JP5746814B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5746814B2
JP5746814B2 JP2009026638A JP2009026638A JP5746814B2 JP 5746814 B2 JP5746814 B2 JP 5746814B2 JP 2009026638 A JP2009026638 A JP 2009026638A JP 2009026638 A JP2009026638 A JP 2009026638A JP 5746814 B2 JP5746814 B2 JP 5746814B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic capacitor
anode
cathode
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009026638A
Other languages
Japanese (ja)
Other versions
JP2010182968A (en
Inventor
茂樹 白勢
茂樹 白勢
幸 氏家
幸 氏家
村上 敏行
敏行 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009026638A priority Critical patent/JP5746814B2/en
Publication of JP2010182968A publication Critical patent/JP2010182968A/en
Application granted granted Critical
Publication of JP5746814B2 publication Critical patent/JP5746814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は各種電子機器に使用されるコンデンサの中で、導電性高分子を固体電解質に用い、かつ、面実装対応にしたチップ形固体電解コンデンサに関するものである。   The present invention relates to a chip-type solid electrolytic capacitor in which a conductive polymer is used as a solid electrolyte among capacitors used in various electronic devices and is adapted for surface mounting.

電子機器の高周波化に伴って電子部品の一つであるコンデンサにも従来よりも高周波領域でのインピーダンス特性に優れたコンデンサが求められてきており、このような要求に応えるために電気伝導度が高い導電性高分子を固体電解質に用いた固体電解コンデンサが種々検討されている。   Along with the higher frequency of electronic equipment, capacitors that are one of the electronic components have been required to have better impedance characteristics in the high frequency range than before, and electrical conductivity has been increased to meet these requirements. Various solid electrolytic capacitors using a highly conductive polymer as a solid electrolyte have been studied.

また、近年、パーソナルコンピュータのCPU周り等に使用される固体電解コンデンサには小型大容量化が強く望まれており、更に高周波化に対応して低ESR(等価直列抵抗)化のみならず、ノイズ除去や過渡応答性に優れた低ESL(等価直列インダクタンス)化が強く要求されており、このような要求に応えるために種々の検討がなされている。   In recent years, a solid electrolytic capacitor used around a CPU of a personal computer has been strongly demanded to have a small size and a large capacity. Further, not only a low ESR (equivalent series resistance) is reduced in response to a higher frequency but also a noise. There is a strong demand for low ESL (equivalent series inductance) excellent in removal and transient response, and various studies have been made to meet such demand.

この固体電解コンデンサの低ESL化を図るためには、固体電解コンデンサの陽極の電極と陰極の電極を近接させて、陽極と陰極を流れる電流の誘導磁界を相殺することにより低ESL化が図られることが知られている。   In order to reduce the ESL of this solid electrolytic capacitor, the ESL can be reduced by bringing the anode and cathode electrodes of the solid electrolytic capacitor close to each other and canceling the induced magnetic field of the current flowing through the anode and cathode. It is known.

このような固体電解コンデンサの低ESR化、低ESL化を図った固体電解コンデンサとして、次の特許文献に開示された固体電解コンデンサが知られている。   A solid electrolytic capacitor disclosed in the following patent document is known as a solid electrolytic capacitor that achieves low ESR and low ESL of such a solid electrolytic capacitor.

特開2008−135425号JP 2008-135425 A 特開2008−294012号JP 2008-294012 A

前述したように、この固体電解コンデンサの低ESL化を図るためには、固体電解コンデンサの陽極の電極と陰極の電極を近接させてことが有効である。このような観点では、固体電解コンデンサの陽極と陰極の距離はより近接させることが求められるが、極度に近接させた場合には、固体電解コンデンサを半田リフローによってプリント基板に実装する場合には、半田リフロー時に溶解した半田によって、陽極と陰極が短絡してしまう場合が発生してしまうおそれがある。   As described above, in order to reduce the ESL of the solid electrolytic capacitor, it is effective to bring the anode electrode and the cathode electrode of the solid electrolytic capacitor close to each other. From such a viewpoint, the distance between the anode and the cathode of the solid electrolytic capacitor is required to be closer, but when extremely close, when mounting the solid electrolytic capacitor on a printed circuit board by solder reflow, There is a possibility that the anode and the cathode may be short-circuited by the solder melted during the solder reflow.

そこで、この発明では、固体電解コンデンサの低ESLを図るために、陽極と陰極の近接させるととともに、陽極と陰極の間での半田によるショートの防止を図ることを目的とする。   Accordingly, an object of the present invention is to make the anode and cathode close to each other and to prevent a short circuit due to solder between the anode and the cathode in order to achieve low ESL of the solid electrolytic capacitor.

上記の課題を解決するために、請求項1に係る発明は、陽極部と陰極部を有するコンデンサ素子を、絶縁基材よりなり基板搭載面に陽極電極と陰極電極を有する接続板に搭載した固体電解コンデンサにおいて、基板搭載面の陽極電極と陰極電極との間隙を溝部とし、この溝部に陽極電極及び/又は陰極電極と離間した半田レジスト層を形成して半田溜まりとしたことを特徴とする。 In order to solve the above problems, the invention according to claim 1 is a solid state in which a capacitor element having an anode part and a cathode part is mounted on a connecting plate made of an insulating base material and having an anode electrode and a cathode electrode on a substrate mounting surface. In the electrolytic capacitor, the gap between the anode electrode and the cathode electrode on the substrate mounting surface is used as a groove portion, and a solder resist layer separated from the anode electrode and / or the cathode electrode is formed in the groove portion to form a solder pool .

また、請求項2に係る発明は、請求項1の固体電解コンデンサにおいて、陽極電極及び陰極電極を同一平面に形成するとともに、半田レジスト層の厚さを陽極電極および陰極電極よりも突出しない厚さとしたことを特徴とする。   According to a second aspect of the present invention, in the solid electrolytic capacitor of the first aspect, the anode electrode and the cathode electrode are formed on the same plane, and the thickness of the solder resist layer is set so as not to protrude from the anode electrode and the cathode electrode. It is characterized by that.

本発明は本発明の電解コンデンサでは、基板搭載面の陽極電極と陰極電極との間隙に、陽極電極及び/又は陰極電極と離間した半田レジスト層を形成した構成としているため、間隙に形成された半田レジスト層によって溶融した半田が堰き止められるようになる。特に、電極と半田レジストが離間させることで、両者の間には空間が形成されており、この空間が半田溜まりとして機能することで、陽極と陰極の短絡を防止することができるという効果を有する。   In the electrolytic capacitor of the present invention, since the solder resist layer separated from the anode electrode and / or the cathode electrode is formed in the gap between the anode electrode and the cathode electrode on the substrate mounting surface, the electrolytic capacitor is formed in the gap. The melted solder is blocked by the solder resist layer. In particular, by separating the electrode and the solder resist, a space is formed between the two, and this space functions as a solder pool, so that the anode and the cathode can be prevented from being short-circuited. .

本発明の固体電解コンデンサの構造を示す断面図である。It is sectional drawing which shows the structure of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサの接続板を示す斜視図である。It is a perspective view which shows the connection board of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサの接続板の別の実施形態を示す斜視図である。It is a perspective view which shows another embodiment of the connection board of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサをプリント基板に半田付け実装した状態を示す断面図である。It is sectional drawing which shows the state which solder-mounted the solid electrolytic capacitor of this invention to the printed circuit board. 本発明の固体電解コンデンサの接続板の別の実施形態を示す図面である。It is drawing which shows another embodiment of the connection board of the solid electrolytic capacitor of this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、本発明は陽極部と陰極部を有するコンデンサ素子を、絶縁基材よりなり基板搭載面に陽極電極と陰極電極を有する接続板に搭載した固体電解コンデンサにおいて、基板搭載面の陽極電極と陰極電極との間隙に、陽極電極及び/又は陰極電極と離間した半田レジスト層を形成したことを特徴としている。   The present invention relates to a solid electrolytic capacitor in which a capacitor element having an anode part and a cathode part is made of an insulating base and mounted on a connecting plate having an anode electrode and a cathode electrode on the board mounting surface. A solder resist layer separated from the anode electrode and / or the cathode electrode is formed in the gap between the cathode electrode and the cathode electrode.

図1(a)には、本発明の固体電解コンデンサの断面図を示し、(b)には、固体電解コンデンサをコンデンサ素子と接続板に分解した断面図を示している。   FIG. 1A shows a cross-sectional view of the solid electrolytic capacitor of the present invention, and FIG. 1B shows a cross-sectional view of the solid electrolytic capacitor disassembled into a capacitor element and a connection plate.

本発明で用いるコンデンサ素子1を図1(b)を基に説明する。まず、薄板状のアルミニウム材11に凹部を形成し、この凹部の内面をエッチングにより拡面処理し、さらに陽極酸化することで酸化皮膜12を形成する。次に凹部の内面に酸化皮膜上に固体電解質層としての導電性高分子13を形成し、続いてグラファイト、銀ペーストを形成し、さらに銅板等の金属板を貼り付けて陰極部14とし、コンデンサ素子1としたものである。このコンデンサ素子1では、凹部の周囲のアルミニウム材11が陽極部18となる。   A capacitor element 1 used in the present invention will be described with reference to FIG. First, a concave portion is formed in the thin plate-like aluminum material 11, and the inner surface of the concave portion is subjected to surface expansion treatment by etching, and further anodized to form the oxide film 12. Next, a conductive polymer 13 as a solid electrolyte layer is formed on the inner surface of the concave portion on the oxide film, followed by forming graphite and silver paste, and further attaching a metal plate such as a copper plate to form a cathode portion 14. Element 1 is obtained. In the capacitor element 1, the aluminum material 11 around the recess serves as the anode portion 18.

このようなコンデンサ素子は、出発原料であるアルミニウム材11の厚さを100μm程度とし、凹部の深さを60μm程度とすることで、薄型のコンデンサ素子を作成することができる。   In such a capacitor element, a thin capacitor element can be produced by setting the thickness of the aluminum material 11 as a starting material to about 100 μm and the depth of the recess to about 60 μm.

次に、接続板2について説明する。接続板はガラスエポキシ基板等の絶縁基板21をベースとし、下面に陽極電極22及び陰極電極23を備え、上面にはコンデンサ素子の陽極部、陰極部とそれぞれに接続される陽極導体24,陰極導体25を備えると共に、上面と裏面の陽極導体26と陽極電極24、陰極導体25と陰極電極23をそれぞれ導通させたものである。   Next, the connection plate 2 will be described. The connection plate is based on an insulating substrate 21 such as a glass epoxy substrate, and has an anode electrode 22 and a cathode electrode 23 on the lower surface, and an anode conductor 24 and a cathode conductor connected to the anode and cathode portions of the capacitor element on the upper surface, respectively. 25, and the anode conductor 26 and the anode electrode 24, and the cathode conductor 25 and the cathode electrode 23 on the top surface and the back surface are respectively conducted.

また、接続板2の下面の電極の構成は、接続されるCPU等の仕様に併せて任意の形状に形成が可能である。図3には、接続板2を下面からみた斜視図を示す。図3(a)に示すように、陽極電極22と陰極電極23が両端に形成された2端子型の形状、図3(b)に示すように、両端を陽極電極22とし、中央部を陰極電極23として3端子型の形状、あるいは、図2(b)に示すように陰極電極23の周囲を陽極電極22が取り囲むような電極の形状等、任意の形状に形成することができる。   Further, the configuration of the electrodes on the lower surface of the connection plate 2 can be formed in an arbitrary shape in accordance with the specifications of the CPU and the like to be connected. In FIG. 3, the perspective view which looked at the connection board 2 from the lower surface is shown. As shown in FIG. 3 (a), a two-terminal shape in which an anode electrode 22 and a cathode electrode 23 are formed at both ends, as shown in FIG. 3 (b), both ends are anode electrodes 22, and the central portion is a cathode. The electrode 23 can be formed in an arbitrary shape such as a three-terminal shape, or an electrode shape in which the anode electrode 22 surrounds the cathode electrode 23 as shown in FIG.

接続板2の上面に形成した陽極導体24、陰極導体25は、コンデンサ素子1の陽極部15、陰極部14にそれぞれ合致した形状とすればよい。図2(a)には、接続板2の上面から見た斜視図を示している。先に示したコンデンサ素子1の構造のように、凹部を形成し、この凹部に陰極部を形成し、凹部の周囲を陽極部としたコンデンサ素子の形状に合致するように陽極導体24、陰極導体25の配置としている。   The anode conductor 24 and the cathode conductor 25 formed on the upper surface of the connection plate 2 may have shapes matching the anode portion 15 and the cathode portion 14 of the capacitor element 1, respectively. FIG. 2A shows a perspective view seen from the upper surface of the connection plate 2. As in the structure of the capacitor element 1 described above, a recess is formed, a cathode portion is formed in the recess, and the anode conductor 24 and cathode conductor are matched to the shape of the capacitor element with the periphery of the recess as the anode portion. There are 25 arrangements.

従って、図3(a)に示すように、陽極電極22と陰極電極23が両端に形成された2端子型の形状の接続板の場合には、コンデンサ素子1も2端子型のコンデンサ素子を用いることができ、図3(b)に示すように、両端を陽極電極22とし、中央部を陰極電極23として3端子型の形状の接続板の場合には、両端が陽極部で、中央部が陰極部の3端子型のコンデンサ素子を用いればよい。このように、コンデンサ素子の形状およびこのコンデンサ素子の形状に合致した接続板とすれば良く、コンデンサ素子の形状、及び絶縁板に形成する導体、電極の形状には限定がない。   Therefore, as shown in FIG. 3A, in the case of a two-terminal connection plate in which the anode electrode 22 and the cathode electrode 23 are formed at both ends, the capacitor element 1 also uses a two-terminal capacitor element. As shown in FIG. 3 (b), in the case of a three-terminal type connecting plate having both ends as the anode electrode 22 and the center portion as the cathode electrode 23, both ends are the anode portion and the center portion is A three-terminal capacitor element in the cathode portion may be used. As described above, the shape of the capacitor element and the connection plate matching the shape of the capacitor element may be used, and the shape of the capacitor element and the shape of the conductor and electrode formed on the insulating plate are not limited.

これらの陽極電極22,陰極電極23の厚さは全て同じ厚さとすることで、陽極電極22および陰極電極23の実装面が同一平面となり、プリント基板に実装する際に固体電解コンデンサを安定して搭載することができる。   By making the thicknesses of the anode electrode 22 and the cathode electrode 23 all the same, the mounting surfaces of the anode electrode 22 and the cathode electrode 23 become the same plane, and the solid electrolytic capacitor can be stably mounted when mounted on a printed circuit board. Can be installed.

例えば、接続板の絶縁基板21の厚さを80μmとし、それぞれの電極と導体の厚さを約30μmの厚さで一定の厚さとすることができる。   For example, the thickness of the insulating substrate 21 of the connection plate can be 80 μm, and the thickness of each electrode and conductor can be a constant thickness of about 30 μm.

また、このような陽極電極22と陰極電極23は、相互に近接させることで、陽極電極22と陰極電極23を流れる電流は反対向きとなるため、それぞれの電極を流れる電流によって発生する磁界が相殺され、ESLの低減が図れるようになる。   In addition, since the anode electrode 22 and the cathode electrode 23 are placed close to each other, the currents flowing through the anode electrode 22 and the cathode electrode 23 are in opposite directions, so that the magnetic fields generated by the currents flowing through the respective electrodes cancel each other. As a result, the ESL can be reduced.

そして、陽極電極22と陰極電極23の間は間隙を有する構造となる。そして、陽極電極22と陰極電極23は、絶縁板2の絶縁基材の上に形成したものであるため、これらの電極の間隙は溝部となり、接続板2の絶縁基材21が露出することになる。この接続板の溝部の絶縁基材21の上には、さらに半田レジスト樹脂を塗布し、半田レジスト層26を形成する。塗布方法としては、通常のスクリーン印刷法等を用いることができる。この半田レジスト層26は、陽極電極22または陰極電極23の一方とは接しないように塗布して形成する。ここで陽極または陰極の電極の少なくとも一方と接しないとは、陽極と陰極の対向する最短距離の部分で同時に接触することがないようにすれば良く、例えば図5に示すように、3端子型の固体電解コンデンサにおいて、一方の陽極電極側では、半田レジストが陽極電極に、他方の電極側では半田レジストが陰極電極側に接する場合には問題が無い。しかし、後述する半田付けの際の半田によるショートの防止の観点では、半田レジストは陽極、陰極ともに離れていることが最も好ましい。   The anode electrode 22 and the cathode electrode 23 have a gap. And since the anode electrode 22 and the cathode electrode 23 are formed on the insulating base material of the insulating plate 2, the gap | interval of these electrodes becomes a groove part, and the insulating base material 21 of the connection plate 2 is exposed. Become. A solder resist resin is further applied on the insulating base material 21 in the groove portion of the connection plate to form a solder resist layer 26. As a coating method, a normal screen printing method or the like can be used. The solder resist layer 26 is formed by coating so as not to contact either the anode electrode 22 or the cathode electrode 23. Here, the term “not in contact with at least one of the anode and cathode electrodes” means that it is not necessary to make contact at the shortest distance between the anode and the cathode at the same time. For example, as shown in FIG. In this solid electrolytic capacitor, there is no problem when the solder resist is in contact with the anode electrode on one anode electrode side and the solder resist is in contact with the cathode electrode side on the other electrode side. However, it is most preferable that the solder resist is separated from both the anode and the cathode from the viewpoint of preventing a short circuit caused by solder during soldering described later.

また、半田レジスト層26の厚さは、接続板2に下面に形成した陽極電極22、陰極電極23の厚さと同じか、または薄く形成すると好適である。半田レジスト層26が陽極電極22および陰極電極23よりも高くなるように形成すると、固体電解コンデンサをプリント基板に実装した際に、陽極電極22および陰極電極23がプリント基板から浮いてしまい、半田リフロー時に、半田付け不良が発生するおそれがでてくる。   Further, it is preferable that the thickness of the solder resist layer 26 is the same as or thinner than the thickness of the anode electrode 22 and the cathode electrode 23 formed on the lower surface of the connection plate 2. If the solder resist layer 26 is formed so as to be higher than the anode electrode 22 and the cathode electrode 23, when the solid electrolytic capacitor is mounted on the printed board, the anode electrode 22 and the cathode electrode 23 float from the printed board, and the solder reflow is performed. Sometimes soldering defects may occur.

半田レジスト層26を接続板に下面に形成した陽極電極22、陰極電極23の厚よりも薄く形成した場合には、固体電解コンデンサをプリント基板に実装した場合に、半田レジスト層がプリント基板と接触することなく、空隙部を形成することになり、半田付けの際のフラックスを逃がし、より安定した半田付けが可能となる。   When the solder resist layer 26 is formed thinner than the anode electrode 22 and the cathode electrode 23 formed on the lower surface of the connection plate, the solder resist layer contacts the printed board when the solid electrolytic capacitor is mounted on the printed board. Therefore, the gap is formed, and the flux at the time of soldering is released, so that more stable soldering is possible.

このような半田付け不良を防止するためには、陽極電極22および陰極電極23よりも2〜10μm程度薄く形成することが好適である。   In order to prevent such a soldering failure, it is preferable to form the thin film about 2 to 10 μm thinner than the anode electrode 22 and the cathode electrode 23.

接続板2の上面の導体24,25と下面の電極22、23を導通させる方法としては、接続板2の所定箇所をレーザーによって穿穴し、その穴の内面をスルーホールメッキすることによって導通を図ることができる。この導通のためのスルーホールの位置、個数等は、固体電解コンデンサに要求される電流容量等の特性に応じて任意に設計可能である。   As a method of conducting the conductors 24 and 25 on the upper surface of the connection plate 2 and the electrodes 22 and 23 on the lower surface, a predetermined portion of the connection plate 2 is drilled with a laser, and the inner surface of the hole is plated by through-hole plating. Can be planned. The position, the number, etc. of the through holes for this conduction can be arbitrarily designed according to the characteristics such as the current capacity required for the solid electrolytic capacitor.

上記のようなコンデンサ素子1を接続板2に搭載し、コンデンサ素子1の電極17、18と接続板の導体24、25をそれぞれ導電性接着剤等で接合して固体電解コンデンサCとする。また、必要に応じて、コンデンサ素子をモールド樹脂でモールドすることも可能である。   The capacitor element 1 as described above is mounted on the connection plate 2, and the electrodes 17 and 18 of the capacitor element 1 and the conductors 24 and 25 of the connection plate are joined with a conductive adhesive or the like to form a solid electrolytic capacitor C. In addition, the capacitor element can be molded with a mold resin as necessary.

前述したように、コンデンサ素子は100μm程度の厚さであり、接続板は、両面の電極、導体層の厚さを含めて140μm程度の厚さであるために、最少で250μm程度の厚さの固体電解コンデンサを得ることができる。   As described above, the capacitor element has a thickness of about 100 μm, and the connecting plate has a thickness of about 140 μm including the electrodes on both sides and the conductor layer. A solid electrolytic capacitor can be obtained.

次に、上述した固体電解コンデンサをプリント基板に実装する実装形態について図4とともに説明する。   Next, a mounting form in which the above-described solid electrolytic capacitor is mounted on a printed board will be described with reference to FIG.

この固体電解コンデンサをプリント基板3に実装するときには、例えば半田リフロー法によって基板に半田付けされる。   When this solid electrolytic capacitor is mounted on the printed board 3, it is soldered to the board by, for example, a solder reflow method.

すなわち、プリント基板3に形成された回路パターン31に半田4が塗布され、その回路パターン31の上に本発明の固体電解コンデンサCが搭載される。そして、リフロー炉を通過させることで、半田4を溶融し、固体電解コンデンサCの電極22、23と回路パターン31を半田付けする。このリフロー炉中で溶融した半田4は、回路パターン31との濡れ性が良く、溶融した半田4も回路パターン31側に濡れるように拡がっていくが、回路パターン31からはみ出して流れる場合もある。このように半田4が回路パターン31からはみ出した場合に、固体電解コンデンサの陽極電極22と陰極電極23のショートを引き起こすおそれがあるが、本発明の電解コンデンサでは、基板搭載面の陽極電極22と陰極電極23との間隙に、陽極電極及び/又は陰極電極と離間した半田レジスト層26を形成した構成としているため、溶融してあふれ出した半田4が、溝部の半田レジスト層26によって堰き止められるようになる。特に、半田レジスト層26をそれぞれの電極と離間させることで、両者の間には空間が形成されており、この空間が半田溜まりとして機能することで、陽極電極22と陰極電極23の短絡を防止することができる。   That is, the solder 4 is applied to the circuit pattern 31 formed on the printed circuit board 3, and the solid electrolytic capacitor C of the present invention is mounted on the circuit pattern 31. Then, the solder 4 is melted by passing through a reflow furnace, and the electrodes 22 and 23 of the solid electrolytic capacitor C and the circuit pattern 31 are soldered. The solder 4 melted in this reflow furnace has good wettability with the circuit pattern 31 and the melted solder 4 spreads so as to get wet on the circuit pattern 31 side, but sometimes flows out of the circuit pattern 31. When the solder 4 protrudes from the circuit pattern 31 as described above, there is a risk of causing a short circuit between the anode electrode 22 and the cathode electrode 23 of the solid electrolytic capacitor. In the electrolytic capacitor of the present invention, the anode electrode 22 on the board mounting surface Since the solder resist layer 26 separated from the anode electrode and / or the cathode electrode is formed in the gap with the cathode electrode 23, the molten solder 4 overflowing is blocked by the solder resist layer 26 in the groove. It becomes like this. In particular, by separating the solder resist layer 26 from each electrode, a space is formed between the two, and this space functions as a solder pool, thereby preventing a short circuit between the anode electrode 22 and the cathode electrode 23. can do.

本発明の固体電解コンデンサをプリント基板3に実装した図を示す。図4の矢印に示す「半田流れ部」の箇所で、半田4がプリント基板3の回路パターン31の範囲を超えて流れ出した状態となっているが、流れ出した半田は、固体電解コンデンサの溝部の半田レジスト層によって堰き止められ、ショートが防止された状態を示している。   The figure which mounted the solid electrolytic capacitor of this invention in the printed circuit board 3 is shown. The solder 4 flows out beyond the range of the circuit pattern 31 of the printed circuit board 3 at the “solder flow portion” indicated by the arrow in FIG. 4, but the flowed out solder is in the groove portion of the solid electrolytic capacitor. This shows a state in which a short circuit is prevented by damming by the solder resist layer.

C 固体電解コンデンサ
1 コンデンサ素子
11 アルミニウム材
12 酸化皮膜層
13 固体電解質層
14 陰極部
15 陽極部
2 接続板
21 絶縁基材
22 陽極電極
23 陰極電極
24 陽極導体
25 陰極導体
3 プリント基板
31 回路パターン
32 レジスト
4 半田
C Solid Electrolytic Capacitor 1 Capacitor Element 11 Aluminum Material 12 Oxide Film Layer 13 Solid Electrolyte Layer 14 Cathode Part 15 Anode Part 2 Connection Plate 21 Insulating Base Material 22 Anode Electrode 23 Cathode Electrode 24 Anode Conductor 25 Cathode Conductor 3 Printed Circuit Board 31 Circuit Pattern 32 Resist 4 Solder

Claims (2)

陽極部と陰極部を有するコンデンサ素子を、
絶縁基材よりなり基板搭載面に陽極電極と陰極電極を有する接続板に搭載した固体電解コンデンサにおいて、
基板搭載面の陽極電極と陰極電極との間隙を溝部とし、この溝部に陽極電極及び/又は陰極電極と離間した半田レジスト層を形成して半田溜まりとした固体電解コンデンサ。
A capacitor element having an anode part and a cathode part,
In a solid electrolytic capacitor made of an insulating substrate and mounted on a connecting plate having an anode electrode and a cathode electrode on the substrate mounting surface,
A solid electrolytic capacitor in which a gap between an anode electrode and a cathode electrode on a substrate mounting surface is used as a groove portion, and a solder resist layer separated from the anode electrode and / or the cathode electrode is formed in the groove portion to form a solder pool .
陽極電極及び陰極電極を同一平面に形成するとともに、半田レジスト層の厚さを陽極電極および陰極電極よりも突出しない厚さとした請求項1に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the anode electrode and the cathode electrode are formed on the same plane, and the thickness of the solder resist layer is set so as not to protrude from the anode electrode and the cathode electrode.
JP2009026638A 2009-02-06 2009-02-06 Solid electrolytic capacitor Active JP5746814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026638A JP5746814B2 (en) 2009-02-06 2009-02-06 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026638A JP5746814B2 (en) 2009-02-06 2009-02-06 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010182968A JP2010182968A (en) 2010-08-19
JP5746814B2 true JP5746814B2 (en) 2015-07-08

Family

ID=42764279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026638A Active JP5746814B2 (en) 2009-02-06 2009-02-06 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5746814B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397111B2 (en) * 2000-09-08 2010-01-13 新日本無線株式会社 Chip size package
JP2008098394A (en) * 2006-10-12 2008-04-24 Nec Tokin Corp Solid-state electrolytic capacitor
JP4803744B2 (en) * 2007-05-22 2011-10-26 Necトーキン株式会社 Thin solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2010182968A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
US7460359B2 (en) Thin multi-terminal capacitor and method of manufacturing the same
JP4810772B2 (en) Circuit module
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US8320106B2 (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP5201671B2 (en) Bottom electrode type solid electrolytic capacitor and manufacturing method thereof
JP5131852B2 (en) Solid electrolytic capacitor
US7706133B2 (en) Solid electrolytic capacitor
JP5746814B2 (en) Solid electrolytic capacitor
JP5376134B2 (en) Solid electrolytic capacitor
JP2005158903A (en) Solid electrolytic capacitor
KR102052763B1 (en) Tantalum capacitor and method of preparing the same
JP4276774B2 (en) Chip-shaped solid electrolytic capacitor
JPS60257191A (en) Printed circuit board
WO2012172890A1 (en) Printed-wiring board, electronic-component mounting structure, and method for manufacturing electronic-component mounting structure
JP2004235232A (en) Mounting structure of electronic component
JP5376135B2 (en) Manufacturing method of solid electrolytic capacitor
JP5850696B2 (en) Solid electrolytic capacitor
CN213586442U (en) Electronic circuit assembly
CN211047364U (en) Multilayer circuit board
JP2008166760A (en) Mounting body of electrolytic capacitor
JP2002110459A (en) Solid electrolytic chip capacitor
WO2011021255A1 (en) Solid electrolytic capacitor
JP4368040B2 (en) Chip capacitor
JP5258071B2 (en) Solid electrolytic capacitor
JP2010278032A (en) Surface mounted capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140611

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140801

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5746814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150