格を焦点部位に持つポリアミドアミンデンドロン(非特許文献5)、ドデカメチレン骨格をコアに持つポリアミドアミンデンドリマー(非特許文献6)等のデンドリマー型分散剤について報告しており、単層カーボンナノチューブの分散が可能である。しかしながら、デンドリマー型分散剤を用いた場合であっても、多層カーボンナノチューブをはじめ、長いカーボンナノチューブや太いカーボンナノチューブの分散は困難であるとともに、アントラセンやフラーレン等を焦点部位として用いた場合にはコスト高となる問題もあり、改善が望まれていた。   In addition, the present inventors have reported a dendrimer type dispersant capable of arranging a large number of functional groups as intended from the viewpoint of improving the dispersibility and miscibility of carbon nanotubes. Specifically, a polyamidoamine dendron having an anthracene skeleton at the focal site (Non-patent Document 4), a polyamidoamine dendron having a fullerene skeleton at the focal site (Non-patent Document 5), and a polyamidoamine dendrimer having a dodecamethylene skeleton as the core ( Non-Patent Document 6) and other dendrimer type dispersants have been reported, and single-walled carbon nanotubes can be dispersed. However, even when a dendrimer type dispersant is used, it is difficult to disperse long carbon nanotubes, such as multi-walled carbon nanotubes, and thick carbon nanotubes. There was also a problem that became high, and improvement was desired.

一方、カーボンナノチューブ薄膜を作製するにあたっては、ピロリジン誘導体を用いてカーボンナノチューブに化学修飾を施す方法(非特許文献7)、やカーボンナノチューブとポリマーとを複合化する方法(非特許文献8)等が報告されている。しかしながら、カーボンナノチューブ表面に化学反応等により官能基を導入することによって分散性を向上させる方法では、官能基の導入や反応後の処理に多くの手間がかかるためプロセスが煩雑になるとともに、コスト高となる問題があった。また、カーボンナノチューブとポリマーとを複合化する方法では、高濃度での分散が困難であるとともに、膜厚を薄くすることが難しいという問題があった。更に、カーボンナノチューブ薄膜を多層化する技術として、プラズマ処理により膜表面の親和性を高める方法(非特許文献9)等が提案されているが、大面積の処理が困難であるとともに、コスト高となる問題があった。   On the other hand, in producing a carbon nanotube thin film, there are a method of chemically modifying carbon nanotubes using a pyrrolidine derivative (Non-patent Document 7), a method of combining carbon nanotubes and a polymer (Non-Patent Document 8), and the like. It has been reported. However, in the method of improving dispersibility by introducing a functional group on the surface of the carbon nanotube by chemical reaction or the like, the process becomes complicated and the cost increases because it takes a lot of time to introduce the functional group and the treatment after the reaction. There was a problem. Further, the method of combining the carbon nanotube and the polymer has a problem that it is difficult to disperse at a high concentration and it is difficult to reduce the film thickness. Furthermore, as a technique for multilayering the carbon nanotube thin film, a method for increasing the affinity of the film surface by plasma treatment (Non-Patent Document 9) has been proposed. However, it is difficult to process a large area, and the cost is high. There was a problem.

Hong-Zhang Geng et al.,Absorption spectroscopy of surfactant-dispersed carbon nanotube film:Modulation of electronic structures, Chem. Phys. Lett. 2008, 455, p.275-278Hong-Zhang Geng et al., Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structures, Chem. Phys. Lett. 2008, 455, p.275-278 Wenhui Yi et al., Thethird-order optical nonlinearities of carbon nanotube modified conjugatedpolymer in the femtosecond and nanosecond regimes, J. Appl. Phys. 2006, 100,094301Wenhui Yi et al., Thethird-order optical nonlinearities of carbon nanotube modified conjugated polymer in the femtosecond and nanosecond regimes, J. Appl. Phys. 2006, 100,094301 Jinyu Chen et al., NoncovalentFunctionalization of Single-Walled Carbon Nanotubes with Water-SolublePorphyrins, J. Phys. Chem. B 2005, Vol.109, No.16, p.7605-7609Jinyu Chen et al., Noncovalent Functionalalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins, J. Phys. Chem. B 2005, Vol.109, No.16, p.7605-7609 Atula S. D. Sandanayaka et al.,Light-induced Electron Transfer on the Single Wall Carbon Nanotube Surroundedin Anthracene Dendron in Aqueous Solution, Chem. Lett. 2006, Vol.35, No.10,p.1188-1189Atula S. D. Sandanayaka et al., Light-induced Electron Transfer on the Single Wall Carbon Nanotube Surroundedin Anthracene Dendron in Aqueous Solution, Chem. Lett. 2006, Vol. 35, No. 10, p.1188-1189 Yutaka Takaguchi et al.,Fullerodendron-assisted Dispersion of Single-walled Carbon Nanotubes viaNoncovalent Functionalization, Chem. Lett. 2005, Vol.34, No.12, p.1608-1609Yutaka Takaguchi et al., Fullerodendron-assisted Dispersion of Single-walled Carbon Nanotubes via Noncovalent Functionalization, Chem. Lett. 2005, Vol.34, No.12, p.1608-1609 池内亮太他,「アルキル鎖をコアに持つポリアミドアミンデンドリマーを用いた単層カーボンナノチューブの可分散化」,2008年,第57回高分子討論会,No.2,p.3183Ryota Ikeuchi et al., “Dispersibility of single-walled carbon nanotubes using polyamidoamine dendrimers with alkyl chains in the core”, 2008, 57th Polymer Symposium, No.2, p.3183 Viviana Lovat et al., CarbonNanotube Substrates Boost Neuronal Electrical Signaling, Nano Lett. 2005,Vol.5, No.6, p.1107-1110Viviana Lovat et al., Carbon Nanotube Substrates Boost Neuronal Electrical Signaling, Nano Lett. 2005, Vol. 5, No. 6, p. 1107-1110 Ronald H. Schmidt et al., TheEffect of Aggregation on the Electrical Conductivity of Spin-CoatedPolymer/Carbon Nanotube Composite Films, Langmuir 2007, Vol.23, No.10,p.5707-5712Ronald H. Schmidt et al., TheEffect of Aggregation on the Electrical Conductivity of Spin-CoatedPolymer / Carbon Nanotube Composite Films, Langmuir 2007, Vol.23, No.10, p.5707-5712 Sumit Chaudhary et al.,Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubesin Polymer-Fullerene Solar Cells, Nano Lett. 2007, Vol.7, No.7, p.1973-1979Sumit Chaudhary et al., Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubesin Polymer-Fullerene Solar Cells, Nano Lett. 2007, Vol.7, No.7, p.1973-1979

本発明は上記課題を解決するためになされたものであり、分散性に優れた界面活性剤、特にカーボンナノチューブ用分散剤として好適な新規デンドリマーを提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel dendrimer suitable as a surfactant excellent in dispersibility, particularly as a dispersant for carbon nanotubes.

上記課題は、下記一般式(1)で示されるデンドリマーを提供することによって解決される。
[式中、Aの両側にある括弧内の構造は分岐構成単位を表したものであり、該分岐構成単位は繰返し結合されていてもよく、
Aは、主鎖の鎖長の原子数が20〜300である下記一般式(2)で示される2価の有機基からなるコアユニットであり、
[式中、Rは炭素数8〜20の2価の脂肪族炭化水素基であり、Rはそれぞれ同じでも異なっていてもよく、nは1〜20の整数である。];
Bは、窒素原子又は3価の芳香族炭化水素基から選択される少なくとも1種からなる分岐ユニットであり;
Cは、下記式から選択される少なくとも1種からなる延長ユニットであり;
Dは、下記式からなる群から選択される少なくとも1種を含む1価の置換基からなる末端ユニットである。]
[式中、Rは水素原子、炭素数1〜6のアルキル基、又は金属原子であり、Rは炭素数1〜14のアルキル基であり、Rは糖鎖又はポリエチレングリコール鎖であり、mは1〜6の整数である。]
The above problem is solved by providing a dendrimer represented by the following general formula (1).
[In the formula, the structure in parentheses on both sides of A represents a branched structural unit, and the branched structural unit may be bonded repeatedly,
A is a core unit composed of a divalent organic group represented by the following general formula (2) having 20 to 300 atoms in the chain length of the main chain,
[Wherein, R 1 is a divalent aliphatic hydrocarbon group having 8 to 20 carbon atoms, R 1 may be the same or different, and n is an integer of 1 to 20. ];
B is a branch unit composed of at least one selected from a nitrogen atom or a trivalent aromatic hydrocarbon group;
C is an extension unit consisting of at least one selected from the following formulae;
D is a terminal unit composed of a monovalent substituent containing at least one selected from the group consisting of the following formulae. ]
[Wherein R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a metal atom, R 3 is an alkyl group having 1 to 14 carbon atoms, and R 4 is a sugar chain or a polyethylene glycol chain. , M is an integer of 1-6. ]

本発明により、一般式(1)で示される新規デンドリマーを提供することができる。こうして得られたデンドリマーは、分散性に優れているため界面活性剤として好適に用いられ、カーボンナノチューブ用分散剤としてより好適に用いられる。   According to the present invention, a novel dendrimer represented by the general formula (1) can be provided. The dendrimer obtained in this manner is suitably used as a surfactant because of its excellent dispersibility, and more suitably used as a dispersant for carbon nanotubes.

SWNTs分散溶液を作製する際のフローチャートである。It is a flowchart at the time of producing a SWNTs dispersion solution. SWNTs分散溶液の写真である。It is a photograph of SWNTs dispersion solution. デンドリマーの種類を変えてSWNTsを分散した際の可視近赤外吸収スペクトル図である。It is a visible near-infrared absorption spectrum figure when changing the kind of dendrimer and disperse | distributing SWNTs. 単層カーボンナノチューブ薄膜のラマンスペクトル図である。It is a Raman spectrum figure of a single-walled carbon nanotube thin film. 単層カーボンナノチューブ薄膜のAFM画像である。It is an AFM image of a single-walled carbon nanotube thin film. SWNTsをTHF中で分散した際の可視近赤外吸収スペクトル図である。It is a visible near-infrared absorption spectrum figure at the time of disperse | distributing SWNTs in THF. MWNTs分散溶液、及びMWNTs/PVA複合膜を作製する際のフローチャートである。It is a flowchart at the time of producing a MWNTs dispersion solution and a MWNTs / PVA composite film. MWNTs分散溶液の写真である。It is a photograph of a MWNTs dispersion solution. MWNTsを水中で分散した際の可視近赤外吸収スペクトル図である。It is a visible near infrared absorption spectrum figure at the time of disperse | distributing MWNTs in water. MWNTs/PVA複合膜の写真である。It is a photograph of a MWNTs / PVA composite membrane. MWNTs/PVA複合ゲルの写真である。It is a photograph of MWNTs / PVA composite gel.

本発明のデンドリマーは、下記一般式(1)で示されるものであり、主鎖の鎖長が20〜300である2価の脂肪族炭化水素基又は下記一般式(2)で示される2価の有機基から選択されるコアユニットを有する。このようなコアユニットを有する下記一般式(1)で示されるデンドリマーは新規化合物である。   The dendrimer of the present invention is represented by the following general formula (1), a divalent aliphatic hydrocarbon group having a main chain length of 20 to 300 or a divalent represented by the following general formula (2). A core unit selected from organic groups of The dendrimer represented by the following general formula (1) having such a core unit is a novel compound.

[式中、Aの両側にある括弧内の構造は分岐構成単位を表したものであり、該分岐構成単位は繰返し結合されていてもよく、
Aは、主鎖の鎖長が20〜300である2価の脂肪族炭化水素基又は下記一般式(2)で示される2価の有機基から選択されるコアユニットであり、
[式中、Rは炭素数4〜20の2価の脂肪族炭化水素基であり、Rはそれぞれ同じでも異なっていてもよく、nは1〜20の整数である。];
Bは、窒素原子又は3価の芳香族炭化水素基から選択される少なくとも1種からなる分岐ユニットであり;
Cは、酸素原子又は2価の有機基から選択される少なくとも1種からなる延長ユニットであり;
Dは、アルコキシ基、エステル基、アミノ基、アミド基、水酸基及びその塩、カルボキシル基及びその塩、メソゲン基、糖鎖、及びポリエチレングリコール鎖からなる群から選択される少なくとも1種を含む1価の置換基からなる末端ユニットであり;
Xは、任意の構成単位であり、炭化水素基以外の2価の置換基である。]
[In the formula, the structure in parentheses on both sides of A represents a branched structural unit, and the branched structural unit may be bonded repeatedly,
A is a core unit selected from a divalent aliphatic hydrocarbon group having a main chain length of 20 to 300 or a divalent organic group represented by the following general formula (2),
[Wherein, R 1 is a divalent aliphatic hydrocarbon group having 4 to 20 carbon atoms, R 1 may be the same or different, and n is an integer of 1 to 20. ];
B is a branch unit composed of at least one selected from a nitrogen atom or a trivalent aromatic hydrocarbon group;
C is an extension unit composed of at least one selected from an oxygen atom or a divalent organic group;
D is a monovalent containing at least one selected from the group consisting of an alkoxy group, an ester group, an amino group, an amide group, a hydroxyl group and a salt thereof, a carboxyl group and a salt thereof, a mesogen group, a sugar chain, and a polyethylene glycol chain. A terminal unit consisting of the following substituents;
X is an arbitrary structural unit and is a divalent substituent other than a hydrocarbon group. ]

上記一般式(1)において、Aは、主鎖の鎖長が20〜300である2価の脂肪族炭化水素基又は上記一般式(2)で示される2価の有機基から選択されるコアユニットである。Aがこのようなコアユニットであることにより、上記一般式(1)で示されるデンドリマーを界面活性剤として用いた際に優れた分散性を示すこととなる。特に、カーボンナノチューブ用分散剤として用いた場合には、細いカーボンナノチューブや短いカーボンナノチューブを分散できるだけでなく、太いカーボンナノチューブや長いカーボンナノチューブの分散性に優れるとともに、多層カーボンナノチューブの分散性にも優れる。このことは、本発明のデンドリマーが主鎖の鎖長が一定以上であるコアユニットを有することにより、カーボンナノチューブ表面との相互作用が強くなる効果を有し、その結果優れた分散性を示すためであると本発明者らは推察している。   In the general formula (1), A is a core selected from a divalent aliphatic hydrocarbon group having a main chain length of 20 to 300 or a divalent organic group represented by the general formula (2). Is a unit. When A is such a core unit, excellent dispersibility is exhibited when the dendrimer represented by the general formula (1) is used as a surfactant. In particular, when used as a dispersant for carbon nanotubes, not only can thin carbon nanotubes and short carbon nanotubes be dispersed, it is excellent in dispersibility of thick carbon nanotubes and long carbon nanotubes, and is excellent in dispersibility of multi-walled carbon nanotubes. . This is because the dendrimer of the present invention has a core unit whose main chain has a chain length of a certain length or more, thereby having an effect of strengthening the interaction with the carbon nanotube surface, and as a result, exhibiting excellent dispersibility. The present inventors infer that this is the case.

主鎖の鎖長が20未満の場合、分散性が低下するおそれがあり、特に太いカーボンナノチューブや長いカーボンナノチューブの分散性が低下するおそれがあり、22以上であることが好ましく、25以上であることがより好ましく、28以上であることが更に好ましい。   When the chain length of the main chain is less than 20, the dispersibility may be lowered, and in particular, the dispersibility of a thick carbon nanotube or a long carbon nanotube may be lowered, and is preferably 22 or more, and preferably 25 or more. More preferably, it is more preferably 28 or more.

ここで、主鎖の鎖長が20〜300である2価の脂肪族炭化水素基としては、直鎖又は分岐鎖のアルキレン基が好ましく用いられる。   Here, as the divalent aliphatic hydrocarbon group having a main chain length of 20 to 300, a linear or branched alkylene group is preferably used.

また、主鎖の鎖長が20〜300である上記一般式(2)で示される2価の有機基において、Rは炭素数4〜20の2価の脂肪族炭化水素基であり、Rは1種類の置換基であってもよく、複数種類の置換基を含んでいてもよく、nは1〜20の整数である。Rの炭素数が4未満の場合、分散性が低下するおそれがあり、6以上であることが好ましく、8以上であることがより好ましい。炭素数4〜20の2価の脂肪族炭化水素基としては、直鎖又は分岐鎖のアルキレン基が好ましく用いられる。このようなアルキレン基としては、例えば、ブチレン基、イソブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、エイコシレン基等が挙げられる。 In the divalent organic group represented by the general formula (2) having a main chain length of 20 to 300, R 1 is a divalent aliphatic hydrocarbon group having 4 to 20 carbon atoms; 1 may be one type of substituent, may contain multiple types of substituents, and n is an integer of 1-20. When the carbon number of R 1 is less than 4, the dispersibility may be lowered, and is preferably 6 or more, more preferably 8 or more. As the divalent aliphatic hydrocarbon group having 4 to 20 carbon atoms, a linear or branched alkylene group is preferably used. Examples of such alkylene groups include butylene, isobutylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, pentadecylene, hexadecylene. Group, heptadecylene group, octadecylene group, nonadecylene group, eicosylene group and the like.

上記一般式(1)において、Aの両側にある括弧内の構造は分岐構造単位を表したものであり、分岐構造単位は、分岐ユニットであるBと延長ユニットであるCとが結合されたBC構造を有するものである。この分岐構造単位は繰返し結合されていてもよく、この分岐構造単位の繰返しが多いほど、分散性の向上が期待できると本発明者らは推察している。 In the above general formula (1), the structure in parentheses on both sides of A represents a branched structural unit, and the branched structural unit is a BC in which a branch unit B and an extension unit C are combined. It has two structures. The present inventors speculate that the branched structural unit may be repeatedly bonded, and that the more the repeating of the branched structural unit, the more the dispersibility can be expected.

上記一般式(1)における分岐構造単位において、Bは、窒素原子又は3価の芳香族炭化水素基から選択される少なくとも1種からなる分岐ユニットである。Bがこのような分岐ユニットであることにより、枝分かれ構造を有する本発明のデンドリマーが得られることとなる。分岐ユニットであるBの好適な具体例としては以下に示されるものが挙げられる。   In the branched structural unit in the general formula (1), B is a branched unit composed of at least one selected from a nitrogen atom or a trivalent aromatic hydrocarbon group. When B is such a branch unit, the dendrimer of the present invention having a branched structure can be obtained. Preferable specific examples of B which is a branch unit include those shown below.

また、上記一般式(1)における分岐構造単位において、Cは、酸素原子又は2価の有機基から選択される少なくとも1種からなる延長ユニットである。延長ユニットであるCの好適な具体例としては以下に示されるものが挙げられる。   Moreover, in the branched structural unit in the general formula (1), C is an extension unit composed of at least one selected from an oxygen atom or a divalent organic group. Preferable specific examples of C as an extension unit include those shown below.

また、上記一般式(1)で示される本発明のデンドリマーは、BC構造を有する上記分岐構造単位における延長ユニットCに、前述の分岐ユニットBが更に結合されてなる。このように延長ユニットCに結合された分岐ユニットBは、BC構造におけるBの構造と同じでも異なっていてもよいが、効率良く合成できる観点から同じ構造であることが好ましい。 Further, the dendrimer of the present invention represented by the general formula (1) is obtained by further combining the aforementioned branch unit B with the extension unit C in the branch structural unit having a BC 2 structure. The branch unit B thus coupled to the extension unit C may be the same as or different from the structure of B in the BC 2 structure, but is preferably the same structure from the viewpoint of efficient synthesis.

更に、上記一般式(1)で示される本発明のデンドリマーは、上記分岐構造単位における延長ユニットCに結合された分岐ユニットBに、末端ユニットであるDが結合されてなる。末端ユニットであるDは、アルコキシ基、エステル基、アミノ基、アミド基、水酸基及びその塩、カルボキシル基及びその塩、メソゲン基、糖鎖、及びポリエチレングリコール鎖からなる群から選択される少なくとも1種を含む1価の置換基からなる。このように、本発明では所望の末端ユニットであるDをデンドリマー骨格に配置することができるため、種々の溶媒を用いた場合であっても分散質、特にカーボンナノチューブの分散性が良好になるという利点を有する。末端ユニットであるDは、水酸基及びその塩、カルボキシル基及びその塩、糖鎖、ポリエチレングリコール鎖、アミノ基、エステル基及びメソゲン基からなる群から選択される少なくとも1種であることが好ましい。水系の分散溶媒中で分散させる観点からは、末端ユニットであるDが水酸基及びその塩、カルボキシル基及びその塩、ポリエチレングリコール鎖及びアミノ基からなる群から選択される少なくとも1種であることがより好ましい。   Furthermore, the dendrimer of the present invention represented by the general formula (1) is formed by linking D as a terminal unit to the branch unit B bonded to the extension unit C in the branched structural unit. The terminal unit D is at least one selected from the group consisting of alkoxy groups, ester groups, amino groups, amide groups, hydroxyl groups and salts thereof, carboxyl groups and salts thereof, mesogenic groups, sugar chains, and polyethylene glycol chains. It consists of a monovalent substituent containing. As described above, in the present invention, D, which is a desired terminal unit, can be arranged in the dendrimer skeleton, so that dispersoids, particularly carbon nanotubes, are excellent in dispersibility even when various solvents are used. Have advantages. The terminal unit D is preferably at least one selected from the group consisting of hydroxyl groups and salts thereof, carboxyl groups and salts thereof, sugar chains, polyethylene glycol chains, amino groups, ester groups and mesogenic groups. From the viewpoint of dispersing in an aqueous dispersion solvent, it is more preferable that the terminal unit D is at least one selected from the group consisting of a hydroxyl group and a salt thereof, a carboxyl group and a salt thereof, a polyethylene glycol chain and an amino group. preferable.

上記アルコキシ基としては、直鎖又は分岐鎖の炭素数1〜6のアルコキシ基が挙げられ、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、イソヘキシルオキシ基等が挙げられる。   Examples of the alkoxy group include linear or branched alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, Examples thereof include a tert-butoxy group, a pentyloxy group, an isopentyloxy group, a neopentyloxy group, a hexyloxy group, and an isohexyloxy group.

上記エステル基としては、−COO−又は−OCO−で示される基を含むものであり、また、上記水酸基及びその塩、並びに上記カルボキシル基及びその塩の塩としては、カリウム、ナトリウム、リチウム、セシウム、カルシウム及びバリウムからなる群から選択される少なくとも1種の金属の塩が好適に使用される。中でも、カリウム又はナトリウムから選択される少なくとも1種の金属の塩がより好適に使用される。   The ester group includes a group represented by —COO— or —OCO—, and the hydroxyl group and its salt, and the carboxyl group and its salt include potassium, sodium, lithium and cesium. Preferably, at least one metal salt selected from the group consisting of calcium and barium is used. Among these, a salt of at least one metal selected from potassium or sodium is more preferably used.

上記メソゲン基とは、剛直で配向性の高い置換基を意味し、芳香族炭化水素基及び脂環式炭化水素基からなる群から選択される少なくとも1種を2つ以上含む2価の置換基であることが好ましい。メソゲン基の具体例としては、ビフェニル、ジフェニルエーテル、スチルベン、ジフェニルアセチレン、ベンゾフェノン、フェニルベンゾエート、フェニルベンズアミド、1,2−ジフェニルプロペン、N−ベンジリデンベンゼンアミン、1,2−ジベンジリデンヒドラジン、アゾベンゼン、2−ナフトエート、フェニル−2−ナフトエート、ナフタレン、フルオレン、フェナントレン等の構造を含む2価の置換基が挙げられる。末端ユニットからなるDがメソゲン基を含む場合、基板への相互作用によるアンカリングの観点からメソゲン基の末端がシアノ基もしくはメルカプト基であることが好ましい。   The mesogenic group means a rigid and highly oriented substituent, and is a divalent substituent containing at least one selected from the group consisting of an aromatic hydrocarbon group and an alicyclic hydrocarbon group. It is preferable that Specific examples of the mesogenic group include biphenyl, diphenyl ether, stilbene, diphenylacetylene, benzophenone, phenylbenzoate, phenylbenzamide, 1,2-diphenylpropene, N-benzylidenebenzeneamine, 1,2-dibenzylidenehydrazine, azobenzene, 2- Examples thereof include divalent substituents including structures such as naphthoate, phenyl-2-naphthoate, naphthalene, fluorene, and phenanthrene. When D consisting of the terminal unit contains a mesogenic group, the terminal of the mesogenic group is preferably a cyano group or a mercapto group from the viewpoint of anchoring due to interaction with the substrate.

上記糖鎖としては、各種糖がグリコシド結合でつながったものだけでなく、アルドン酸やウロン酸に代表される糖が酸化されて得られる糖酸や、これらアルドン酸やウロン酸などの糖酸が脱水縮合して得られる糖酸ラクトン等が挙げられる。糖鎖の具体例としては、グルコース、ガラクトース、マンノース、フルクトース、キシロースなどの単糖類;スクロース、マルトース、イソマルトース、ラクトース、トレハロース、セロビオース、パラチノースなどの二糖類;ラフィノース、ラクトスクロース、マルトトリオース、イソマルトトリオース、スタキオースなどのオリゴ糖;エリスリトール、キシリトール、マンニトール、ソルビトール、マルチトールなどの糖アルコール;グルコン酸、ガラクトン酸、マンノン酸などのアルドン酸;グルクロン酸、ガラクツロン酸、マンヌロン酸などのウロン酸;グルコノラクトン、ガラクトノラクトン、マンノノラクトン、グルクロノラクトン、ガラクツロノラクトン、マンヌロノラクトンなどの糖酸ラクトン等が挙げられる。   The sugar chains include not only those in which various sugars are linked by glycosidic bonds, but also sugar acids obtained by oxidizing sugars represented by aldonic acid and uronic acid, and sugar acids such as these aldonic acids and uronic acids. Examples thereof include sugar lactones obtained by dehydration condensation. Specific examples of sugar chains include monosaccharides such as glucose, galactose, mannose, fructose, and xylose; disaccharides such as sucrose, maltose, isomaltose, lactose, trehalose, cellobiose, and palatinose; raffinose, lactosucrose, maltotriose, Oligosaccharides such as isomaltotriose and stachyose; sugar alcohols such as erythritol, xylitol, mannitol, sorbitol and maltitol; aldonic acids such as gluconic acid, galactonic acid and mannonic acid; urons such as glucuronic acid, galacturonic acid and mannuronic acid Acids: Sugar acid lactones such as gluconolactone, galactonolactone, mannonolactone, glucuronolactone, galacturonolactone, mannuronolactone and the like.

末端ユニットであるDの好適な具体例としては以下に示されるものが挙げられる。   Preferable specific examples of D which is a terminal unit include those shown below.

[式中、Rは水素原子、炭素数1〜6のアルキル基、又は金属原子であり、Rは炭素数1〜14のアルキル基であり、Rは糖鎖又はポリエチレングリコール鎖であり、mは1〜6の整数である。] [Wherein R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a metal atom, R 3 is an alkyl group having 1 to 14 carbon atoms, and R 4 is a sugar chain or a polyethylene glycol chain. , M is an integer of 1-6. ]

上記式中において、Rは水素原子、炭素数1〜6のアルキル基、又は金属原子である。炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、ヘキシル基、イソヘキシル基等が挙げられる。中でも、Rとしてはメチル基又はエチル基が好適に使用され、メチル基がより好適に使用される。また、上記Rにおける金属原子としては、上述で例示された金属原子と同様のものが好適に使用される。 In the above formula, R 2 is hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a metal atom. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, Examples thereof include a tert-pentyl group, a hexyl group, and an isohexyl group. Among these, as R 2 , a methyl group or an ethyl group is preferably used, and a methyl group is more preferably used. In addition, as the metal atom in R 2, the same metal atom as exemplified above is preferably used.

上記式中において、Rは炭素数1〜14、好適には1〜6のアルキル基であり、Rの説明のところで例示されたアルキル基と同様のものが挙げられる。中でも、Rとしては、メチル基、エチル基、ドデシル基、テトラデシル基が好適に使用される。 In the above formula, R 3 is an alkyl group having 1 to 14 carbon atoms, preferably 1 to 6 carbon atoms, and examples thereof include the same alkyl groups exemplified in the description of R 2 . Among these, as R 3 , a methyl group, an ethyl group, a dodecyl group, or a tetradecyl group is preferably used.

上記式中において、Rは糖鎖又はポリエチレングリコール鎖である。Rにおける糖鎖としては、上述で例示された糖鎖と同様のものが挙げられる。中でも、グルコノラクトン等に代表される糖酸ラクトンが好適に使用される。 In the above formula, R 4 is a sugar chain or a polyethylene glycol chain. Examples of the sugar chain in R 4 include the same sugar chains as those exemplified above. Of these, sugar acid lactones represented by gluconolactone and the like are preferably used.

また、上記一般式(1)で示される本発明のデンドリマーは、コアユニットであるAと分岐ユニットであるBとの間が任意の構成単位であるXにより結合されていてもよい。Xは、炭化水素基以外の2価の置換基であり、具体例としては、−O−、−CO−、−COO−及び−OCO−からなる群から選択される少なくとも1種が挙げられる。   Moreover, the dendrimer of this invention shown by the said General formula (1) may be couple | bonded by X which is arbitrary structural units between A which is a core unit, and B which is a branch unit. X is a divalent substituent other than a hydrocarbon group, and specific examples include at least one selected from the group consisting of —O—, —CO—, —COO—, and —OCO—.

以上説明したA、B、C、D及びXで構成される一般式(1)で示されるデンドリマーの種類としては、ポリアミドアミンデンドリマー、ポリフェニルエーテルデンドリマー、ポリフェニルエステルデンドリマー、ポリアミドデンドリマー、ポリイミンデンドリマー、ポリエーテルデンドリマー等が挙げられる。   The types of dendrimers represented by the general formula (1) composed of A, B, C, D and X described above include polyamide amine dendrimers, polyphenyl ether dendrimers, polyphenyl ester dendrimers, polyamide dendrimers, and polyimine dendrimers. And polyether dendrimers.

一般式(1)で示される本発明のデンドリマーは、後述の実施例からも分かるように以下のようにして得ることができる。例えば、主鎖の鎖長が32であるジアミン化合物(C30(NH)に対して、アクリル酸メチルを反応させて−0.5世代メチルエステルデンドリマー(C30−G0.5(COOMe))を得て、次いで、ジエチルアミンと反応させて0世代ポリアミドアミンデンドリマー(C30G0(NH)を得て、更にアクリル酸メチルと再度反応させることにより、本発明のデンドリマーである0.5世代メチルエステルデンドリマー(C30G0.5(COOMe))を得ることができる。また、得られた本発明のデンドリマーである0.5世代メチルエステルデンドリマーに対して、ジエチルアミンとアクリル酸メチルとを用いた反応を繰返してデンドリマーを成長させることにより、世代の数が増えた、即ち一般式(1)における分岐構造単位が繰返されたデンドリマーを得ることができる。この分岐構造単位の繰返しが多いほど末端ユニットであるDの数を増やすことができ、分散性の向上が期待できると本発明者らは推察している。 The dendrimer of the present invention represented by the general formula (1) can be obtained as follows, as can be seen from Examples described later. For example, a diamine compound (C30 (NH 2 ) 2 ) having a main chain length of 32 is reacted with methyl acrylate to produce a -0.5 generation methyl ester dendrimer (C30-G0.5 (COOMe) 4 And then reacting with diethylamine to give a 0th generation polyamidoamine dendrimer (C30G0 (NH 2 ) 4 ) and again reacting with methyl acrylate to produce 0.5 dendrimer of the present invention. A methyl ester dendrimer (C30G0.5 (COOMe) 8 ) can be obtained. In addition, the number of generations was increased by repeating the reaction using diethylamine and methyl acrylate on the obtained 0.5 generation methyl ester dendrimer, which is the dendrimer of the present invention, to grow the dendrimer, that is, A dendrimer in which the branched structural unit in the general formula (1) is repeated can be obtained. The inventors speculate that the more repeating the branched structural units, the more the number of terminal units D can be increased and the improvement in dispersibility can be expected.

一般式(1)で示される本発明のデンドリマーは、界面活性剤として用いた場合に優れた分散性を示す。特にカーボンナノチューブ用分散剤として用いた場合には、細いカーボンナノチューブや短いカーボンナノチューブを分散できるだけでなく、太いカーボンナノチューブや長いカーボンナノチューブの分散に優れ、また、多層カーボンナノチューブの分散にも優れている。したがって、本発明のデンドリマーを用いる意義が大きい。   The dendrimer of the present invention represented by the general formula (1) exhibits excellent dispersibility when used as a surfactant. Especially when used as a dispersant for carbon nanotubes, not only can thin carbon nanotubes and short carbon nanotubes be dispersed, it is excellent in dispersing thick carbon nanotubes and long carbon nanotubes, and is also excellent in dispersing multi-walled carbon nanotubes. . Therefore, the significance of using the dendrimer of the present invention is great.

また、一般式(1)で示される本発明のデンドリマーを分散剤として用いるカーボンナノチューブの分散方法も本発明の好適な実施態様であり、後述の実施例からも分かるように、水中でも有機溶媒中でもカーボンナノチューブの均一分散が可能となる。こうして得られるカーボンナノチューブ分散液に対して、スピンコート法等に代表される簡便な薄膜形成方法を採用することにより、カーボンナノチューブ薄膜を容易に作製することができる。また、カーボンナノチューブとプラスチック材料との複合膜を作製することもできる。   Further, a carbon nanotube dispersion method using the dendrimer of the present invention represented by the general formula (1) as a dispersant is also a preferred embodiment of the present invention. As can be seen from the examples described later, Carbon nanotubes can be uniformly dispersed. A carbon nanotube thin film can be easily produced by adopting a simple thin film forming method represented by a spin coating method or the like for the carbon nanotube dispersion obtained in this way. In addition, a composite film of carbon nanotubes and a plastic material can be manufactured.

このように、本発明のデンドリマーは従来困難であった太いカーボンナノチューブや長いカーボンナノチューブの薄膜形成が可能となるため、ITO電極代替材料をはじめとする透明導電膜材料、太陽電池材料、燃料電池材料、プラスチック複合材料等に好適に用いることができる。また、本発明のデンドリマーを用いることにより、溶液プロセスを用いた薄膜形成が容易となるため、超薄膜と呼ばれる膜厚が10nm以下の薄膜の作製が可能となるとともに、薄膜表面の制御により従来困難であった多層膜の作製も可能となる。   As described above, since the dendrimer of the present invention can form a thin film of thick carbon nanotubes or long carbon nanotubes, which has been difficult in the past, transparent conductive film materials such as ITO electrode substitute materials, solar cell materials, fuel cell materials It can be suitably used for plastic composite materials and the like. In addition, the use of the dendrimer of the present invention makes it easy to form a thin film using a solution process, so that it is possible to produce a thin film with a film thickness of 10 nm or less, called an ultra-thin film, and it is difficult to control the surface of the thin film. It is also possible to produce a multilayer film that is.

以下、実施例を用いて本発明を更に具体的に説明する。実施例中、NMRはJEOL製「AL300」(300MHz)、IRはThermo Nicolet製「Avatar300T2」、MALDI−TOF−MSはBruker製「Autoflex」、可視近赤外吸収スペクトルはShimazu製「UV−3150」、ラマンスペクトルはJobin−Yvon製の装置を用いて測定した。また、原子間力顕微鏡(AFM)はSeiko製「SPA400−DFM」を用いた。   Hereinafter, the present invention will be described more specifically with reference to examples. In Examples, NMR is “AL300” (300 MHz) manufactured by JEOL, IR is “Avatar300T2” manufactured by Thermo Nicolet, MALDI-TOF-MS is “Autoflex” manufactured by Bruker, and visible near infrared absorption spectrum is “UV-3150” manufactured by Shimazu. The Raman spectrum was measured using an apparatus manufactured by Jobin-Yvon. As an atomic force microscope (AFM), “SPA400-DFM” manufactured by Seiko was used.

(実施例1)
合成例1[主鎖の鎖長が32である末端Br化合物2の合成]
300 ml二口フラスコに1,10-ジブロモデカン(22.50 g, 75 mmol)、K2CO3(22.77 g, 165 mmol)、DMF(150 ml)を入れ、アルゴンガスを封入しパラフィルムを巻き、65℃で加熱撹拌した。その後、1,10-デカンジオール1(5.22 g, 30 mmol)をDMF(50 ml)に溶かした溶液を、2時間かけて滴下し、3日間、65℃で加熱攪拌した。室温まで冷ました後に、2%の塩酸(400 ml)を氷浴中で滴下した。その後、クロロホルムとイオン交換水で分液を行った。有機層を抽出し、5%のNaOH水溶液(100 ml)で3回、イオン交換水(250 ml)で2回洗った。その後、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで濃縮し、溶媒を留去した。得られたオイル状の物を、ジエチルエーテル(10 ml)中で攪拌し、析出してきた白色の粉末である化合物2(10.18 g)を収率56%で得た。化学反応式を以下に示す。
Example 1
Synthesis Example 1 [Synthesis of terminal Br compound 2 with main chain length of 32]
Put 1,10-dibromodecane (22.50 g, 75 mmol), K 2 CO 3 (22.77 g, 165 mmol), DMF (150 ml) in a 300 ml two-necked flask, enclose argon gas, wrap the parafilm, The mixture was heated and stirred at 65 ° C. Thereafter, a solution of 1,10-decanediol 1 (5.22 g, 30 mmol) dissolved in DMF (50 ml) was added dropwise over 2 hours, and the mixture was heated and stirred at 65 ° C. for 3 days. After cooling to room temperature, 2% hydrochloric acid (400 ml) was added dropwise in an ice bath. Then, liquid separation was performed with chloroform and ion-exchanged water. The organic layer was extracted and washed 3 times with 5% aqueous NaOH (100 ml) and twice with ion-exchanged water (250 ml). Thereafter, it was dried over anhydrous magnesium sulfate, filtered using a fold-fold filter paper, the filtrate was concentrated with an evaporator, and the solvent was distilled off. The obtained oily substance was stirred in diethyl ether (10 ml) to obtain Compound 2 (10.18 g), a white powder which had precipitated, in a yield of 56%. The chemical reaction formula is shown below.

化合物2 :1H-NMR (300 MHz, CDCl3) δ 1.25 (36H, s), 1.60 (8H, q), 1.86 (4H, q), 3.44 (4H, t, J = 6.6 Hz), 3.67(8H, t, J = 6.6 Hz); 13C-NMR (75 MHz, CDCl3) δ 26.0,28.1, 28.5, 28.6, 29.7, 29.8, 30.1, 32.6, 33.6, 72.6; IR (KBr): 3396, 3329,2920, 2850, 1463, 1361, 1058, 1018, 615 cm -1. Compound 2: 1 H-NMR (300 MHz, CDCl 3 ) δ 1.25 (36H, s), 1.60 (8H, q), 1.86 (4H, q), 3.44 (4H, t, J = 6.6 Hz), 3.67 ( 8H, t, J = 6.6 Hz); 13 C-NMR (75 MHz, CDCl 3 ) δ 26.0,28.1, 28.5, 28.6, 29.7, 29.8, 30.1, 32.6, 33.6, 72.6; IR (KBr): 3396, 3329 , 2920, 2850, 1463, 1361, 1058, 1018, 615 cm -1 .

合成例2[主鎖の鎖長が32である末端NH2化合物3の合成]
100 mlナスフラスコに化合物2(66.10 mg, 0.11 mmol)とフタルイミドカリウム(59.90 mg, 0.32 mmol)、DMF(10 ml)を量り入れ、70℃で2日間加熱攪拌した。室温まで冷ました後、分液漏斗に移し、クロロホルムと食塩水で分液を行った。有機層を無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで溶媒を除去して白色沈澱を得た。得られた沈殿物にメタノールを加えて超音波照射により懸濁させ、それを吸引濾過した後、真空乾燥を行うことで白色粉末のフタルイミド化合物を得た。さらにフタルイミド化合物にベンゼン(10 ml)を加えて加熱しながら溶解させた後にエタノール(10 ml)、ヒドラジン一水和物(H2NNH2・H2O; 1.50 ml)を加え、3時間還流させた。室温まで冷ました後、白色の沈殿物をひだ折り濾過により取り除き、濾液をエヴァポレーターにより濃縮し、溶媒を留去した。その後、分液漏斗に移し、クロロホルム、イオン交換水を用いて分液を行った。有機層を抽出し、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターにより濃縮した。その後、真空乾燥を行ったところ、白色固体の化合物3を得た(42.6 mg, 0.09 mmol, 収率 80%)。化学反応式を以下に示す。
Synthesis Example 2 [Synthesis of terminal NH 2 compound 3 having a main chain length of 32]
Compound 2 (66.10 mg, 0.11 mmol), potassium phthalimide (59.90 mg, 0.32 mmol), and DMF (10 ml) were weighed into a 100 ml eggplant flask, and heated and stirred at 70 ° C. for 2 days. After cooling to room temperature, the mixture was transferred to a separatory funnel and separated with chloroform and brine. The organic layer was dried over anhydrous magnesium sulfate and filtered using a fold filter paper, and the solvent was removed from the filtrate with an evaporator to obtain a white precipitate. Methanol was added to the resulting precipitate and suspended by ultrasonic irradiation. After suction filtration, vacuum drying was performed to obtain a white powdery phthalimide compound. Add benzene (10 ml) to the phthalimide compound and dissolve it with heating, then add ethanol (10 ml) and hydrazine monohydrate (H 2 NNH 2 • H 2 O; 1.50 ml) and reflux for 3 hours. It was. After cooling to room temperature, the white precipitate was removed by fold filtration, the filtrate was concentrated by an evaporator, and the solvent was distilled off. Then, it moved to the separatory funnel and liquid-separated using chloroform and ion-exchange water. The organic layer was extracted, dried over anhydrous magnesium sulfate, filtered using a fold filter paper, and the filtrate was concentrated by an evaporator. Thereafter, vacuum drying was performed to obtain Compound 3 as a white solid (42.6 mg, 0.09 mmol, yield 80%). The chemical reaction formula is shown below.

合成例3[主鎖の鎖長が32である0.5世代末端メチルエステルデンドリマー6の合成]
化合物3(400 mg, 0.83 mmol)を精秤し、メタノール(30 ml)に溶かした溶液を100 mlナス型フラスコに加えた。次に、アクリル酸メチル(1.40 ml, 16.5 mmol)を加え、45℃で3日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl3:MeOH = 50:1)によって精製したところ、-0.5世代末端メチルエステルデンドリマー4(677 mg, 0.82 mmol, 収率 99%)を得た。次に、エチレンジアミン(7.77 ml)を100 mlナス型フラスコに入れ、合成したデンドリマー4(268 mg, 0.32 mmol)を精秤し、メタノール(30 ml)に溶かした溶液をエチレンジアミン中に滴下し、室温で1日攪拌を行った。その後、濃縮、ジエチルエーテルで再沈澱を行った得た化合物5に、メタノール(30 ml)を加え溶液にし、アクリル酸メチル(2.20 ml)を加え、45℃で5日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl3:MeOH = 20:1)によって精製を行ったところ、0.5世代末端メチルエステルデンドリマー6(273 mg, 0.17 mmol, 収率52%)を得た。化学反応式を以下に示す。
Synthesis Example 3 [Synthesis of 0.5th generation terminal methyl ester dendrimer 6 having a main chain length of 32]
Compound 3 (400 mg, 0.83 mmol) was precisely weighed, and a solution dissolved in methanol (30 ml) was added to a 100 ml eggplant type flask. Next, methyl acrylate (1.40 ml, 16.5 mmol) was added, and the mixture was stirred at 45 ° C. for 3 days. Then, the solvent was distilled off and purified by column chromatography (silica, eluent: CHCl 3 : MeOH = 50: 1), -0.5 generation terminal methyl ester dendrimer 4 (677 mg, 0.82 mmol, yield 99%) Got. Next, ethylenediamine (7.77 ml) was placed in a 100 ml eggplant-shaped flask, the synthesized dendrimer 4 (268 mg, 0.32 mmol) was precisely weighed, and a solution dissolved in methanol (30 ml) was added dropwise to ethylenediamine at room temperature. And stirred for 1 day. Thereafter, methanol (30 ml) was added to compound 5 obtained by concentration and reprecipitation with diethyl ether to form a solution, methyl acrylate (2.20 ml) was added, and the mixture was stirred at 45 ° C. for 5 days. Thereafter, the solvent was distilled off, and purification was performed by column chromatography (silica, eluent: CHCl 3 : MeOH = 20: 1). 0.5 generation terminal methyl ester dendrimer 6 (273 mg, 0.17 mmol, yield 52%) ) The chemical reaction formula is shown below.

0.5世代末端メチルエステルデンドリマー6 :1H-NMR (300 MHz, CDCl3) δ 1.26 (36H, d), 1.46-1.56 (12H, br), 2.35-2.46 (28H, m), 2.52-2.56 (8H, t, J = 6.0 Hz), 2.74-2.79 (24H, t, J = 6.6 Hz), 3.28-3.30 (8H, m), 3.36-3.41 (8H, t, J = 6.8 Hz), 3.68 (24H, s), 7.23 (4H, br); 13C-NMR (75 MHz, CDCl3) δ 26.12, 26.15, 26.6, 27.6, 29.4, 29.54, 29.56, 29.6, 29.7, 32.6, 33.3, 37.0, 49.2, 49.6, 51.5, 53.0, 53.2, 70.90, 70.93, 172.2, 172.9; IR (ATR): 2929, 2854, 1737, 1657, 1650, 1438, 1259, 1198, 1176 cm -1; MALDI-TOF-MS, for C82H152N10O22: m/z calcd, 1630.11 [MH+]; found, 1629.77. 0.5 generation terminal methyl ester dendrimer 6: 1 H-NMR (300 MHz, CDCl 3 ) δ 1.26 (36H, d), 1.46-1.56 (12H, br), 2.35-2.46 (28H, m), 2.52-2.56 (8H , t, J = 6.0 Hz), 2.74-2.79 (24H, t, J = 6.6 Hz), 3.28-3.30 (8H, m), 3.36-3.41 (8H, t, J = 6.8 Hz), 3.68 (24H, s), 7.23 (4H, br); 13 C-NMR (75 MHz, CDCl 3 ) δ 26.12, 26.15, 26.6, 27.6, 29.4, 29.54, 29.56, 29.6, 29.7, 32.6, 33.3, 37.0, 49.2, 49.6, 51.5, 53.0, 53.2, 70.90, 70.93, 172.2, 172.9; IR (ATR): 2929, 2854, 1737, 1657, 1650, 1438, 1259, 1198, 1176 cm -1 ; MALDI-TOF-MS, for C 82 H 152 N 10 O 22 : m / z calcd, 1630.11 [MH + ]; found, 1629.77.

合成例4[主鎖の鎖長が32である0.5世代末端カルボキシレートデンドリマー7の合成]
0.5世代末端メチルエステルデンドリマー6(34.4 mg, 0.02 mmol)をテトラヒドロフラン(2 ml)に溶かし、遠沈管に入れ、KOH(85.5%)(10.9 mg, 0.19 mmol)をメタノール(3.2 ml)に溶かしたもの(0.13 ml)を遠沈管に滴下し、室温で5時間攪拌し、留去することにより、0.5世代末端カルボキシレートデンドリマー7(38.3 mg, 0.02 mmol, 収率 99%)を得た。化学反応式を以下に示す。
Synthesis Example 4 [Synthesis of 0.5-generation terminal carboxylate dendrimer 7 having a main chain length of 32]
0.5-generation terminal methyl ester dendrimer 6 (34.4 mg, 0.02 mmol) dissolved in tetrahydrofuran (2 ml), placed in a centrifuge tube, and KOH (85.5%) (10.9 mg, 0.19 mmol) dissolved in methanol (3.2 ml) (0.13 ml) was added dropwise to a centrifuge tube, and the mixture was stirred at room temperature for 5 hours and distilled to obtain 0.5 generation terminal carboxylate dendrimer 7 (38.3 mg, 0.02 mmol, yield 99%). The chemical reaction formula is shown below.

0.5世代末端カルボキシレートデンドリマー7 :1H-NMR (300 MHz, CD3OD) δ 1.26 (36H, s), 1.48-1.50 (12H, br), 2.30-2.36 (24H, m), 2.43 (4H, br), 2.60-2.64 (8H, t, J = 6.6 Hz), 2.72-2.86 (16H, t, J = 7.5 Hz), 3.25-3.30 (8H, m), 3.34-3.38 (8H, t, J = 6.6 Hz); IR (ATR): 3389, 2928, 2854, 1643, 1564, 1401 cm -1. 0.5 generation terminal carboxylate dendrimer 7: 1 H-NMR (300 MHz, CD 3 OD) δ 1.26 (36H, s), 1.48-1.50 (12H, br), 2.30-2.36 (24H, m), 2.43 (4H, br), 2.60-2.64 (8H, t, J = 6.6 Hz), 2.72-2.86 (16H, t, J = 7.5 Hz), 3.25-3.30 (8H, m), 3.34-3.38 (8H, t, J = 6.6 Hz); IR (ATR): 3389, 2928, 2854, 1643, 1564, 1401 cm -1 .

(実施例2)
合成例5[主鎖の鎖長が76である末端Br化合物8の合成]
300 ml二口フラスコに化合物2(8.88g, 14.5 mmol)、K2CO3(4.40 g, 31.9 mmol)、DMF(150 ml)を入れ、アルゴンガスを封入しパラフィルムを巻き、65℃で加熱撹拌した。その後、1,10-デカンジオール1(1.15 g, 6.60 mmol)をDMF(30 ml)に溶かした溶液を、2時間かけて滴下し、3日間、65℃で加熱攪拌した。室温まで冷ました後に、2%の塩酸(250 ml)を氷浴中で滴下した。その後、クロロホルムとイオン交換水で分液を行った。有機層を抽出し、5%のNaOH水溶液(100 ml)で3回、イオン交換水(100 ml)で2回洗った。その後、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで濃縮し、溶媒を留去した。得られた金色でオイル状の物を、(ジエチルエーテル:ヘキサン = 1:4)(100 ml)中で3時間攪拌し、上澄み溶液をデカンテーションにより取り除いた。その後、少量のアセトンにとかし、ペンタン中、3日間、4℃で攪拌し、析出してきた粉末である化合物8(5.50 g)を収率67%で得た。化学反応式を以下に示す。
(Example 2)
Synthesis Example 5 [Synthesis of Terminal Br Compound 8 with Chain Length 76]
Put compound 2 (8.88 g, 14.5 mmol), K 2 CO 3 (4.40 g, 31.9 mmol), DMF (150 ml) in a 300 ml two-necked flask, enclose argon gas, wrap a parafilm, and heat at 65 ° C Stir. Thereafter, a solution of 1,10-decanediol 1 (1.15 g, 6.60 mmol) in DMF (30 ml) was added dropwise over 2 hours, and the mixture was heated and stirred at 65 ° C. for 3 days. After cooling to room temperature, 2% hydrochloric acid (250 ml) was added dropwise in an ice bath. Then, liquid separation was performed with chloroform and ion-exchanged water. The organic layer was extracted and washed 3 times with 5% NaOH aqueous solution (100 ml) and twice with ion-exchanged water (100 ml). Thereafter, it was dried over anhydrous magnesium sulfate, filtered using a fold-fold filter paper, the filtrate was concentrated with an evaporator, and the solvent was distilled off. The resulting golden oily substance was stirred in (diethyl ether: hexane = 1: 4) (100 ml) for 3 hours, and the supernatant solution was removed by decantation. Thereafter, the mixture was dissolved in a small amount of acetone and stirred in pentane at 4 ° C. for 3 days to obtain Compound 8 (5.50 g) as a precipitated powder in a yield of 67%. The chemical reaction formula is shown below.

化合物8 :1H-NMR (300 MHz, CDCl3) δ 1.23-1.46 (84H, m), 1.62 (28H, m), 3.56 (4H, t, J = 6.5 Hz), 4.05 (24H, t, J = 6.5 Hz); 13C-NMR (75 MHz, CDCl3) δ 26.0, 28.1, 28.7, 29.7, 30.2, 32.8, 33.7, 72.4; IR (KBr): 3332, 2918, 1738, 1469, 1259, 1057, 610 cm -1. Compound 8: 1 H-NMR (300 MHz, CDCl 3 ) δ 1.23-1.46 (84H, m), 1.62 (28H, m), 3.56 (4H, t, J = 6.5 Hz), 4.05 (24H, t, J = 6.5 Hz); 13 C-NMR (75 MHz, CDCl 3 ) δ 26.0, 28.1, 28.7, 29.7, 30.2, 32.8, 33.7, 72.4; IR (KBr): 3332, 2918, 1738, 1469, 1259, 1057, 610 cm -1 .

合成例6[主鎖の鎖長が76である末端NH2化合物9の合成]
100 mlナスフラスコに化合物8(100 mg, 0.08 mmol)とフタルイミドカリウム(59.90 mg, 0.32 mmol)、DMF(10 ml)を量り入れ、70℃で2日間加熱攪拌した。室温まで冷ました後、分液漏斗に移し、クロロホルムと食塩水で分液を行った。有機層を無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで溶媒を除去して白色沈澱を得た。得られた沈殿物にメタノールを加えて超音波照射により懸濁させ、それを吸引濾過した後、真空乾燥を行うことで白色粉末のフタルイミド化合物を得た。さらにフタルイミド化合物にベンゼン(10 ml)を加えて加熱しながら溶解させた後にエタノール(10 ml)、ヒドラジン一水和物(1.50 ml)を加え、3時間還流させた。室温まで冷ました後、白色の沈殿物をひだ折り濾過により取り除き、濾液をエヴァポレーターにより濃縮し、溶媒を留去した。その後、分液漏斗に移し、クロロホルム、イオン交換水を用いて分液を行った。有機層を抽出し、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターにより濃縮した。その後、真空乾燥を行ったところ、白色固体の化合物9を得た(71.5 mg, 0.07 mmol, 収率 80%)。化学反応式を以下に示す。
Synthesis Example 6 [Synthesis of terminal NH 2 compound 9 having a main chain length of 76]
Compound 8 (100 mg, 0.08 mmol), potassium phthalimide (59.90 mg, 0.32 mmol), and DMF (10 ml) were weighed into a 100 ml eggplant flask, and heated and stirred at 70 ° C. for 2 days. After cooling to room temperature, the mixture was transferred to a separatory funnel and separated with chloroform and brine. The organic layer was dried over anhydrous magnesium sulfate and filtered using a fold filter paper, and the solvent was removed from the filtrate with an evaporator to obtain a white precipitate. Methanol was added to the resulting precipitate and suspended by ultrasonic irradiation. After suction filtration, vacuum drying was performed to obtain a white powdery phthalimide compound. Further, benzene (10 ml) was added to the phthalimide compound and dissolved while heating, ethanol (10 ml) and hydrazine monohydrate (1.50 ml) were added, and the mixture was refluxed for 3 hours. After cooling to room temperature, the white precipitate was removed by fold filtration, the filtrate was concentrated by an evaporator, and the solvent was distilled off. Then, it moved to the separatory funnel and liquid-separated using chloroform and ion-exchange water. The organic layer was extracted, dried over anhydrous magnesium sulfate, filtered using a fold filter paper, and the filtrate was concentrated by an evaporator. Then, when vacuum-drying was performed, the white solid compound 9 was obtained (71.5 mg, 0.07 mmol, yield 80%). The chemical reaction formula is shown below.

合成例7[主鎖の鎖長が76である0.5世代末端メチルエステルデンドリマー12の合成]
化合物9(300 mg, 0.28 mmol)を精秤し、メタノール(30 ml)に溶かした溶液を100 mlナス型フラスコに加えた。次に、アクリル酸メチル(0.95 ml, 11.1 mmol)を加え、45℃で3日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl3:MeOH = 50:1)によって精製したところ、-0.5世代末端メチルエステルデンドリマー10(391 mg, 0.28 mmol, 収率 99%)を得た。次に、エチレンジアミン(7.77 ml)を100 mlナス型フラスコに入れ、合成したデンドリマー10(391 mg, 0.28 mmol)を精秤し、メタノール(30 ml)に溶かした溶液をエチレンジアミン中に滴下し、室温で1日攪拌を行った。その後、濃縮、ジエチルエーテルで再沈澱を行って得た化合物11に、メタノール(30 ml)を加え溶液にし、アクリル酸メチル(2.20 ml, 25.5 mmol)を加え、45℃で5日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl3:MeOH = 20:1)によって精製を行ったところ、0.5世代末端メチルエステルデンドリマー12(267 mg, 0.12 mmol, 収率43%)を得た。化学反応式を以下に示す。
Synthesis Example 7 [Synthesis of 0.5th generation terminal methyl ester dendrimer 12 having a main chain length of 76]
Compound 9 (300 mg, 0.28 mmol) was precisely weighed, and a solution dissolved in methanol (30 ml) was added to a 100 ml eggplant type flask. Next, methyl acrylate (0.95 ml, 11.1 mmol) was added, and the mixture was stirred at 45 ° C. for 3 days. Thereafter, the solvent was distilled off, column chromatography (silica, eluent: CHCl 3: MeOH = 50: 1) was purified by -0.5 generation terminal methyl ester dendrimer 10 (391 mg, 0.28 mmol, 99% yield) Got. Next, ethylenediamine (7.77 ml) was placed in a 100 ml eggplant type flask, the synthesized dendrimer 10 (391 mg, 0.28 mmol) was precisely weighed, and a solution dissolved in methanol (30 ml) was dropped into ethylenediamine, and And stirred for 1 day. Thereafter, concentration and reprecipitation with diethyl ether were performed on compound 11 obtained by adding methanol (30 ml) to make a solution, methyl acrylate (2.20 ml, 25.5 mmol) was added, and the mixture was stirred at 45 ° C. for 5 days. . Thereafter, the solvent was distilled off, and purification was performed by column chromatography (silica, eluent: CHCl 3 : MeOH = 20: 1). 0.5 generation terminal methyl ester dendrimer 12 (267 mg, 0.12 mmol, yield 43%) ) The chemical reaction formula is shown below.

0.5世代末端カルボキシレートデンドリマー12 : IR (ATR): 2929, 2854, 1737, 1657, 1650, 1438, 1259, 1198, 1176 cm -1. 0.5 generation terminal carboxylate dendrimer 12: IR (ATR): 2929, 2854, 1737, 1657, 1650, 1438, 1259, 1198, 1176 cm -1 .

合成例8[主鎖の鎖長が76である0.5世代末端カルボキシレートデンドリマー13の合成]
0.5世代末端メチルエステルデンドリマー12(50.0 mg, 0.02 mmol)をテトラヒドロフラン(2 ml)に溶かし、遠沈管に入れ、KOH(85.5%)(10.9 mg, 0.19 mmol)をメタノール(3.2 ml)に溶かしたもの(0.13 ml)を遠沈管に滴下し、室温で5時間攪拌し、留去することにより、0.5世代末端カルボキシレートデンドリマー13(54.3 mg, 0.02 mmol, 収率 99%)を得た。化学反応式を以下に示す。
Synthesis Example 8 [Synthesis of 0.5th generation terminal carboxylate dendrimer 13 having a main chain length of 76]
0.5-generation terminal methyl ester dendrimer 12 (50.0 mg, 0.02 mmol) dissolved in tetrahydrofuran (2 ml), placed in a centrifuge tube, and KOH (85.5%) (10.9 mg, 0.19 mmol) dissolved in methanol (3.2 ml) (0.13 ml) was added dropwise to the centrifuge tube, stirred at room temperature for 5 hours, and evaporated to obtain 0.5 generation terminal carboxylate dendrimer 13 (54.3 mg, 0.02 mmol, yield 99%). The chemical reaction formula is shown below.

0.5世代末端カルボキシレートデンドリマー13 : IR (ATR): 3389, 2928, 2854, 1643, 1564, 1401 cm -1. 0.5 generation terminal carboxylate dendrimer 13: IR (ATR): 3389, 2928, 2854, 1643, 1564, 1401 cm -1 .

[水中におけるSWNTs分散試験]
図1のフローチャートに示されるように、ねじ口試験管に単層カーボンナノチューブ1 mgと実施例1により得られたコアユニットにおける主鎖の鎖長が32のポリエーテルからなるデンドリマー(C30G0.5(COOK))1 μmol、D2O 10 mlを加えサンプルを調製し、室温で、1時間超音波処理を行い、8000 Gで、40分間遠心分離を経て、図2で示される黒色透明な上澄み溶液を作製した。得られた黒色透明な上澄み溶液中で分散されたカーボンナノチューブについて、可視近赤外吸収スペクトルを用いた分析を行った。同様に、主鎖の鎖長が6のアルキル鎖からなるデンドリマー(C6G0.5(COOK))、及び主鎖の鎖長が10のアルキル鎖からなるデンドリマー(C10G0.5(COOK))を用いてカーボンナノチューブの分散試験を行い、可視近赤外吸収スペクトルを用いた分析を行った。得られたスペクトルを図3に示す。更に、HiPcoチューブを用いて塗布法により得られたカーボンナノチューブ薄膜のラマンスペクトル分析、及び原子間力顕微鏡(AFM)を用いた分析を行った。得られた結果を図4及び図5に示す。
[Dispersion test of SWNTs in water]
As shown in the flowchart of FIG. 1, a dendrimer (C30G0.5 (C30G0.5 (C30G0.5 ( COOK) 8 ) Prepare a sample by adding 1 μmol and 10 ml of D 2 O, sonicate at room temperature for 1 hour, and centrifuge at 8000 G for 40 minutes to obtain a black transparent supernatant as shown in FIG. A solution was made. The carbon nanotubes dispersed in the resulting black transparent supernatant solution were analyzed using a visible near infrared absorption spectrum. Similarly, dendrimers dendrimer chain length of the main chain consists of an alkyl chain of 6 (C6G0.5 (COOK) 8) , and chain length of the main chain consisting of an alkyl chain of 10 (C10G0.5 (COOK) 8) The carbon nanotube was subjected to a dispersion test and analyzed using a visible near infrared absorption spectrum. The obtained spectrum is shown in FIG. Furthermore, the Raman spectrum analysis of the carbon nanotube thin film obtained by the apply | coating method using the HiPco tube, and the analysis using an atomic force microscope (AFM) were performed. The obtained results are shown in FIGS.

図3の可視近赤外吸収スペクトルから分かるように、C6G0.5(COOK)、及びC10G0.5(COOK)と比べて、主鎖の鎖長が32のポリエーテルからなる本発明のデンドリマー(C30G0.5(COOK))を用いた場合には、吸光度の値が高く、分散状態が安定であることが分かる。また、図4のラマンスペクトル及び図5のAFM画像から、本発明のデンドリマーを用いることで長いカーボンナノチューブや太いカーボンナノチューブの分散が可能であることが確認された。 As can be seen from the visible to near infrared absorption spectrum of FIG. 3, C6G0.5 (COOK) 8, and C10G0.5 (COOK) 8 and compared, dendrimers of the present invention that the chain length of the main chain is a polyether of 32 When (C30G0.5 (COOK) 8 ) is used, it can be seen that the absorbance value is high and the dispersion state is stable. Further, from the Raman spectrum of FIG. 4 and the AFM image of FIG. 5, it was confirmed that long carbon nanotubes and thick carbon nanotubes can be dispersed by using the dendrimer of the present invention.

[有機溶媒(THF)中におけるSWNTs分散試験]
水中におけるSWNTs分散試験と同様にして、ねじ口試験管に単層カーボンナノチューブ1 mgと実施例1により得られたコアユニットにおける主鎖の鎖長が32のポリエーテルからなるデンドリマー(C30G0.5(COOK))1 μmol、THF 10 mlを加えサンプルを調製し、室温で、1時間超音波処理を行い、8000 Gで、40分間遠心分離を経て、黒色透明な上澄み溶液を作製した。得られた黒色透明の上澄み溶液中で分散されたカーボンナノチューブについて、可視近赤外吸収スペクトルを用いた分析を行ったところ、図6に示されるようにSWNTsに特徴的なピークが観測された。このことは有機溶媒中にも、SWNTsの分散が可能であること明らかとなった。また、メタノールなどへの分散も可能であった。
[SWNTs dispersion test in organic solvent (THF)]
Similarly to the SWNTs dispersion test in water, a dendrimer (C30G0.5 (C30G0.5 (C30G0.5 ( COOK) 8 ) 1 μmol and 10 ml of THF were added to prepare a sample, which was sonicated at room temperature for 1 hour, and centrifuged at 8000 G for 40 minutes to prepare a black transparent supernatant solution. When the carbon nanotubes dispersed in the obtained black transparent supernatant solution were analyzed using a visible near-infrared absorption spectrum, a characteristic peak of SWNTs was observed as shown in FIG. This indicates that SWNTs can be dispersed in an organic solvent. Moreover, dispersion into methanol or the like was possible.

[MWNTs分散試験]
図7のフローチャートに示されるように、ねじ口試験管に多層カーボンナノチューブ(MWNTs)5 mgと実施例1により得られたコアユニットにおける主鎖の鎖長が32のポリエーテルからなるデンドリマー(C30G0.5(COOK))1 μmol、H2O 10 mlを加えサンプルを調製し、室温で、1時間超音波処理を行い、8000 Gで、40分間遠心分離を経て、図8で示される黒色透明な上澄み溶液を作製した。得られた黒色透明な上澄み溶液中で分散されたカーボンナノチューブについて、可視近赤外吸収スペクトルを用いた分析を行った。得られたスペクトルを図9に示す。本発明のデンドリマーは、SWNTsの分散だけでなくMWNTsの分散も可能であることが分かる。
[MWNTs dispersion test]
As shown in the flowchart of FIG. 7, a dendrimer (C30G0.C) composed of 5 mg multi-walled carbon nanotubes (MWNTs) in a screw test tube and a polyether having a main chain length of 32 in the core unit obtained in Example 1. 5 (COOK) 8 ) Prepare a sample by adding 1 μmol and 10 ml of H 2 O, perform sonication at room temperature for 1 hour, and centrifuge at 8000 G for 40 minutes. A supernatant solution was prepared. The carbon nanotubes dispersed in the resulting black transparent supernatant solution were analyzed using a visible near infrared absorption spectrum. The obtained spectrum is shown in FIG. It can be seen that the dendrimer of the present invention can disperse SWNTs as well as MWNTs.

[MWNTs/PVA複合膜の作製]
MWNTs分散試験と同様にして黒色透明な上澄み溶液を得て、次いで、図7のフローチャートに示されるように、多層カーボンナノチューブとポリビニルアルコールとの複合膜を作製した。得られたMWNTs/PVA複合膜の写真を図10に、MWNTs/PVA複合ゲルの写真を図11に示す。
[Production of MWNTs / PVA composite membrane]
A black transparent supernatant solution was obtained in the same manner as in the MWNTs dispersion test, and then a composite film of multi-walled carbon nanotubes and polyvinyl alcohol was prepared as shown in the flowchart of FIG. A photograph of the obtained MWNTs / PVA composite membrane is shown in FIG. 10, and a photograph of the MWNTs / PVA composite gel is shown in FIG.

Claims (1)

下記一般式(1)で示されるデンドリマー。
[式中、Aの両側にある括弧内の構造は分岐構成単位を表したものであり、該分岐構成単位は繰返し結合されていてもよく、
Aは、主鎖の鎖長の原子数が20〜300である下記一般式(2)で示される2価の有機基からなるコアユニットであり、
[式中、Rは炭素数8〜20の2価の脂肪族炭化水素基であり、Rはそれぞれ同じでも異なっていてもよく、nは1〜20の整数である。];
Bは、窒素原子又は3価の芳香族炭化水素基から選択される少なくとも1種からなる分岐ユニットであり;
Cは、下記式から選択される少なくとも1種からなる延長ユニットであり;
Dは、下記式からなる群から選択される少なくとも1種を含む1価の置換基からなる末端ユニットである。]
[式中、Rは水素原子、炭素数1〜6のアルキル基、又は金属原子であり、Rは炭素数1〜14のアルキル基であり、Rは糖鎖又はポリエチレングリコール鎖であり、mは1〜6の整数である。]
A dendrimer represented by the following general formula (1).
[In the formula, the structure in parentheses on both sides of A represents a branched structural unit, and the branched structural unit may be bonded repeatedly,
A is a core unit composed of a divalent organic group represented by the following general formula (2) having 20 to 300 atoms in the chain length of the main chain,
[Wherein, R 1 is a divalent aliphatic hydrocarbon group having 8 to 20 carbon atoms, R 1 may be the same or different, and n is an integer of 1 to 20. ];
B is a branch unit composed of at least one selected from a nitrogen atom or a trivalent aromatic hydrocarbon group;
C is an extension unit consisting of at least one selected from the following formulae;
D is a terminal unit composed of a monovalent substituent containing at least one selected from the group consisting of the following formulae. ]
[Wherein R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a metal atom, R 3 is an alkyl group having 1 to 14 carbon atoms, and R 4 is a sugar chain or a polyethylene glycol chain. , M is an integer of 1-6. ]
JP2013004689A 2013-01-15 2013-01-15 New dendrimer Expired - Fee Related JP5750810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004689A JP5750810B2 (en) 2013-01-15 2013-01-15 New dendrimer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004689A JP5750810B2 (en) 2013-01-15 2013-01-15 New dendrimer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009035490A Division JP5294263B2 (en) 2009-02-18 2009-02-18 Dispersant for carbon nanotubes comprising dendrimer and method for dispersing carbon nanotubes using the same

Publications (2)

Publication Number Publication Date
JP2013136755A JP2013136755A (en) 2013-07-11
JP5750810B2 true JP5750810B2 (en) 2015-07-22

Family

ID=48912723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004689A Expired - Fee Related JP5750810B2 (en) 2013-01-15 2013-01-15 New dendrimer

Country Status (1)

Country Link
JP (1) JP5750810B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686754B2 (en) * 2005-02-07 2011-05-25 独立行政法人産業技術総合研究所 Aluminum-containing dendrimer, process for producing the same, and aluminum-containing Lewis acid catalyst comprising the dendrimer
JP4991168B2 (en) * 2006-03-10 2012-08-01 大阪瓦斯株式会社 New dendrimer

Also Published As

Publication number Publication date
JP2013136755A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
Huang et al. Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to the near infrared region
Deng et al. An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry
Cao et al. Multiresponsive shape-stabilized hexadecyl acrylate-grafted graphene as a phase change material with enhanced thermal and electrical conductivities
Zang Interfacial donor–acceptor engineering of nanofiber materials to achieve photoconductivity and applications
Llanes-Pallas et al. Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes
de la Torre et al. Functional phthalocyanines: synthesis, nanostructuration, and electro-optical applications
Xue et al. Hybrid self-assembly of a π gelator and fullerene derivative with photoinduced electron transfer for photocurrent generation
Cai et al. Two-dimensional self-assembly of boric acid-functionalized graphene quantum dots: Tunable and superior optical properties for efficient eco-friendly luminescent solar concentrators
Fang et al. Soluble reduced graphene oxide sheets grafted with polypyridylruthenium-derivatized polystyrene brushes as light harvesting antenna for photovoltaic applications
Liu et al. Ultraviolet and infrared two-wavelength modulated self-healing materials based on azobenzene-functionalized carbon nanotubes
JP5294263B2 (en) Dispersant for carbon nanotubes comprising dendrimer and method for dispersing carbon nanotubes using the same
Kanimozhi et al. Structurally analogous degradable version of fluorene–bipyridine copolymer with exceptional selectivity for large-diameter semiconducting carbon nanotubes
Fan et al. Synthesis of polymer grafted carbon nanotubes by nitroxide mediated radical polymerization in the presence of spin-labeled carbon nanotubes
Iyoda Fully conjugated macrocycles composed of thiophenes, acetylenes, and ethylenes
Xu et al. Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes
Zhou et al. The ameliorative thermoelectric performance induced by heteroatom for dithiophene cyclopentadiene-based polymers and carbon nanotubes composite films
Park et al. Hierarchical hybrid nanostructures constructed by fullerene and molecular tweezer
KR20070076875A (en) Dispersant for dispersing carbon nanotube and carbon nanotube composition comprising the same
JP6225399B2 (en) Core-shell carbon nanotube composite material and manufacturing method thereof
Yuan et al. Direct polymerization of highly polar acetylene derivatives and facile fabrication of nanoparticle-decorated carbon nanotubes
JP5750810B2 (en) New dendrimer
Nakagawa et al. Photoisomerization of Covalently Attached Diarylethene on Locally Functionalized Single-Walled Carbon Nanotubes for Photoinduced Wavelength Switching of Near-Infrared Photoluminescence
CN109072066B (en) Light control material, light control film, and light control laminate
Nawaz et al. Synthesis of porphyrinic polystyrenes and their self-assembly with pristine fullerene (C60)
Ban et al. Novel porphyrin polymers: synthesis and photoelectric property

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5750810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees