JP5748979B2 - Ethanol production apparatus and production method using the same - Google Patents

Ethanol production apparatus and production method using the same Download PDF

Info

Publication number
JP5748979B2
JP5748979B2 JP2010229750A JP2010229750A JP5748979B2 JP 5748979 B2 JP5748979 B2 JP 5748979B2 JP 2010229750 A JP2010229750 A JP 2010229750A JP 2010229750 A JP2010229750 A JP 2010229750A JP 5748979 B2 JP5748979 B2 JP 5748979B2
Authority
JP
Japan
Prior art keywords
ethanol
culture tank
culture
fermentation
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010229750A
Other languages
Japanese (ja)
Other versions
JP2012080824A (en
Inventor
孝二郎 田中
孝二郎 田中
英彦 熊谷
英彦 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACTREE Corp
Original Assignee
ACTREE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACTREE Corp filed Critical ACTREE Corp
Priority to JP2010229750A priority Critical patent/JP5748979B2/en
Publication of JP2012080824A publication Critical patent/JP2012080824A/en
Application granted granted Critical
Publication of JP5748979B2 publication Critical patent/JP5748979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/02Bioreactors or fermenters combined with devices for liquid fuel extraction; Biorefineries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、炭水化物に属するデンプン質原料やセルロース質原料を用いた連続発酵蒸留によるバイオエタノールの製造装置及び製造方法に関し、特に焼却炉と連結することで食品廃棄物、野菜等の余剰生産物等の廃棄物処理とバイオエタノール製造との一体化に好適な装置及び方法に係る。   The present invention relates to a bioethanol production apparatus and production method by continuous fermentation distillation using starchy raw materials and cellulosic raw materials belonging to carbohydrates, and in particular, surplus products such as food waste and vegetables by being connected to an incinerator. The present invention relates to an apparatus and method suitable for the integration of waste disposal and bioethanol production.

小麦やトウモロコシ等の食料ともなる原材料を用いたバイオエタノールの製造方法では食料供給に影響を与えることから、厨房等から排出される食品廃棄物からエタノールを製造する方法が提案されている(特許文献1)。
しかし、同公報に記載されているような従来のバイオエタノールの製造方法にあっては、第1に糖化及び培養後にバッチで蒸留処理するものであり、連続的にエタノールを製造できるものではなかった。
第2にバイオエタノールの製造に用いる熱源に外部から購入する燃料や電気が必要であり、多量に発生する培養残渣や蒸留廃液の処理を外部委託に頼っているために高コストの一因になっていた。
Since the production method of bioethanol using raw materials that also serve as food such as wheat and corn affects food supply, a method for producing ethanol from food waste discharged from kitchens has been proposed (patent document) 1).
However, in the conventional method for producing bioethanol as described in the publication, firstly, saccharification and culturing are carried out in a batch, and ethanol cannot be produced continuously. .
Secondly, fuel and electricity purchased from the outside are necessary for the heat source used in the production of bioethanol, and it is a cause of high cost because it relies on outsourcing for the treatment of large amounts of culture residue and distilled waste liquid. It was.

特開2010−183863号公報JP 2010-183863 A

本発明は、製造フローが短く、装置の小型化低コスト化が容易で、食品廃棄物を原料とした場合に焼却炉と一体化が可能なエタノールの製造装置及び製造方法の提供を目的とする。   An object of the present invention is to provide an ethanol production apparatus and a production method that can be integrated with an incinerator when the production flow is short, the size and cost of the apparatus are easily reduced, and food waste is used as a raw material. .

本発明に係るエタノール製造装置は、デンプン質原料又は/及びセルロース質原料投入手段と、糖化処理と耐熱好気性酵母による発酵を連続的に行うための培養タンクと、前記培養タンク中の発酵した培養液に当該発酵を進行させながらエアーを吹き込むためのエアー吹き込み手段と、前記エアーの吹き込みにより排出されるガス中からエタノールを回収するための蒸留手段とを備えたことを特徴とする。 The ethanol production apparatus according to the present invention comprises a starchy material or / and cellulosic material charging means, a culture tank for continuously performing saccharification and fermentation with a thermophilic aerobic yeast, and the fermented culture in the culture tank. An air blowing means for blowing air while advancing the fermentation into the liquid, and a distillation means for recovering ethanol from the gas discharged by blowing the air are provided.

ここでデンプン質原料及びセルロース質原料とは、デンプンやセルロースが含まれている原料を意味し、家庭や外食産業から発生する生ゴミ等の食品廃棄物、食品の加工工程から生じる廃棄物、野菜等の余剰生産物等であってもよく、特に本発明にあっては、米のとぎ汁のような、従来はバイオエタノールの原料にできなかったものも対象にできる。   Here, the starchy raw material and the cellulosic raw material mean a raw material containing starch and cellulose, food waste such as raw garbage generated from households and the restaurant industry, waste generated from food processing, vegetables In particular, in the present invention, it is also possible to target those that could not be conventionally used as raw materials for bioethanol, such as rice broth.

本発明にて特徴的なのは、アルコール発酵に用いる酵母に好気性の菌株を採用することで、エアーを吹き込みながら連続的にエタノールの回収及び蒸留が可能になった点にある。   The feature of the present invention is that the use of an aerobic strain for yeast used for alcoholic fermentation makes it possible to continuously recover and distill ethanol while blowing air.

また、前記培養タンクから発生する培養残渣を焼却する焼却炉と、前記蒸留手段から発生する蒸留廃液を前記焼却炉から発生する排ガスの減温処理に使用することで、焼却装置と連結するとエタノールの製造に伴って発生する培養残渣を燃焼させることで糖化処理及び発酵の熱源に使用でき、蒸留廃液を焼却炉の排ガスの減温処理に用いることができ、装置全体のエネルギー源の省エネルギー化を図るのに効果的である。
ここで、前記培養タンクは熱媒体循環部を有し、当該熱媒体循環部に循環させる熱媒体の熱源として前記焼却炉から発生する廃熱を利用することもできる。
In addition, an incinerator that incinerates the culture residue generated from the culture tank, and a distillation waste solution generated from the distillation means is used for the temperature reduction treatment of the exhaust gas generated from the incinerator, so that when ethanol is connected to the incinerator, By burning the culture residue generated during the production, it can be used as a heat source for saccharification and fermentation, and the distillation waste liquid can be used for reducing the temperature of exhaust gas from the incinerator, thus reducing the energy source of the entire system. It is effective.
Here, the culture tank has a heat medium circulation part, and waste heat generated from the incinerator can be used as a heat source of the heat medium to be circulated in the heat medium circulation part.

上記のようなエタノール製造装置を用いた本発明に係るエタノールの製造方法は、培養タンクにデンプン質原料又は/及びセルロース質原料を投入するステップと、培養タンクに糖化能を有する、酵素又は遺伝子組み換え型耐熱好気性酵母を投入し糖化処理するステップと、前記酵素で糖化処理した場合は糖化処理後に耐熱好気性酵母を投入し、又は前記遺伝子組み換え型耐熱好気性酵母で糖化処理した場合はそのままアルコール発酵する発酵ステップと、前記発酵液にエアーを吹き込み、前記アルコール発酵を進行させながら連続的にエタノールを回収するステップとを有することを特徴とする。
糖化処理には一般的に糖化酵素を用いるが遺伝子組み換え技術により、糖化能を有する好気性酵母を用いると、そのまま連続してアルコール発酵も行うことができる。
ここで、培養タンクの温調に、培養タンクから発生する培養残渣を焼却して発生する廃熱を利用してもよい。
The ethanol production method according to the present invention using the ethanol production apparatus as described above includes a step of introducing starchy raw materials and / or cellulosic raw materials into a culture tank, and an enzyme or genetic recombination having saccharification ability in the culture tank. A thermostable and aerobic yeast with a saccharification treatment, and if saccharification treatment with the enzyme, a thermostable aerobic yeast is added after saccharification treatment , or if saccharification treatment with the genetically modified thermostable aerobic yeast It has a fermentation step of fermenting, and a step of continuously collecting ethanol while blowing air into the fermentation broth and allowing the alcoholic fermentation to proceed .
In general, saccharification enzymes are used for the saccharification treatment, but if an aerobic yeast having saccharification ability is used by genetic recombination technology, alcohol fermentation can also be carried out continuously as it is.
Here, waste heat generated by incineration of the culture residue generated from the culture tank may be used for temperature control of the culture tank.

本発明にあっては、培養タンクにデンプン質原料、セルロース質原料を投入、乾物重量で1〜60%、好ましくは20〜40%になるように水分調整し、原料の材質に合うような酵素を選択し、焼却炉の廃熱を利用して最適温度に温調する。
例えば、セルロース質原料が主な場合に酵素としてセルラーゼを使用し、25℃〜70℃、好ましくは45℃〜50℃に温調する。
また、セルロース質原料をセルラーゼで酵素処理する前に90℃〜100℃×1〜2時間加熱すると殺菌効果があり、その後の雑菌混入を抑えることができる。
また、デンプン質原料が主な場合には酵素としてアミラーゼを使用する。
α−アミラーゼを使用する場合は、82℃〜86℃×約2時間、グルコアミラーゼを使用する場合は60℃〜65℃×24〜48時間が好ましい。
In the present invention, starch material and cellulosic material are added to the culture tank, the moisture is adjusted to 1 to 60%, preferably 20 to 40% by dry matter weight, and the enzyme matches the material of the material. And adjust the temperature to the optimum temperature using the waste heat from the incinerator.
For example, when cellulosic raw materials are mainly used, cellulase is used as an enzyme, and the temperature is adjusted to 25 ° C to 70 ° C, preferably 45 ° C to 50 ° C.
In addition, if the cellulosic material is heated at 90 ° C. to 100 ° C. for 1 to 2 hours before the enzyme treatment with cellulase, there is a bactericidal effect and subsequent contamination with bacteria can be suppressed.
In addition, amylase is used as an enzyme when starchy raw materials are mainly used.
When α-amylase is used, it is preferably 82 ° C. to 86 ° C. × about 2 hours, and when glucoamylase is used, it is preferably 60 ° C. to 65 ° C. × 24 to 48 hours.

前記のように温調及び撹拌し糖化処理が終了すると、次に培養タンクを30℃〜50℃、好ましくは36℃〜45℃に温調し、好気性の耐熱性酵母(kluyveromyces marxianus)を添加し、培養する。
この場合にpH3.5〜7.0、好ましくは4.5〜5.5に調整されているのがよい。
アルコール発酵が進行すると、エアー吹き込み手段にて培養液中にエアーを吹き込むことでエアーとともにエタノールが排出される。
これを蒸留塔に通過させることで、濃度90%以上、特に99%以上のエタノールが得られる。
When the saccharification treatment is completed by temperature control and stirring as described above, the culture tank is then temperature-controlled at 30 ° C. to 50 ° C., preferably 36 ° C. to 45 ° C., and an aerobic thermostable yeast (kluyveromyces marxianus) is added. And incubate.
In this case, the pH may be adjusted to 3.5 to 7.0, preferably 4.5 to 5.5.
When alcohol fermentation progresses, ethanol is discharged together with air by blowing air into the culture solution by air blowing means.
By passing this through a distillation column, ethanol having a concentration of 90% or more, particularly 99% or more can be obtained.

本発明に係るエタノールの製造装置にあっては、培養タンクに食品廃棄物等を投入し、水分調整した後に糖化処理するステップと発酵処理するステップ及びその後に連続的にエタノールの蒸留が行えるので、装置がコンパクトで設備投資が従来法よりも少なくてよい。
また、処理フローが簡単なので原材料の変更やバラツキにも対応しやすく、安定したエタノールの製造が可能である。
さらに、焼却炉と組み合せることで培養残渣物をエタノール製造装置の熱源として利用できるだけでなく、蒸留廃液を焼却炉の排ガスの減温処理に利用できるので相互に有効利用できる。
In the ethanol production apparatus according to the present invention, food waste and the like are introduced into the culture tank, and after adjusting the moisture, the step of saccharification treatment and the step of fermentation treatment and subsequent ethanol distillation can be performed. The equipment is compact and the capital investment may be less than that of the conventional method.
In addition, since the processing flow is simple, it is easy to cope with changes and variations in raw materials, and stable ethanol production is possible.
Further, in combination with an incinerator, not only can the culture residue be used as a heat source for the ethanol production apparatus, but also the distilled waste liquid can be used for the temperature reduction treatment of the exhaust gas from the incinerator, so that they can be used effectively.

本発明に係るエタノール装置の構成例を示す。The structural example of the ethanol apparatus which concerns on this invention is shown. 培養タンク中のグルコース変化とエタノール発生の変化を示す。The glucose change in a culture tank and the change of ethanol generation are shown. グルコースのエタノールの発酵結果を示す。The fermentation result of ethanol of glucose is shown.

本発明に係るエタノール装置の構成例を図1に基づいて説明する。
図1において実線で囲んだ部分が直接的にエタノールの製造に関与する装置であり、点線で囲んだ部分が焼却装置を組み合せた部分である。
本実施例では、原材料毎に温調範囲が相違しても対応できるように培養タンク10A、10Bの二基を備えた例になっているが、培養タンクが少なくとも一基以上備えていれば、その数に制限はない。
培養タンク10A、10Bは原材料の投入口11と発生したエタノール含有ガスを取り出すための排出口12を有し、この排出口12は蒸留塔20に配管連結されている。
培養及びエタノールの発生が終了した培養残渣物は残渣取出口14から排出され、焼却炉30の残渣物投入口14aに投入され焼却される。
残渣物は必要に応じて着火バーナー30a及び2次燃焼バーナー30bにより制御された焼却炉30で燃焼し、高温の排ガスは予冷器31及び減温器32にて減温され、バクフィルター33等にて浄化後に誘引ファン34を介して煙突35から大気中に放出される。
予冷器31にて約1000℃以下に温度が下がった排ガスは熱交換器32aを介して熱媒体の加温に使用され、この熱媒体はジャケット構造の培養タンクの熱媒体IN13aから流入し、熱媒体OUT13bを介して熱交換器32aに循環される。
また、培養タンク10A,10Bには図示を省略したエアーの吹き込み手段を有し、蒸留前エタノールが排出口12からエアーとともに排出し、蒸留塔20にて高濃度のエタノールに蒸留される。
蒸留塔20から発生する蒸留廃液17は予冷器31及び減温器32中に噴露気化され、排ガスの減温処理に用いられる。
これによりエタノールの製造と廃棄物の焼却処理とを組み合せることが可能になり、有機系の廃棄物処理を行いながらエタノールの製造を行うことも可能になる。
A configuration example of an ethanol apparatus according to the present invention will be described with reference to FIG.
In FIG. 1, the part surrounded by a solid line is an apparatus directly involved in ethanol production, and the part surrounded by a dotted line is a part combining an incinerator.
In this example, it is an example provided with two culture tanks 10A, 10B so that even if the temperature control range is different for each raw material, but if at least one culture tank is provided, There is no limit to the number.
The culture tanks 10 </ b> A and 10 </ b> B have a raw material input port 11 and a discharge port 12 for taking out the generated ethanol-containing gas, and the discharge port 12 is connected to a distillation column 20 by piping.
The culture residue after completion of the culture and generation of ethanol is discharged from the residue outlet 14, and is charged into the residue inlet 14 a of the incinerator 30 and incinerated.
The residue is combusted in the incinerator 30 controlled by the ignition burner 30a and the secondary combustion burner 30b as necessary, and the high-temperature exhaust gas is reduced in temperature by the precooler 31 and the temperature reducer 32, and is supplied to the back filter 33 and the like. After purification, it is discharged from the chimney 35 through the induction fan 34 into the atmosphere.
The exhaust gas whose temperature has decreased to about 1000 ° C. or less in the precooler 31 is used for heating the heat medium via the heat exchanger 32a, and this heat medium flows from the heat medium IN13a of the culture tank having the jacket structure, It is circulated to the heat exchanger 32a via the medium OUT13b.
In addition, the culture tanks 10 </ b> A and 10 </ b> B have air blowing means (not shown), and the pre-distillation ethanol is discharged together with the air from the discharge port 12, and is distilled into high-concentration ethanol in the distillation tower 20.
The distillation waste liquid 17 generated from the distillation column 20 is vaporized into the precooler 31 and the temperature reducer 32 and used for the temperature reduction treatment of the exhaust gas.
This makes it possible to combine ethanol production and waste incineration, and it is also possible to produce ethanol while performing organic waste treatment.

次に、米のとぎ汁を用いてエタノールの製造実験を実施したので以下説明する。
培養タンクに、米のとぎ汁45kg(固形分約86g)と窒素源として硫化アンモニウム100gを投入し、前処理として70℃×3時間保温した。
次に、培養タンクを50℃に温調し、アミラーゼ(グルコアミラーゼ4,000,000units、α−アミラーゼ7,500,000units)を加え、撹拌しながら約2時間保持した。
次に培養タンクを45℃に温調し、酵母(kluyveromyces marxianus)を加え39時間培養した。
グルコースがほぼ消費されたことを確認し、エアーを吹き込み始め、そのまま79時間維持した。
このエアーの吹き込みにより培養液から出てくるガスを冷却管に通してエタノール溶液を回収した。
その時のグルコースの変化と100%換算エタノールの発生量を図2のグラフに示す。
これによりデンプンが多く含まれる米のとぎ汁固形分約86gから約2.2mlのエタノールを得たことになる。
ここで、70℃×3時間の前処理をしたことにより雑菌の混入を抑え、pHは6.7から4.7に変化していた。
なお、エタノールの発酵を約45℃で実施したことも雑菌の混入を抑える効果があったと推定される。
Next, since the ethanol production experiment was conducted using rice soup, it will be described below.
To the culture tank, 45 kg of rice broth (solid content: about 86 g) and 100 g of ammonium sulfide as a nitrogen source were added, and kept at 70 ° C. for 3 hours as a pretreatment.
Next, the temperature of the culture tank was adjusted to 50 ° C., amylase (glucoamylase 4,000,000 units, α-amylase 7,500,000 units) was added, and the mixture was held for about 2 hours with stirring.
Next, the temperature of the culture tank was adjusted to 45 ° C., and yeast (kluyveromyces marxianus) was added and cultured for 39 hours.
After confirming that glucose was almost consumed, air was blown in and maintained for 79 hours.
The gas coming out of the culture broth by blowing air was passed through a cooling tube to recover the ethanol solution.
The graph of FIG. 2 shows the change in glucose and the amount of 100% equivalent ethanol generated at that time.
As a result, about 2.2 g of ethanol was obtained from about 86 g of the solid content of rice broth containing a large amount of starch.
Here, pretreatment at 70 ° C. × 3 hours suppressed contamination of various bacteria, and the pH changed from 6.7 to 4.7.
In addition, it was presumed that the fermentation of ethanol at about 45 ° C. also had the effect of suppressing contamination with various bacteria.

次に、培養液の発酵効率を確認すべく以下のとおり実験を行った。
グルコース2,000gに耐熱好気性酵母(kluyveromyces marxianus)エキス100g及び酵母の栄養源としてペプトン100gを加え、さらに水17,800gを加え、全量で20,000gに調整した。
この液をpH5.0に調整し、40℃に維持した。
培養中、コンプレッサーを用いて12l/minのエアーを吹き込み、発生したガスはコンデンサーにて冷却し、水(2l)にトラップした。
このときの蒸留液と培養残渣の組成を図3に示す。
この結果、2,000gのグルコースから蒸留液中にエタノール685g、培養残渣中にエタノール199g含まれたことから合計884gのエタノールが発生したことになり、理論値(エタノール1,023g)に対するエタノールの発生量は86%であった。
Next, an experiment was conducted as follows to confirm the fermentation efficiency of the culture solution.
To 2,000 g of glucose, 100 g of thermophilic aerobic yeast (kluyveromyces marxianus) extract and 100 g of peptone as a nutrient source of yeast were added, and 17,800 g of water was further added to adjust the total amount to 20,000 g.
The solution was adjusted to pH 5.0 and maintained at 40 ° C.
During culture, air of 12 l / min was blown using a compressor, and the generated gas was cooled by a condenser and trapped in water (2 l).
The composition of the distillate and the culture residue at this time is shown in FIG.
As a result, 685 g of ethanol was contained in the distillate from 2,000 g of glucose, and 199 g of ethanol was contained in the culture residue, so that a total of 884 g of ethanol was generated, and generation of ethanol relative to the theoretical value (ethanol 1,023 g). The amount was 86%.

10A 培養タンク
11 投入口
12 排出口
13a 熱媒体IN
13b 熱媒体OUT
14 残渣物取出口
14a 残渣物投入口
15 蒸留前エタノール
16 蒸留エタノール
17 蒸留廃液
20 蒸留塔
30 焼却炉
10A culture tank 11 inlet 12 outlet 13a Heat medium IN
13b Heat carrier OUT
14 Residue outlet 14a Residue inlet 15 Ethanol 16 before distillation 16 Distilled ethanol 17 Distilled waste 20 Distillation tower 30 Incinerator

Claims (5)

デンプン質原料又は/及びセルロース質原料投入手段と、
糖化処理と耐熱好気性酵母による発酵を連続的に行うための培養タンクと、
前記培養タンク中の発酵した培養液に当該発酵を進行させながらエアーを吹き込むためのエアー吹き込み手段と、
前記エアーの吹き込みにより排出されるガス中からエタノールを回収するための蒸留手段とを備えたことを特徴とするエタノール製造装置。
Starchy raw material or / and cellulosic raw material charging means;
A culture tank for continuously performing saccharification treatment and fermentation with thermophilic aerobic yeast ,
Air blowing means for blowing air while advancing the fermentation to the fermented culture solution in the culture tank;
An ethanol production apparatus comprising distillation means for recovering ethanol from gas discharged by blowing air.
前記培養タンクから発生する培養残渣を焼却する焼却炉と、
前記蒸留手段から発生する蒸留廃液を前記焼却炉から発生する排ガスの減温処理に使用することで、焼却装置と連結したことを特徴とする請求項1記載のエタノール製造装置。
An incinerator for incinerating culture residues generated from the culture tank;
2. The ethanol production apparatus according to claim 1, wherein the distillation waste liquid generated from the distillation means is used for temperature reduction treatment of exhaust gas generated from the incinerator, and is connected to an incinerator.
前記培養タンクは熱媒体循環部を有し、当該熱媒体循環部に循環させる熱媒体の熱源として前記焼却炉から発生する廃熱を利用することを特徴とする請求項2記載のエタノール製造装置。   The ethanol production apparatus according to claim 2, wherein the culture tank has a heat medium circulation unit, and waste heat generated from the incinerator is used as a heat source of the heat medium to be circulated through the heat medium circulation unit. 培養タンクにデンプン質原料又は/及びセルロース質原料を投入するステップと、
培養タンクに糖化能を有する、酵素又は遺伝子組み換え型耐熱好気性酵母を投入し糖化処理するステップと、
前記酵素で糖化処理した場合は糖化処理後に耐熱好気性酵母を投入し、又は前記遺伝子組み換え型耐熱好気性酵母で糖化処理した場合はそのままアルコール発酵する発酵ステップと、
前記発酵液にエアーを吹き込み、前記アルコール発酵を進行させながら連続的にエタノールを回収するステップとを有することを特徴とするエタノールの製造方法。
Adding a starchy material or / and a cellulosic material to the culture tank;
A step of having a glycated ability to culture tank was charged with enzyme or gene recombinant heat aerobic yeast saccharification,
A fermentation step if you saccharification treatment with the enzyme heat aerobic yeast was charged after saccharification, or if you saccharification treatment with the genetic recombinant heat aerobic yeast to directly alcohol fermentation,
And a step of continuously recovering ethanol while advancing the alcoholic fermentation by blowing air into the fermentation broth.
培養タンクの温調に、培養タンクから発生する培養残渣を焼却して発生する廃熱を利用したことを特徴とする請求項4記載のエタノールの製造方法。   The method for producing ethanol according to claim 4, wherein waste heat generated by incineration of a culture residue generated from the culture tank is used for temperature control of the culture tank.
JP2010229750A 2010-10-12 2010-10-12 Ethanol production apparatus and production method using the same Active JP5748979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229750A JP5748979B2 (en) 2010-10-12 2010-10-12 Ethanol production apparatus and production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229750A JP5748979B2 (en) 2010-10-12 2010-10-12 Ethanol production apparatus and production method using the same

Publications (2)

Publication Number Publication Date
JP2012080824A JP2012080824A (en) 2012-04-26
JP5748979B2 true JP5748979B2 (en) 2015-07-15

Family

ID=46240387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229750A Active JP5748979B2 (en) 2010-10-12 2010-10-12 Ethanol production apparatus and production method using the same

Country Status (1)

Country Link
JP (1) JP5748979B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5904898B2 (en) * 2012-08-01 2016-04-20 本田技研工業株式会社 Storage method of residual distillation slurry
JP5981259B2 (en) * 2012-08-01 2016-08-31 本田技研工業株式会社 Storage method of residual distillation slurry
WO2014141896A1 (en) * 2013-03-15 2014-09-18 コスモ石油株式会社 Method for producing ethanol from cellulosic biomass
JP6816372B2 (en) * 2016-03-25 2021-01-20 三菱ケミカル株式会社 How to recover ethanol

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208667A (en) * 2003-01-06 2004-07-29 Minoru Morita Method for producing ethanol by utilizing biomass resource
EP2217712A2 (en) * 2007-12-14 2010-08-18 ButamaxTM Advanced Biofuels LLC Method for controlling the butanol concentration in a fermentation broth during butanol production
JP2011514140A (en) * 2007-12-27 2011-05-06 ジーヴォ,インコーポレイテッド Recovery of higher alcohols from low concentration aqueous solutions.
JP5593629B2 (en) * 2008-03-31 2014-09-24 宇部興産株式会社 Method for purifying fermentation alcohol
JP5629886B2 (en) * 2010-04-06 2014-11-26 学校法人東京農業大学 Fermentation system using ethanol bag and ethanol production method

Also Published As

Publication number Publication date
JP2012080824A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
Panahi et al. Bioethanol production from food wastes rich in carbohydrates
Cinelli et al. A brief review on the emerging technology of ethanol production by cold hydrolysis of raw starch
Li et al. Solid-state anaerobic digestion for methane production from organic waste
Dalle Ave et al. Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
CN102921700B (en) Distillate spirit vinasse spot comprehensive utilization method
Narisetty et al. Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach
US20030019736A1 (en) System and method for producing energy from distilled dry grains and solubles
CN102307817B (en) Anaerobic process for treating organic material to generate biogas
JP5748979B2 (en) Ethanol production apparatus and production method using the same
Sung et al. Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO 2 into microalgal direct combustion fuels
CN107099556A (en) A kind of method and system of industrial tail gas fermentation legal system ethanol
Han et al. BioH2 production from waste bread using a two-stage process of enzymatic hydrolysis and dark fermentation
WO2009150455A2 (en) Method and apparatus for converting biowaste into useful commercial products
Ozturk et al. Techno-economic analysis of a two-step fermentation process for bio-butanol production from cooked rice
CN107345675A (en) A kind of kitchen lampblack and garbage harmless resource recycling utilizes system
de Camargos et al. Production of biogas and fermentable sugars from spent brewery grains: Evaluation of one-and two-stage thermal pretreatment in an integrated biorefinery
Ebrahimi et al. Enhanced aerobic conversion of starch to butanol by a symbiotic system of Clostridium acetobutylicum and Nesterenkonia
Nikolaou et al. Valorisation of bakery waste via the bioethanol pathway
Bauenova et al. Optimising microalgae-derived butanol yield
CN102220379A (en) Starchy raw material fermentation method for producing anhydrous ethanol without external fossil energy
CN202449953U (en) Device for comprehensively utilizing residues of tuber crops in course of processing starch of tuber crops
Subudhi et al. Biomethanol production from renewable resources: a sustainable approach
Liu et al. Enhanced coproduction and trade-off of the hydrogen and butanol in the coupled system of pervaporation and repeated-cycle fixed-bed fermentation
CN107708882A (en) It is attached to the high efficiency of energy Application way of the castoff burning facility of ethanol manufacturing equipment
Steven et al. Potential of corn cob sustainable valorization to fuel-grade bioethanol: a simulation study using superpro designer®

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R150 Certificate of patent or registration of utility model

Ref document number: 5748979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250