JP5750801B2 - Electrode manufacturing method, electrode manufacturing apparatus and electrode - Google Patents

Electrode manufacturing method, electrode manufacturing apparatus and electrode Download PDF

Info

Publication number
JP5750801B2
JP5750801B2 JP2011105396A JP2011105396A JP5750801B2 JP 5750801 B2 JP5750801 B2 JP 5750801B2 JP 2011105396 A JP2011105396 A JP 2011105396A JP 2011105396 A JP2011105396 A JP 2011105396A JP 5750801 B2 JP5750801 B2 JP 5750801B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic cell
magnetic field
surface shape
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011105396A
Other languages
Japanese (ja)
Other versions
JP2012237027A (en
Inventor
青柿 良一
良一 青柿
巖 茂木
巖 茂木
森本 良一
良一 森本
杉山 敦史
敦史 杉山
逢坂 哲彌
哲彌 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Yamamoto MS Co Ltd
Original Assignee
Tohoku University NUC
Yamamoto MS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Yamamoto MS Co Ltd filed Critical Tohoku University NUC
Priority to JP2011105396A priority Critical patent/JP5750801B2/en
Publication of JP2012237027A publication Critical patent/JP2012237027A/en
Application granted granted Critical
Publication of JP5750801B2 publication Critical patent/JP5750801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、例えば、バイオセンサー用のセンシング電極、有機合成反応用の触媒電極および固体触媒、燃料電池やリチウム二次電池などの正極および負極などに適用可能な電極製造方法、電極製造装置および電極に関する。   The present invention relates to, for example, a sensing electrode for a biosensor, a catalyst electrode and a solid catalyst for an organic synthesis reaction, an electrode manufacturing method, an electrode manufacturing apparatus, and an electrode applicable to a positive electrode and a negative electrode such as a fuel cell and a lithium secondary battery. About.

キラル分子は、右手と左手の関係にある光学異性体であり、2つの異性体は互いに鏡像異性体と呼ばれる。鏡像異性体のこれらの選択的検出は、医薬分野および工業的に重要な要素である。   A chiral molecule is an optical isomer in a right-handed and left-handed relationship, and the two isomers are called enantiomers of each other. These selective detections of enantiomers are important elements in the pharmaceutical field and in industry.

電極面に対して垂直に磁場を加えて金属、酸化物、有機化合物等を電析(電解析出、めっきなどともいう。)させた場合、キラルならせん転位からなる表面をもつ薄膜を形成することができる。このようにして形成した銅や銀薄膜を電極として使用し、アミノ酸などキラルな構造をもつ試薬に反応(光学異性体反応)を行わせると、電極表面に対応するキラル特性を持つ試薬は、そうでない試薬に比べて高い反応速度をもつ(キラル選択性)。また、磁場と電解電流の向きを同じ方向にした場合と反対の方向にした場合では、キラル選択性が反転する。一方で、磁場の無い場合には、このような選択性は現れない。   When a magnetic field is applied perpendicular to the electrode surface to deposit metal, oxide, organic compound, etc. (also called electrolytic deposition, plating, etc.), a thin film with a surface consisting of chiral screw dislocations is formed. be able to. When the copper or silver thin film thus formed is used as an electrode and a reagent having a chiral structure such as an amino acid is reacted (optical isomer reaction), a reagent having chiral properties corresponding to the electrode surface is High reaction rate compared to non-reagents (chiral selectivity). Moreover, when the direction of the magnetic field and the electrolysis current is set in the opposite direction, the chiral selectivity is reversed. On the other hand, in the absence of a magnetic field, such selectivity does not appear.

非特許文献1、2には、垂直磁場を用いた電析によりキラル選択性を持たせるための表面形状を形成する過程で、電解電流と磁場の相互作用によるローレンツ力が生み出す二つの渦流が重要な役割を果たすと記載されている。図9に示すように、一つは、電極上層部の電流線の広がりが生み出すローレンツ力による竜巻状の回転運動(垂直MHD(Magnetohydrodynamic)流れ)であり、もう一つは、図10に示すように、電極表面近傍における電解電流のゆらぎと磁場Bの作用により生じる微小渦流(マイクロMHD流れ)である。   In Non-Patent Documents 1 and 2, two eddy currents generated by Lorentz force due to the interaction between the electrolysis current and the magnetic field are important in the process of forming the surface shape for imparting chiral selectivity by electrodeposition using a vertical magnetic field It is described that it plays an important role. As shown in FIG. 9, one is a tornado-like rotational motion (vertical MHD (Magnetohydrodynamic) flow) due to the Lorentz force generated by the spreading of current lines in the upper layer of the electrode, and the other is as shown in FIG. Furthermore, a micro eddy current (micro MHD flow) generated by the fluctuation of the electrolysis current in the vicinity of the electrode surface and the action of the magnetic field B.

このうち、マイクロMHD流れは、電析により、電極の表面にキラルならせん転位を直接生じさせるという重要な役割を担い、垂直MHD流れは、マイクロMHD流れに歳差運動(図10参照)を起こさせることで電析の際のイオンの流れを渦巻状にし、キラル選択性を持たせるための表面形状、つまり、キラルならせん転位の形成を助長するという重要な役割を担う。   Of these, the micro MHD flow plays an important role of directly generating chiral screw dislocations on the electrode surface by electrodeposition, and the vertical MHD flow precesses the micro MHD flow (see FIG. 10). By doing so, the ion flow during electrodeposition is swirled, and plays an important role in promoting the formation of a surface shape for imparting chiral selectivity, that is, the formation of chiral screw dislocations.

非特許文献3、4には、金といったキラルでは無い無機材料の電極上に被検出対象の有機性のキラル分子と対となるキラル分子をあらかじめ修飾し、そのような電極にキラル選択性をもたせた表面形状を形成することが可能であり、生体分子の認識に適用可能な利点を有する旨が記載されている。   In Non-Patent Documents 3 and 4, a chiral molecule that is paired with an organic chiral molecule to be detected is preliminarily modified on an electrode of a non-chiral inorganic material such as gold, and such an electrode has chiral selectivity. It is described that it has a merit that can be applied to the recognition of biomolecules.

I. Mogi, K. Watanabe, “Chirality of magnetoelectropolymerized polyaniline electrodes”, Jpn. J. Appl. Phys., Vol. 44, No. 5, pp. L199-L201 (2005)I. Mogi, K. Watanabe, “Chirality of magnetoelectropolymerized polyaniline electrodes”, Jpn. J. Appl. Phys., Vol. 44, No. 5, pp. L199-L201 (2005) 青柿良一、「強磁場中における電気化学過程の理論的解析」、電気化学および工業物理化学、Vol. 73、No. 6、p. 454-459 (2005)Ryoichi Aoki, “Theoretical analysis of electrochemical processes in strong magnetic fields”, Electrochemistry and industrial physical chemistry, Vol. 73, No. 6, p. 454-459 (2005) T. Nakanishi, M. Matsunaga, M. Nagasaka, T. Asahi, T. Osaka, “Enantioselectivity of Redox Reaction of DOPA at the Gold Electrode Modified with a Self-Assembled Monolayer of Homocysteine”, J. Am. Chem. Soc., Vol. 128, No. 41, pp. 13322-13323 (2006)T. Nakanishi, M. Matsunaga, M. Nagasaka, T. Asahi, T. Osaka, “Enantioselectivity of Redox Reaction of DOPA at the Gold Electrode Modified with a Self-Assembled Monolayer of Homocysteine”, J. Am. Chem. Soc. , Vol. 128, No. 41, pp. 13322-13323 (2006) M. Matsunaga, M. Nagasaka, T. Nakanishi, T. Sawaguchi, T. Osaka, “Effect of pH on the Enantiospecificity of Homocysteine Monolayer on Au(111) for the Redox Reaction of 3,4-Dihydroxyphenylalanine”, Electroanalysis, Vol. 20, No. 9, pp. 955-962 (2008)M. Matsunaga, M. Nagasaka, T. Nakanishi, T. Sawaguchi, T. Osaka, “Effect of pH on the Enantiospecificity of Homocysteine Monolayer on Au (111) for the Redox Reaction of 3,4-Dihydroxyphenylalanine”, Electroanalysis, Vol 20, No. 9, pp. 955-962 (2008)

しかしながら、非特許文献1、2では、電極上層部分での電流線の曲がりから発生する垂直MHD流れを利用する必要があるため、垂直MHD流れの回転速度と方向の制御が困難であった。そのため、例えば、電極にキラル選択性を持たせるのに適した、特定の表面形状を形成するのが困難であった。   However, in Non-Patent Documents 1 and 2, since it is necessary to use the vertical MHD flow generated from the bending of the current line in the electrode upper layer portion, it is difficult to control the rotational speed and direction of the vertical MHD flow. Therefore, for example, it has been difficult to form a specific surface shape suitable for imparting chiral selectivity to the electrode.

また、非特許文献3、4では、例えば、電極にキラル選択性を持たせるのに適した、特定の表面形状を形成するにあたって、被検出対象のキラル分子と対となるキラル分子を、電極上にあらかじめ修飾しておかなければならず、製造工程が複雑であった。   In Non-Patent Documents 3 and 4, for example, when forming a specific surface shape suitable for imparting chiral selectivity to an electrode, a chiral molecule paired with a chiral molecule to be detected is placed on the electrode. The manufacturing process was complicated.

本発明は前記状況に鑑みてなされたものであり、例えば、キラル選択性を持たせるのに適した、特定の表面形状を形成した電極を簡便に製造することのできる電極製造方法、電極製造装置および電極を提供することを課題とする。   The present invention has been made in view of the above circumstances. For example, an electrode manufacturing method and an electrode manufacturing apparatus capable of easily manufacturing an electrode having a specific surface shape suitable for imparting chiral selectivity. Another object is to provide an electrode.

本発明は、表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、磁石で発生させた磁場の向きと平行に設定された自転軸まわりに特定の方向で電解槽を自転させつつ、前記電解槽とともに前記自転軸まわりに自転するように前記電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極に対して電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造することを特徴としている。 The present invention relates to an electrode manufacturing method for manufacturing an electrode having a specific surface shape formed on a surface thereof, and an electrolytic cell in a specific direction around a rotation axis set in parallel with the direction of a magnetic field generated by a magnet. The voltage and current through the electrolyte medium with respect to a pair of electrodes comprising a cathode serving as a working electrode and an anode serving as a counter electrode provided in the electrolytic cell so as to rotate about the rotation axis together with the electrolytic cell. at least one of the applying, the electrolytic counter electrode performs electrodeposition line Utotomoni the working electrode, by the fact that to form a particular surface shape on the surface of the working electrode, the specific surface shape on the surface of the It is characterized by manufacturing an electrode in which the electrode is formed .

本発明は、表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、磁石により磁場を発生させる磁場発生ステップと、発生させた前記磁場中において、電解質媒体を収納した電解槽を、前記磁場の向きと平行に設定された自転軸まわりに特定の方向で自転させる電解槽自転ステップと、自転している前記電解槽とともに前記自転軸まわりに自転するように前記電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極に対して前記電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造する電解ステップと、を含むことを特徴としている。 The present invention is an electrode manufacturing method for manufacturing an electrode having a specific surface shape formed on a surface thereof, and a magnetic field generation step for generating a magnetic field by a magnet, and an electrolyte medium is accommodated in the generated magnetic field. An electrolytic cell rotation step for rotating the electrolytic cell in a specific direction around a rotation axis set parallel to the direction of the magnetic field, and the electrolytic cell so as to rotate around the rotation axis together with the rotating electrolytic cell. at least one of the applied, the electrolyte of the counter line Utotomoni the working electrode of the voltage through the electrolyte medium and current to the pair of electrodes composed of an anode as a cathode and the counter electrode serving as a working electrode which is provided within perform the electrolytic deposition, by forming the specific surface shape on the surface of the working electrode, and electrolytic step of manufacturing an electrode formed with a specific surface shape to the surface, It is characterized in that it comprises.

本発明は、表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、電解質媒体を収納した電解槽を、磁石により発生させる磁場の向きと平行に設定された自転軸まわりに特定の方向で自転させる電解槽自転ステップと、自転している前記電解槽に対し、前記磁石により磁場を発生させる磁場発生ステップと、発生させた前記磁場中で自転している前記電解槽内において前記電解槽とともに前記自転軸まわりに自転するように前記電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極に対して前記電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造する電解ステップと、を含むことを特徴としている。 The present invention relates to an electrode manufacturing method for manufacturing an electrode having a specific surface shape formed on a surface thereof, wherein an electrolytic cell containing an electrolyte medium is set in parallel with a direction of a magnetic field generated by a magnet. An electrolytic cell rotation step that rotates around in a specific direction, a magnetic field generation step that generates a magnetic field with the magnet for the rotating electrolytic cell, and the electrolytic cell that rotates in the generated magnetic field. Of the voltage and current through the electrolyte medium with respect to a pair of electrodes comprising a cathode as a working electrode and an anode as a counter electrode provided in the electrolytic cell so as to rotate around the rotation axis together with the electrolytic cell. of applying at least one, the electrolysis of the counter perform electrodeposition line Utotomoni the working electrode, by the fact that to form a particular surface shape on the surface of the working electrode, prior to It is characterized in that it comprises an electrolyte steps of manufacturing an electrode formed with a specific surface shape to the surface.

前記したいずれの発明も、磁石により発生させた磁場の向きと平行に設定された自転軸まわりを反時計回りまたは時計回りに電解槽を自転させる。自転する電解槽内には、電解槽とともに自転軸まわりに自転するように一対の電極が設けられており、電解質媒体が収納されているので、電解槽を自転させつつ、電解質媒体を通じて一対の電極に対して外部電源から電圧および電流のうちの少なくとも一方を印加すると電極表面には電解反応による非平衡ゆらぎによって次第に微小な凹凸部が形成される。電解によって形成された凹部と凸部では、凹部の方が、摩擦が少なくすべりが良い。電極面に向けて磁場を垂直に印加する本発明における電解電流の方向は、電極面に対して垂直な成分に加えて平行な水平成分が存在する。そのため、ローレンツ力が働き、凸部では電極の回転方向と同方向のマイクロMHD流れが発生し、凹部では電極の回転方向と逆方向のマイクロMHD流れが発生すると考えられる。このとき、すべりの良い凹部で生じる流れが優勢になることから、電極の回転方向と逆方向の回転の析出面が優勢になる。そして、電解槽全体の自転によって、図1(a)に示すように、マイクロMHD流れに歳差運動が生じ、例えば、キラル選択性を持たせるのに適した、特定の表面形状を電極の表面に形成させることが可能になると考えられる(図7(a)および(b)参照)。つまり、本発明によれば、図1(b)に示すような、回転速度と方向の制御が困難な垂直MHD流れを積極的に発生させなくても、マイクロMHD流れに歳差運動を起こさせることができ、前記したような特定の表面形状を電極の表面に形成させることが可能となる。   In any of the above-described inventions, the electrolytic cell is rotated counterclockwise or clockwise around the rotation axis set in parallel with the direction of the magnetic field generated by the magnet. In the rotating electrolytic cell, a pair of electrodes are provided so as to rotate around the rotation axis together with the electrolytic cell, and the electrolyte medium is accommodated, so that the pair of electrodes are passed through the electrolytic medium while rotating the electrolytic cell. On the other hand, when at least one of voltage and current is applied from an external power source, minute uneven portions are gradually formed on the electrode surface due to non-equilibrium fluctuation due to electrolytic reaction. Of the recesses and protrusions formed by electrolysis, the recesses have less friction and better slip. The direction of the electrolytic current in the present invention in which a magnetic field is applied perpendicularly to the electrode surface has a parallel horizontal component in addition to a component perpendicular to the electrode surface. Therefore, the Lorentz force acts, and it is considered that a micro MHD flow in the same direction as the rotation direction of the electrode is generated in the convex portion and a micro MHD flow in the direction opposite to the rotation direction of the electrode is generated in the concave portion. At this time, since the flow generated in the slippery recess becomes dominant, the precipitation surface of the rotation in the direction opposite to the rotation direction of the electrode becomes dominant. Then, due to the rotation of the entire electrolytic cell, as shown in FIG. 1A, precession occurs in the micro MHD flow. For example, a specific surface shape suitable for imparting chiral selectivity is formed on the surface of the electrode. (See FIGS. 7A and 7B). That is, according to the present invention, as shown in FIG. 1 (b), it is possible to cause precession in the micro MHD flow without actively generating a vertical MHD flow that is difficult to control the rotation speed and direction. It is possible to form a specific surface shape as described above on the surface of the electrode.

本発明は、表面に特定の表面形状を形成した電極を製造するための電極製造装置であって、磁場を発生させる磁石と、発生させた前記磁場中において、当該磁場の向きと平行に設定された自転軸まわりを特定の方向に自転するように設けられ、電解質媒体を入出自在に収納することのできる電解槽と、前記電解槽内に、当該電解槽とともに前記自転軸まわりに自転するように互いに離間して設けられた作動極となる陰極および対極となる陽極からなる一対の電極と、前記電解槽を前記自転軸まわりに任意の自転速度で自転させるアクチュエータと、を備え、前記電解槽を前記自転軸まわりに特定の方向へ自転させつつ、前記一対の電極に対して前記電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造することを特徴としている。 The present invention is an electrode manufacturing apparatus for manufacturing an electrode having a specific surface shape formed on a surface thereof, and is set in parallel with the direction of the magnetic field in the generated magnetic field and the magnet. An electrolytic cell provided to rotate around a rotation axis in a specific direction and capable of accommodating an electrolyte medium in a freely enterable and retractable manner, and to rotate around the rotation axis together with the electrolytic cell in the electrolytic cell. comprising a pair of electrodes composed of an anode as a cathode and the counter electrode serving as the working electrode being spaced from each other, an actuator for rotating at an arbitrary rotation speed the electrolyzer around the rotation axis, to said electrolytic cell The electrode is electrolyzed by applying at least one of voltage and current to the pair of electrodes through the electrolyte medium while rotating in a specific direction around the rotation axis. Both perform electrodeposition of the working electrode, by forming the specific surface shape on the surface of the working electrode, is characterized by manufacturing an electrode formed with a specific surface shape to the surface.

本発明は、このような構成としているので、磁石により発生させた磁場中で、当該磁場の向きと平行に設定された自転軸まわりを反時計回りまたは時計回りに電解槽を自転させることができる。従って、当該電解槽内に電解質媒体を収納してこれを自転させ、電解槽とともに自転軸まわりに自転する一対の電極の間で電圧および電流のうちの少なくとも一方を印加すると、作動極として機能する電極の表面にマイクロMHD流れを生じさせ、さらに、生じたマイクロMHD流れに歳差運動を起こさせることが可能になる。そのため、例えば、キラル選択性を持たせるのに適した、特定の表面形状を電極の表面に形成させることが可能になると考えられる。つまり、本発明によれば、図1(b)に示すような、回転速度と方向の制御が難しい垂直MHD流れを積極的に発生させなくても、マイクロMHD流れに歳差運動を起こさせることができ、前記したような特定の表面形状を電極の表面に形成させることが可能となる。   Since the present invention has such a configuration, in the magnetic field generated by the magnet, the electrolytic cell can be rotated counterclockwise or clockwise around the rotation axis set in parallel with the direction of the magnetic field. . Therefore, when an electrolytic medium is accommodated in the electrolytic cell and rotated, and when at least one of voltage and current is applied between the pair of electrodes rotating about the rotation axis together with the electrolytic cell, the electrolytic cell functions as an operating electrode. It is possible to generate a micro MHD flow on the surface of the electrode and to cause precession of the generated micro MHD flow. Therefore, for example, it is considered that a specific surface shape suitable for imparting chiral selectivity can be formed on the surface of the electrode. That is, according to the present invention, it is possible to cause precession in the micro MHD flow without actively generating a vertical MHD flow that is difficult to control the rotation speed and direction as shown in FIG. Thus, the specific surface shape as described above can be formed on the surface of the electrode.

本発明においては、前記作動極は、これを固定する作動極固定手段によって固定され、当該作動極固定手段は、(垂直MHD流れなどの)対流を抑制する対流抑制手段を有していることが好ましい。なお、前記対流は、作動極上層部の電流線の広がりが生み出すローレンツ力による竜巻状の回転運動である垂直MHD流れである。 In the present invention, the working electrode is fixed by working electrode fixing means for fixing the working electrode, and the working electrode fixing means has convection suppressing means for suppressing convection (such as a vertical MHD flow). preferable. The convection is a vertical MHD flow that is a tornado-like rotational motion by Lorentz force generated by the spreading of current lines in the upper layer of the working pole.

このようにすれば、作動極と対極の間で電圧および電流のうちの少なくとも一方を印加した際に不可避的に生じる垂直MHD流れ(溶液対流)などの磁気対流といった、マイクロMHD流れを乱す対流を抑制することができる。そのため、例えば、キラル選択性を持たせるのに適した、特定の表面形状を電極の表面に、より好適に形成することができるようになる。   In this way, convection that disturbs the micro MHD flow, such as magnetic convection such as vertical MHD flow (solution convection) inevitably generated when at least one of a voltage and a current is applied between the working electrode and the counter electrode. Can be suppressed. Therefore, for example, a specific surface shape suitable for imparting chiral selectivity can be more suitably formed on the surface of the electrode.

本発明は、前記したいずれかの電極製造方法によって製造された電極であって、表面に特定の表面形状が形成されていることを特徴としている。   The present invention is an electrode manufactured by any one of the electrode manufacturing methods described above, and is characterized in that a specific surface shape is formed on the surface.

本発明はこのような構成としているので、電極として用いると、表面に形成された特定の表面形状に対応したキラルな構造をもつ分子に対する反応電流(反応速度)が選択的に高くなる。つまり、本発明によれば、電極にキラル選択性を持たせることができる。また、光学異性体反応に対する固体触媒としてキラル選択性を持たせることができる。   Since the present invention has such a configuration, when it is used as an electrode, a reaction current (reaction rate) for a molecule having a chiral structure corresponding to a specific surface shape formed on the surface is selectively increased. That is, according to the present invention, the electrode can have chiral selectivity. Moreover, chiral selectivity can be given as a solid catalyst with respect to optical isomer reaction.

本発明によれば、例えば、キラル選択性を持たせるのに適した、特定の表面形状を形成した電極を簡便に製造することのできる電極製造方法および電極製造装置を提供することができる。
また、本発明によれば、例えば、キラル選択性を持たせるのに適した、特定の表面形状を形成した電極を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the electrode manufacturing method and electrode manufacturing apparatus which can manufacture simply the electrode which formed the specific surface shape suitable for giving chiral selectivity, for example can be provided.
Moreover, according to the present invention, for example, an electrode having a specific surface shape suitable for imparting chiral selectivity can be provided.

(a)は、電解槽全体を自転させてマイクロMHD流れに歳差運動を起こさせる様子を説明した概念図であり、(b)は、垂直MHD流れによってマイクロMHD流れに歳差運動を起こさせる様子を説明した概念図である。(A) is a conceptual diagram explaining how the entire electrolytic cell rotates to cause precession in the micro MHD flow, and (b) causes precession in the micro MHD flow by the vertical MHD flow. It is the conceptual diagram explaining the mode. 本発明に係る電極製造方法の具体的な一態様を説明するフローチャートである。It is a flowchart explaining one specific aspect of the electrode manufacturing method which concerns on this invention. 本発明に係る電極製造方法の具体的な他の態様を説明するフローチャートである。It is a flowchart explaining the other concrete aspect of the electrode manufacturing method which concerns on this invention. 一実施形態に係る電極製造装置の構成を説明する断面図である。It is sectional drawing explaining the structure of the electrode manufacturing apparatus which concerns on one Embodiment. 本発明で用いる電解槽の構成を説明する断面図である。It is sectional drawing explaining the structure of the electrolytic vessel used by this invention. (a)は作動極を固定した作動極固定手段に対流抑制手段を設けていない状態を示す断面図であり、(b)は作動極を固定した作動極固定手段に対流抑制手段を設けた状態を示す断面図である。(A) is sectional drawing which shows the state which has not provided the convection suppression means in the working electrode fixing means which fixed the working electrode, (b) is the state which provided the convection suppressing means in the working electrode fixing means which fixed the working electrode. FIG. (a)は電極の析出表面を走査型電子顕微鏡(三次元SEM)で撮像した電子顕微鏡写真であり、(b)は三次元SEMによる測定結果を示すグラフである。なお、同図(a)中のスケールバーは20μmを示し、同図(b)中の横軸は、同図(a)に示す特徴的な形状の直径を示し、縦軸は、当該特徴的な形状の深さを示す。単位はいずれもマイクロメートル[μm]である。(A) is the electron micrograph which imaged the deposition surface of the electrode with the scanning electron microscope (three-dimensional SEM), (b) is a graph which shows the measurement result by three-dimensional SEM. In addition, the scale bar in the figure (a) shows 20 micrometers, the horizontal axis in the figure (b) shows the diameter of the characteristic shape shown in the figure (a), and the vertical axis shows the characteristic. The depth of a simple shape. All units are micrometers [μm]. 磁場中で製造した電極を用いて、磁石の磁場が無い環境下で得られたサイクリックボルタモグラムであって、(a)は電解槽の自転を行わない(自転なし0Hz)条件で製造した電極を用いて得られたサイクリックボルタモグラムであり、(b)は電解槽の自転を反時計回りで行った(自転;反時計回り2Hz)条件で製造した電極を用いて得られたサイクリックボルタモグラムであり、(c)は電解槽の自転を時計回りで行った(自転;時計回り2Hz)条件で製造した電極を用いて得られたサイクリックボルタモグラムである。It is the cyclic voltammogram obtained in the environment without the magnetic field of a magnet using the electrode manufactured in the magnetic field, Comprising: (a) is the electrode manufactured on the conditions which do not rotate an electrolytic cell (no rotation 0Hz). (B) is a cyclic voltammogram obtained using an electrode manufactured under the condition that the electrolytic cell was rotated counterclockwise (rotation; counterclockwise 2 Hz). (C) is a cyclic voltammogram obtained by using an electrode manufactured under the condition that the electrolytic cell was rotated clockwise (rotation; clockwise 2 Hz). 従来技術による垂直MHD流れを発生させるメカニズムを説明する概念図である。It is a conceptual diagram explaining the mechanism which generate | occur | produces the vertical MHD flow by a prior art. 従来技術による垂直MHD流れによってマイクロMHD流れに歳差運動を起こさせるメカニズムを説明する概念図である。FIG. 6 is a conceptual diagram illustrating a mechanism for causing precession in a micro MHD flow by a vertical MHD flow according to the prior art.

以下、適宜図面を参照して本発明に係る電極製造方法、電極製造装置および電極を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an electrode manufacturing method, an electrode manufacturing apparatus, and an embodiment for carrying out an electrode according to the present invention will be described with reference to the drawings as appropriate.

まず、本発明に係る電極製造方法について説明する。
本発明に係る電極製造方法は、表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、磁石で発生させた磁場の向きと平行に設定された自転軸まわりを特定の方向(反時計回りまたは時計回り(なお、電解槽の上方から見たときの反時計回りは、対極から作動極の表面を見たときに時計回りとなる。))に電解槽を自転させつつ(つまり、自転軸を中心とした反時計回りまたは時計回りに電解槽を自転させつつ)、電解槽とともに自転軸まわりに自転するように電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極(以下、単に「一対の電極」と呼称することもある。)に対して電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、対極の電解を行うとともに作動極の電析を行い、作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造するというものである。なお、電極表面に形成される特定の表面形状としては、マイクロメートルオーダーの直径と深さを有する微小な凹部が電極表面に無数に形成されている状態をいう。
First, the electrode manufacturing method according to the present invention will be described.
Electrode manufacturing method according to the present invention is an electrode production method for producing an electrode formed with a specific surface shape to the surface, identified around rotation shaft which is set parallel to the direction of the magnetic field generated by the magnet Rotate the electrolytic cell in the direction of ( counterclockwise or clockwise ( note that counterclockwise when viewed from above the electrolytic cell is clockwise when the surface of the working electrode is viewed from the counter electrode)). (That is, while rotating the electrolytic cell counterclockwise or clockwise around the rotation axis) and the cathode and counter electrode serving as working electrodes provided in the electrolytic cell so as to rotate around the rotation axis together with the electrolytic cell a pair of electrodes composed of an anode comprising (hereinafter, sometimes simply referred to as "a pair of electrodes.") at least one of the voltage and current through the electrolyte medium is applied against the row of electrolysis counter Utotomoni Working electrode power Was carried out, by the fact that to form a particular surface shape on the surface of the working electrode, is that the production of electrodes forming a specific surface shape to the surface. Note that the specific surface shape formed on the electrode surface refers to a state in which an infinite number of minute concave portions having a diameter and depth on the order of micrometers are formed on the electrode surface.

より具体的に説明すると、図2に示す一態様のように、磁場発生ステップS11と、電解槽自転ステップS12と、電解ステップS13と、を含み、これらのステップをこの手順で行うことが挙げられる。
また、図3に示す他の態様のように、電解槽自転ステップS21と、磁場発生ステップS22と、電解ステップS23と、を含み、これらのステップをこの手順で行ってもよい。
More specifically, as shown in FIG. 2, the magnetic field generation step S <b> 11, the electrolytic cell rotation step S <b> 12, and the electrolysis step S <b> 13 are included, and these steps are performed in this procedure. .
Moreover, like the other aspect shown in FIG. 3, electrolysis tank autorotation step S21, magnetic field generation | occurrence | production step S22, and electrolysis step S23 may be included, and these steps may be performed in this procedure.

ここで、図2および図3を参照して電極製造方法の態様について説明する前に、図4を参照して電極製造方法の実施に直接使用できる装置の一例を説明する。   Here, before describing the aspect of the electrode manufacturing method with reference to FIG. 2 and FIG. 3, an example of an apparatus that can be directly used for carrying out the electrode manufacturing method will be described with reference to FIG.

図4に示すように、かかる電極製造装置1は、表面に特定の表面形状を形成した電極を製造するための装置であり、磁場Bを発生させる磁石2と、発生させた磁場B中において、当該磁場Bの向きと平行に設定された自転軸ARまわりを反時計回りまたは時計回りに自転するように設けられ、電解質媒体5(図5参照)を入出自在に収納することのできる電解槽6と、この電解槽6内に、電解槽6とともに自転軸ARまわりに自転するように互いに離間して設けられた一対の電極7、7(図5参照)と、電解槽6を自転軸ARまわりに任意の自転速度で自転させるアクチュエータ8と、を備えている。
なお、この電極製造装置1は、電解槽6の自転を行わせるために、電解槽6とアクチュエータ8とを軸部材9で接続している。また、軸部材9の一部には、図示しない配線により作動極71、対極72、照合極73のそれぞれと接続された接続部71a、72a、73aが設けられており、これらはブラシ電極71b、72b、73bによって図示しない外部電源と接続されている。これにより、電解槽6への通電を可能にしている。また、電解槽6の自転をスムーズに行わせるためのベアリング10も備えている。
As shown in FIG. 4, the electrode manufacturing apparatus 1 is an apparatus for manufacturing an electrode having a specific surface shape formed on the surface thereof. In the magnet 2 that generates the magnetic field B and the generated magnetic field B, An electrolytic cell that is provided so as to rotate counterclockwise or clockwise around a rotation axis AR set in parallel to the direction of the magnetic field B, and that can accommodate the electrolyte medium 5 (see FIG. 5) in a freely detachable manner. 6, a pair of electrodes 7 and 7 (see FIG. 5) which are provided in the electrolytic cell 6 so as to rotate around the rotation axis AR together with the electrolytic cell 6, and the electrolytic cell 6 is connected to the rotation axis AR. And an actuator 8 that rotates around at an arbitrary rotation speed.
In this electrode manufacturing apparatus 1, the electrolytic cell 6 and the actuator 8 are connected by a shaft member 9 in order to cause the electrolytic cell 6 to rotate. Further, a part of the shaft member 9 is provided with connection portions 71a, 72a, 73a connected to the working electrode 71, the counter electrode 72, and the verification electrode 73 by wiring (not shown), and these include brush electrodes 71b, 72b and 73b are connected to an external power source (not shown). Thereby, electricity supply to the electrolytic cell 6 is enabled. Moreover, the bearing 10 for performing the autorotation of the electrolytic cell 6 smoothly is also provided.

前記した電極製造方法や電極製造装置1で用いられる磁石2としては、永久磁石、超電導磁石、常電導磁石などを挙げることができる。磁石2で発生させる磁場Bは、回転させない静磁場であるのが好ましいが、回転磁場や時間変動磁場であってもよい。   Examples of the magnet 2 used in the electrode manufacturing method and the electrode manufacturing apparatus 1 include a permanent magnet, a superconducting magnet, and a normal conducting magnet. The magnetic field B generated by the magnet 2 is preferably a static magnetic field that is not rotated, but may be a rotating magnetic field or a time-varying magnetic field.

電解槽6は、絶縁性を有し、かつ耐酸性および耐アルカリ性を有する材料、例えば、ガラス、フッ素系樹脂などで構成することができる。なお、電解槽6は、電解質媒体5を入出自在に収納するため、図5に示すように、容器本体61と蓋体62でこれを収納できるように構成するのが好ましい。この際、容器本体61と蓋体62をOリング63等のシール部材でシールすると液密性が向上するので好適である。   The electrolytic cell 6 can be made of a material having insulation properties and acid resistance and alkali resistance, such as glass and fluorine resin. In addition, since the electrolytic cell 6 accommodates the electrolyte medium 5 so that it can enter and exit, it is preferable that the electrolytic cell 6 be configured so as to be accommodated by a container body 61 and a lid 62 as shown in FIG. At this time, it is preferable that the container main body 61 and the lid 62 are sealed with a sealing member such as an O-ring 63 because liquid tightness is improved.

電解質媒体5に含まれる電解質は、媒体中で電解を行おうとする金属イオンを生成できるものであれば好適に用いることができ、例えば、銅、ニッケル、コバルト、クロム、亜鉛、カドミウム、スズ、鉛、鉄、金、銀、ロジウム、白金、パラジウム、シリコンの電析、これらの合金電析およびこれらの酸化物や硫化物といった化合物電析さらには微粒子物質との複合電析の中から選択できる。また、電気化学的に使用可能であり、電析可能である導電性ポリマーや、前記金属群からなる電極の溶解、気相成長法などの乾式薄膜製造法で使用される窒化物や酸化物、半導体、磁性体などの様々な材料も用いことができる。 The electrolyte contained in the electrolyte medium 5 can be suitably used as long as it can generate metal ions to be electrolyzed in the medium. For example, copper, nickel, cobalt, chromium, zinc, cadmium, tin, lead , Iron, gold, silver, rhodium, platinum, palladium, silicon electrodeposition, alloy electrodeposition thereof, compound electrodeposition of these oxides and sulfides, and composite electrodeposition with fine particles. In addition, a conductive polymer that can be used electrochemically, and can be electrodeposited, a nitride or an oxide used in a dry thin film manufacturing method such as dissolution of an electrode made of the metal group, vapor phase growth method, semiconductor can Ru also used a variety of materials such as magnetic material.

電解質媒体5に用いられる媒体は、例えば、水溶液、有機溶媒、溶融塩、イオン性液体などの溶媒を好適に用いることができるが、導電性を有し、前記した電解質を含ませることができるものであればよいため、プラズマなどの気体を用いることも可能である。   As the medium used for the electrolyte medium 5, for example, a solvent such as an aqueous solution, an organic solvent, a molten salt, or an ionic liquid can be suitably used. However, the medium has conductivity and can contain the above-described electrolyte. Therefore, a gas such as plasma can be used.

溶媒を用いた電解質媒体5であれば、電気化学的に使用することのできる公知の液体組成物(めっき液)を用いることができる。かかるめっき液としては、例えば、市販の酸性硫酸銅溶液などを好適に用いることができる。   If it is the electrolyte medium 5 using a solvent, the well-known liquid composition (plating liquid) which can be used electrochemically can be used. As such a plating solution, for example, a commercially available acidic copper sulfate solution can be suitably used.

一対の電極7、7は、図示しない外部電源と接続され、電解質媒体5を通じて電圧および電流のうちの少なくとも一方が印加される。従って、一対の電極7、7のうち一方は作動極71(図5参照)として機能し、他方は対極72(図5参照)として機能する。電圧および電流のうちの少なくとも一方が印加されると、電解質が電解してCu2+などの金属イオンjが生じ、作動極71の表面に析出する。 The pair of electrodes 7 and 7 are connected to an external power source (not shown), and at least one of voltage and current is applied through the electrolyte medium 5. Accordingly, one of the pair of electrodes 7 and 7 functions as the working electrode 71 (see FIG. 5), and the other functions as the counter electrode 72 (see FIG. 5). When at least one of voltage and current is applied, the electrolyte is electrolyzed and metal ions j such as Cu 2+ are generated and deposited on the surface of the working electrode 71.

一対の電極7、7はともに、導電性を有する金属で形成することができ、例えば、銅、ニッケル、コバルト、クロム、亜鉛、カドミウム、スズ、鉛、鉄、金、銀、ロジウム、白金、パラジウム、シリコンおよびこれらの合金の中から適宜選択して形成することができる。なお、電解により特定の表面形状が形成される電極7(作動極71)は、板状、薄膜状だけでなく、粉体、針状や樹枝状などさまざまな形態とすることができる。従って、製造された電極7(作動極71)は単に電気化学反応用だけでなく、種々の化学反応用の固体触媒などとしても利用することができる。   The pair of electrodes 7 and 7 can both be formed of a conductive metal, for example, copper, nickel, cobalt, chromium, zinc, cadmium, tin, lead, iron, gold, silver, rhodium, platinum, palladium It can be formed by appropriately selecting from silicon and alloys thereof. In addition, the electrode 7 (working electrode 71) on which a specific surface shape is formed by electrolysis can have various forms such as a powder, a needle shape, a dendritic shape as well as a plate shape and a thin film shape. Therefore, the manufactured electrode 7 (working electrode 71) can be used not only for an electrochemical reaction but also as a solid catalyst for various chemical reactions.

自転軸ARは、磁石2で発生させた磁場Bの向きと平行に設定されていればよい。従って、図示しない床面に対して直角となるように設けると確実に特定の表面形状を電極7(作動極71)表面に形成することができるので好ましいが、床面と平行となるように設けることも可能である。   The rotation axis AR only needs to be set parallel to the direction of the magnetic field B generated by the magnet 2. Therefore, it is preferable to provide the surface so as to be perpendicular to a floor surface (not shown) because a specific surface shape can be surely formed on the surface of the electrode 7 (working electrode 71), but it is provided so as to be parallel to the floor surface. It is also possible.

なお、図5に示すように、一対の電極7、7のうちの一方が作動極71として機能し、他方が対極72として機能する場合において、その一態様として、作動極71を電解槽6内の上部に下向きに配置し、対極72を電解槽6内の下部に上向きで配置することができる。   As shown in FIG. 5, when one of the pair of electrodes 7 and 7 functions as the working electrode 71 and the other functions as the counter electrode 72, the working electrode 71 is placed in the electrolytic cell 6 as one mode. The counter electrode 72 can be disposed upward at the bottom of the electrolytic cell 6.

この配置状態で磁場Bを作動極71に向かうように発生させた場合において、電解槽6の上方から見たときに、電解槽6を自転軸ARまわりに反時計回りR1に回転させると、非平衡ゆらぎによって形成された微小な凸部に生じる作動極71の回転方向と同じ回転方向のマイクロMHD流れ、および微小な凹部に生じる作動極71の回転方向と反対の回転方向のマイクロMHD流れのうち、後者のマイクロMHD流れが優勢になり、作動極71の表面にキラル選択性を持たせるのに適した、特定の表面形状を好適に形成することができる(図7(a)および(b)参照)。その結果、例えば、サイクリックボルタンメトリーでD−AlanineよりもL−Alanineの電流値を高くすることができるといった、キラル選択性を得ることができるようになる。これは、前記した配置状態で磁場Bを対極72に向かうように発生させた場合において、電解槽6の上方から見たときに、電解槽6を自転軸ARまわりに時計回りR2に回転させたときも全く同様の結果が得られると考えられる。   In the case where the magnetic field B is generated toward the working electrode 71 in this arrangement state, when the electrolytic cell 6 is rotated counterclockwise R1 around the rotation axis AR when viewed from above the electrolytic cell 6, non-rotation occurs. Among the micro MHD flow in the same rotation direction as the rotation direction of the working pole 71 generated in the minute convex portion formed by the equilibrium fluctuation, and the micro MHD flow in the rotation direction opposite to the rotation direction of the working pole 71 generated in the minute concave portion The latter micro MHD flow becomes dominant, and a specific surface shape suitable for imparting chiral selectivity to the surface of the working electrode 71 can be suitably formed (FIGS. 7A and 7B). reference). As a result, for example, it is possible to obtain chiral selectivity such that the current value of L-Alane can be made higher than that of D-Alane by cyclic voltammetry. This is because when the magnetic field B is generated toward the counter electrode 72 in the arrangement state described above, the electrolytic cell 6 is rotated clockwise around the rotation axis AR clockwise R2 when viewed from above the electrolytic cell 6. Sometimes the same result is expected.

これとは反対に、前記した配置状態で磁場Bを作動極71に向かうように発生させた場合において、電解槽6の上方から見たときに、電解槽6を自転軸ARまわりに時計回りR2に回転させると、優勢なマイクロMHD流れが逆転するので、反時計回りR1とは異なる表面形状を作動極71の表面に形成することができると考えられる。その結果、例えば、サイクリックボルタンメトリーでL−AlanineよりもD−Alanineの電流値を高くすることができるといった、キラル選択性を得ることができるようになる。これは、前記した配置状態で磁場Bを対極72に向かうように発生させた場合において、電解槽6の上方から見たときに、電解槽6を自転軸ARまわりに反時計回りR1に回転させたときも全く同様の結果が得られると考えられる。   On the contrary, when the magnetic field B is generated toward the working electrode 71 in the arrangement state described above, when viewed from above the electrolytic cell 6, the electrolytic cell 6 is rotated clockwise around the rotation axis AR R2. Since the dominant micro-MHD flow is reversed when rotated to, it is considered that a surface shape different from the counterclockwise direction R1 can be formed on the surface of the working electrode 71. As a result, for example, it is possible to obtain chiral selectivity such that the current value of D-Aline can be made higher than that of L-Aline by cyclic voltammetry. This is because when the magnetic field B is generated so as to go to the counter electrode 72 in the arrangement state described above, the electrolytic cell 6 is rotated counterclockwise R1 around the rotation axis AR when viewed from above the electrolytic cell 6. It is considered that exactly the same result can be obtained.

作動極71は、図5に示すように、これを固定する任意の手段(作動極固定手段74)によって固定されている。作動極固定手段74としては、図5に示すように、Oリング63を介して蓋体62と電極押込部材64とで作動極71を挟んで固定することが例示される。   As shown in FIG. 5, the working electrode 71 is fixed by an arbitrary means (working electrode fixing means 74) for fixing the working electrode 71. As the working electrode fixing means 74, as shown in FIG. 5, the working electrode 71 is fixed with the lid 62 and the electrode pushing member 64 sandwiched via an O-ring 63.

なお、図5では、蓋体62の作動極71に通じる筒状の内壁部62aが、作動極71と対極72の間に電圧および電流のうちの少なくとも一方を印加した際に不可避的に生じる垂直MHD流れ(溶液対流)などの磁気対流といった、マイクロMHD流れに歳差運動を生じさせる対流を抑制する対流抑制手段75として機能している。なお、図6(a)に示すように、作動極71の表面と蓋体62の内面部62bとがほぼ同じ高さの場合は対流を抑制する効果が得られない。このような場合、図6(b)に示すように、作動極71から図6(b)において図示しない対極72(図5参照)に向けて筒状体を設けたり、図示しないハニカム構造体を設けたりすることによって、対流を抑制する効果を得ることができる。このとき、電解させるにあたって電位パルス法および電流パルス法を併用するとより好ましい。電位および電流をパルスで印加するので垂直MHD流れが形成され難く、対流抑制手段75の効果と相まってさらにキラル選択性の制御性向上を図ることが可能となる。   In FIG. 5, the cylindrical inner wall portion 62 a that communicates with the working electrode 71 of the lid 62 inevitably occurs when at least one of voltage and current is applied between the working electrode 71 and the counter electrode 72. It functions as convection suppression means 75 that suppresses convection that causes precession in the micro MHD flow, such as magnetic convection such as MHD flow (solution convection). As shown in FIG. 6A, when the surface of the working electrode 71 and the inner surface 62b of the lid 62 are substantially the same height, the effect of suppressing convection cannot be obtained. In such a case, as shown in FIG. 6B, a cylindrical body is provided from the working electrode 71 toward the counter electrode 72 (see FIG. 5) not shown in FIG. By providing, the effect which suppresses a convection can be acquired. At this time, it is more preferable to use both the potential pulse method and the current pulse method for electrolysis. Since the potential and current are applied in pulses, it is difficult to form a vertical MHD flow, and in combination with the effect of the convection suppression means 75, it is possible to further improve the controllability of chiral selectivity.

また、電解槽6が照合極73を設けていると、電位制御の場合は正確な制御のために使用でき、電流制御のときは電極表面状態のモニタリングのために使用することができるので、これを設けておくのが好ましい。
図4では、3電極方式の電解槽6を例示しているが、2電極方式や4電極方式の電解槽6によっても好適に特定の表面形状を形成した電極7(作動極71)を製造することが可能である。
Further, when the electrolytic cell 6 is provided with the reference electrode 73, it can be used for accurate control in the case of potential control, and can be used for monitoring of the electrode surface state in the case of current control. Is preferably provided.
In FIG. 4, a three-electrode type electrolytic cell 6 is illustrated, but the electrode 7 (working electrode 71) having a specific surface shape is preferably manufactured also by the two-electrode type or four-electrode type electrolytic cell 6. It is possible.

電解槽6の自転軸ARまわりの任意の自転速度での自転は、例えば、任意のアクチュエータによって行わせることができるが、非磁性のアクチュエータを用いるのが好ましい。例えば、超音波モーターや油圧モーター、空気圧モーター、容積式モーターなどを用いることができる。
なお、一対の電極7、7およびこれらと接するように収納された電解質媒体5を含む電解槽6は、電気化学セルとも呼ばれている。従って、電気化学セル全体を、磁石2で発生させた磁場Bの向きと平行に設定された自転軸ARまわりに自転させるという言い方もできる。
The rotation at an arbitrary rotation speed around the rotation axis AR of the electrolytic cell 6 can be performed by, for example, an arbitrary actuator, but it is preferable to use a nonmagnetic actuator. For example, an ultrasonic motor, a hydraulic motor, a pneumatic motor, a positive displacement motor, or the like can be used.
The electrolytic cell 6 including the pair of electrodes 7 and 7 and the electrolyte medium 5 accommodated so as to be in contact therewith is also called an electrochemical cell. Therefore, it can be said that the entire electrochemical cell rotates about the rotation axis AR set in parallel with the direction of the magnetic field B generated by the magnet 2.

電解槽6(電気化学セル)の自転速度は、電解槽6を上方から見たときに、反時計回りR1または時計回りR2に0ヘルツ(Hz)を超え100Hz以下とすればよく、例えば、2Hz(120rpm)とすればよい。しかしながら、後述するように、自転速度は磁束密度との関係で適宜に設定するのがよいから、前記した自転速度を超えて設定することもできる。   The rotation speed of the electrolytic cell 6 (electrochemical cell) may be set to 0 Hz (Hz) exceeding 100 Hz or less in the counterclockwise direction R1 or clockwise direction R2 when the electrolytic cell 6 is viewed from above, for example, 2 Hz. (120 rpm) may be used. However, as will be described later, since the rotation speed is preferably set appropriately in relation to the magnetic flux density, it can be set beyond the above-described rotation speed.

電解は、定電流法、電流パルス法などの電流規制法や、定電位電解法、定電位パルス法など公知の手法を用いることができる。
なお、電圧および電流については、使用する電極7、7の種類、電解質媒体5の種類および電解質の種類に応じて、公知の適切な値を取ることができる。また、電圧および電流は、直流、交流またはパルス状に印加することができる。
電析の際の磁束密度は、例えば、0.001テスラ(T)以上40T以下とするのが好ましい。
For electrolysis, a known method such as a current regulation method such as a constant current method or a current pulse method, a constant potential electrolysis method, or a constant potential pulse method can be used.
In addition, about a voltage and an electric current, well-known appropriate value can be taken according to the kind of electrodes 7 and 7 to be used, the kind of electrolyte medium 5, and the kind of electrolyte. Moreover, a voltage and an electric current can be applied in direct current, alternating current, or a pulse form.
The magnetic flux density at the time of electrodeposition is preferably 0.001 Tesla (T) or more and 40 T or less, for example.

電気化学セル全体を磁石2により発生させる磁場Bの向きと平行に設定された自転軸ARまわりに自転させる本発明においては、電極7(作動極71)表面に特定の表面形状を形成する能力を自転周波数fと磁束密度Bとの積fBによって算定することができる。   In the present invention in which the entire electrochemical cell is rotated about the rotation axis AR set in parallel with the direction of the magnetic field B generated by the magnet 2, the ability to form a specific surface shape on the surface of the electrode 7 (working electrode 71) is provided. It can be calculated by the product fB of the rotation frequency f and the magnetic flux density B.

つまり、fBが等しい場合、電極7(作動極71)表面に特定の表面形状を形成する能力は同じとなる。例えば、f=1Hz、B=5Tという条件で得られる能力は、f=10Hz、B=0.5Tという条件で得られる能力と同じとなる。従って、5Tというような超電導磁石や消費電力が大きな常電導磁石で達成されるような高磁場を用いなくても、0.5Tというような永久磁石で達成し得る磁場中で自転周波数fを速くすることにより高磁場の場合と同等の能力が得られる。また、これによれば、B=5T、f=10Hzという条件であれば、f=1Hzのときと比べて10倍のキラル選択性能力を有する特定の表面形状を形成することも期待できる。さらに、自転方向を反転させるだけで簡単にキラル選択性を逆転させた表面形状を形成することも可能である。   That is, when fB is equal, the ability to form a specific surface shape on the surface of the electrode 7 (working electrode 71) is the same. For example, the ability obtained under the conditions of f = 1 Hz and B = 5T is the same as the ability obtained under the conditions of f = 10 Hz and B = 0.5T. Accordingly, the rotation frequency f can be increased quickly in a magnetic field that can be achieved with a permanent magnet such as 0.5T without using a high magnetic field that can be achieved with a superconducting magnet such as 5T or a normal conducting magnet with high power consumption. By doing so, the same ability as in the case of a high magnetic field can be obtained. Moreover, according to this, if the conditions of B = 5T and f = 10 Hz, it can be expected to form a specific surface shape having a chiral selectivity ability 10 times that in the case of f = 1 Hz. Furthermore, it is possible to easily form a surface shape with the chiral selectivity reversed simply by reversing the rotation direction.

図2および図3に戻って電極製造方法の態様の説明を続ける。
なお、図2で示した磁場発生ステップS11と図3で示した磁場発生ステップS22は実質的に同じ内容を実施するものであり、図2で示した電解槽自転ステップS12と図3で示した電解槽自転ステップS21は実質的に同じ内容を実施するものであり、図2で示した電解ステップS13と図3で示した電解ステップS23は実質的に同じ内容を実施するものであるが、それぞれのステップの詳細を説明すると次のようになる。なお、電極製造装置1の説明にて既に説明した構成要素と同一の構成要素についてはその説明を省略する。
Returning to FIG. 2 and FIG. 3, the description of the embodiment of the electrode manufacturing method will be continued.
The magnetic field generation step S11 shown in FIG. 2 and the magnetic field generation step S22 shown in FIG. 3 perform substantially the same contents, and are shown in the electrolytic cell rotation step S12 shown in FIG. 2 and FIG. The electrolytic cell rotation step S21 carries out substantially the same contents, and the electrolysis step S13 shown in FIG. 2 and the electrolysis step S23 shown in FIG. 3 carry out substantially the same contents. The details of the steps are as follows. In addition, the description is abbreviate | omitted about the component same as the component already demonstrated by description of the electrode manufacturing apparatus 1. FIG.

図2に示す磁場発生ステップS11では、磁石2により磁場Bを発生させる。
次いで行う電解槽自転ステップS12では、磁場発生ステップS11で発生させた磁場B中において、電解質媒体5を収納した電解槽6を、磁場Bの向きと平行に設定された自転軸ARまわりに自転させる。
続く電解ステップS13では、電解槽自転ステップS12で自転させた電解槽6内において当該電解槽6とともに自転軸ARまわりを反時計回りまたは時計回りに自転するように電解槽6内に設けられた一対の電極7、7に対して電解質媒体5を通じて電圧および電流のうちの少なくとも一方を印加し、電解を行う。
In the magnetic field generation step S <b> 11 shown in FIG. 2, the magnetic field B is generated by the magnet 2.
In the subsequent electrolytic cell rotation step S12, the electrolytic cell 6 containing the electrolyte medium 5 is rotated around the rotation axis AR set parallel to the direction of the magnetic field B in the magnetic field B generated in the magnetic field generation step S11. .
In the subsequent electrolysis step S13, a pair provided in the electrolysis cell 6 so as to rotate around the rotation axis AR together with the electrolysis cell 6 in the electrolysis cell 6 rotated in the electrolysis cell rotation step S12 counterclockwise or clockwise. Electrolysis is performed by applying at least one of voltage and current to the electrodes 7 and 7 through the electrolyte medium 5.

また、図3に示す電解槽自転ステップS21では、電解質媒体5を収納した電解槽6を、磁石2により発生させる磁場Bの向きと平行に設定された自転軸ARまわりを反時計回りまたは時計回りに自転させる。
次いで行う磁場発生ステップS22では、電解槽自転ステップS21で自転させた電解槽6に対し、磁石2により磁場Bを発生させる。
続く電解ステップS23は、磁場発生ステップS22で発生させた磁場B中で自転している電解槽6内において当該電解槽6とともに自転軸ARまわりに自転するように電解槽6内に設けられた一対の電極7、7に対して電解質媒体5を通じて電圧および電流のうちの少なくとも一方を印加し、電解を行う。
Further, in the electrolytic cell rotation step S21 shown in FIG. 3, the electrolytic cell 6 containing the electrolyte medium 5 is rotated counterclockwise or clockwise around the rotation axis AR set in parallel with the direction of the magnetic field B generated by the magnet 2. Rotate to
Next, in the magnetic field generation step S22 to be performed, the magnetic field B is generated by the magnet 2 with respect to the electrolytic cell 6 rotated in the electrolytic cell rotation step S21.
The subsequent electrolysis step S23 is a pair provided in the electrolytic cell 6 so as to rotate about the rotation axis AR together with the electrolytic cell 6 in the electrolytic cell 6 rotating in the magnetic field B generated in the magnetic field generation step S22. Electrolysis is performed by applying at least one of voltage and current to the electrodes 7 and 7 through the electrolyte medium 5.

図2および図3に示したいずれの態様の電極製造方法によっても、磁石2で発生させた磁場Bの向きと平行に設定された自転軸ARまわりを反時計回りまたは時計回りに電解槽6を自転させつつ、電解質媒体5を通じて一対の電極7、7に対して電圧および電流のうちの少なくとも一方を印加して電解を行うため、電極7(作動極71)表面に特定の表面形状を形成することができる。   2 and 3, the electrolytic cell 6 is moved counterclockwise or clockwise around the rotation axis AR set in parallel with the direction of the magnetic field B generated by the magnet 2. In order to perform electrolysis by applying at least one of voltage and current to the pair of electrodes 7 and 7 through the electrolyte medium 5 while rotating, a specific surface shape is formed on the surface of the electrode 7 (working electrode 71). be able to.

本発明の一実施形態に係る電極製造方法や電極製造装置1で製造された電極7(作動極71)は、特定の表面形状(キラルな結晶表面)が形成されている(図7(a)および(b)参照)ので、キラル選択性を有する。そのため、例えば、バイオセンサー用途のセンシング電極や有機合成反応用の触媒電極および個体触媒、さらには燃料電池やリチウム2次電池の正極や負極など、光学異性体の関与する反応において好ましい電極となり得る。
また、かかる電極7(作動極71)は、光学異性体反応のキラル選択性向上に利用することができる。加えて、当該電極7(作動極71)を用いて光学異性体反応を行わせることで、溶液中に発生するキラルなマイクロMHD渦流を反応の選択性向上に利用することができる。さらに、かかる電極7を光学異性体反応装置の触媒として用いると、当該触媒を常にキラルな環境で使用することになるため、触媒活性の低下を防ぎ、触媒の寿命を長くする上で有効である。
The electrode 7 (working electrode 71) manufactured by the electrode manufacturing method and the electrode manufacturing apparatus 1 according to one embodiment of the present invention has a specific surface shape (chiral crystal surface) (FIG. 7A). And (b)) so that it has chiral selectivity. Therefore, it can be a preferable electrode in reactions involving optical isomers such as sensing electrodes for biosensors, catalyst electrodes and solid catalysts for organic synthesis reactions, and positive and negative electrodes of fuel cells and lithium secondary batteries.
Moreover, this electrode 7 (working electrode 71) can be utilized for the chiral selectivity improvement of an optical isomer reaction. In addition, by performing the optical isomer reaction using the electrode 7 (working electrode 71), the chiral micro MHD vortex generated in the solution can be used for improving the selectivity of the reaction. Furthermore, when such an electrode 7 is used as a catalyst for an optical isomer reaction apparatus, the catalyst is always used in a chiral environment, which is effective in preventing a decrease in catalyst activity and extending the life of the catalyst. .

(特定の表面形状の形成)
はじめに、電極に特定の表面形状を形成したので、これについて説明する。
作動極71と対極72からなる一対の銅製水平平板電極のうち作動極71を、自然対流を防止するため、図5に示す電解槽6の上部に、下向きとなるように固定し、対極を当該電解槽6の下部に、上向きとなるように固定した。そして、電解槽6全体を超電導磁石の常温ボア空間内に吊り下げた。電解槽6の自転軸まわりの回転には、非磁性超音波モーターを使用した。電解槽6内を満たす電解質媒体として、硫酸銅0.25mol/Lと硫酸0.5mol/Lとからなる硫酸銅溶液を用いた。照合極には銅線を用いた。電析は、過電圧−0.4V(vs Cu)一定で10分間行った。なお、磁束密度は1Tで図5に示す電解槽6に対して下向きとなるように設定し、電解槽6全体を回転速度1Hzで電解槽6の上方から見て反時計回り(電極表面で見ると時計回り)に回転させた。かかる条件で電析を行った後、走査型電子顕微鏡(三次元SEM)で電極の析出表面を観察した。電子顕微鏡写真を図7(a)に示す。なお、図7(a)中のスケールバーは20μmを示す。
(Specific surface shape formation)
First, a specific surface shape is formed on the electrode, which will be described.
In order to prevent natural convection, the working electrode 71 of the pair of copper horizontal plate electrodes composed of the working electrode 71 and the counter electrode 72 is fixed to the upper part of the electrolytic cell 6 shown in FIG. It fixed to the lower part of the electrolytic cell 6 so that it might face upward. Then, the entire electrolytic cell 6 was suspended in the room temperature bore space of the superconducting magnet. A nonmagnetic ultrasonic motor was used for rotation around the rotation axis of the electrolytic cell 6. A copper sulfate solution composed of 0.25 mol / L of copper sulfate and 0.5 mol / L of sulfuric acid was used as the electrolyte medium filling the electrolytic cell 6. A copper wire was used as a reference electrode. Electrodeposition was performed for 10 minutes at a constant overvoltage of −0.4 V (vs Cu). The magnetic flux density is set to 1 T so as to face downward with respect to the electrolytic cell 6 shown in FIG. 5, and the entire electrolytic cell 6 is rotated counterclockwise when viewed from above the electrolytic cell 6 at a rotational speed of 1 Hz (viewed on the electrode surface). And clockwise). After performing electrodeposition under such conditions, the deposition surface of the electrode was observed with a scanning electron microscope (three-dimensional SEM). An electron micrograph is shown in FIG. In addition, the scale bar in Fig.7 (a) shows 20 micrometers.

図7(a)に示すように、電極の表面に、同心円状の平坦な底部を持つ、特徴的な形状が形成されていた。図7(b)は、三次元SEMによって当該特徴的な形状の直径(x)および深さ(z)を測定した結果を示すグラフである。ここで、図7(b)中の横軸は当該特徴的な形状の直径を示し、縦軸は当該特徴的な形状の深さを示す。単位はいずれもマイクロメートル[μm]である。
なお、図には示していないが、回転速度を2Hzに上げると同様の形状が単位面積あたり5倍程度多く形成されていた。
As shown in FIG. 7 (a), a characteristic shape having a concentric flat bottom was formed on the surface of the electrode. FIG. 7B is a graph showing the results of measuring the diameter (x) and depth (z) of the characteristic shape by a three-dimensional SEM. Here, the horizontal axis in FIG. 7B indicates the diameter of the characteristic shape, and the vertical axis indicates the depth of the characteristic shape. All units are micrometers [μm].
Although not shown in the figure, when the rotational speed is increased to 2 Hz, the same shape is formed about five times as much per unit area.

(キラル選択性)
次に、キラル選択性について検討したので、これについて説明する。
まず、銅板を用意し、図5に示すように、電極表面となる面(作動極71の表面)に対して磁場を垂直に、そして向かう方向となるように印加した。電極はφ3.2mmの円板状である。対極に銅板、照合極には銅線を使用した。溶液は、硫酸銅0.05mol/Lおよび硫酸0.5mol/Lからなる硫酸酸性の硫酸銅溶液を使用し、共通の実験条件として、過電圧を−0.453V(vs Cu)、磁場を超電導磁石により磁束密度3T上向き(図5参照)で、電解時間10s×4回のパルス状の電析を行った。電解槽6の自転速度は、電解槽の上方から見て時計回りで約2Hz(120rpm)、反時計回りで約2Hz、および自転のない場合である0Hzで行い、3つの電極を製造した。なお、電極系および溶液を含めた電解槽全体(すなわち電気化学セル全体)を自転させた。
(Chiral selectivity)
Next, since chiral selectivity was examined, this is demonstrated.
First, a copper plate was prepared, and as shown in FIG. 5, a magnetic field was applied so as to be perpendicular to and in the direction toward the surface to be the electrode surface (the surface of the working electrode 71). The electrode has a disk shape of φ3.2 mm. A copper plate was used for the counter electrode and a copper wire for the reference electrode. As the solution, an acidic copper sulfate solution composed of 0.05 mol / L of copper sulfate and 0.5 mol / L of sulfuric acid was used. As common experimental conditions, an overvoltage was -0.453 V (vs Cu) and a magnetic field was a superconducting magnet. Thus, pulsed electrodeposition with an electrolysis time of 10 s × 4 times was performed with a magnetic flux density of 3T upward (see FIG. 5). The rotation speed of the electrolytic cell 6 was about 2 Hz (120 rpm) clockwise as viewed from above the electrolytic cell, about 2 Hz counterclockwise, and 0 Hz when there was no rotation, and three electrodes were manufactured. In addition, the whole electrolytic cell (namely, the whole electrochemical cell) including an electrode system and a solution was rotated.

次に、それぞれの条件で製造した電極について、前処理として水酸化ナトリウム0.1mol/L中で−0.3〜0.4V(vs Ag/AgCl)、10mV/sの条件でサイクリックボルタンメトリー(CV)を行い、安定な酸化膜CuOを形成した後、0.02mol/LのL−Alanineを含む水酸化ナトリウム0.1mol/Lの溶液中、または0.02mol/LのD−Alanineを含む水酸化ナトリウム0.1mol/Lの溶液中で、−0.3〜0.8V(vs Ag/AgCl)、10mV/sの条件でCVを行い、L−AlanineとD−Alanineに対するキラル選択性を確認した。なお、対極に白金板、照合極には銀塩化銀電極を使用し、磁場なしおよび自転なしの条件で実施した。ここで、L−AlanineとD−Alanineのキラル選択性を確認するための電極は、それぞれ同一の実験条件で作製した別個の電極を用いた。その結果を図8(a)〜(c)に示す。   Next, for the electrodes manufactured under each condition, cyclic voltammetry (as a pretreatment under conditions of -0.3 to 0.4 V (vs Ag / AgCl) and 10 mV / s in 0.1 mol / L sodium hydroxide) CV) to form a stable oxide film CuO, and then in a solution of sodium hydroxide 0.1 mol / L containing 0.02 mol / L L-Aline, or containing 0.02 mol / L D-Aline. CV is performed in a solution of 0.1 mol / L sodium hydroxide under the conditions of -0.3 to 0.8 V (vs Ag / AgCl) and 10 mV / s, and the chiral selectivity to L-Aline and D-Alane is obtained. confirmed. A platinum plate was used as the counter electrode, and a silver / silver chloride electrode was used as the reference electrode, and the test was performed without magnetic field and without rotation. Here, as the electrodes for confirming the chiral selectivity of L-Aline and D-Aline, separate electrodes prepared under the same experimental conditions were used. The results are shown in FIGS.

図8(a)に示すとおり、自転なし(0Hz)で製造した電極では、本来の垂直MHD流れによる対流効果でL−Alanineの電流値がやや高くなることから、L−Alanineを選択したといえる。
そして、図8(b)に示すとおり、電気化学セルの上方(図5参照)から見て反時計回りに2Hzの条件で自転させて製造した電極では、L−Alanineの電流値が大幅に増幅されていることから、L体のキラル選択性が増幅したといえる。
一方、図8(c)に示すとおり、電気化学セルの上方(図5参照)から見て時計回りに2Hzの条件で自転させて製造した電極では、D−Alanineの電流値が高くなったので、D体のキラル選択性が増幅されたといえる。また、図8(c)に示す測定結果は、磁場中で電気化学セル全体を自転させて製造した電極は、回転方向の変化のみで簡単にキラル選択性を逆転できることを明らかにしている。
As shown in FIG. 8A, in the electrode manufactured without rotation (0 Hz), the current value of L-Aline is slightly higher due to the convection effect due to the original vertical MHD flow, so it can be said that L-Aline is selected. .
As shown in FIG. 8 (b), the current value of L-Aline is greatly amplified in the electrode manufactured by rotating counterclockwise under the condition of 2 Hz when viewed from above the electrochemical cell (see FIG. 5). Therefore, it can be said that the chiral selectivity of the L form was amplified.
On the other hand, as shown in FIG. 8 (c), in the electrode manufactured by rotating on the condition of 2Hz clockwise as viewed from above the electrochemical cell (see FIG. 5), the current value of D-Aline increased. It can be said that the chiral selectivity of D-form was amplified. Further, the measurement result shown in FIG. 8 (c) reveals that an electrode produced by rotating the entire electrochemical cell in a magnetic field can easily reverse the chiral selectivity only by changing the rotation direction.

S11 磁場発生ステップ
S12 電解槽自転ステップ
S13 電解ステップ
S21 電解槽自転ステップ
S22 磁場発生ステップ
S23 電解ステップ
1 電極製造装置
2 磁石
5 電解質媒体
6 電解槽
7 電極
8 アクチュエータ
9 軸部材
10 ベアリング
61 容器本体
62 蓋体
63 Oリング
71 作動極
71a、72a、73a 接続部
71b、72b、73b ブラシ電極
72 対極
73 照合極
74 作動極固定手段
75 対流抑制手段
AR 自転軸
B 磁場
S11 Magnetic field generation step S12 Electrolysis tank rotation step S13 Electrolysis step S21 Electrolysis tank rotation step S22 Magnetic field generation step S23 Electrolysis step 1 Electrode manufacturing apparatus 2 Magnet 5 Electrolyte medium 6 Electrolysis tank 7 Electrode 8 Actuator 9 Shaft member 10 Bearing 61 Container body 62 Lid Body 63 O-ring 71 Working electrode 71a, 72a, 73a Connection part 71b, 72b, 73b Brush electrode 72 Counter electrode 73 Reference electrode 74 Working electrode fixing means 75 Convection suppression means AR Rotating shaft B Magnetic field

Claims (6)

表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、
磁石で発生させた磁場の向きと平行に設定された自転軸まわりに特定の方向で電解槽を自転させつつ、前記電解槽とともに前記自転軸まわりに自転するように前記電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極に対して電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造する
ことを特徴とする電極製造方法。
An electrode manufacturing method for manufacturing an electrode having a specific surface shape formed on a surface,
Provided in the electrolytic cell to rotate around the rotation axis together with the electrolytic cell while rotating the electrolytic cell in a specific direction around the rotation axis set parallel to the direction of the magnetic field generated by the magnet. at least one of the voltage and current through the electrolyte medium is applied to a pair of electrodes composed of an anode as a cathode and the counter electrode serving as a working electrode, the electrolyte of the counter perform electrodeposition line Utotomoni the working electrode, An electrode manufacturing method , wherein an electrode having a specific surface shape formed on the surface is manufactured by forming the specific surface shape on the surface of the working electrode.
表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、
磁石により磁場を発生させる磁場発生ステップと、
発生させた前記磁場中において、電解質媒体を収納した電解槽を、前記磁場の向きと平行に設定された自転軸まわりに特定の方向で自転させる電解槽自転ステップと、
自転している前記電解槽とともに前記自転軸まわりに自転するように前記電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極に対して前記電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造する電解ステップと、を含む
ことを特徴とする電極製造方法。
An electrode manufacturing method for manufacturing an electrode having a specific surface shape formed on a surface,
A magnetic field generating step for generating a magnetic field by a magnet;
In the generated magnetic field, an electrolytic cell rotation step for rotating an electrolytic cell containing an electrolyte medium in a specific direction around a rotation axis set parallel to the direction of the magnetic field;
Voltage and current through the electrolyte medium with respect to a pair of electrodes consisting of a cathode serving as a working electrode and an anode serving as a counter electrode provided in the electrolytic cell so as to rotate around the rotation axis together with the rotating electrolytic cell. at least one of the applying, the electrolytic counter electrode performs electrodeposition line Utotomoni the working electrode, by the fact that to form a particular surface shape on the surface of the working electrode, the specific surface shape on the surface of the And an electrolysis step for producing an electrode formed with an electrode .
表面に特定の表面形状を形成した電極を製造するための電極製造方法であって、
電解質媒体を収納した電解槽を、磁石により発生させる磁場の向きと平行に設定された自転軸まわりに特定の方向で自転させる電解槽自転ステップと、
自転している前記電解槽に対し、前記磁石により磁場を発生させる磁場発生ステップと、
発生させた前記磁場中で自転している前記電解槽内において前記電解槽とともに前記自転軸まわりに自転するように前記電解槽内に設けられた作動極となる陰極および対極となる陽極からなる一対の電極に対して前記電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造する電解ステップと、を含む
ことを特徴とする電極製造方法。
An electrode manufacturing method for manufacturing an electrode having a specific surface shape formed on a surface,
An electrolytic cell rotation step for rotating the electrolytic cell containing the electrolyte medium in a specific direction around a rotation axis set parallel to the direction of the magnetic field generated by the magnet;
A magnetic field generation step for generating a magnetic field by the magnet with respect to the electrolytic cell rotating,
A pair of cathodes serving as working electrodes and anodes serving as counter electrodes provided in the electrolytic cell so as to rotate around the rotation axis together with the electrolytic cell in the electrolytic cell rotating in the generated magnetic field. of at least one of the voltage and current through the electrolyte medium is applied to the electrodes, the electrolyte of the counter perform electrodeposition line Utotomoni the working electrode, the specific surface shape on the surface of the working electrode And an electrolysis step of manufacturing an electrode having a specific surface shape formed on the surface by forming the electrode .
表面に特定の表面形状を形成した電極を製造するための電極製造装置であって、
磁場を発生させる磁石と、
発生させた前記磁場中において、当該磁場の向きと平行に設定された自転軸まわりを特定の方向に自転するように設けられ、電解質媒体を入出自在に収納することのできる電解槽と、
前記電解槽内に、当該電解槽とともに前記自転軸まわりに自転するように互いに離間して設けられた作動極となる陰極および対極となる陽極からなる一対の電極と、
前記電解槽を前記自転軸まわりに任意の自転速度で自転させるアクチュエータと、
を備え
前記電解槽を前記自転軸まわりに特定の方向で自転させつつ、前記一対の電極に対して前記電解質媒体を通じて電圧および電流のうちの少なくとも一方を印加し、前記対極の電解を行うとともに前記作動極の電析を行い、前記作動極の表面に前記特定の表面形状を形成させることで、前記表面に特定の表面形状を形成した電極を製造する
ことを特徴とする電極製造装置。
An electrode manufacturing apparatus for manufacturing an electrode having a specific surface shape formed on a surface,
A magnet for generating a magnetic field;
In the generated magnetic field, an electrolytic cell provided so as to rotate in a specific direction around a rotation axis set in parallel with the direction of the magnetic field, and capable of accommodating an electrolyte medium in an freely accessible manner,
In the electrolytic cell, a pair of electrodes composed of a cathode serving as a working electrode and an anode serving as a counter electrode, which are provided apart from each other so as to rotate about the rotation axis together with the electrolytic cell;
An actuator that rotates the electrolytic cell around the rotation axis at an arbitrary rotation speed;
Equipped with a,
While rotating the electrolytic cell around the rotation axis in a specific direction, at least one of voltage and current is applied to the pair of electrodes through the electrolyte medium to perform electrolysis of the counter electrode and the working electrode. The electrode manufacturing apparatus is characterized in that an electrode having a specific surface shape formed on the surface is manufactured by forming the specific surface shape on the surface of the working electrode.
請求項4に記載の電極製造装置であって、
前記作動極は、これを固定する作動極固定手段によって固定され、
当該作動極固定手段は、対流を抑制する対流抑制手段を有しており、
前記対流が、前記作動極上層部の電流線の広がりが生み出すローレンツ力による竜巻状の回転運動である垂直MHD流れであ
ことを特徴とする電極製造装置。
The electrode manufacturing apparatus according to claim 4,
The working electrode is fixed by a working electrode fixing means for fixing the working electrode,
The working electrode fixing means has convection suppressing means for suppressing convection ,
It said convection, electrode manufacturing apparatus characterized by Ru vertical MHD flow der a tornado-like rotational movement by the Lorentz force spread produces a current line of the actuating finest layer portion.
請求項1から請求項3のいずれか1項に記載の電極製造方法によって製造された電極であって、
表面に特定の表面形状が形成されている
ことを特徴とする電極。
An electrode manufactured by the electrode manufacturing method according to any one of claims 1 to 3,
An electrode characterized in that a specific surface shape is formed on the surface.
JP2011105396A 2011-05-10 2011-05-10 Electrode manufacturing method, electrode manufacturing apparatus and electrode Active JP5750801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105396A JP5750801B2 (en) 2011-05-10 2011-05-10 Electrode manufacturing method, electrode manufacturing apparatus and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105396A JP5750801B2 (en) 2011-05-10 2011-05-10 Electrode manufacturing method, electrode manufacturing apparatus and electrode

Publications (2)

Publication Number Publication Date
JP2012237027A JP2012237027A (en) 2012-12-06
JP5750801B2 true JP5750801B2 (en) 2015-07-22

Family

ID=47460185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105396A Active JP5750801B2 (en) 2011-05-10 2011-05-10 Electrode manufacturing method, electrode manufacturing apparatus and electrode

Country Status (1)

Country Link
JP (1) JP5750801B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265318B (en) * 2016-12-30 2019-12-20 上海移宇科技股份有限公司 Method and device for preparing flexible battery cathode powder
CN107059096B (en) * 2017-04-26 2019-06-18 中国原子能科学研究院 The regulation device of magnetohydrodynamics electrodeposition process preparation high-resolution αsource

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279784A (en) * 1998-03-31 1999-10-12 Shinko Pantec Co Ltd Method for forming catalytic electrode on solid high-polymer electrolytic membrane
JP3049315B1 (en) * 1999-02-19 2000-06-05 名古屋大学長 Method for controlling crystal orientation of electrodeposited or electroless deposited film by magnetic field
JP2008223138A (en) * 2007-02-16 2008-09-25 Saitama Prefecture Plating method and tool for plating

Also Published As

Publication number Publication date
JP2012237027A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
Eliaz et al. Physical electrochemistry: fundamentals, techniques, and applications
Walsh et al. The development of Zn–Ce hybrid redox flow batteries for energy storage and their continuing challenges
Peng et al. A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode
Schuchert et al. Electrochemical copper deposition in etched ion track membranes: Experimental results and a qualitative kinetic model
Burk et al. Electrodeposition of Pt nanoparticle catalysts from H2Pt (OH) 6 and their application in PEM fuel cells
KR100736252B1 (en) Fabrication of mesoporous metal electrodes in non-liquid-crystalline phase and its application
Liu et al. Hierarchical Cu–Co–Ni nanostructures electrodeposited on carbon nanofiber modified glassy carbon electrode: application to glucose detection
Chen et al. Hydrogen bubble formation at hydrogen-insertion electrodes
Gu et al. Mechanism for nucleation and growth of electrochemical deposition of palladium (II) on a platinum electrode in hydrochloric acid solution
JP5816802B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP5750801B2 (en) Electrode manufacturing method, electrode manufacturing apparatus and electrode
Zhao et al. Analysis of crystallization and deposition process using electrochemical-quartz crystal microbalance: a review
French et al. Growth and application of paired gold electrode junctions: evidence for nitrosonium phosphate during nitric oxide oxidation
Wu et al. Electrochemical mechanism of tellurium reduction in alkaline medium
KR20190029345A (en) Catalyst for formation of hydrogen and hydrogen energy generator comprising thereof
Nineva et al. Properties of electrodeposited silver–cobalt coatings
JP5816803B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP6409291B2 (en) Electrolytic copper plating solution analyzer and electrolytic copper plating solution analysis method
JP6690322B2 (en) Electrode catalyst for carbon dioxide reduction, electrode, device and catalyst fixing method
Jiang et al. Electrolytic Metal Atoms Enabled Manufacturing of Nanostructured Sensor Electrodes
Scholl et al. Nanotopography and electrochemical impedance spectroscopy of palladium deposited on different electrode materials
Palomäki Electrochemical measurement of dopamine with diamond-like carbon/pt composite electrodes
Palomäki Electrochemistry of Amorphous Carbon Based Materials-Development of an electrochemical sensor for the detection of dopamine
Narwade et al. Electrochemical synthesis for metal oxide/hydroxide nanostructures
Durgalakshmi et al. Electrochemistry: Different Materials and Applications: An Overview

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5750801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250