JP5747494B2 - Exhaust heat exchanger - Google Patents

Exhaust heat exchanger Download PDF

Info

Publication number
JP5747494B2
JP5747494B2 JP2010277655A JP2010277655A JP5747494B2 JP 5747494 B2 JP5747494 B2 JP 5747494B2 JP 2010277655 A JP2010277655 A JP 2010277655A JP 2010277655 A JP2010277655 A JP 2010277655A JP 5747494 B2 JP5747494 B2 JP 5747494B2
Authority
JP
Japan
Prior art keywords
exhaust
refrigerant
fluid
working fluid
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010277655A
Other languages
Japanese (ja)
Other versions
JP2012127220A (en
Inventor
秀昭 水野
秀昭 水野
徹 深見
徹 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010277655A priority Critical patent/JP5747494B2/en
Publication of JP2012127220A publication Critical patent/JP2012127220A/en
Application granted granted Critical
Publication of JP5747494B2 publication Critical patent/JP5747494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、内燃機関の排気マニホールドを利用して排気ガスと冷却水やLLC等の作動流体との熱交換を行う排気熱交換装置に関する。   The present invention relates to an exhaust heat exchange device that performs heat exchange between an exhaust gas and a working fluid such as cooling water or LLC using an exhaust manifold of an internal combustion engine.

特許文献1には、内燃機関のシリンダヘッドに固定される排気マニホールドに、排気ガスが流れる排気集合管部と、この排気集合管部を囲繞して冷却水が流通する冷却水通路と、を設け、冷却水により排気集合管部を冷却して、排気集合管部が過度に高温となることを回避する技術が記載されている。   In Patent Document 1, an exhaust manifold that is fixed to a cylinder head of an internal combustion engine is provided with an exhaust collecting pipe portion through which exhaust gas flows and a cooling water passage that surrounds the exhaust collecting pipe portion and through which cooling water flows. A technique for cooling the exhaust collecting pipe part with cooling water to avoid the exhaust collecting pipe part from becoming excessively hot is described.

特開2010−77964号公報JP 2010-77964 A

本出願人等は特開2010−77964号公報に記載されているように、内燃機関の排気ガスの熱エネルギーを、冷却水やLLC等の作動流体、更にはこの作動流体よりも沸点の低いフロンR134a等の冷媒を用いて回収し、ランキンサイクルを利用して回収した熱エネルギーから駆動力を発生して、廃熱を有効に利用することを検討している。   As described in Japanese Patent Application Laid-Open No. 2010-77964, the present applicants use the thermal energy of the exhaust gas of the internal combustion engine as a working fluid such as cooling water or LLC, and further, a chlorofluorocarbon having a boiling point lower than that of the working fluid. We are investigating the effective use of waste heat by generating a driving force from the thermal energy recovered using a refrigerant such as R134a and recovered using the Rankine cycle.

ここで、上記の特許文献1のように、排気ガスとの熱交換を、排気ガス温度が高い排気マニホールドの部分で行うようにすることで、例えば車両の床下に配置された排気管の近傍で排気ガスとの熱交換を行う場合に比して、排気熱の熱交換量や熱交換効率、つまりは排気熱の回収量や回収効率を大幅に向上することができる。   Here, as in Patent Document 1 described above, heat exchange with the exhaust gas is performed in the exhaust manifold portion where the exhaust gas temperature is high, for example, in the vicinity of the exhaust pipe disposed under the floor of the vehicle. Compared to the case of performing heat exchange with exhaust gas, the heat exchange amount and heat exchange efficiency of exhaust heat, that is, the exhaust heat recovery amount and recovery efficiency can be greatly improved.

しかしながら、機関負荷に応じて排気ガスの温度が異なることから、排気ガスの温度が低い低負荷側では、熱回収量が不十分となり易い。また、高負荷側では、過剰に熱交換が行われる傾向にあり、例えば作動流体として水冷式内燃機関の冷却水(LLC)を用いた場合に、冷却水の循環経路中に設けられたラジエータがオーバーヒートとなり易い。   However, since the exhaust gas temperature varies depending on the engine load, the amount of heat recovery tends to be insufficient on the low load side where the exhaust gas temperature is low. Further, on the high load side, heat exchange tends to be performed excessively. For example, when cooling water (LLC) of a water-cooled internal combustion engine is used as a working fluid, a radiator provided in a circulation path of the cooling water is provided. Prone to overheating.

本発明は、このような事情に鑑みてなされたものである。すなわち本発明は、内燃機関の排気ガスと作動流体との間で熱交換を行う排気熱交換装置において、上記内燃機関のシリンダヘッドに固定される排気マニホールドを有している。この排気マニホールドは、上記排気ガスが流れる排気管部と、この排気管部の周囲を覆うケーシングと、を有するとともに、このケーシングと排気管部との間に、上記作動流体が流れる流体室が形成されている。そして、機関負荷が低い低負荷域では、この低負荷域よりも機関負荷が高い高負荷域に比して、上記流体室内を流れる作動流体の流通経路が長くなるように、機関負荷に応じて上記作動流体の流通経路を切り換えることを特徴としている。   The present invention has been made in view of such circumstances. That is, the present invention has an exhaust manifold fixed to the cylinder head of the internal combustion engine in an exhaust heat exchange device for exchanging heat between the exhaust gas of the internal combustion engine and the working fluid. The exhaust manifold has an exhaust pipe part through which the exhaust gas flows and a casing that covers the periphery of the exhaust pipe part, and a fluid chamber through which the working fluid flows is formed between the casing and the exhaust pipe part. Has been. In the low load region where the engine load is low, the flow path of the working fluid flowing in the fluid chamber is longer than the high load region where the engine load is higher than the low load region. The flow path of the working fluid is switched.

上記の「流通経路」とは、流体室内における平均的な流れの方向を意味しており、必ずしも冷却水の全量が流通経路に沿って流れるものではない。   The above “circulation path” means an average flow direction in the fluid chamber, and the entire amount of cooling water does not necessarily flow along the distribution path.

このような本発明によれば、内燃機関のシリンダヘッドに固定された排気マニホールドの部分で排気ガスと作動流体との熱交換を行うことができるために、例えば車両床下の排気管の近傍で熱交換を行う場合に比して、燃焼室に近く排気ガス温度の高い位置で熱交換を行うことができるために、熱交換の量や効率が大幅に向上する。   According to the present invention, since the heat exchange between the exhaust gas and the working fluid can be performed in the exhaust manifold portion fixed to the cylinder head of the internal combustion engine, heat is generated, for example, near the exhaust pipe under the vehicle floor. Compared with the exchange, heat exchange can be performed near the combustion chamber and at a high exhaust gas temperature, so the amount and efficiency of heat exchange are greatly improved.

そして、排気ガス温度が相対的に低い低負荷域では、作動流体の流通経路を長く確保することで、排気ガスと作動流体との熱交換効率を高めて、十分な熱回収量を確保することができるとともに、排気ガス温度が相対的に高く、熱交換が過剰となり易い高負荷域では、作動流体の流通経路を短くすることで、過剰な熱交換を防止することができる。   In a low load range where the exhaust gas temperature is relatively low, the heat exchange efficiency between the exhaust gas and the working fluid is increased by ensuring a long working fluid flow path to ensure a sufficient amount of heat recovery. In a high load region where the exhaust gas temperature is relatively high and heat exchange is likely to be excessive, excessive heat exchange can be prevented by shortening the flow path of the working fluid.

本発明の第1実施例に係る排気マニホールドを示す斜視図。1 is a perspective view showing an exhaust manifold according to a first embodiment of the present invention. 図1の排気マニホールドの本体を示す斜視図。The perspective view which shows the main body of the exhaust manifold of FIG. 図1の排気マニホールドの蓋体を示す斜視図。The perspective view which shows the cover body of the exhaust manifold of FIG. 図1のIV−IV線に沿う断面図。Sectional drawing which follows the IV-IV line of FIG. 図1のV−V線に沿う断面図。Sectional drawing which follows the VV line of FIG. 図1のVI−VI線に沿う断面図。Sectional drawing which follows the VI-VI line of FIG. 本発明の第2実施例に係る排気マニホールドを示す斜視図。The perspective view which shows the exhaust manifold which concerns on 2nd Example of this invention. 本発明に係る排気熱交換装置の一例を示す構成図。The block diagram which shows an example of the exhaust-heat-exchange apparatus which concerns on this invention.

以下、本発明を図示実施例に基づいて説明する。先ず、図8を参照して、本発明に係る排気熱交換装置の一例として、ランキンサイクルを利用した排気熱回収装置について説明する。なお、この装置の基本構成は上記の特開2010−77964号公報に記載のように公知である。   Hereinafter, the present invention will be described based on illustrated embodiments. First, with reference to FIG. 8, an exhaust heat recovery apparatus using a Rankine cycle will be described as an example of the exhaust heat exchange apparatus according to the present invention. The basic configuration of this apparatus is known as described in the above-mentioned Japanese Patent Application Laid-Open No. 2010-77964.

この排気熱回収装置は、例えば車両に搭載され、車両の水冷式の内燃機関2を冷却するのに用いられる作動流体としての冷却水あるいはLLCが流れる冷却水回路4と、内燃機関2の排気ガスの熱エネルギーすなわち廃熱を回収するランキンサイクル6(以下、RC回路という)と、を備えている。冷却水回路4は、内燃機関2から延設される冷却水の循環路5に、冷却水の流れ方向から順に排気ガス熱交換器8、過熱器10、蒸発器12、ラジエータ14、サーモスタット16、冷却水ポンプ18が介挿されて閉回路を構成している。   The exhaust heat recovery device is mounted on a vehicle, for example, and is provided with a cooling water circuit 4 through which cooling water or LLC as a working fluid used for cooling the water-cooled internal combustion engine 2 of the vehicle, and the exhaust gas of the internal combustion engine 2. And a Rankine cycle 6 (hereinafter referred to as an RC circuit) for recovering the heat energy, that is, waste heat. The cooling water circuit 4 is connected to a cooling water circulation path 5 extending from the internal combustion engine 2 in order from the flow direction of the cooling water, the exhaust gas heat exchanger 8, the superheater 10, the evaporator 12, the radiator 14, the thermostat 16, A cooling water pump 18 is inserted to constitute a closed circuit.

排気ガス熱交換器8は、内燃機関2を経由し、内燃機関2のシリンダブロック3やシリンダヘッド等の機関本体を冷却することにより加熱された冷却水(例えば95℃)を、内燃機関2の排気管9から排出される排気ガスと熱交換させて、所定の設定温度Ts(例えば130℃)まで更に加熱し、沸騰状態とする。また、排気ガス熱交換器8と過熱器10との間の循環路5には温度センサ20が装着され、温度センサ20は排気ガス熱交換器8の出口の冷却水温度Tcを検出する。ラジエータ14は、蒸発器12と直列に配列され、蒸発器12にて冷媒に吸熱されて冷却された冷却水を外気などとの熱交換により更に冷却する。   The exhaust gas heat exchanger 8 passes cooling water (for example, 95 ° C.) heated by cooling the engine body such as the cylinder block 3 and the cylinder head of the internal combustion engine 2 via the internal combustion engine 2. The heat is exchanged with the exhaust gas discharged from the exhaust pipe 9, and further heated to a predetermined set temperature Ts (eg, 130 ° C.) to bring it into a boiling state. A temperature sensor 20 is attached to the circulation path 5 between the exhaust gas heat exchanger 8 and the superheater 10, and the temperature sensor 20 detects the coolant temperature Tc at the outlet of the exhaust gas heat exchanger 8. The radiator 14 is arranged in series with the evaporator 12, and further cools the cooling water that has been absorbed by the refrigerant in the evaporator 12 and is cooled by heat exchange with the outside air or the like.

サーモスタット16は、ラジエータ14へ通水される冷却水の量をサーモスタット16に流入する冷却水の温度に応じて制御する機械式の三方弁であって、2つの入口ポートと1つの出口ポートとを有している。2つの入口ポートには、ラジエータ14から延設される循環路5の流路5aと、蒸発器12とラジエータ14との間の循環路5の流路5bからラジエータ14を迂回して接続される循環路5のラジエータバイパス路5cとがそれぞれ接続され、これにより、ラジエータ14へ通水される冷却水の量が冷却水温度に応じて増減されて、冷却水温度、ひいてはシリンダブロック3の温度が適正に保持される。冷却水ポンプ18は、内燃機関2に装着され、内燃機関2の回転に連動して駆動されて冷却水を冷却水回路4に好適に循環させる機械式のポンプである。   The thermostat 16 is a mechanical three-way valve that controls the amount of cooling water passed to the radiator 14 in accordance with the temperature of the cooling water flowing into the thermostat 16, and includes two inlet ports and one outlet port. Have. The two inlet ports are connected to bypass the radiator 14 from the flow path 5 a of the circulation path 5 extending from the radiator 14 and the flow path 5 b of the circulation path 5 between the evaporator 12 and the radiator 14. The radiator bypass path 5c of the circulation path 5 is connected to each other, whereby the amount of cooling water passed to the radiator 14 is increased or decreased according to the cooling water temperature, and the cooling water temperature, and hence the temperature of the cylinder block 3 is increased. It is held properly. The cooling water pump 18 is a mechanical pump that is attached to the internal combustion engine 2 and is driven in conjunction with the rotation of the internal combustion engine 2 to circulate the cooling water suitably in the cooling water circuit 4.

一方、RC回路6は、冷却水(作動流体)よりも沸点の低い例えばフロンR134aなどの冷媒の循環路7に、冷媒の流れ方向から順に蒸発器12、過熱器10、膨張機22、凝縮器24、気液分離器26、冷媒ポンプ(ポンプ)28が介挿されて閉回路を構成している。蒸発器12は、冷媒ポンプ28にて圧送された冷媒を内燃機関2、排気ガス熱交換器8、過熱器10を順次経由した冷却水(例えば110℃)と熱交換させて所定の蒸発温度(例えば90℃)にて蒸発させる。尚、冷媒の蒸発に伴い吸熱された冷却水は例えば100℃まで温度低下する。過熱器10は、蒸発器12を経由した冷媒を排気ガス熱交換器8を経由した冷却水(130℃)と熱交換させて過熱状態(例えば110℃)にする。   On the other hand, the RC circuit 6 is connected to a refrigerant circulation path 7 having a boiling point lower than that of the cooling water (working fluid) such as Freon R134a in order from the refrigerant flow direction, the evaporator 12, the superheater 10, the expander 22, and the condenser. 24, a gas-liquid separator 26 and a refrigerant pump (pump) 28 are inserted to form a closed circuit. The evaporator 12 heat-exchanges the refrigerant pumped by the refrigerant pump 28 with cooling water (for example, 110 ° C.) that sequentially passes through the internal combustion engine 2, the exhaust gas heat exchanger 8, and the superheater 10 to obtain a predetermined evaporation temperature ( Evaporation is performed at 90 ° C., for example. In addition, the temperature of the cooling water that has absorbed heat as the refrigerant evaporates drops to 100 ° C., for example. The superheater 10 exchanges heat between the refrigerant that has passed through the evaporator 12 and the cooling water (130 ° C.) that has passed through the exhaust gas heat exchanger 8 to be in a superheated state (eg, 110 ° C.).

膨張機22は、過熱器10を経由して過熱状態にされた冷媒を膨張させて駆動力を発生する回転機器であって、膨張機22には、膨張機22にて発生した駆動力を電力に変換して排気熱回収装置の外部で利用可能とする発電機30が機械的に連結されている。   The expander 22 is a rotating device that generates a driving force by expanding the refrigerant that has been brought into a superheated state via the superheater 10. The expander 22 uses the driving force generated by the expander 22 as electric power. A generator 30 that is converted into the above and made available outside the exhaust heat recovery device is mechanically connected.

凝縮器24は、膨張機22を経由した冷媒を外気などとの熱交換により凝縮液化させる放熱器である。気液分離器26は、凝縮器24にて凝縮された冷媒を気液二層に分離し、ここで分離された液冷媒のみが冷媒ポンプ28側に流出される。冷媒ポンプ28は、気液分離器26にて分離された液冷媒を蒸発器12側に圧送し、RC回路6に好適に循環させる。このように構成される冷却水回路4及びRC回路6は、車両を総合的に制御する電子制御装置であるECU32により制御され、ECU32には、冷媒ポンプ28の駆動部が電気的に接続されている。   The condenser 24 is a radiator that condenses and liquefies the refrigerant that has passed through the expander 22 by heat exchange with outside air or the like. The gas-liquid separator 26 separates the refrigerant condensed in the condenser 24 into gas-liquid two layers, and only the liquid refrigerant separated here flows out to the refrigerant pump 28 side. The refrigerant pump 28 pumps the liquid refrigerant separated by the gas-liquid separator 26 toward the evaporator 12 and circulates it appropriately in the RC circuit 6. The coolant circuit 4 and the RC circuit 6 configured as described above are controlled by an ECU 32 that is an electronic control unit that comprehensively controls the vehicle, and a drive unit of the refrigerant pump 28 is electrically connected to the ECU 32. Yes.

そして、ECU32が内燃機関2の運転状況に応じて冷媒ポンプ28の駆動を制御することにより、排気熱回収装置は、内燃機関2の廃熱、即ち、シリンダブロック3及び排気ガスの廃熱を冷却水を介して回収する。RC回路6では、シリンダブロック3の廃熱で蒸発器12にて冷媒の蒸発が行われた後に、排気ガスの熱で過熱器10にて冷媒の過熱が行われ、段階的に過熱状態にされた冷媒は、膨張機22、発電機30を介して排気熱回収装置の外部にて利用可能なエネルギーを発生する。   Then, the ECU 32 controls the driving of the refrigerant pump 28 according to the operating state of the internal combustion engine 2, whereby the exhaust heat recovery device cools the waste heat of the internal combustion engine 2, that is, the waste heat of the cylinder block 3 and the exhaust gas. Collect through water. In the RC circuit 6, the refrigerant is evaporated in the evaporator 12 with the waste heat of the cylinder block 3, and then the refrigerant is overheated in the superheater 10 with the heat of the exhaust gas, and is gradually overheated. The refrigerant generates energy that can be used outside the exhaust heat recovery device via the expander 22 and the generator 30.

ここで、冷却水回路4には、内燃機関2を経由した冷却水を排気ガス熱交換器8及び過熱器10をバイパスして蒸発器12に直接に流入させるバイパス路34が設けられている。バイパス路34にはバイパス路34を流れる冷却水の流量を調整する流量調整弁36が介挿されており、ECU32には流量調整弁36の駆動部及び上述した温度センサ20も電気的に接続されている。そして、ECU32は、温度センサ20からの入力信号に応じて流量調整弁36の駆動部に駆動信号を出力することにより、バイパス路34を流れる冷却水の流量を調整し、排気ガス熱交換器8に流入する冷却水の流量を規制する流量制御を行っている。   Here, the cooling water circuit 4 is provided with a bypass passage 34 through which the cooling water that has passed through the internal combustion engine 2 flows directly into the evaporator 12, bypassing the exhaust gas heat exchanger 8 and the superheater 10. A flow rate adjusting valve 36 for adjusting the flow rate of the cooling water flowing through the bypass channel 34 is inserted in the bypass channel 34, and the drive unit of the flow rate adjusting valve 36 and the above-described temperature sensor 20 are electrically connected to the ECU 32. ing. The ECU 32 adjusts the flow rate of the cooling water flowing through the bypass path 34 by outputting a drive signal to the drive unit of the flow rate adjustment valve 36 in accordance with the input signal from the temperature sensor 20, and the exhaust gas heat exchanger 8. The flow rate control is performed to regulate the flow rate of the cooling water flowing in.

次に、本発明の第1実施例に係る排気熱交換装置の要部をなす排気マニホールド40の構造について、図1〜図6を参照して詳細に説明する。この排気マニホールド40は、図示せぬシリンダヘッドの排気側の側壁にボルトによって固定されるものであり、板状をなす取付フランジ部41には、上記のボルトが貫通する複数のボルト孔42が形成されている。図2にも示すように、この排気マニホールド40には、排気ガスが流れる排気管部43が設けられている。この排気管部43は、シリンダヘッドの排気側の側壁に開口する3つの排気ポートに連通する3本のブランチ管部44と、これら3本のブランチ管部44が下流側で合流・集合する集合管部45と、を有する枝管構造をなしている。ブランチ管部44の上流側端部は取付フランジ部41の外側の側面に開口している。集合管部45は、後述するケーシング47の本体48より突出する下流側のフランジ部46に、図示せぬ排気管が接続される。   Next, the structure of the exhaust manifold 40 that forms the main part of the exhaust heat exchanger according to the first embodiment of the present invention will be described in detail with reference to FIGS. The exhaust manifold 40 is fixed to a side wall on the exhaust side of a cylinder head (not shown) with bolts, and a plurality of bolt holes 42 through which the bolts pass are formed in a plate-like mounting flange portion 41. Has been. As shown in FIG. 2, the exhaust manifold 40 is provided with an exhaust pipe portion 43 through which exhaust gas flows. The exhaust pipe portion 43 includes three branch pipe portions 44 that communicate with three exhaust ports that are opened in the exhaust-side side wall of the cylinder head, and an assembly in which the three branch pipe portions 44 merge and gather on the downstream side. A branch pipe structure having a pipe portion 45 is formed. The upstream end portion of the branch pipe portion 44 is open to the outer side surface of the mounting flange portion 41. The collecting pipe portion 45 is connected to an exhaust pipe (not shown) in a downstream flange portion 46 that protrudes from a main body 48 of a casing 47 described later.

図1にも示すように、排気マニホールド40は、上記の排気管部43を覆うケーシング47を有している。このケーシング47は、枝管形状をなす排気管部43の形状に対応して、ブランチ管部44が並設された気筒列方向α1に幅広な箱形の形状をなしており、そのシリンダヘッド側の側壁を構成する上記の取付フランジ部41と上壁と下壁とが平坦な板状をなす一方、取付フランジ部41よりも反シリンダヘッド側の側壁が、両側のブランチ管部44に沿うように半円弧状に湾曲している。このケーシング47と排気管部43の間に形成される空間が、作動流体としての冷却水が流れる冷却水室(流体室)R1を構成している。   As shown in FIG. 1, the exhaust manifold 40 includes a casing 47 that covers the exhaust pipe portion 43. The casing 47 corresponds to the shape of the exhaust pipe portion 43 having a branch pipe shape, and has a box shape that is wide in the cylinder row direction α1 in which the branch pipe portions 44 are arranged side by side. The mounting flange 41 and the upper wall and the lower wall constituting the side wall of the above-described side wall form a flat plate shape, while the side wall on the side opposite to the cylinder head from the mounting flange portion 41 extends along the branch pipe portions 44 on both sides. It is curved in a semicircular arc shape. A space formed between the casing 47 and the exhaust pipe portion 43 constitutes a cooling water chamber (fluid chamber) R1 through which cooling water as a working fluid flows.

また、このケーシング47は、上方が開放する深底形状の本体48(図2参照)と、この本体48の上面を閉塞する浅底形状の蓋体49(図3参照)と、により上下に分割構成されており、両者48,49は、ボルト孔50を貫通・螺合する複数本のボルトによって液密に固定される。そして、蓋体49の裏面側・下面側に、後述する熱交換器51が予め取り付けられており、組付状態では冷却水が満たされた冷却水室R1内に熱交換器51が配置される。   Further, the casing 47 is divided into a top and bottom by a deep bottom-shaped main body 48 (see FIG. 2) that opens upward, and a shallow-bottomed lid body 49 (see FIG. 3) that closes the upper surface of the main body 48. The both 48 and 49 are liquid-tightly fixed by a plurality of bolts penetrating and screwing through the bolt holes 50. And the heat exchanger 51 mentioned later is previously attached to the back surface side and lower surface side of the cover body 49, and the heat exchanger 51 is arrange | positioned in the cooling water chamber R1 with which the cooling water was satisfy | filled in the assembly | attachment state. .

なお、これらのケーシング47,排気管部43及び熱交換器51等の排気マニホールドを構成する各部品は、耐熱性・強度に優れたアルミ合金等の金属材料により形成されている。   In addition, each component which comprises exhaust manifolds, such as these casing 47, the exhaust pipe part 43, and the heat exchanger 51, is formed with metal materials, such as an aluminum alloy excellent in heat resistance and intensity | strength.

図5及び図6にも示すように、熱交換器51は、偏平形状をなす複数の冷媒管部52が所定間隙を隔てて積層配置されており、各冷媒管部52の内部に、冷媒が流れる冷媒室R2が形成されている。この冷媒室R2内を流れる冷媒と、冷却水室R1内における隣り合う冷媒管部52の間の隙間53を流れる冷却水と、の間で熱交換がなされるように構成されている。複数の冷媒管部52は、その積層方向(図5及び図6の上下方向)に貫通する複数の支持部54により固定・支持されている。図3,図5及び図6に示すように、複数の支持部54のうちの2つは、内部に冷媒通路55が形成された筒状をなし、この冷媒通路55が各冷媒管部52内の冷媒室R2と連通している。冷媒は、ケーシング47の上面に開口する冷媒入口56より一方の支持部54の冷媒通路55に導入され、各冷媒管部52内の冷媒室R2を流れた後、他方の支持部54の冷媒通路55を経由して、ケーシング47の上面に開口する冷媒出口57より排出される。なお、図示していないが、冷媒入口56や冷媒出口57には適宜な冷媒配管が接続される。   As shown in FIGS. 5 and 6, the heat exchanger 51 includes a plurality of flat refrigerant pipe portions 52 that are stacked with a predetermined gap therebetween, and refrigerant is contained in each refrigerant pipe portion 52. A flowing refrigerant chamber R2 is formed. Heat is exchanged between the refrigerant flowing in the refrigerant chamber R2 and the cooling water flowing in the gap 53 between the adjacent refrigerant pipe portions 52 in the cooling water chamber R1. The plurality of refrigerant pipe portions 52 are fixed and supported by a plurality of support portions 54 penetrating in the stacking direction (vertical direction in FIGS. 5 and 6). As shown in FIGS. 3, 5, and 6, two of the plurality of support portions 54 have a cylindrical shape in which a refrigerant passage 55 is formed, and the refrigerant passage 55 is provided in each refrigerant pipe portion 52. And the refrigerant chamber R2. The refrigerant is introduced into the refrigerant passage 55 of the one support portion 54 from the refrigerant inlet 56 that opens to the upper surface of the casing 47, flows through the refrigerant chamber R <b> 2 in each refrigerant pipe portion 52, and then the refrigerant passage of the other support portion 54. The refrigerant is discharged from a refrigerant outlet 57 that opens to the upper surface of the casing 47 via 55. Although not shown, appropriate refrigerant piping is connected to the refrigerant inlet 56 and the refrigerant outlet 57.

また、冷媒管部52の外面には、隣り合う冷媒管部52の隙間へ向けて張り出した複数の突条58が所定間隔置きに平行に形成されている。各突条58は、機関幅方向α2に帯状に延在しており、従って、隣り合う突条58の間には、機関幅方向α2に延びる溝が形成されている。   Further, on the outer surface of the refrigerant pipe portion 52, a plurality of protrusions 58 projecting toward the gap between the adjacent refrigerant pipe portions 52 are formed in parallel at predetermined intervals. Each protrusion 58 extends in a band shape in the engine width direction α2, and therefore, a groove extending in the engine width direction α2 is formed between adjacent protrusions 58.

このような本実施例の排気マニホールド40にあっては、排気管部43を流れる排気ガスと冷却水室R1内を流れる冷却水との熱交換部が、図8のランキンサイクル(RC回路)6における排気ガス熱交換器8として機能し、冷却水室R1を流れる冷却水と冷媒管部52内の冷媒室R2内を流れる冷媒との間で熱交換が行われる熱交換器51が、図8のランキンサイクル6における蒸発器12及び過熱器10の少なくとも一方として機能している。   In such an exhaust manifold 40 of this embodiment, the heat exchange part between the exhaust gas flowing through the exhaust pipe part 43 and the cooling water flowing through the cooling water chamber R1 serves as the Rankine cycle (RC circuit) 6 in FIG. 8 is a heat exchanger 51 that functions as the exhaust gas heat exchanger 8 in which the heat is exchanged between the cooling water flowing in the cooling water chamber R1 and the refrigerant flowing in the refrigerant chamber R2 in the refrigerant pipe portion 52. The Rankine cycle 6 functions as at least one of the evaporator 12 and the superheater 10.

そして本実施例にあっては、内燃機関の機関負荷(出力・要求トルク)によって排気ガス温度が異なることから、機関負荷に応じて、冷却水室R1内を流れる冷却水の流通経路を切り換えている。つまり、排気ガス温度が低い(例えば400℃以下)低負荷域では、熱交換の効率を高めて、十分な熱交換量・熱回収量を確保するために、この低負荷域よりも機関負荷が高く排気ガス温度が高い(例えば800℃以上)高負荷域に比して、冷却水室R1内を流れる冷却水の流通経路が長くなるように構成している。   In this embodiment, since the exhaust gas temperature varies depending on the engine load (output / required torque) of the internal combustion engine, the flow path of the cooling water flowing in the cooling water chamber R1 is switched according to the engine load. Yes. In other words, in the low load range where the exhaust gas temperature is low (for example, 400 ° C. or lower), the engine load is higher than that in this low load range in order to increase the efficiency of heat exchange and secure a sufficient amount of heat exchange and heat recovery. Compared with a high load region where the exhaust gas temperature is high (e.g., 800 ° C. or higher) and the exhaust gas temperature is high, the flow path of the cooling water flowing in the cooling water chamber R1 is made longer.

このような流通経路の切換を実現する具体的な構造について、図面を参照して説明する。ケーシング47の上壁には、冷却水室R1から冷却水を排出する冷却水出口60が開口形成されているとともに、ケーシング47の下壁には、冷却水室R1へ冷却水を導入する冷却水入口として、低負荷域で用いられる低負荷用冷却水入口61と、高負荷域で用いられる高負荷用冷却水入口62と、の2つが形成されている。これらの低負荷用冷却水入口61と高負荷用冷却水入口62にそれぞれ接続する冷却水配管には、上記のECU32により開閉制御される切換弁63,64が設けられている。低負荷域では、低負荷用冷却水入口61側の切換弁63が「開」、高負荷用冷却水入口62側の切換弁64が「閉」とされ、高負荷域では、低負荷用冷却水入口61側の切換弁63が「閉」、高負荷用冷却水入口62側の切換弁64が「開」とされる(流路切換手段)。   A specific structure for realizing such switching of the distribution route will be described with reference to the drawings. A cooling water outlet 60 for discharging cooling water from the cooling water chamber R1 is formed in the upper wall of the casing 47, and cooling water for introducing cooling water into the cooling water chamber R1 is formed in the lower wall of the casing 47. Two inlets are formed as a low load cooling water inlet 61 used in the low load region and a high load cooling water inlet 62 used in the high load region. The cooling water pipes connected to the low load cooling water inlet 61 and the high load cooling water inlet 62 are provided with switching valves 63 and 64 that are controlled to open and close by the ECU 32. In the low load region, the switching valve 63 on the low load cooling water inlet 61 side is “open”, and the switching valve 64 on the high load cooling water inlet 62 side is “closed”, and in the high load region, the low load cooling is performed. The switching valve 63 on the water inlet 61 side is “closed” and the switching valve 64 on the high load cooling water inlet 62 side is “open” (flow path switching means).

図1にも示すように、冷却水出口60は、気筒列方向α1に関して一方の端部寄りに配置されるとともに、機関幅方向α2に関して、シリンダヘッドから遠い側の端部寄りに配置されている。低負荷用冷却水入口61は、冷却水出口60の下方付近に配置されており、つまり冷却水出口60と同様に、気筒列方向α1に関して一方の端部寄りに配置されるとともに、機関幅方向α2に関して、シリンダヘッドから遠い側の端部寄りに配置されている。一方、高負荷用冷却水入口62は、気筒列方向α1に関してケーシング47の中央に配置されるとともに、機関幅方向α2に関しては、冷却水出口60や低負荷用冷却水入口61とは逆に、シリンダヘッドに近い端部寄りに配置されている。   As shown also in FIG. 1, the coolant outlet 60 is disposed near one end with respect to the cylinder row direction α1, and is disposed near the end farther from the cylinder head with respect to the engine width direction α2. . The low-load cooling water inlet 61 is disposed near the lower portion of the cooling water outlet 60, that is, similar to the cooling water outlet 60, is disposed closer to one end with respect to the cylinder row direction α1, and also in the engine width direction. With respect to α2, it is arranged near the end on the side far from the cylinder head. On the other hand, the high load cooling water inlet 62 is disposed at the center of the casing 47 with respect to the cylinder row direction α1, and the engine width direction α2 is opposite to the cooling water outlet 60 and the low load cooling water inlet 61. It is arranged near the end near the cylinder head.

ここで、図2及び図6に示すように、冷却水出口60と低負荷用冷却水入口61とが配置される気筒列方向α1に関して一方の端部寄りの部分では、ケーシング47の内面と排気管部43の外面とにわたって隔壁65が一体的に設けられており、つまりケーシング47と排気管部43との隙間が隔壁65によって閉塞されている。一方、気筒列方向α1に関して反対側の端部寄りの部分66には、上記の隔壁65が設けられておらず、ケーシング47と排気管部43との隙間を通して冷却水が上下に流通可能となっている。   Here, as shown in FIGS. 2 and 6, the inner surface of the casing 47 and the exhaust gas are disposed at a portion near one end in the cylinder row direction α <b> 1 where the cooling water outlet 60 and the low load cooling water inlet 61 are arranged. A partition wall 65 is provided integrally with the outer surface of the pipe part 43, that is, the gap between the casing 47 and the exhaust pipe part 43 is closed by the partition wall 65. On the other hand, the partition wall 65 is not provided in the portion 66 near the end on the opposite side with respect to the cylinder row direction α1, and the cooling water can flow vertically through the gap between the casing 47 and the exhaust pipe portion 43. ing.

図4及び図5は、高負荷域における冷却水室R1内の冷却水の主たる流通経路を示している。図2及び図4に示すように、排気マニホールド40にあっては、隣り合うブランチ管部44の間に大きなブランチ間隙67が、機関幅方向α2についてシリンダヘッド寄りの部分に形成されている。従って、機関幅方向α2についてシリンダヘッド寄りに配置された高負荷用冷却水入口62から導入された冷却水は、図4の矢印Y1に示すように、その大部分が、ブランチ間隙67を通して、機関上下方向α3に沿って上方側へと流れることで、排気ガスと冷却水との熱交換が行われ、次いで、図5の矢印Y2に示すように、熱交換器51における冷媒管部52の隙間53を機関幅方向α2に沿って流れることで、排気ガスにより加熱された排気ガスと冷媒との熱交換が行われた後、冷却水出口60より排出される。   4 and 5 show the main flow path of the cooling water in the cooling water chamber R1 in the high load region. As shown in FIGS. 2 and 4, in the exhaust manifold 40, a large branch gap 67 is formed between the adjacent branch pipe portions 44 at a portion near the cylinder head in the engine width direction α <b> 2. Therefore, most of the cooling water introduced from the high load cooling water inlet 62 disposed closer to the cylinder head in the engine width direction α2 passes through the branch gap 67 as shown by the arrow Y1 in FIG. By flowing upward along the vertical direction α3, heat exchange between the exhaust gas and the cooling water is performed, and then, as indicated by an arrow Y2 in FIG. 5, the gap between the refrigerant pipe portions 52 in the heat exchanger 51 By flowing through the engine 53 in the engine width direction α2, heat exchange between the exhaust gas heated by the exhaust gas and the refrigerant is performed, and then the refrigerant is discharged from the cooling water outlet 60.

このように、高負荷域にあっては、機関上下方向α3及び機関幅方向α2に沿う冷却水流れが形成され、つまり流通経路が機関上下方向α3及び機関幅方向α2に沿うものとなるために、後述する低負荷域に比して流通経路が短いものとなる。   Thus, in the high load region, a cooling water flow is formed along the engine vertical direction α3 and the engine width direction α2, that is, the flow path is along the engine vertical direction α3 and the engine width direction α2. The distribution path is shorter than that of a low load region described later.

次に、図6は、低負荷域における冷却水室R1内の冷却水の主たる流通経路を示している。図6に示すように、機関幅方向α2についてシリンダヘッドより遠い側の部分においては、上述したブランチ間隙67が存在せず、間隙のない一本の集合管部45が気筒列方向に広く延在しており、かつ、低負荷用冷却水入口61が設けられた気筒列方向の一方の端部寄りの部分では、ケーシング47と排気管部43との上下方向の隙間が隔壁65によって閉塞されている。従って、低負荷用冷却水入口61から導入された冷却水は、図6の矢印Y3に示すように、その大部分が、集合管部45の下方の隙間を気筒列方向α1に沿って流れた後、図6の矢印Y4に示すように、気筒列方向で隔壁65のないケーシング47と排気管部43との隙間の部分66を通して、上方側へと流れることで、排気ガスと冷却水との熱交換が行われる。そして、図6の矢印Y5に示すように、熱交換器51内における隣り合う冷媒管部52の隙間を気筒列方向に沿って流れることで、排気ガスによる加熱後の冷却水と冷媒との間で熱交換が行われた後、冷却水出口60より排出される。   Next, FIG. 6 shows a main flow path of the cooling water in the cooling water chamber R1 in the low load region. As shown in FIG. 6, in the portion farther from the cylinder head in the engine width direction α2, the branch gap 67 described above does not exist, and one collecting pipe portion 45 without a gap extends widely in the cylinder row direction. In addition, in a portion near one end in the cylinder row direction where the low load cooling water inlet 61 is provided, the vertical gap between the casing 47 and the exhaust pipe 43 is blocked by the partition wall 65. Yes. Therefore, most of the cooling water introduced from the low load cooling water inlet 61 flows along the cylinder row direction α1 through the gap below the collecting pipe portion 45, as indicated by an arrow Y3 in FIG. Thereafter, as indicated by an arrow Y4 in FIG. 6, the exhaust gas and the cooling water are flown upward through the gap portion 66 between the casing 47 without the partition wall 65 and the exhaust pipe portion 43 in the cylinder row direction. Heat exchange takes place. Then, as shown by an arrow Y5 in FIG. 6, the gap between the adjacent refrigerant pipe portions 52 in the heat exchanger 51 flows along the cylinder row direction, so that the cooling water after being heated by the exhaust gas and the refrigerant are not heated. After the heat exchange is performed, the water is discharged from the cooling water outlet 60.

このように、低負荷域にあっては、主として気筒列方向α1に沿う冷却水流れが形成され、流通経路が気筒列方向α1に沿うものとなる。排気マニホールド40は、ケーシング47及びその内部の冷却水室R1を含めて、複数のブランチ管部44が並設される気筒列方向α1の寸法が、機関幅方向α2の寸法や機関上下方向α3の寸法に比して長い形状となっている。従って、この低負荷域においては、上記の高負荷域に比して流通経路が長くなる。また、この低負荷域では、冷却水が熱交換器51内の隙間53を気筒列方向α1に流れる際に、機関幅方向α2に延在する複数の突条58を乗り越える形となり、これらの突条58によって通水抵抗が増し、機関幅方向α2に冷却水が流れる高負荷域に比して、その流量つまり流速が小さなものとなる。   Thus, in the low load region, a cooling water flow is mainly formed along the cylinder row direction α1, and the flow path is along the cylinder row direction α1. The exhaust manifold 40 includes a casing 47 and a cooling water chamber R1 inside thereof, and the dimensions in the cylinder row direction α1 in which a plurality of branch pipe portions 44 are arranged in parallel are the dimensions in the engine width direction α2 and the engine vertical direction α3. The shape is longer than the dimensions. Therefore, in this low load region, the distribution route becomes longer than that in the high load region. Further, in this low load region, when the cooling water flows through the gap 53 in the heat exchanger 51 in the cylinder row direction α1, the plurality of protrusions 58 extending in the engine width direction α2 are overcome. The flow resistance is increased by the strip 58, and the flow rate, that is, the flow velocity is smaller than that in the high load region where the cooling water flows in the engine width direction α2.

以上のように本実施例においては、内燃機関のシリンダヘッドに固定され、燃焼室に近く排気ガス温度の高い排気マニホールド40の部分で、排気ガスと冷却水との熱交換、更には冷却水と冷媒との熱交換を行うようにしたので、その熱回収効率・熱回収量が向上し、廃熱の利用効率が向上するために、燃費性能を向上することができる。しかも、これらの熱交換部分を排気マニホールド40の部分に集約して設けることができるために、例えば排気ガスと冷却水との熱交換器を床下の排気管の近傍に配置した場合に比して、冷却水の配管長さを短縮し、構成の簡素化・軽量化・小型化等を図ることができる。   As described above, in the present embodiment, heat exchange between the exhaust gas and the cooling water is performed in the portion of the exhaust manifold 40 that is fixed to the cylinder head of the internal combustion engine and is close to the combustion chamber and has a high exhaust gas temperature. Since heat exchange with the refrigerant is performed, the heat recovery efficiency and the amount of heat recovery are improved, and the utilization efficiency of waste heat is improved, so that the fuel efficiency can be improved. Moreover, since these heat exchange portions can be provided in the exhaust manifold 40 in a concentrated manner, for example, compared to a case where a heat exchanger for exhaust gas and cooling water is arranged near the exhaust pipe under the floor. In addition, the piping length of the cooling water can be shortened, and the configuration can be simplified, reduced in weight, reduced in size, and the like.

また、排気ガス温度が低い低負荷域にあっては、冷却水の流通経路が長くなり、かつ、冷却水の流量・流速が小さくなる。つまり、冷却水が長い時間をかけて冷却水室R1内をゆっくりと流通することとなる。このために、排気ガスから冷却水、更には冷却水から冷媒への熱交換・熱回収の効率が向上し、排気ガスの温度が低い低負荷域であるにもかかわらず、十分な熱回収量を確保して、燃費性能を向上することができるとともに、低負荷域での冷却水の温度を高めることで、例えば内燃機関の暖機を促進するなどの効果が得られる。   Further, in the low load region where the exhaust gas temperature is low, the flow path of the cooling water becomes long, and the flow rate and flow velocity of the cooling water become small. That is, the cooling water slowly circulates in the cooling water chamber R1 over a long time. For this reason, the efficiency of heat exchange and heat recovery from exhaust gas to cooling water and further from cooling water to refrigerant is improved, and a sufficient amount of heat recovery is achieved despite the low load range where the temperature of the exhaust gas is low. As a result, fuel efficiency can be improved, and the temperature of the cooling water in the low load range can be increased to obtain the effect of, for example, promoting warm-up of the internal combustion engine.

一方、排気ガス温度が高い高負荷域にあっては、冷却水の流通経路が短くなり、かつ、冷却水の流量・流速が大きくなる。つまり、大量の冷却水が一気に冷却水室R1内を流通することとなる。このために、排気ガスから冷却水、更には冷却水から冷媒への熱交換・熱回収の効率は低くなり、冷却水や冷媒の過剰な温度上昇を抑制することができる。このために、冷却水の過熱によるラジエータ14のオーバーヒート等を抑制・回避することができる。その一方で、冷却水の流量は多くなるために、排気ガスの過熱を抑制するとともに、排気マニホールド40を含めた排気系部品の過度な温度上昇を抑制することができる。   On the other hand, in the high load region where the exhaust gas temperature is high, the flow path of the cooling water is shortened, and the flow rate and flow velocity of the cooling water are increased. That is, a large amount of cooling water circulates in the cooling water chamber R1 at a stretch. For this reason, the efficiency of heat exchange and heat recovery from the exhaust gas to the cooling water, and further from the cooling water to the refrigerant is reduced, and an excessive temperature rise of the cooling water and the refrigerant can be suppressed. For this reason, overheating of the radiator 14 due to overheating of the cooling water can be suppressed and avoided. On the other hand, since the flow rate of the cooling water is increased, it is possible to suppress overheating of the exhaust gas and to suppress an excessive temperature rise of exhaust system parts including the exhaust manifold 40.

また、車載状態でケーシング47における天地方向の地側となる底面側に、冷却水入口61,62を設けるとともに、天地方向の天側となる上面に冷却水出口60を設けたので、冷却水室R1内に混入した気泡を天側の冷却水出口60より良好に排出することができる。   In addition, since the cooling water inlets 61 and 62 are provided on the bottom side which is the ground side in the top and bottom direction in the casing 47 in the on-vehicle state, and the cooling water outlet 60 is provided on the top surface which is the top side in the top and bottom direction, Air bubbles mixed in R1 can be discharged better than the cooling water outlet 60 on the top side.

図7は、本発明の第2実施例に係る排気マニホールド40Aを示しており、第1実施例と異なる部分についてのみ説明する。この第2実施例の排気マニホールド40Aでは、内部に冷却水室R1Aが形成されたケーシング47の更に外側を覆うように外側ケーシング70が設けられており、この外側ケーシング70と内側のケーシング47との間の空間が、冷媒が流れる冷媒室R2Aを構成している。つまり、排気管部43と内側のケーシング47と外側ケーシング70とにより三重管構造を呈している。また、ケーシング47の外面には、冷媒室R2A側へ張り出した複数の突起部71が所定間隔置きに形成されている。これらの突起部71は、冷媒の流れ方向Y6と直交する方向に延在している。つまり、ケーシング47の外面に、冷媒の流れ方向Y6に直交する凹凸が形成されている。   FIG. 7 shows an exhaust manifold 40A according to the second embodiment of the present invention, and only the parts different from the first embodiment will be described. In the exhaust manifold 40A of the second embodiment, an outer casing 70 is provided so as to cover the outer side of the casing 47 in which the cooling water chamber R1A is formed, and the outer casing 70 and the inner casing 47 are connected to each other. The space between them constitutes a refrigerant chamber R2A through which the refrigerant flows. That is, the exhaust pipe portion 43, the inner casing 47, and the outer casing 70 form a triple pipe structure. In addition, a plurality of protrusions 71 projecting toward the refrigerant chamber R2A are formed on the outer surface of the casing 47 at predetermined intervals. These protrusions 71 extend in a direction orthogonal to the refrigerant flow direction Y6. That is, irregularities perpendicular to the refrigerant flow direction Y6 are formed on the outer surface of the casing 47.

このように第2実施例の三重管構造の排気マニホールド40にあっては、上記第1実施例のような熱交換器51を設けることなく、排気ガスと冷却水との熱交換部と、冷却水と冷媒との熱交換部との双方を設けることができ、更なる簡素化・軽量化を図ることができる。また、上記の突起部71によって、冷媒の流通抵抗を増加させることで、冷媒の流量・流速を小さくして、冷媒室R2A内の冷媒流れを緩慢なものとすることで、冷却水と冷媒との熱交換の効率を更に高めることができる。   As described above, in the exhaust manifold 40 having the triple-pipe structure according to the second embodiment, the heat exchanger 51 between the exhaust gas and the cooling water, and the cooling are provided without providing the heat exchanger 51 as in the first embodiment. Both the water and the heat exchange part of the refrigerant can be provided, and further simplification and weight reduction can be achieved. Further, by increasing the flow resistance of the refrigerant by the protrusion 71, the flow rate / flow velocity of the refrigerant is reduced, and the refrigerant flow in the refrigerant chamber R2A is slowed down. The efficiency of heat exchange can be further increased.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、突条58の位置や形状は上記実施例のものに限られず、ケーシング47の内壁面や排気管部43の外壁面に、流量・流速を調整する突条を設けるようにしても良い。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, the position and shape of the ridges 58 are not limited to those in the above embodiment, and ridges for adjusting the flow rate and flow velocity may be provided on the inner wall surface of the casing 47 and the outer wall surface of the exhaust pipe portion 43.

40,40A…排気マニホールド
43…排気管部
44…ブランチ管部
45…集合管部
47…ケーシング
51…熱交換器
52…冷媒管部
58…突条
65…隔壁
R1,R1A…冷却水室(流体室)
R2,R2A…冷媒室
40, 40A ... exhaust manifold 43 ... exhaust pipe part 44 ... branch pipe part 45 ... collecting pipe part 47 ... casing 51 ... heat exchanger 52 ... refrigerant pipe part 58 ... ridge 65 ... partition walls R1, R1A ... cooling water chamber (fluid Room)
R2, R2A ... Refrigerant chamber

Claims (12)

内燃機関の排気ガスと作動流体との間で熱交換を行う排気熱交換装置において、
上記内燃機関のシリンダヘッドに固定される排気マニホールドを有し、
この排気マニホールドは、上記排気ガスが流れる排気管部と、この排気管部の周囲を覆うケーシングと、を有するとともに、このケーシングと排気管部との間に、上記作動流体が流れる流体室が形成され、
機関負荷が低い低負荷域では、この低負荷域よりも機関負荷が高い高負荷域に比して、上記流体室内を流れる作動流体の流通経路が長くなるように、機関負荷に応じて上記作動流体の流通経路を切り換えるものであり、
かつ、上記排気マニホールドの排気管部が、上記シリンダヘッドの複数の排気ポートに連通する複数のブランチ管部を有し、
上記流体室は、上記複数のブランチ管部が並設される気筒列方向寸法が、この気筒列方向寸法に直交する機関幅方向寸法もしくは機関上下方向寸法よりも長く設定されており、
上記低負荷域では、上記気筒列方向に沿って作動流体の流れを形成し、
上記高負荷域では、上記機関幅方向もしくは機関上下方向に沿って作動流体の流れを形成することを特徴とする請求項1に記載の排気熱交換装置。
In an exhaust heat exchange device that performs heat exchange between an exhaust gas of an internal combustion engine and a working fluid,
An exhaust manifold fixed to the cylinder head of the internal combustion engine,
The exhaust manifold has an exhaust pipe part through which the exhaust gas flows and a casing that covers the periphery of the exhaust pipe part, and a fluid chamber through which the working fluid flows is formed between the casing and the exhaust pipe part. And
In the low load range where the engine load is low, the operation according to the engine load is longer so that the flow path of the working fluid flowing in the fluid chamber is longer than in the high load range where the engine load is higher than the low load range. Switch the fluid flow path ,
And the exhaust pipe part of the exhaust manifold has a plurality of branch pipe parts communicating with the plurality of exhaust ports of the cylinder head,
In the fluid chamber, a cylinder row direction dimension in which the plurality of branch pipe portions are arranged side by side is set to be longer than an engine width direction dimension or an engine vertical direction dimension orthogonal to the cylinder row direction dimension,
In the low load region, a flow of working fluid is formed along the cylinder row direction,
2. The exhaust heat exchanger according to claim 1, wherein in the high load region, a flow of a working fluid is formed along the engine width direction or the engine vertical direction .
上記低負荷域では、高負荷域に比して、上記流体室内を流れる作動流体の流量もしくは流速を小さくすることを特徴とする請求項に記載の排気熱交換装置。 2. The exhaust heat exchanger according to claim 1 , wherein in the low load region, the flow rate or flow velocity of the working fluid flowing in the fluid chamber is made smaller than in the high load region. 上記負荷域での作動流体の流通方向に平行で、かつ、上記負荷域での作動流体の流通方向に直交する方向に延在する突条を上記流体室内に設けたことを特徴とする請求項1又は2に記載の排気熱交換装置。 A protrusion that extends in a direction that is parallel to the flow direction of the working fluid in the high load region and that is orthogonal to the flow direction of the working fluid in the low load region is provided in the fluid chamber. The exhaust heat exchanger according to claim 1 or 2 . 上記ケーシングにおける天地方向の地側に、上記流体室へ作動流体を導入する流体入口を設けるとともに、天側に、上記流体室から作動流体を排出する流体出口を設けたことを特徴とする請求項1〜のいずれかに記載の排気熱交換装置。 The fluid inlet for introducing the working fluid into the fluid chamber is provided on the ground side in the top and bottom direction of the casing, and the fluid outlet for discharging the working fluid from the fluid chamber is provided on the top side. The exhaust heat exchanger according to any one of 1 to 3 . 上記流体室内へ作動流体を導入する流体入口として、上記低負荷域で用いられる低負荷用流体入口と、上記高負荷域で用いられる高負荷用流体入口と、を有するともに、
機関負荷に応じて上記低負荷用入口と高負荷用入口とを切り換える切換手段を有し、
上記高負荷用流体入口の上方には、上記ケーシングと排気管部との隙間を塞ぐ隔壁が設けられていることを特徴とする請求項1〜のいずれかに記載の排気熱交換装置。
As a fluid inlet for introducing the working fluid into the fluid chamber, a low-load fluid inlet used in the low-load region and a high-load fluid inlet used in the high-load region,
Switching means for switching between the low load inlet and the high load inlet according to the engine load;
The exhaust heat exchange device according to any one of claims 1 to 3 , wherein a partition wall that closes a gap between the casing and the exhaust pipe portion is provided above the high load fluid inlet.
上記排気マニホールドに、上記作動流体よりも沸点の低い冷媒が流れる冷媒室が形成され、この冷媒室は、上記冷媒と上記流体室内の作動流体との間で熱交換が行われるように、上記流体室に近接して配置されていることを特徴とする請求項1〜のいずれかに記載の排気熱交換装置。 To the exhaust manifold, the working refrigerant chamber flows low refrigerant boiling point than the fluid are formed, the coolant chamber, as heat is exchanged between the refrigerant and the fluid chamber of the working fluid, the fluid The exhaust heat exchange device according to any one of claims 1 to 5 , wherein the exhaust heat exchange device is disposed close to the chamber . 上記低負荷域では、上記高負荷域に比して、上記作動流体から上記冷媒への熱回収量が増大するように、機関負荷に応じて、上記流体室内を流通する作動流体の流通経路及び流量の少なくとも一方を変更することを特徴とする請求項に記載の排気熱交換装置。 In the low load region, the flow path of the working fluid flowing in the fluid chamber according to the engine load and the heat load from the working fluid to the refrigerant increase compared to the high load region, and The exhaust heat exchanger according to claim 6 , wherein at least one of the flow rates is changed. 上記排気マニホールドの流体室内に熱交換器が設置され、
この熱交換器は、複数の偏平な冷媒管部が所定の間隙を隔てて積層配置され、各冷媒管部内に、上記冷媒が流れる冷媒室が形成されるとともに、隣り合う冷媒管部の隙間を上記作動流体が流れ、
上記低負荷域では、上記冷媒管部の隙間を作動流体が気筒列方向に沿って流れ、
上記高負荷域では、上記冷媒管部の隙間を作動流体が機関幅方向に沿って流れるように構成されていることを特徴とする請求項又はに記載の排気熱交換装置。
A heat exchanger is installed in the fluid chamber of the exhaust manifold,
In this heat exchanger, a plurality of flat refrigerant pipe portions are stacked with a predetermined gap, a refrigerant chamber through which the refrigerant flows is formed in each refrigerant pipe portion, and a gap between adjacent refrigerant pipe portions is formed. The working fluid flows,
In the low load region, the working fluid flows along the cylinder row direction through the gap of the refrigerant pipe portion,
The high load region, the exhaust heat exchange apparatus according to claim 6 or 7, characterized in that the clearance of the refrigerant tube unit working fluid is configured to flow along the engine width direction.
上記冷媒管部の外面より上記冷媒管部の隙間側へ張り出して、上記機関幅方向に沿って延びる複数の突条を有することを特徴とする請求項に記載の排気熱交換装置。 The exhaust heat exchanger according to claim 8 , further comprising a plurality of protrusions extending from an outer surface of the refrigerant pipe portion to a gap side of the refrigerant pipe portion and extending along the engine width direction. 上記排気マニホールドが、上記ケーシングの周囲を覆う外側ケーシングを有し、上記ケーシングと外側ケーシングとの間に、上記冷媒が流れる上記冷媒室が形成されていることを特徴とする請求項又はに記載の排気熱交換装置。 The exhaust manifold has an outer casing covering the periphery of the casing, between the casing and the outer casing, to claim 6 or 7, characterized in that the coolant chamber is formed in which the refrigerant flows The exhaust heat exchanger described. 上記冷媒室内に、上記冷媒の流れ方向に対して直交する方向に延在する突起部が設けられていることを特徴とする請求項10に記載の排気熱交換装置。 The exhaust heat exchanger according to claim 10 , wherein a protrusion that extends in a direction orthogonal to the flow direction of the refrigerant is provided in the refrigerant chamber. 上記作動流体を介して排気ガスの熱エネルギーを回収する排気熱回収装置を備えることを特徴とする請求項1〜11のいずれかに記載の記載の排気熱交換装置。 The exhaust heat exchange device according to any one of claims 1 to 11 , further comprising an exhaust heat recovery device that recovers thermal energy of the exhaust gas through the working fluid.
JP2010277655A 2010-12-14 2010-12-14 Exhaust heat exchanger Expired - Fee Related JP5747494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277655A JP5747494B2 (en) 2010-12-14 2010-12-14 Exhaust heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277655A JP5747494B2 (en) 2010-12-14 2010-12-14 Exhaust heat exchanger

Publications (2)

Publication Number Publication Date
JP2012127220A JP2012127220A (en) 2012-07-05
JP5747494B2 true JP5747494B2 (en) 2015-07-15

Family

ID=46644537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277655A Expired - Fee Related JP5747494B2 (en) 2010-12-14 2010-12-14 Exhaust heat exchanger

Country Status (1)

Country Link
JP (1) JP5747494B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460713A (en) * 1987-08-31 1989-03-07 Kubota Ltd Exhaust heat recovery device for engine
JPH09310933A (en) * 1996-05-24 1997-12-02 Hitachi Ltd Waste heat recovering device for engine
JP4120680B2 (en) * 2006-01-16 2008-07-16 ダイキン工業株式会社 Air conditioner
JP4908383B2 (en) * 2006-11-24 2012-04-04 ベール ゲーエムベーハー ウント コー カーゲー System with organic Rankine cycle circulation for driving at least one expansion device, heat exchanger for driving the expansion device and method for operating at least one expansion device
JP2008215333A (en) * 2007-03-08 2008-09-18 Toyota Motor Corp Exhaust heat recovery device for internal combustion engine
JP2008231942A (en) * 2007-03-16 2008-10-02 Toyota Motor Corp Cooling system of internal combustion engine
JP2009074494A (en) * 2007-09-21 2009-04-09 Denso Corp Exhaust heat recovery device
DE102008023831A1 (en) * 2008-05-15 2009-11-19 Bayerische Motoren Werke Aktiengesellschaft Exhaust system for an internal combustion engine
EP2320058B1 (en) * 2008-08-26 2015-11-25 Sanden Corporation Waste heat utilization device for internal combustion engine

Also Published As

Publication number Publication date
JP2012127220A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
US8245491B2 (en) Heat recovery system and method
JP5281587B2 (en) Waste heat utilization device for internal combustion engine
JP6001170B2 (en) Evaporator, waste heat utilization device for internal combustion engine, and internal combustion engine
JP5195381B2 (en) Exhaust heat recovery device
JP5328527B2 (en) Waste heat regeneration system and control method thereof
WO2009133620A1 (en) Waste heat utilization device for internal combustion
JP5053922B2 (en) Waste heat utilization device for internal combustion engine
JP5008441B2 (en) Waste heat utilization device for internal combustion engine
SE533908C2 (en) Cooling device for a fluid in an internal combustion engine and its use
JPH11313406A (en) Cooler for hybrid vehicle
JP4140543B2 (en) Waste heat utilization equipment
JP6186866B2 (en) Engine cooling system
JP6247719B2 (en) Automotive heat exchanger system
JP5747494B2 (en) Exhaust heat exchanger
US11371393B2 (en) Arrangement for converting thermal energy from lost heat of an internal combustion engine
JP5130083B2 (en) Waste heat utilization device for internal combustion engine
WO2015170567A1 (en) Cooling device for hybrid vehicle
JP2016211842A (en) Vehicle heat exchanger system
JP5516433B2 (en) Rankine cycle system equipment
JP5493973B2 (en) Waste heat recovery system for vehicles
JP6298369B2 (en) Waste heat recovery device
JP2017141692A (en) Waste heat recovery device
JP7212149B2 (en) An assembly that evaporates liquefied gas to provide combustion gases for an engine
JP7333212B2 (en) Method of operating Rankine cycle system and waste heat recovery device
JP2021001593A (en) Operation method of rankine cycle system and waste heat collection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R151 Written notification of patent or utility model registration

Ref document number: 5747494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees