JP5745180B2 - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP5745180B2
JP5745180B2 JP2014524533A JP2014524533A JP5745180B2 JP 5745180 B2 JP5745180 B2 JP 5745180B2 JP 2014524533 A JP2014524533 A JP 2014524533A JP 2014524533 A JP2014524533 A JP 2014524533A JP 5745180 B2 JP5745180 B2 JP 5745180B2
Authority
JP
Japan
Prior art keywords
pole
bimetal
circuit breaker
trip
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014524533A
Other languages
Japanese (ja)
Other versions
JPWO2014010040A1 (en
Inventor
智也 出口
智也 出口
黒崎 剛史
剛史 黒崎
康雄 岸本
康雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5745180B2 publication Critical patent/JP5745180B2/en
Publication of JPWO2014010040A1 publication Critical patent/JPWO2014010040A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition
    • H01H83/22Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages
    • H01H83/226Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages with differential transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • H01H71/16Electrothermal mechanisms with bimetal element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)

Description

本発明は、配線用遮断器及び漏電遮断器などの回路遮断器、特にその熱動電磁引き外し装置に関するものである。   The present invention relates to circuit breakers such as circuit breakers for wiring and earth leakage breakers, and more particularly to a thermal electromagnetic trip device.

従来の回路遮断器における熱動電磁形の過電流引き外し装置は、過電流が流れたときにジュール熱によって湾曲するバイメタルが開閉機構部の引き外し部を押圧し、これによって開閉機構部が作動することにより開閉接点が開離される。3相電路に対応する3極の回路遮断器では、この熱動電磁形の過電流引き外し装置が左極(以下L極)、中極(以下C極)、右極(以下R極)にそれぞれに配設され、いずれの極に過電流が流れても、バイメタルが引き外し部を押圧するので開閉機構部が作動し、開閉接点が開離するように構成されている(例えば、特許文献1参照)。ジュール熱を発生する発熱部の方式としては、バイメタルに直接通電する直熱式、バイメタルの近傍の電路にヒータを設ける傍熱式、あるいは直熱式と傍熱式を併用する直傍熱式が知られている。   In the conventional thermo-electromagnetic overcurrent tripping device for circuit breakers, the bimetal, which is bent by Joule heat when overcurrent flows, presses the tripping part of the opening / closing mechanism, which activates the opening / closing mechanism. By doing so, the switching contact is opened. In a three-pole circuit breaker corresponding to a three-phase circuit, this thermal electromagnetic overcurrent tripping device is connected to the left pole (hereinafter referred to as L pole), the middle pole (hereinafter referred to as C pole), and the right pole (hereinafter referred to as R pole). Even if an overcurrent flows in any of the poles, the bimetal presses the tripping portion, so that the switching mechanism is activated and the switching contact is opened (for example, Patent Document) 1). The heating unit that generates Joule heat can be either a direct heating type that directly energizes the bimetal, a side heating type that provides a heater in the electrical path near the bimetal, or a direct side heating type that uses both a direct heating type and a side heating type. Are known.

また、開閉機構部や熱動電磁形の過電流引き外し装置を構成する各部品の加工、組立誤差、材料特性のばらつき等が累積されることにより、開閉機構部の引き外し時間がばらつくため、バイメタルの先端に調整機構が設けられ、この調整機構によりバイメタルの先端から開閉機構部の引き外し部までの距離(ギャップ)の調整を行う。そして、回路遮断器の出荷検査時に、通電検査により引き外し時間を測定し、引き外し時間が規定時間の範囲内に入っていることを確認している。   In addition, the tripping time of the switching mechanism varies due to the accumulation of machining, assembly error, variation in material characteristics, etc. of each part constituting the switching mechanism and thermal electromagnetic overcurrent tripping device, An adjustment mechanism is provided at the tip of the bimetal, and the adjustment mechanism adjusts the distance (gap) from the tip of the bimetal to the trip portion of the opening / closing mechanism. Then, at the time of shipping inspection of the circuit breaker, the trip time is measured by energization inspection, and it is confirmed that the trip time is within the specified time range.

一方、漏電遮断器においては、過電流引き外し装置に接続された一次導体が零相変流器を貫通した後、漏電遮断器の負荷側の接続端子に接続されており、特に、L極及びR極の一次導体は、零相変流器を貫通させるためにU字状に形成されている(例えば、特許文献2参照)。   On the other hand, in the earth leakage breaker, the primary conductor connected to the overcurrent tripping device passes through the zero-phase current transformer and is then connected to the connection terminal on the load side of the earth leakage breaker. The primary conductor of the R pole is formed in a U shape so as to penetrate the zero-phase current transformer (see, for example, Patent Document 2).

特開2000−30597号公報JP 2000-30597 A 特開平8−077909号公報Japanese Patent Application Laid-Open No. 8-079909

従来の配線用遮断器における熱動電磁形の過電流引き外し装置では、C極のバイメタルは、自身のジュール熱に加えL極及びR極のジュール熱も受けるので、C極の湾曲がL極及びR極より大きくなる。また、従来の漏電遮断器における熱動電磁形の過電流引き外し装置では、L極及びR極のバイメタルは、該バイメタルに接続された一次導体がU字状に成形されているため、C極より電路長が長くなり、一次導体の抵抗が増大し、ジュール熱も増大するので、L極及びR極の熱による湾曲がC極より大きく、各極の特性が一致しなくなる。   In a conventional thermal electromagnetic overcurrent tripping device for a circuit breaker for wiring, the C pole bimetal receives not only its own Joule heat but also the L pole and R pole Joule heat. And larger than the R pole. Moreover, in the thermoelectromagnetic overcurrent tripping device in the conventional earth leakage circuit breaker, the L pole and the R pole bimetal are formed in a U shape with the primary conductor connected to the bimetal. Since the electric circuit length becomes longer, the resistance of the primary conductor increases, and the Joule heat also increases, the curvature due to the heat of the L pole and the R pole is larger than the C pole, and the characteristics of the poles do not match.

また、出荷検査時の合格率を上げるためには、なるべくバイメタルの近傍で集中してジュール熱を発生させる必要があるので、発熱部の抵抗値を可能な限り上げることが好ましい。ところが、最近の回路遮断器は外形の小形化が進み、内部温度が全体的に上昇し易い構成となっており、限界まで発熱部の抵抗値を上げると、配線用遮断器ではC極の、漏電遮断器ではL極及びR極のバイメタルが曲がり過ぎてしまい、バイメタルの先端から開閉機構部の引き外し部までの距離を確保できなくなるため、調整機構により引き外し時間を調整することができなくなるという問題があった。   Further, in order to increase the acceptance rate at the time of shipping inspection, it is necessary to generate Joule heat in the vicinity of the bimetal as much as possible. Therefore, it is preferable to increase the resistance value of the heat generating portion as much as possible. However, recent circuit breakers have become smaller in size and have a structure in which the internal temperature tends to rise overall. When the resistance value of the heat generating part is increased to the limit, In the earth leakage breaker, the bimetal of the L pole and the R pole is bent too much, and it becomes impossible to secure the distance from the tip of the bimetal to the tripping part of the opening / closing mechanism part, so the tripping time cannot be adjusted by the adjusting mechanism. There was a problem.

本発明に係る回路遮断器は、3相電路を開閉する可動接触子及び固定接触子の接点を開閉駆動する開閉機構部と、前記電路に過大電流が流れたときにトリップバーを駆動して前記開閉機構部を引き外す電磁引き外し装置と、前記電路に過電流が流れたときに湾曲するバイメタルによりトリップバーを駆動して開閉機構部を引き外す熱動引き外し装置を備えた回路遮断器において、熱動引き外し装置は、3相電路に対応して並設された3極に設けられ、各極のバイメタルの内、少なくとも一つは、他のバイメタルと板厚が異なるものである。   The circuit breaker according to the present invention includes a movable contact that opens and closes a three-phase electric circuit and an open / close mechanism that opens and closes a contact of the fixed contact, and a trip bar that drives when an excessive current flows through the electric circuit. In a circuit breaker comprising an electromagnetic trip device for tripping an opening / closing mechanism, and a thermal trip device for driving a trip bar by a bimetal that bends when an overcurrent flows through the electric circuit to trip the opening / closing mechanism. The thermal tripping device is provided on three poles arranged in parallel corresponding to the three-phase electric circuit, and at least one of the bimetals of each pole is different in plate thickness from the other bimetals.

この発明によれば、バイメタルの板厚を極によって変えることによりバイメタルの湾曲特性を揃え、熱動引き外し装置の特性を揃えるようにしたので、回路遮断器の性能向上を簡単に確保できる。また、回路遮断器の遮断特性の試験において、熱動引き外し時間の調整が容易になる。   According to the present invention, by changing the thickness of the bimetal depending on the pole, the bending characteristics of the bimetal are made uniform and the characteristics of the thermal tripping device are made uniform, so that the performance improvement of the circuit breaker can be easily ensured. In addition, it is easy to adjust the thermal trip time in the test of the breaking characteristics of the circuit breaker.

本発明の実施の形態1に係る回路遮断器の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the circuit breaker which concerns on Embodiment 1 of this invention. 実施の形態1に係る回路遮断器の構成を示す斜視図である。It is a perspective view which shows the structure of the circuit breaker which concerns on Embodiment 1. FIG. 実施の形態1に係る回路遮断器の熱動電磁引き外し装置を示す斜視図である。It is a perspective view which shows the thermal electromagnetic trip apparatus of the circuit breaker which concerns on Embodiment 1. FIG. 実施の形態1に係る回路遮断器の熱動電磁引き外し装置を構成するバイメタルを示す正面図(a)及び側面図(b)、(c)、(d)である。It is the front view (a) and side view (b), (c), (d) which show the bimetal which comprises the thermal electromagnetic trip apparatus of the circuit breaker which concerns on Embodiment 1. FIG. 実施の形態2に係る回路遮断器の熱動電磁引き外し装置を構成するバイメタルを示す正面図である。It is a front view which shows the bimetal which comprises the thermal electromagnetic trip apparatus of the circuit breaker which concerns on Embodiment 2. FIG. 本発明の実施の形態3に係る漏電遮断器零相変流器の構成を示す平面図(a)、正面図(b)、及び側面図(c)である。It is the top view (a), front view (b), and side view (c) which show the structure of the earth-leakage circuit breaker zero phase current transformer which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る零相変流器の要部を示す側面断面図である。It is side surface sectional drawing which shows the principal part of the zero phase current transformer which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る零相変流器の別の構成の一次導体を示す平面図である。It is a top view which shows the primary conductor of another structure of the zero phase current transformer which concerns on Embodiment 3 of this invention. 実施の形態3に係る熱動電磁引き外し装置を構成するバイメタルを示す正面図(a)及び側面図(b)、(c)、(d)である。It is the front view (a) and side view (b), (c), (d) which show the bimetal which comprises the thermal electromagnetic trip device which concerns on Embodiment 3. FIG. 本発明の実施の形態4に係る回路遮断器の構成を示す斜視図である。It is a perspective view which shows the structure of the circuit breaker which concerns on Embodiment 4 of this invention.

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。図1は実施の形態1に係る回路遮断器の内部構成を示す側面断面図、図2は図1に示す回路遮断器の構成を示す斜視図、図3は図1に示す回路遮断器における熱動電磁引き外し装置を示す斜視図、図4は図3に示す過電流引き外し装置を構成するバイメタルを示す図で、(a)は正面図、(b)はL極の側面図、(c)はC極の側面図、(b)はR極の側面図ある。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is a side sectional view showing the internal configuration of the circuit breaker according to Embodiment 1, FIG. 2 is a perspective view showing the configuration of the circuit breaker shown in FIG. 1, and FIG. 3 is the heat in the circuit breaker shown in FIG. 4 is a perspective view showing a dynamic electromagnetic trip device, FIG. 4 is a diagram showing a bimetal constituting the overcurrent trip device shown in FIG. 3, (a) is a front view, (b) is a side view of the L pole, (c ) Is a side view of the C pole, and (b) is a side view of the R pole.

図1及び図2において、回路遮断器100は、3相電路に対応する3極の回路遮断器で、3極の左極(以下L極)、中極(以下C極)、右極(以下R極)にそれぞれ後述する熱動電磁引き外し装置11が配設されている。回路遮断器100の筐体1は合成樹脂材で形成されており、本体ベース2と本体カバー3の分割構造とされている。本体ベース2には、電源側端子4と、この電源側端子4の一部に設けられた固定接触子5と、この固定接触子5に対向して開閉する可動接触子6とが設けられ、固定接触子5及び可動接触子6にはそれぞれ開閉接点が設けられている。   1 and 2, a circuit breaker 100 is a three-pole circuit breaker corresponding to a three-phase electric circuit, and has a three-pole left pole (hereinafter referred to as L pole), a middle pole (hereinafter referred to as C pole), and a right pole (hereinafter referred to as “pole”). A thermal electromagnetic tripping device 11 described later is disposed on each of the R poles). The casing 1 of the circuit breaker 100 is made of a synthetic resin material and has a divided structure of the main body base 2 and the main body cover 3. The main body base 2 is provided with a power supply side terminal 4, a fixed contact 5 provided on a part of the power supply side terminal 4, and a movable contact 6 that opens and closes opposite to the fixed contact 5. The fixed contact 5 and the movable contact 6 are each provided with a switching contact.

回路遮断器100は、可動接触子6に連結された開閉機構部7と、この開閉機構部7に固着され、本体カバー3の窓穴から突出するハンドル8とを有する。さらに、回路遮断器100は、電路に定格電流を超えた電流が流れた時に、開閉機構部7を動作させる熱動電磁引き外し装置11を3極に備え、この熱動電磁引き外し装置11は、開閉機構部7と並んで負荷側に配置されている。この熱動電磁引き外し装置11は、バイメタル12と、バイメタル12の負荷側に接触しているヒータ13と、熱動電磁引き外し装置11とトリップバー14との距離を調整する調整機構15と、から構成されている。   The circuit breaker 100 includes an opening / closing mechanism portion 7 connected to the movable contact 6, and a handle 8 fixed to the opening / closing mechanism portion 7 and protruding from the window hole of the main body cover 3. Further, the circuit breaker 100 is provided with a three-pole thermal electromagnetic trip device 11 that operates the switching mechanism 7 when a current exceeding the rated current flows in the electric circuit. Further, it is arranged on the load side along with the opening / closing mechanism section 7. The thermal electromagnetic trip device 11 includes a bimetal 12, a heater 13 that is in contact with the load side of the bimetal 12, an adjustment mechanism 15 that adjusts the distance between the thermal electromagnetic trip device 11 and the trip bar 14, It is composed of

熱動電磁引き外し装置11の詳細を図3に基づいて説明する。熱動電磁引き外し装置11は、電磁引き外し装置と熱動引き外し装置とから構成される。電磁引き外し装置は、固定鉄心11aと、瞬時遮断時に固定鉄心11aに吸着され、トリップバー14を駆動する可動鉄心11bと、可動鉄心11bを付勢する復帰スプリング(図示せず)と、可動鉄心11bを軸支するシャフト11cとを備えている。   Details of the thermal electromagnetic trip device 11 will be described with reference to FIG. The thermal electromagnetic trip device 11 includes an electromagnetic trip device and a thermal trip device. The electromagnetic trip device includes a fixed iron core 11a, a movable iron core 11b that is attracted to the fixed iron core 11a when instantaneously interrupted to drive the trip bar 14, a return spring (not shown) that urges the movable iron core 11b, and a movable iron core. And a shaft 11c that pivotally supports 11b.

一方、熱動引き外し装置は、熱膨張率が異なる2枚の金属板を貼り合わせた板状部材を打ち抜いて短冊形状に形成されたバイメタル12を有し、バイメタル12の下部には孔が開けられ、バイメタル12とヒータ13がピン16によってかしめられ、電気的に接続されるようになっている。バイメタル12の上部にも、孔が開けられ、トリップバー14への当接部15aを有する調整機構15が取り付けられている。ここで、図4に示すように、バイメタル12の平面形状(図4(a))は、L極、C極、R極とも同じであるが、C極のバイメタル12a(図4(c))は、L極及びR極のバイメタル12b(図4(b))及び12c(図4(d))に比べ板厚を厚くしている。なお、本明細書において、バイメタル12は、設置される極の区別が必要なときには、符号12に接尾語a、b、cを付して示し、設置される極の区別が不要なときには、符号12に接尾語を付けないで示している。   On the other hand, the thermal tripping device has a bimetal 12 formed into a strip shape by punching a plate-like member obtained by bonding two metal plates having different thermal expansion coefficients, and a hole is formed in the lower portion of the bimetal 12. The bimetal 12 and the heater 13 are caulked by pins 16 and are electrically connected. A hole is also formed in the upper part of the bimetal 12, and an adjustment mechanism 15 having an abutting portion 15 a for the trip bar 14 is attached. Here, as shown in FIG. 4, the planar shape of the bimetal 12 (FIG. 4A) is the same for the L pole, C pole, and R pole, but the C pole bimetal 12 a (FIG. 4C). Is thicker than the bimetals 12b (Fig. 4 (b)) and 12c (Fig. 4 (d)) of the L and R poles. In the present specification, the bimetal 12 is indicated by adding the suffixes a, b, and c to the reference numeral 12 when it is necessary to distinguish between the poles to be installed. 12 is shown without a suffix.

熱動電磁引き外し装置11は、通電電流等によってバイメタル12が高温になると、線膨張係数の違いからバイメタル12に反りが生じる。この反りによる変位によってバイメタル12はトリップバー14(図2参照)に当接し、当接したことを契機としてトリップバー14に電流遮断等の引き外し動作を行わせる。調整機構15は、熱動電磁引き外し装置11がトリップバー14に当接することでトリップバー14に動作を行わせる電流を所定値にするために、トリップバー14と調整機構15との距離を調節するためのものである。   In the thermal electromagnetic trip device 11, when the bimetal 12 becomes high temperature due to an energization current or the like, the bimetal 12 is warped due to the difference in linear expansion coefficient. The bimetal 12 comes into contact with the trip bar 14 (see FIG. 2) due to the displacement due to the warp, and the trip bar 14 performs a tripping operation such as current interruption when triggered by the contact. The adjustment mechanism 15 adjusts the distance between the trip bar 14 and the adjustment mechanism 15 so that the current that causes the trip bar 14 to operate when the thermal electromagnetic trip device 11 contacts the trip bar 14 becomes a predetermined value. Is to do.

この距離を調節するには、まず、本体ベース2に熱動電磁引き外し装置11とトリップバー14を組付け、熱動電磁引き外し装置11に、トリップバー14を動作させるための所定値の電流を通電する。次に、所定値の電流によりバイメタル12の温度が上昇して、熱動電磁引き外し装置11が変位している状態で、調整機構15の当接部15aがトリップバー14に当接する位置まで当接部15aを回転させ、当該位置で調整機構15とバイメタル12とを固定する。   In order to adjust this distance, first, the thermal electromagnetic trip device 11 and the trip bar 14 are assembled to the main body base 2, and a predetermined current for operating the trip bar 14 in the thermal electromagnetic trip device 11. Energize. Next, in a state where the temperature of the bimetal 12 is increased by a predetermined current and the thermal electromagnetic trip device 11 is displaced, the contact portion 15a of the adjusting mechanism 15 is moved to a position where it contacts the trip bar 14. The contact portion 15a is rotated, and the adjustment mechanism 15 and the bimetal 12 are fixed at the position.

次に、回路遮断器100のトリップ動作について説明する。電路に短絡電流のような過大電流が流れた場合には、熱動電磁引き外し装置11の固定鉄心11aに発生する磁力により、可動鉄心11bが固定鉄心11aに吸着され、可動鉄心11bがシャフト11cを回動軸として復帰スプリング(図示しない)の付勢力に抗して回動する。この回動により可動鉄心11bがトリップバー14を押し、開閉機構部7が駆動され、可動接触子6を回動させる。可動接触子6の回動により固定接点から可動接点が開離し、過大電流は遮断されトリップ動作が完了する。   Next, the trip operation of the circuit breaker 100 will be described. When an excessive current such as a short circuit current flows in the electric circuit, the movable iron core 11b is attracted to the fixed iron core 11a by the magnetic force generated in the fixed iron core 11a of the thermal electromagnetic trip device 11, and the movable iron core 11b is attached to the shaft 11c. Is rotated against the urging force of a return spring (not shown). By this rotation, the movable iron core 11b pushes the trip bar 14, the opening / closing mechanism 7 is driven, and the movable contact 6 is rotated. The movable contact 6 is separated from the fixed contact by the rotation of the movable contact 6, the excessive current is cut off, and the trip operation is completed.

一方、電路に過電流が流れた場合には、所定電流以上の電流がヒータ13を流れヒータ13が発熱し、この発熱によりバイメタル12が加熱されて変形する。バイメタル12が変形すると、バイメタル12に固着されている調整機構15の当接部15aがトリップバー14を押し、開閉機構部7が駆動され可動接触子6を回動させる。可動接触子6の回動により固定接点から可動接点が開離し、電流遮断のトリップ動作が完了する。   On the other hand, when an overcurrent flows through the electric circuit, a current of a predetermined current or more flows through the heater 13 and the heater 13 generates heat, and the bimetal 12 is heated and deformed by this heat generation. When the bimetal 12 is deformed, the contact portion 15a of the adjusting mechanism 15 fixed to the bimetal 12 pushes the trip bar 14, and the opening / closing mechanism portion 7 is driven to rotate the movable contact 6. The movable contact 6 is separated from the fixed contact by the rotation of the movable contact 6, and the trip operation for current interruption is completed.

この熱動引き外し動作時に、C極のバイメタル12aは、自身の極のヒータ13と、両側にあるL極及びR極のヒータ13の3つのヒータで発生するジュール熱を受けるので、その温度上昇は、L極及びR極より大きくなる。一方、バイメタル12の湾曲量は、以下の式(1)で算出される。ここで、Dは湾曲量、kはバイメタルの湾曲係数、ΔTは温度上昇値、Lはバイメタルの動作長さ、tはバイメタル板厚を示す。
D=k・ΔT・L2/t ・・・・(1)
During this thermal tripping operation, the C pole bimetal 12a receives Joule heat generated by the three heaters of its own pole heater 13 and the L pole and R pole heaters 13 on both sides. Is larger than the L and R poles. On the other hand, the bending amount of the bimetal 12 is calculated by the following equation (1). Here, D is the bending amount, k is the bimetallic bending coefficient, ΔT is the temperature rise value, L is the operating length of the bimetal, and t is the bimetallic plate thickness.
D = k · ΔT · L 2 / t (1)

よって、バイメタルの板厚が同じであれば、その湾曲量は、C極のバイメタル12aがL極のバイメタル12b及びR極のバイメタル12cよりも大きくなる。そこで、本実施の形態では、C極のバイメタル12aの板厚を、L極のバイメタル12b及びR極のバイメタル12cよりも厚くしている。これにより、バイメタル12aの厚さを加減することにより、温度上昇が不均一となる影響が打ち消され、3極の各バイメタルの湾曲特性をほぼ同一に揃えることができる。本実施の形態1によれば、C極のバイメタル12aは、L極のバイメタル12b及びR極のバイメタル12cに比べ板厚を厚くしているので、3極の各バイメタルの湾曲特性がほぼ同一となり、調整機構15による引き外し時間の調整代を十分に確保できる。   Therefore, if the bimetal plate thickness is the same, the bending amount of the C-polar bimetal 12a is larger than that of the L-polar bimetal 12b and the R-polar bimetal 12c. Therefore, in the present embodiment, the plate thickness of the C-pole bimetal 12a is made thicker than the L-pole bimetal 12b and the R-pole bimetal 12c. As a result, by adjusting the thickness of the bimetal 12a, the influence of non-uniform temperature rise can be negated, and the bending characteristics of each of the tripolar bimetals can be made substantially the same. According to the first embodiment, the C pole bimetal 12a is thicker than the L pole bimetal 12b and the R pole bimetal 12c, so that the bending characteristics of each of the three pole bimetals are substantially the same. A sufficient adjustment allowance for the tripping time by the adjusting mechanism 15 can be secured.

なお、本実施の形態1では、バイメタル12の近傍にヒータ13を設けた傍熱形の例を示したが、バイメタル12に電路の電流を通電させる直熱形や直傍熱形でも同様の効果を発揮させることができる。また、バイメタルの湾曲によって開閉機構部を引き外し動作させるため、バイメタルの剛性が低いと、開閉機構部の引き外し荷重のばらつきが引き外し時間に大きな影響を与えてしまうが、本実施の形態1では、バイメタルの板厚を厚くすることにより剛性を上げて、引き外し荷重のばらつきを低減できる。   In the first embodiment, an example of the indirectly heated type in which the heater 13 is provided in the vicinity of the bimetal 12 has been shown. However, the same effect is also obtained in the directly heated type and the directly heated type in which the current of the electric circuit is supplied to the bimetal 12. Can be demonstrated. In addition, since the opening / closing mechanism section is tripped by bending the bimetal, if the bimetal rigidity is low, variation in the tripping load of the opening / closing mechanism section greatly affects the tripping time. Then, by increasing the thickness of the bimetal, the rigidity can be increased and the variation in the trip load can be reduced.

実施の形態2.
図5は、実施の形態2に係る回路遮断器の熱動電磁引き外し装置を構成するバイメタルを示す正面図である。実施の形態2は、バイメタルの形状以外は実施の形態1と同様の構成である。本実施の形態2では、実施の形態1に示す回路遮断器において、板厚を厚くしたバイメタル12aのほぼ中央に孔12a1を開けたものである。
Embodiment 2. FIG.
FIG. 5 is a front view showing a bimetal constituting the thermal electromagnetic trip device of the circuit breaker according to the second embodiment. The second embodiment has the same configuration as that of the first embodiment except for the shape of the bimetal. In the second embodiment, in the circuit breaker shown in the first embodiment, a hole 12a1 is formed at substantially the center of a bimetal 12a having a large plate thickness.

バイメタル12aのほぼ中央に孔12a1を開けることで、バイメタル12aの内部に直接外気から熱が加わり、バイメタル12a内部の温度が速く上昇するため、バイメタル12aの湾曲が速くなり、出荷検査での引き外し時間の調整にかかる時間を短縮することができる。また、孔12a1の大きさを調節することにより、バイメタル12aの湾曲の速さを調節できる。その他の効果は実施の形態1と同様である。   By opening a hole 12a1 in the center of the bimetal 12a, heat is directly applied from outside air to the inside of the bimetal 12a, and the temperature inside the bimetal 12a rises quickly, so that the bimetal 12a is bent quickly and is tripped during shipping inspection. Time required for time adjustment can be shortened. In addition, the bending speed of the bimetal 12a can be adjusted by adjusting the size of the hole 12a1. Other effects are the same as those of the first embodiment.

実施の形態3.
本実施の形態3は漏電遮断器に関するものであり、実施の形態1の回路遮断器に零相変流器を付加して漏電遮断器を構成したものである。図6〜図8は本実施の形態3における零相変流器の構成を示すもので、図6(a)は零相変流器の平面図、(b)は零相変流器の正面図、(c)は零相変流器の側面図である。図7は零相変流器の側面断面を拡大して示す図、図8はは零相変流器の一次導体のみ示す平面図である。なお、これらの図において、零相変流器の二次導体は図示を省略している。
Embodiment 3 FIG.
The third embodiment relates to a leakage breaker, and is configured by adding a zero-phase current transformer to the circuit breaker of the first embodiment. 6 to 8 show the configuration of the zero-phase current transformer in the third embodiment. FIG. 6A is a plan view of the zero-phase current transformer, and FIG. 6B is a front view of the zero-phase current transformer. FIG. 4C is a side view of the zero-phase current transformer. FIG. 7 is an enlarged view showing a side section of the zero-phase current transformer, and FIG. 8 is a plan view showing only the primary conductor of the zero-phase current transformer. In these figures, the secondary conductor of the zero-phase current transformer is not shown.

先ず、零相変流器について説明する。図6〜図8において、環状コアを有する零相変流器201には、図示しないが、環状コアに沿って二次巻線が巻回されている。零相変流器201の環状部を貫通して、回路遮断器の3極に対応する3相電路の第1の一次導体202(L極に対応)、第2の一次導体203(C極に対応)、及び第3の一次導体204(R極に対応)が設けられている。一次導体203は直進する形状であるが、一次導体202及び204は環状部両側からU字状に折り曲げされた形状になされ、これら各一次導体にバイメタル12が接続される。   First, the zero phase current transformer will be described. 6 to 8, a secondary winding is wound around the zero-phase current transformer 201 having an annular core, although not shown. The first primary conductor 202 (corresponding to the L pole) and the second primary conductor 203 (corresponding to the C pole) of the three-phase circuit passing through the annular portion of the zero-phase current transformer 201 and corresponding to the three poles of the circuit breaker Corresponding) and a third primary conductor 204 (corresponding to the R pole). The primary conductor 203 has a shape that goes straight, but the primary conductors 202 and 204 are bent in a U shape from both sides of the annular portion, and the bimetal 12 is connected to each primary conductor.

各一次導体202〜204の両端部には、零相変流器201の筺体に形成された仕切壁205が設けられ、所定の間隔でそれぞれ配設された端子(図示せず)の一つにそれぞれの一次導体が接続される座部が形成され、この座部の先端に、本体ベース2に挿入され固定される突部202a〜204aが形成されている。   A partition wall 205 formed in the casing of the zero-phase current transformer 201 is provided at both ends of each primary conductor 202 to 204, and one of terminals (not shown) respectively arranged at a predetermined interval. A seat to which each primary conductor is connected is formed, and protrusions 202a to 204a to be inserted and fixed to the main body base 2 are formed at the tip of the seat.

零相変流器の第1及び第3の一次導体202及び204は図8に示すように構成してもよい。これは、第1及び第3の一次導体202及び204を、それぞれ複数枚の薄板を重ね合わせて構成したものである。複数枚の薄板を重ね合わせることにより、U字曲げによる応力を緩和することが可能となり、図7に示すように、漏電遮断器の本体ベース2に挿入された一次導体202、204の座部の突部202a及び204aによる本体ベース2の破壊を抑止することができる。   The first and third primary conductors 202 and 204 of the zero-phase current transformer may be configured as shown in FIG. In this configuration, the first and third primary conductors 202 and 204 are configured by superimposing a plurality of thin plates, respectively. By laminating a plurality of thin plates, it becomes possible to relieve stress due to U-bending. As shown in FIG. 7, the seats of the primary conductors 202 and 204 inserted in the main body base 2 of the earth leakage breaker are provided. Breakage of the main body base 2 by the protrusions 202a and 204a can be suppressed.

実施の形態3に係る漏電遮断器の熱動電磁引き外し装置を構成するバイメタルの構造を図9に示す。本実施の形態3では、図9に示すように、U字状に折り曲げられた第1の一次導体202及び第3の一次導体204に接続されるL極及びR極のバイメタル12b及び12cは、一次導体203に接続されるC極のバイメタル12aに比べて板厚を厚くしている。   FIG. 9 shows the structure of the bimetal that constitutes the thermal electromagnetic trip device for an earth leakage circuit breaker according to the third embodiment. In the third embodiment, as shown in FIG. 9, the L-pole and R-pole bimetals 12b and 12c connected to the first primary conductor 202 and the third primary conductor 204 bent in a U shape are The plate thickness is made thicker than the C-pole bimetal 12a connected to the primary conductor 203.

通常、バイメタルは一次導体に接続され、負荷端子へ電気的に繋がっており、バイメタルの熱は、負荷端子から外部に放出されるが、一次導体の温度上昇が大きいと、バイメタルの温度が外部に放出されにくくなるので、バイメタル温度は上昇する。本実施の形態3では、L極及びR極のバイメタル12b及び12cは、接続されている第1及び第3の一次導体202及び204がU字状に曲げられているため、C極の第2の一次導体203に比べ電路が長く、発生するジュール熱が大きい。そのため、L極及びR極のバイメタル12b及び12cの温度上昇は、C極のバイメタル12aよりも大きくなる。そこで、L極及びR極のバイメタル12b及び12cの板厚を、C極のバイメタル12aより厚くして、温度上昇の影響を、バイメタルの板厚の差により打ち消し、3極の各バイメタルの湾曲特性をほぼ同一に揃える。   Normally, the bimetal is connected to the primary conductor and electrically connected to the load terminal, and the heat of the bimetal is released from the load terminal to the outside, but if the temperature rise of the primary conductor is large, the temperature of the bimetal will be external The bimetal temperature rises because it is less likely to be released. In the third embodiment, the L and R bimetals 12b and 12c have the first and third primary conductors 202 and 204 connected to be bent in a U-shape, so that the C pole second Compared with the primary conductor 203, the electric circuit is long and the generated Joule heat is large. For this reason, the temperature rise of the L-pole and R-pole bimetals 12b and 12c is larger than that of the C-pole bimetal 12a. Therefore, the thicknesses of the L pole and R pole bimetals 12b and 12c are made thicker than those of the C pole bimetal 12a, and the influence of the temperature rise is canceled by the difference in the thicknesses of the bimetals. Are almost the same.

本実施の形態によれば、L極及びR極のバイメタル12b及び12cは、C極のバイメタル12aに比べ板厚を厚くしているので、3極の各バイメタルの湾曲特性がほぼ同一となり、調整機構15による引き外し時間の調整代を十分に確保できる。   According to the present embodiment, the L-pole and R-pole bimetals 12b and 12c are thicker than the C-pole bimetal 12a. A sufficient margin for adjusting the tripping time by the mechanism 15 can be secured.

なお、図8に示すように、零相変流器201の環状部を貫通させる第1及び第3の一次導体202及び204を複数枚の導電性の薄板を重ね合わせて構成すれば、U字曲げによる応力を緩和することが可能となり、漏電遮断器の筐体に挿入された一次導体の座部の先端に形成している突部202a及び204aによる本体ベース2の破壊を防止することができる。   As shown in FIG. 8, if the first and third primary conductors 202 and 204 that penetrate the annular portion of the zero-phase current transformer 201 are configured by overlapping a plurality of conductive thin plates, a U-shape is obtained. It becomes possible to relieve the stress due to bending, and it is possible to prevent the main body base 2 from being broken by the protrusions 202a and 204a formed at the tip of the seat portion of the primary conductor inserted into the casing of the earth leakage circuit breaker. .

実施の形態4.
以下、本実施の形態4に係る回路遮断器を図10に基づいて説明する。回路遮断器105は、3相4線式の電路に用いられる4極の回路遮断器であり、実施の形態1で示した3極の回路遮断器のR極の外側に、熱動引き外し装置を装備しない中性極用のN極を1極追加したものである。
Embodiment 4 FIG.
Hereinafter, the circuit breaker according to the fourth embodiment will be described with reference to FIG. The circuit breaker 105 is a four-pole circuit breaker used for a three-phase four-wire circuit, and a thermal trip device is provided outside the R pole of the three-pole circuit breaker shown in the first embodiment. This is the addition of one pole for the neutral pole that is not equipped with a pole.

4極の回路遮断器105においても、バイメタルの板厚を極に応じて変えて温度上昇の影響を打ち消すことにより、3極の各バイメタルの湾曲特性をほぼ同一に揃えることができるものであり、その他の構成及び効果については、実施の形態1と同様なので、説明を省略する。   Also in the 4-pole circuit breaker 105, by changing the thickness of the bimetal according to the pole and canceling the influence of the temperature rise, the bending characteristics of each of the 3-pole bimetals can be made almost the same, Other configurations and effects are the same as those of the first embodiment, and thus description thereof is omitted.

なお、本発明は、その発明の範囲内において、各実施の形態の一部または全部を自由に組合わせたり、各実施の形態を適宜、変形、省略することが可能である。   In the present invention, within the scope of the invention, a part or all of each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.

1 筐体、 2 本体ベース、
3 本体カバー、 4 電源側端子、
5 固定接触子、 6 可動接触子、
7 開閉機構部、 8 ハンドル、
11 熱動電磁引き外し装置、
11a、11b、11c 熱動電磁引き外し装置、
12 バイメタル、 12a、12b、12c バイメタル、
12a1 バイメタル孔、 13 ヒータ、
14 トリップバー、 15 調整機構、
16 ピン、 100、105 回路遮断器、
201 零相変流器、 202 第1の一次導体、
203 第2の一次導体、 204 第3の一次導体、
202a、203a、204a 突部、
205 仕切壁。
1 housing, 2 body base,
3 Body cover 4 Power terminal
5 fixed contact, 6 movable contact,
7 Opening / closing mechanism, 8 Handle,
11 Thermal electromagnetic trip device,
11a, 11b, 11c Thermal electromagnetic trip device,
12 bimetal, 12a, 12b, 12c bimetal,
12a1 bimetal hole, 13 heater,
14 Trip bar, 15 Adjustment mechanism,
16 pin, 100, 105 circuit breaker,
201 zero-phase current transformer, 202 first primary conductor,
203 second primary conductor, 204 third primary conductor,
202a, 203a, 204a protrusion,
205 Partition wall.

Claims (7)

3相電路を開閉する可動接触子及び固定接触子の接点を開閉駆動する開閉機構部と、前記電路に過大電流が流れたときにトリップバーを駆動して前記開閉機構部を引き外す電磁引き外し装置と、前記電路に過電流が流れたとき湾曲するバイメタルによりトリップバーを駆動して前記開閉機構部を引き外す熱動引き外し装置を備えた回路遮断器において、前記熱動引き外し装置は、前記3相電路に対応して並設された3極に設けられ、各極のバイメタルの内、少なくとも一つは、他のバイメタルと板厚が異なることを特徴とする回路遮断器。   An open / close mechanism that opens and closes the contacts of the movable contact and fixed contact that opens and closes the three-phase electric circuit, and an electromagnetic trip that trips the open / close mechanism when an excessive current flows in the electric circuit In a circuit breaker comprising a device and a thermal trip device that drives a trip bar with a bimetal that curves when an overcurrent flows through the electrical circuit to trip the open / close mechanism, the thermal trip device comprises: A circuit breaker provided in three poles arranged side by side corresponding to the three-phase circuit, wherein at least one of the bimetals of each pole is different in plate thickness from other bimetals. 請求項1に記載の回路遮断器において、前記3極は左極、中極及び右極からなり、前記中極の熱動引き外し装置のバイメタルは、前記左極及び右極の熱動引き外し装置のバイメタルより板厚が厚いことを特徴とする回路遮断器。   2. The circuit breaker according to claim 1, wherein the three poles are a left pole, a middle pole, and a right pole, and the bimetal of the middle pole thermal trip device is a thermal trip trip of the left pole and the right pole. A circuit breaker that is thicker than the bimetal of the device. 請求項1に記載の回路遮断器において、該回路遮断器は零相変流器を有し、前記零相変流器の出力信号に基づいて開閉機構部を引き外す漏電遮断器であって、前記3相電路からなる前記零相変流器の貫通一次導体に接続される前記熱動引き外し装置のバイメタルの内、より電路長の長い貫通一次導体に接続されたバイメタルは、より電路長の短い貫通一次導体に接続されたバイメタルより板厚が厚いことを特徴とする回路遮断器。   The circuit breaker according to claim 1, wherein the circuit breaker has a zero-phase current transformer, and is a leakage breaker that trips the switching mechanism portion based on an output signal of the zero-phase current transformer, Among the bimetals of the thermal trip device connected to the through primary conductor of the zero-phase current transformer composed of the three-phase electric circuit, the bimetal connected to the through primary conductor having a longer electric circuit length has a longer electric circuit length. A circuit breaker characterized in that the plate thickness is thicker than a bimetal connected to a short penetrating primary conductor. 請求項3に記載の回路遮断器において、前記零相変流器の前記貫通一次導体は左極、中極及び右極からなり、前記左極と右極の貫通一次導体はU字状に形成され、前記左極と右極の熱動引き外し装置のバイメタルは、前記中極の熱動引き外し装置のバイメタルより板厚が厚いことを特徴とする回路遮断器。 4. The circuit breaker according to claim 3, wherein the penetrating primary conductor of the zero-phase current transformer includes a left pole , a middle pole, and a right pole, and the left and right pole penetrating primary conductors are formed in a U-shape. The circuit breaker is characterized in that the bimetal of the left and right pole thermal tripping device is thicker than the bimetal of the middle pole thermal tripping device. 請求項3または4に記載の回路遮断器において、前記零相変流器を貫通する貫通一次導体は、複数枚の導電性の薄板を重ね合わせて構成されていることを特徴とする回路遮断器。   5. The circuit breaker according to claim 3, wherein the penetrating primary conductor passing through the zero-phase current transformer is formed by superposing a plurality of conductive thin plates. . 請求項1〜4のいずれか一項に記載の回路遮断器において、熱動引き外し装置を構成するバイメタルの内、板厚が厚いバイメタルには、ほぼ中央部に孔が設けられていることを特徴とする回路遮断器。   The circuit breaker according to any one of claims 1 to 4, wherein a bimetal having a large plate thickness among the bimetals constituting the thermal trip device is provided with a hole in a substantially central portion. Feature circuit breaker. 請求項1に記載の回路遮断器において、前記3極に、熱動引き外し装置を装備しない中性極用のN極を追加したことを特徴とする回路遮断器。   2. The circuit breaker according to claim 1, wherein an N pole for a neutral pole not equipped with a thermal trip device is added to the three poles.
JP2014524533A 2012-07-11 2012-07-11 Circuit breaker Active JP5745180B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067686 WO2014010040A1 (en) 2012-07-11 2012-07-11 Circuit breaker

Publications (2)

Publication Number Publication Date
JP5745180B2 true JP5745180B2 (en) 2015-07-08
JPWO2014010040A1 JPWO2014010040A1 (en) 2016-06-20

Family

ID=49915543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014524533A Active JP5745180B2 (en) 2012-07-11 2012-07-11 Circuit breaker

Country Status (4)

Country Link
JP (1) JP5745180B2 (en)
KR (1) KR101647915B1 (en)
CN (1) CN104488059B (en)
WO (1) WO2014010040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867705A (en) * 2015-05-28 2015-08-26 无锡新宏泰电器科技股份有限公司 Drop-proof single-breakpoint contact operating mechanism

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039218B (en) * 2016-11-08 2019-02-05 华为技术有限公司 A kind of protective switch and circuit protection device
CN107452562A (en) * 2017-03-20 2017-12-08 乐清市五环电器有限公司 The residual current action breaker of the protection with overcurrent with electric leakage instruction
CN112236914A (en) * 2018-06-08 2021-01-15 三菱电机株式会社 Electronic circuit breaker
KR200494343Y1 (en) * 2019-08-05 2021-09-17 민정호 Functional helmets and accident prevention system for functional helmets

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153746U (en) * 1986-03-24 1987-09-29
JP2979874B2 (en) * 1993-01-20 1999-11-15 三菱電機株式会社 Earth leakage breaker
JP3354722B2 (en) 1994-09-05 2002-12-09 株式会社日立製作所 Earth leakage breaker
JP3318583B2 (en) * 1996-04-09 2002-08-26 三菱電機株式会社 Earth leakage breaker
JP3830664B2 (en) 1998-07-14 2006-10-04 三菱電機株式会社 Circuit breaker
US6239676B1 (en) * 2000-08-28 2001-05-29 Eaton Corporation Two pole circuit breaker calibrated in assembled state
JP3919453B2 (en) * 2001-03-05 2007-05-23 三菱電機株式会社 Thermal trip device and gap adjustment method thereof
CN2938385Y (en) * 2006-08-17 2007-08-22 浙江省志明电气进出口有限公司 Leakage circuit breaker
JP5054662B2 (en) * 2008-12-12 2012-10-24 三菱電機株式会社 Circuit breaker
JP5333289B2 (en) * 2010-02-25 2013-11-06 三菱電機株式会社 Circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867705A (en) * 2015-05-28 2015-08-26 无锡新宏泰电器科技股份有限公司 Drop-proof single-breakpoint contact operating mechanism

Also Published As

Publication number Publication date
WO2014010040A1 (en) 2014-01-16
KR101647915B1 (en) 2016-08-11
CN104488059A (en) 2015-04-01
JPWO2014010040A1 (en) 2016-06-20
KR20140145191A (en) 2014-12-22
CN104488059B (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5745180B2 (en) Circuit breaker
US7518482B2 (en) Trip unit having a plurality of stacked bimetal elements
KR100923683B1 (en) Instant trip apparatus for miniature mold cased circuit breaker
GB2062966A (en) Circuit interrupter
US10056214B2 (en) Heater apparatus, circuit interrupter, and related method
US10014142B2 (en) Adjustable thermal trip mechanism for circuit breaker
JP5327038B2 (en) Circuit breaker
US6972649B1 (en) Method and apparatus for shielding and armature from a magnetic flux
JP6218675B2 (en) Circuit breaker
KR101232453B1 (en) Circuit breaker
JP4905112B2 (en) Circuit breaker overcurrent trip device
JP5812813B2 (en) Circuit breaker
JP5676782B2 (en) Circuit breaker
JP5324640B2 (en) Bimetal assembly of circuit breaker for wiring
JP5747806B2 (en) Circuit breaker
JP2015046310A (en) Circuit breaker
JP2012248516A (en) Circuit breaker and its thermal tripping device
JP7466374B2 (en) Circuit Breakers
JPH0581932U (en) Earth leakage circuit breaker
WO2016035116A1 (en) Circuit breaker
KR200428491Y1 (en) Fixing structure of trip function unit on the manumal motor starter
US9916955B2 (en) Device for joining a bimetal strip and a component forming a support for said bimetal strip, and electrical protection unit comprising same
JP2004031275A (en) Double-pole ground fault interrupter
KR200471898Y1 (en) Circuit breaker
JP2017045603A (en) Circuit breaker

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R151 Written notification of patent or utility model registration

Ref document number: 5745180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250