JP5744957B2 - Battery status judgment device - Google Patents

Battery status judgment device Download PDF

Info

Publication number
JP5744957B2
JP5744957B2 JP2013083789A JP2013083789A JP5744957B2 JP 5744957 B2 JP5744957 B2 JP 5744957B2 JP 2013083789 A JP2013083789 A JP 2013083789A JP 2013083789 A JP2013083789 A JP 2013083789A JP 5744957 B2 JP5744957 B2 JP 5744957B2
Authority
JP
Japan
Prior art keywords
state
absolute value
axis component
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013083789A
Other languages
Japanese (ja)
Other versions
JP2014206442A (en
Inventor
大輔 木庭
大輔 木庭
幸大 武田
幸大 武田
公一 市川
公一 市川
高橋 泰博
泰博 高橋
三井 正彦
正彦 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Primearth EV Energy Co Ltd
Original Assignee
Toyota Motor Corp
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Primearth EV Energy Co Ltd filed Critical Toyota Motor Corp
Priority to JP2013083789A priority Critical patent/JP5744957B2/en
Priority to CN201480019396.2A priority patent/CN105122073B/en
Priority to PCT/JP2014/055545 priority patent/WO2014167920A1/en
Priority to DE112014001900.3T priority patent/DE112014001900T5/en
Priority to US14/782,788 priority patent/US9995792B2/en
Publication of JP2014206442A publication Critical patent/JP2014206442A/en
Application granted granted Critical
Publication of JP5744957B2 publication Critical patent/JP5744957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態を判定する電池状態判定装置に関する。   The present invention relates to a battery state determination apparatus that determines a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur.

従来から二次電池に対し複素インピーダンス解析を行うことにより、電池の劣化状態や余寿命を評価する技術が提案されている。この方法によれば、電池を破壊することなく電池状態を評価することができるので、正常であると判定された電池を再利用することも可能である。   Conventionally, a technique for evaluating the deterioration state and remaining life of a battery by performing complex impedance analysis on a secondary battery has been proposed. According to this method, since the battery state can be evaluated without destroying the battery, it is possible to reuse the battery determined to be normal.

複素インピーダンス解析方法の一例として、二次電池の初期活性度及び劣化度を判定するための方法が開示されている(例えば特許文献1参照)。この方法では、二次電池に対し、周波数を段階的に変化させながら交流電圧を印加することによって複素インピーダンスを測定する。さらに測定値からインピーダンスの実軸成分及び虚軸成分を求め、それらの値を二次元平面にプロットして、曲線及び直線からなる複素インピーダンス線を描画する。また複素インピーダンス線のうち、いわゆる電荷移動抵抗領域に相当する略円弧部分の径を近似法で求め、その径が所定のしきい値より小さいか否かを判断する。複素インピーダンスの略円弧部分の径が所定のしきい値よりも小さければ電池の初期活性度は十分であると判断し、その径が所定のしきい値以上であれば初期活性度は不十分とする。   As an example of the complex impedance analysis method, a method for determining the initial activity level and the deterioration level of a secondary battery is disclosed (see, for example, Patent Document 1). In this method, complex impedance is measured by applying an alternating voltage to a secondary battery while changing the frequency stepwise. Further, the real axis component and the imaginary axis component of the impedance are obtained from the measured values, and these values are plotted on a two-dimensional plane, and a complex impedance line composed of a curve and a straight line is drawn. In addition, a diameter of a substantially arc portion corresponding to a so-called charge transfer resistance region in the complex impedance line is obtained by an approximation method, and it is determined whether or not the diameter is smaller than a predetermined threshold value. If the diameter of the substantially circular arc portion of the complex impedance is smaller than a predetermined threshold value, it is determined that the initial activity of the battery is sufficient. If the diameter is equal to or larger than the predetermined threshold value, the initial activity is insufficient. To do.

特開2000−299137号公報(第20‐21頁、図15)JP 2000-299137 A (pages 20-21, FIG. 15)

また微小短絡が生じる可能性が高い状態の電池又は微小短絡が生じた電池は、正常な電池と比べて電池容量が少ないため、同様に放電したとしてもSOC(State of Charge;充電状態)が相違する。そのためSOCの相違に基づくインピーダンス変化の相違から、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態であるか否かを判断する手法がある。   In addition, a battery with a high possibility of occurrence of a micro short circuit or a battery with a micro short circuit has a smaller battery capacity than a normal battery, and therefore the SOC (State of Charge) is different even if it is discharged in the same manner. To do. For this reason, there is a method for determining whether or not a state in which a micro short-circuit has occurred or a state in which there is a high possibility of a micro short-circuit from the difference in impedance change based on the difference in SOC.

しかしながら、電荷移動抵抗領域のインピーダンス変化の相違から微小短絡に関する判定を行う場合、SOCが変化してもインピーダンス変化が小さい電池では、微小短絡が生じる可能性が高い状態又は微小短絡が生じた状態であるか否かを判定することが困難であり、判定精度が低かった。このため例えば微小短絡ではない良品の電池を不良品として判定することがあった。このような電池としては、例えばニッケル水素電池や、車載用であって抵抗値が10mΩ以下のリチウム電池が挙げられる。   However, when making a determination regarding a micro short circuit from the difference in impedance change in the charge transfer resistance region, in a battery with a small impedance change even if the SOC changes, there is a high possibility that a micro short circuit will occur or in a state where a micro short circuit has occurred. It was difficult to determine whether or not there was, and the determination accuracy was low. For this reason, for example, a good battery that is not a micro short-circuit may be determined as a defective product. As such a battery, for example, a nickel metal hydride battery or a lithium battery having a resistance value of 10 mΩ or less is used for in-vehicle use.

本発明は、上記実情を鑑みてなされたものであり、その目的は、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態であるか否かを判定する電池状態判定装置の判定精度を向上することにある。   The present invention has been made in view of the above circumstances, and the object thereof is determination accuracy of a battery state determination device that determines whether or not a micro short circuit has occurred or is highly likely to occur. It is to improve.

上記課題を解決する電池状態判定装置は、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部と、前記インピーダンス測定部から得られた前記複素インピーダンスの虚軸成分の絶対値を検出する検出部と、前記微小短絡傾向状態である二次電池の前記虚軸成分の絶対値の測定結果に基づき設定された下限閾値を記憶する記憶部と、前記検出部によって検出された前記虚軸成分の絶対値と前記下限閾値とを比較し、前記虚軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する判定部とを備えた。   A battery state determination device that solves the above-described problem is a battery state determination device that determines a state of a micro short-circuit that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is likely to occur. The frequency corresponding to the resistance region is set as the measurement frequency, the impedance measurement unit that measures the complex impedance by applying the alternating voltage or the alternating current of the measurement frequency to the secondary battery to be determined, and the impedance measurement unit obtained from the impedance measurement unit A detection unit that detects an absolute value of an imaginary axis component of complex impedance; and a storage unit that stores a lower limit threshold value set based on a measurement result of the absolute value of the imaginary axis component of the secondary battery that is in the state of a minute short circuit; The absolute value of the imaginary axis component detected by the detection unit is compared with the lower limit threshold value, and the absolute value of the imaginary axis component is smaller than the lower limit threshold value, Secondary battery to be judged is a the a determination unit is a micro short circuit tends state.

この電池状態判定装置では、判定対象の二次電池に対し、拡散抵抗領域の複素インピーダンスを測定し、虚軸成分の絶対値を微小短絡傾向状態を判定するためのパラメータとする。拡散抵抗領域は、複素インピーダンス曲線のうち低周波数側に表れる部分であって、微小短絡傾向状態の二次電池は拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した虚軸成分の絶対値と予め設定した下限閾値とを比較することによって、微小短絡傾向状態の判定精度を向上できる。また特に虚軸成分の絶対値は、微小短絡傾向を最もよく反映するパラメータであり、誤差が比較的小さい。従って他のパラメータでは微小短絡傾向状態を検出しにくい電池でも、非破壊で微小短絡傾向状態を検出することができる。   In this battery state determination device, the complex impedance of the diffusion resistance region is measured for the determination-target secondary battery, and the absolute value of the imaginary axis component is used as a parameter for determining the micro short-circuit tendency state. The diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve, and the impedance change in the diffused resistance region becomes remarkable in the secondary battery in a state of a short circuit tendency. Therefore, by comparing the detected absolute value of the imaginary axis component with a preset lower limit threshold, it is possible to improve the determination accuracy of the minute short-circuit tendency state. In particular, the absolute value of the imaginary axis component is a parameter that best reflects the tendency of short-circuiting, and the error is relatively small. Therefore, even with a battery in which it is difficult to detect a minute short-circuit tendency state with other parameters, a minute short-circuit tendency state can be detected nondestructively.

この電池状態判定装置について、前記インピーダンス測定部は、充電状態が20%以下の前記二次電池に対し複素インピーダンス測定を行うことが好ましい。
即ち微小短絡傾向の二次電池の複素インピーダンスは、二次電池の充電状態(SOC)が「0」に近いほど大きく変化する。上記電池状態判定装置は、充電状態が20%以下の二次電池の複素インピーダンスを測定するので、微小短絡の検出精度も向上でき、判定を行うために二次電池を満充電にする必要がない。
About this battery state determination apparatus, it is preferable that the said impedance measurement part performs complex impedance measurement with respect to the said secondary battery whose charge state is 20% or less.
That is, the complex impedance of a secondary battery that tends to be short-circuited greatly changes as the state of charge (SOC) of the secondary battery approaches “0”. Since the battery state determination device measures the complex impedance of a secondary battery having a charged state of 20% or less, the detection accuracy of a micro short circuit can be improved, and it is not necessary to fully charge the secondary battery to perform the determination. .

この電池状態判定装置について、前記検出部は、前記虚軸成分の絶対値とともに前記複素インピーダンスの実軸成分の絶対値を算出し、前記記憶部は、前記虚軸成分の絶対値に対応する第1の下限閾値とともに、前記微小短絡傾向状態である二次電池の前記実軸成分の絶対値の測定結果に基づき設定された第2の下限閾値を記憶し、前記判定部は、判定対象の二次電池の前記虚軸成分の絶対値が前記第1の下限閾値よりも小さい、又は、前記実軸成分の絶対値が前記第2の下限閾値よりも小さい場合に、判定対象の二次電池が前記微小短絡傾向状態であると判定することが好ましい。   In the battery state determination device, the detection unit calculates the absolute value of the real axis component of the complex impedance together with the absolute value of the imaginary axis component, and the storage unit corresponds to the absolute value of the imaginary axis component. The second lower limit threshold set based on the measurement result of the absolute value of the real axis component of the secondary battery that is in the state of micro short-circuiting is stored together with the lower limit threshold of 1, and the determination unit stores the second lower limit threshold When the absolute value of the imaginary axis component of the secondary battery is smaller than the first lower limit threshold or when the absolute value of the real axis component is smaller than the second lower limit threshold, It is preferable to determine that the micro short-circuit tendency state is present.

この態様によれば、複素インピーダンスの虚軸成分の絶対値に加え、実軸成分の絶対値を微小短絡傾向状態を判定するためのパラメータとする。このため検出した虚軸成分の絶対値、及び実軸成分の絶対値と、それらに対応する各下限閾値とを比較することによって、微小短絡傾向状態の判定精度を向上できる。   According to this aspect, in addition to the absolute value of the imaginary axis component of the complex impedance, the absolute value of the real axis component is used as a parameter for determining the minute short-circuit tendency state. For this reason, by comparing the absolute value of the detected imaginary axis component and the absolute value of the real axis component with the corresponding lower limit threshold values, it is possible to improve the determination accuracy of the micro short-circuit tendency state.

上記課題を解決する電池状態判定装置は、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部と、前記インピーダンス測定部から得られた前記複素インピーダンスの実軸成分の絶対値を検出する検出部と、前記微小短絡傾向状態である二次電池の前記実軸成分の測定結果に基づき設定された下限閾値を記憶する記憶部と、前記検出部によって検出された前記実軸成分の絶対値と前記下限閾値とを比較し、前記実軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する判定部とを備えた。   A battery state determination device that solves the above-described problem is a battery state determination device that determines a state of a micro short-circuit that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is likely to occur. The frequency corresponding to the resistance region is set as the measurement frequency, the impedance measurement unit that measures the complex impedance by applying the alternating voltage or the alternating current of the measurement frequency to the secondary battery to be determined, and the impedance measurement unit obtained from the impedance measurement unit A detection unit that detects an absolute value of a real axis component of complex impedance; a storage unit that stores a lower limit threshold value set based on a measurement result of the real axis component of the secondary battery that is in a state of micro short-circuiting; and the detection The absolute value of the real axis component detected by the unit is compared with the lower limit threshold, and when the absolute value of the real axis component is smaller than the lower limit threshold, the determination pair Secondary battery has a the a determination unit is a micro short circuit tends state.

この電池状態判定装置では、判定対象の二次電池に対し、拡散抵抗領域の複素インピーダンスを測定し、実軸成分の絶対値を微小短絡傾向状態を判定するためのパラメータとする。拡散抵抗領域は、複素インピーダンス曲線のうち低周波数側に表れる部分であって、微小短絡傾向状態の二次電池は拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した実軸成分の絶対値と予め設定した下限閾値とを比較することによって、微小短絡傾向状態の判定精度を向上できる。従って他のパラメータでは微小短絡傾向状態を検出しにくい電池であっても、非破壊で微小短絡傾向状態を検出することができる。   In this battery state determination device, the complex impedance of the diffusion resistance region is measured for the secondary battery to be determined, and the absolute value of the real axis component is used as a parameter for determining the micro short-circuit tendency state. The diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve, and the impedance change in the diffused resistance region becomes remarkable in the secondary battery in a state of a short circuit tendency. Therefore, by comparing the absolute value of the detected real axis component with a preset lower limit threshold, it is possible to improve the determination accuracy of the minute short-circuit tendency state. Therefore, even if the battery is difficult to detect the micro short-circuit tendency state with other parameters, the micro short-circuit tendency state can be detected without destruction.

上記課題を解決する電池状態判定装置は、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部と、前記インピーダンス測定部から得られた前記複素インピーダンスの絶対値を検出する検出部と、前記微小短絡傾向状態である二次電池の前記複素インピーダンスの測定結果に基づき設定された下限閾値を記憶する記憶部と、前記検出部によって検出された前記複素インピーダンスの絶対値と前記下限閾値とを比較し、前記複素インピーダンスの絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する判定部とを備えた。   A battery state determination device that solves the above-described problem is a battery state determination device that determines a state of a micro short-circuit that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is likely to occur. The frequency corresponding to the resistance region is set as the measurement frequency, the impedance measurement unit that measures the complex impedance by applying the alternating voltage or the alternating current of the measurement frequency to the secondary battery to be determined, and the impedance measurement unit obtained from the impedance measurement unit Detected by the detection unit that detects the absolute value of the complex impedance, a storage unit that stores a lower limit threshold value set based on the measurement result of the complex impedance of the secondary battery that is prone to the short circuit, and detected by the detection unit The absolute value of the complex impedance is compared with the lower threshold, and the absolute value of the complex impedance is smaller than the lower threshold. If the secondary battery of the determination target is a the a determination unit is a micro short circuit tends state.

この電池状態判定装置では、判定対象の二次電池に対し、拡散抵抗領域の複素インピーダンスを測定し、該複素インピーダンスの絶対値を微小短絡傾向状態を判定するためのパラメータとする。拡散抵抗領域は、複素インピーダンス曲線のうち低周波数側に表れる部分であって、微小短絡傾向状態の二次電池は拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出したインピーダンスの絶対値と予め設定した下限閾値とを比較することによって、微小短絡傾向状態の判定精度を向上できる。従って他のパラメータでは微小短絡傾向状態を検出しにくい電池であっても、非破壊で微小短絡傾向状態を検出することができる。   In this battery state determination device, the complex impedance in the diffusion resistance region is measured for the secondary battery to be determined, and the absolute value of the complex impedance is used as a parameter for determining the micro short-circuit tendency state. The diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve, and the impedance change in the diffused resistance region becomes remarkable in the secondary battery in a state of a short circuit tendency. For this reason, by comparing the absolute value of the detected impedance with a preset lower limit threshold, it is possible to improve the determination accuracy of the micro short-circuit tendency state. Therefore, even if the battery is difficult to detect the micro short-circuit tendency state with other parameters, the micro short-circuit tendency state can be detected without destruction.

これらの電池状態判定装置について、前記インピーダンス測定部は、充電状態が20%以下の前記二次電池に対し複素インピーダンス測定を行うことが好ましい。
即ち微小短絡傾向の二次電池の複素インピーダンスは、二次電池の充電状態(SOC)が「0」に近いほど大きく変化する。上記電池状態判定装置は、充電状態が20%以下の二次電池の複素インピーダンスを測定するので、微小短絡の検出精度も向上でき、判定を行うために二次電池を満充電にする必要がない。
About these battery state determination apparatuses, it is preferable that the impedance measurement unit performs complex impedance measurement on the secondary battery having a charged state of 20% or less.
That is, the complex impedance of a secondary battery that tends to be short-circuited greatly changes as the state of charge (SOC) of the secondary battery approaches “0”. Since the battery state determination device measures the complex impedance of a secondary battery having a charged state of 20% or less, the detection accuracy of a micro short circuit can be improved, and it is not necessary to fully charge the secondary battery to perform the determination. .

本発明にかかる電池状態判定装置によれば、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態であるか否かを判定する精度を向上することができる。   According to the battery state determination device of the present invention, it is possible to improve the accuracy of determining whether or not a minute short circuit has occurred or a state in which there is a high possibility of a minute short circuit.

本発明の電池状態判定装置に係る第1実施形態の装置概略を示す図。The figure which shows the apparatus outline of 1st Embodiment which concerns on the battery state determination apparatus of this invention. 同装置での測定によって得られる複素インピーダンスのグラフ。Graph of complex impedance obtained by measurement with the same device. 同実施形態で判定に用いられる良品及び不良品の分布と複素インピーダンスとの関係を示す分布図。The distribution map which shows the relationship between the distribution of the good article used in determination in the same embodiment, and a defective article, and complex impedance. 同実施形態における判定方法を説明する複素インピーダンスのグラフ。The graph of the complex impedance explaining the determination method in the embodiment. 同実施形態における判定方法のフローチャート。The flowchart of the determination method in the embodiment. 本発明の第2実施形態の判定方法のフローチャート。The flowchart of the determination method of 2nd Embodiment of this invention. 本発明の第3実施形態の判定方法のフローチャート。The flowchart of the determination method of 3rd Embodiment of this invention. 本発明の第4実施形態の判定方法のフローチャート。The flowchart of the determination method of 4th Embodiment of this invention.

(第1実施形態)
以下、電池状態判定装置の第1実施形態を説明する。この装置では、車載用であって抵抗値が10mΩ以下のリチウムイオン電池、ニッケル水素電池等の二次電池に対し、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態(微小短絡傾向状態)であるか否かを判定する。微小短絡は、電池内における僅かな析出物や微小な異物の混入等を要因とする微小な短絡であり、直ちに電池が使用不可能な状態にはならない場合もある。微小短絡は短絡箇所に微小電流が流れることで瞬間的に焼切れる場合もあるが、電池の性能低下の要因となりうる他、内部短絡を招来する可能性もある。
(First embodiment)
Hereinafter, 1st Embodiment of a battery state determination apparatus is described. In this device, for a secondary battery such as a lithium-ion battery or a nickel-metal hydride battery having a resistance value of 10 mΩ or less, a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur (prone to a short circuit) State). The micro short-circuit is a micro short-circuit caused by a slight amount of precipitates or a minute foreign substance in the battery, and the battery may not be immediately disabled. A micro short-circuit may burn out instantaneously when a micro-current flows through the short-circuit location, but it may cause a decrease in battery performance and may cause an internal short circuit.

図1に示すように、電池状態判定装置10は、測定装置11、及び判定装置12を備えている。測定装置11は、インピーダンス測定部11a及びSOC調整部11bを有している。インピーダンス測定部11aは、判定対象である電池モジュールMに交流電圧又は交流電流を印加して、電池モジュールMの複素インピーダンスを測定する。SOC調整部11bは、電池モジュールMのSOCを調整する。電池モジュールMは、本実施形態では複数のバッテリーセルから構成されている。この電池モジュールMが複数組み合わされることによって、電池スタックが構成され、当該電池スタック及びECU等により車両等に搭載される電池パックが構成される。   As shown in FIG. 1, the battery state determination device 10 includes a measurement device 11 and a determination device 12. The measuring device 11 includes an impedance measuring unit 11a and an SOC adjusting unit 11b. The impedance measuring unit 11a measures the complex impedance of the battery module M by applying an AC voltage or an AC current to the battery module M to be determined. The SOC adjustment unit 11b adjusts the SOC of the battery module M. The battery module M is composed of a plurality of battery cells in this embodiment. By combining a plurality of the battery modules M, a battery stack is configured, and a battery pack mounted on a vehicle or the like is configured by the battery stack and the ECU.

判定装置12は、CPU12a、RAM12b及びROM12c等を有し、ROM12cには、微小短絡傾向状態の判定に用いられるプログラムが格納されている。判定装置12の判定結果は、ディスプレイ、印刷装置等の出力装置13に出力される。この判定装置12は検出部、記憶部、判定部を構成する。   The determination device 12 includes a CPU 12a, a RAM 12b, a ROM 12c, and the like, and the ROM 12c stores a program used for determining a micro short-circuit tendency state. The determination result of the determination device 12 is output to an output device 13 such as a display or a printing device. The determination device 12 constitutes a detection unit, a storage unit, and a determination unit.

判定装置12は、測定装置11から複素インピーダンス測定値を入力する。判定装置12のROM12cには、判定対象となる電池モジュールMに対し、実験等を通じて設定された測定周波数Fdif及び下限閾値Zjminが格納されている。この測定周波数Fdif及び下限閾値Zjminは、ニッケル水素電池、リチウム電池といった電池種別によって変化する。また同じ電池種別でもセル数や容量等が異なる場合には変化する。従って判定対象となる電池の種別や構成が変化する場合には、測定周波数Fdif及び下限閾値Zjminを判定対象に合わせて設定する。   The determination device 12 inputs a complex impedance measurement value from the measurement device 11. The ROM 12c of the determination device 12 stores a measurement frequency Fdif and a lower threshold Zjmin that are set through experiments and the like for the battery module M to be determined. The measurement frequency Fdif and the lower limit threshold Zjmin vary depending on the battery type such as a nickel metal hydride battery or a lithium battery. Further, even if the same battery type is used, the number of cells, the capacity, and the like vary. Therefore, when the type or configuration of the battery to be determined changes, the measurement frequency Fdif and the lower limit threshold Zjmin are set according to the determination target.

電池モジュールMの複素インピーダンスZは、ベクトル成分である実軸成分Zreal及び虚軸成分Zimgによって以下のようにあらわされる。尚、「j」は虚軸単位である。
Z=Zreal+jZimg
The complex impedance Z of the battery module M is expressed by the real axis component Zreal and the imaginary axis component Zimg which are vector components as follows. “J” is an imaginary axis unit.
Z = Zreal + jZimg

図2に示す複素インピーダンス曲線Nは、複素インピーダンスの実軸成分及び虚軸成分の大きさを2次元平面にプロットしたものを模式化して示している。この複素インピーダンス曲線Nは、電池モジュールMに印加される交流電圧(又は交流電流)の周波数を変化させて測定されている。横軸は実軸成分Zrealの絶対値(|Zreal|)、縦軸は虚軸成分Zimg(|Zimg|)の絶対値である。   The complex impedance curve N shown in FIG. 2 schematically shows a plot of the magnitudes of the real and imaginary axis components of the complex impedance on a two-dimensional plane. The complex impedance curve N is measured by changing the frequency of the alternating voltage (or alternating current) applied to the battery module M. The horizontal axis represents the absolute value (| Zreal |) of the real axis component Zreal, and the vertical axis represents the absolute value of the imaginary axis component Zimg (| Zimg |).

複素インピーダンス曲線Nは、高周波数側から部品液抵抗領域A、円弧状の電荷移動抵抗領域B、略直線状の拡散抵抗領域Cに分けられる。部品液抵抗領域Aは、活物質や集電体内の接触抵抗、セパレータ内の電解液内のイオンが移動する際の抵抗等が表れた領域である。電荷移動抵抗領域Bは、電荷移動等における抵抗の領域であって、拡散抵抗領域Cは、物質拡散が関与したインピーダンスが表れた領域である。   The complex impedance curve N is divided into a component liquid resistance region A, an arc-shaped charge transfer resistance region B, and a substantially linear diffusion resistance region C from the high frequency side. The component liquid resistance region A is a region where contact resistance in the active material or the current collector, resistance when ions in the electrolytic solution in the separator move, and the like appear. The charge transfer resistance region B is a resistance region in charge transfer or the like, and the diffusion resistance region C is a region where impedance relating to material diffusion appears.

測定周波数Fdifは、この拡散抵抗領域Cに対応する周波数範囲のうち所定の周波数である。測定周波数Fdifを拡散抵抗領域Cに対応する周波数とするのは、微小短絡傾向状態の電池モジュールMは、他の領域A,Bに比べて、拡散抵抗領域Cにおけるインピーダンス変化が顕著であることによる。微小短絡傾向状態であるか否かを判定する際には、測定周波数Fdifの交流電圧又は交流電流が電池モジュールMに印加される。   The measurement frequency Fdif is a predetermined frequency in the frequency range corresponding to the diffusion resistance region C. The measurement frequency Fdif is set to a frequency corresponding to the diffusion resistance region C because the battery module M in a state of a short circuit tendency has a remarkable impedance change in the diffusion resistance region C compared to the other regions A and B. . When determining whether or not the state is a micro short-circuit tendency state, an AC voltage or an AC current having a measurement frequency Fdif is applied to the battery module M.

また下限閾値Zjminは、複素インピーダンスの虚軸成分の大きさの下限を示しており、下限閾値Zjmin未満の虚軸成分の絶対値が測定された電池モジュールMは、微小短絡傾向状態である不良品と判定される。   The lower limit threshold Zjmin indicates the lower limit of the magnitude of the imaginary axis component of the complex impedance, and the battery module M in which the absolute value of the imaginary axis component less than the lower limit threshold Zjmin is measured is a defective product that is in a micro short-circuit tendency state. It is determined.

下限閾値Zjminの具体的な値は、以下のように設定される。例えば数百個の電池モジュールMを検査対象とし、各電池モジュールMに1つずつ測定周波数Fdifの交流電圧を印加し、測定装置11等により複素インピーダンスの虚軸成分Zimgを測定する。ここで実軸成分Zrealではなく虚軸成分Zimgを測定するのは、実軸成分Zrealには、微小短絡傾向だけでなく液抵抗・部品抵抗の増加による異常も反映され、虚軸成分Zimgには微小短絡傾向が最もよく反映されるためである。   A specific value of the lower limit threshold Zjmin is set as follows. For example, hundreds of battery modules M are to be inspected, an AC voltage having a measurement frequency Fdif is applied to each battery module M one by one, and the imaginary axis component Zimg of complex impedance is measured by the measuring device 11 or the like. Here, the imaginary axis component Zimg, not the real axis component Zreal, is measured because the real axis component Zreal reflects not only the tendency of short-circuits but also abnormalities due to an increase in liquid resistance and component resistance, and the imaginary axis component Zimg This is because the tendency for a short-circuit is reflected best.

各電池モジュールMの虚軸成分Zimgを測定すると、分解解析等、公知の方法によって各電池モジュールMの微小短絡の有無、微小短絡が生じる可能性があるか否かを判断する。   When the imaginary axis component Zimg of each battery module M is measured, the presence or absence of a micro short circuit of each battery module M and whether or not there is a possibility of the micro short circuit are determined by a known method such as decomposition analysis.

図3に示される分布図は、各電池モジュールMに測定周波数Fdifの交流電圧を印加したときの虚軸成分Zimgの分布を示すものであり、横軸が虚軸成分Zimgの絶対値、縦軸が電池モジュールMの数量である。図3の分布図では、虚軸成分Zimgの絶対値が6.0mΩより小さい領域に不良品、虚軸成分Zimgの絶対値が6.0mΩ以上の領域に良品が分布している。従ってこの良品及び不良品の境界である6.0mΩを下限閾値Zjminとする。なお、分布図に、良品及び不良品の明確な境界が見られず、良品及び不良品が混在する領域がある場合には、その混在領域の最大値、又は、混在領域のうち良品個数が不良品個数よりも多くなる値に下限閾値Zjminを設定してもよい。   The distribution diagram shown in FIG. 3 shows the distribution of the imaginary axis component Zimg when an AC voltage of the measurement frequency Fdif is applied to each battery module M, the horizontal axis is the absolute value of the imaginary axis component Zimg, and the vertical axis Is the quantity of the battery module M. In the distribution diagram of FIG. 3, defective products are distributed in a region where the absolute value of the imaginary axis component Zimg is smaller than 6.0 mΩ, and non-defective products are distributed in a region where the absolute value of the imaginary axis component Zimg is 6.0 mΩ or more. Accordingly, 6.0 mΩ, which is the boundary between the non-defective product and the defective product, is set as the lower limit threshold Zjmin. If there is no clear boundary between good and defective products in the distribution map and there is a region where both good and defective products are mixed, the maximum value of the mixed region or the number of good products in the mixed region is not valid. The lower limit threshold Zjmin may be set to a value that is greater than the number of non-defective products.

図4は、良品の複素インピーダンス曲線N1及び不良品の複素インピーダンス曲線N2であって、SOCが低い状態の良品及び不良品の電池モジュールMに対し周波数を変化させて交流電圧を印加して測定したものである。微小短絡傾向状態のない良品は、曲線N1のうち測定周波数Fdifに対応する点P1の虚軸成分の絶対値|Zimg|が下限閾値Zjminを超えている。一方、微小短絡傾向状態である不良品は、曲線N2のうち測定周波数Fdifに対応する点P2の虚軸成分の絶対値|Zimg|が下限閾値Zjmin未満である。尚、電池モジュールMを構成する電池セルのうち1つでも微小短絡傾向状態である場合には、電池モジュールMの複素インピーダンスの虚軸成分Zimgの絶対値は、下限閾値Zjmin未満となる。   FIG. 4 shows a complex impedance curve N1 of a non-defective product and a complex impedance curve N2 of a non-defective product, which are measured by applying an alternating voltage to the good and defective battery module M having a low SOC while changing the frequency. Is. In a non-defective product having no micro short-circuit tendency state, the absolute value | Zimg | of the imaginary axis component at the point P1 corresponding to the measurement frequency Fdif in the curve N1 exceeds the lower limit threshold Zjmin. On the other hand, in the defective product that is in the state of a micro short circuit, the absolute value | Zimg | of the imaginary axis component of the point P2 corresponding to the measurement frequency Fdif in the curve N2 is less than the lower threshold Zjmin. Note that when even one of the battery cells constituting the battery module M is in a short-circuit tendency state, the absolute value of the imaginary axis component Zimg of the complex impedance of the battery module M is less than the lower limit threshold Zjmin.

(動作)
次に本実施形態の微小短絡傾向状態の判定方法について説明する。ここでは微小短絡傾向状態の判定は、電池状態判定装置10により自動的に行われる。
(Operation)
Next, the determination method of the micro short circuit tendency state of this embodiment is demonstrated. Here, the determination of the micro short-circuit tendency state is automatically performed by the battery state determination device 10.

図5に示すように、判定装置12は、測定装置11のSOC調整部11bを制御して、電池モジュールMのSOC調整を行う(ステップS1)。SOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCを低い状態にすると、図4に示すインピーダンス曲線のように、SOCが高い状態に比べインピーダンス変化が顕著となり判定しやすくなる。またSOCを5%以下にすると、インピーダンス変化が特に顕著になり、判定精度をより向上できる。   As shown in FIG. 5, the determination device 12 controls the SOC adjustment unit 11b of the measurement device 11 to perform the SOC adjustment of the battery module M (Step S1). The SOC adjusting unit 11b discharges (or charges) the battery module M to lower the SOC. Specifically, the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less. In this way, when the SOC is set to a low state, as shown in the impedance curve shown in FIG. Further, when the SOC is 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy can be further improved.

SOC調整を行うと、判定装置12は測定装置11を制御して、インピーダンス測定部11aにより電池モジュールMの複素インピーダンス測定を行う(ステップS2)。このとき判定装置12は、測定装置11に対し、ROM12cに格納された測定周波数Fdifの交流電圧を電池モジュールMに印加するように制御する。又は測定装置11側に測定周波数Fdifを予め設定していてもよい。このとき測定周波数Fdifを所定の値に設定することにより、周波数範囲を設定する場合に比べ測定時間を短くすることができる。   If SOC adjustment is performed, the determination apparatus 12 will control the measurement apparatus 11, and will perform the complex impedance measurement of the battery module M by the impedance measurement part 11a (step S2). At this time, the determination device 12 controls the measurement device 11 to apply an AC voltage of the measurement frequency Fdif stored in the ROM 12c to the battery module M. Alternatively, the measurement frequency Fdif may be set in advance on the measurement device 11 side. At this time, by setting the measurement frequency Fdif to a predetermined value, the measurement time can be shortened compared to the case where the frequency range is set.

インピーダンス測定部11aは、電池モジュールMの複素インピーダンスを測定すると、測定値を判定装置12に出力する。判定装置12は、測定値に基づき複素インピーダンスの虚軸成分の絶対値(|Zimg|)を算出する(ステップS3)。また、判定装置12は、ROM12cから下限閾値Zjminを読み出し(ステップS4)、虚軸成分の絶対値|Zimg|が、下限閾値Zjmin未満であるか否かを判断する(ステップS5)。   When the impedance measurement unit 11 a measures the complex impedance of the battery module M, the impedance measurement unit 11 a outputs the measurement value to the determination device 12. The determination device 12 calculates the absolute value (| Zimg |) of the imaginary axis component of the complex impedance based on the measured value (step S3). Further, the determination device 12 reads the lower limit threshold value Zjmin from the ROM 12c (step S4), and determines whether or not the absolute value | Zimg | of the imaginary axis component is less than the lower limit threshold value Zjmin (step S5).

虚軸成分の絶対値|Zimg|が、下限閾値Zjmin以上である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(ステップS6)。一方、虚軸成分の絶対値|Zimg|が、下限閾値Zjmin以下である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態の不良品であると判定する(ステップS7)。   When the absolute value | Zimg | of the imaginary axis component is equal to or greater than the lower limit threshold Zjmin, the determination device 12 determines that the battery module M to be determined is not in a micro short-circuit tendency state (step S6). On the other hand, when the absolute value | Zimg | of the imaginary axis component is equal to or smaller than the lower limit threshold Zjmin, the determination device 12 determines that the battery module M to be determined is a defective product in a state of a short circuit (step S7). ).

以上説明したように、第1実施形態によれば、以下に列挙する効果が得られるようになる。
(1)第1実施形態によれば、判定対象の電池モジュールMに対し、拡散抵抗領域の複素インピーダンスを測定し、複素インピーダンスの虚軸成分の絶対値|Zimg|を微小短絡傾向状態を判定するためのパラメータとして検出する。拡散抵抗領域は、複素インピーダンス曲線Nのうち低周波数側に表れる部分であって、微小短絡傾向状態の二次電池は拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した虚軸成分の絶対値|Zimg|と予め設定した下限閾値Zjminとを比較することによって、従来に比べ微小短絡傾向状態の電池モジュールMを比較的精度よく検出できる。また特に虚軸成分の絶対値|Zimg|は、微小短絡傾向を最もよく反映するパラメータであり、誤差が比較的小さい。従って微小短絡傾向状態が生じたときに他のパラメータでは変化の小さい電池であっても、非破壊で微小短絡傾向状態を検出することができる。
As described above, according to the first embodiment, the effects listed below can be obtained.
(1) According to the first embodiment, the complex impedance of the diffusion resistance region is measured for the battery module M to be determined, and the absolute value | Zimg | of the imaginary axis component of the complex impedance is determined as a micro short-circuit tendency state. To detect as a parameter. The diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve N, and the impedance change in the diffused resistance region becomes noticeable in the secondary battery in a state of micro short circuit. For this reason, by comparing the absolute value | Zimg | of the detected imaginary axis component with a preset lower limit threshold Zjmin, the battery module M in a state of a short circuit can be detected with relatively high accuracy compared to the conventional case. In particular, the absolute value | Zimg | of the imaginary axis component is a parameter that best reflects the tendency of a short-circuit, and the error is relatively small. Therefore, even when the battery has a small change in other parameters when the minute short-circuit tendency state occurs, the minute short-circuit tendency state can be detected without destruction.

(2)第1実施形態では、微小短絡傾向の電池モジュールMの複素インピーダンスは、電池モジュールMの充電状態(SOC)が「0」に近いほど大きく変化する。電池状態判定装置10は、充電状態が20%以下の二次電池の複素インピーダンスを測定するので、微小短絡の判定精度も向上でき、判定のために二次電池を満充電にする必要がない。またSOCを5%以下にした場合には、インピーダンス変化が特に顕著になり、判定精度をより向上できる。   (2) In the first embodiment, the complex impedance of the battery module M that tends to be short-circuited greatly changes as the state of charge (SOC) of the battery module M approaches “0”. Since the battery state determination apparatus 10 measures the complex impedance of a secondary battery whose charge state is 20% or less, the determination accuracy of a micro short circuit can be improved, and the secondary battery does not need to be fully charged for determination. In addition, when the SOC is 5% or less, the impedance change becomes particularly significant, and the determination accuracy can be further improved.

(第2実施形態)
次に、本発明を具体化した第2実施形態を図6にしたがって説明する。尚、第2実施形態は、第1実施形態の判定方法の手順を変更したのみの構成であるため、同様の部分については同一符号を付してその詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. Since the second embodiment has a configuration in which the procedure of the determination method of the first embodiment is changed, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.

本実施形態では、微小短絡傾向状態の判定に複素インピーダンスの実軸成分を用いる。上述したように実軸成分Zrealは、微小短絡傾向だけではなく、液抵抗・部品抵抗等の増加が反映されるが、例えば液抵抗・部品抵抗等の増加を含めて異常を判定する場合には、実軸成分Zrealを判定用のパラメータとして用いることが好ましい。   In the present embodiment, the real axis component of complex impedance is used to determine the minute short-circuit tendency state. As described above, the real axis component Zreal reflects not only the tendency of short-circuits but also increases in liquid resistance and component resistance. For example, when determining abnormality including increases in liquid resistance and component resistance, etc. The real axis component Zreal is preferably used as a determination parameter.

この場合には、第1実施形態における虚軸成分Zimgの下限閾値Zjminを決める手順と同様に、実軸成分Zrealの下限閾値Zrminを決定する。即ち、数百個の電池モジュールMを検査対象とし、測定周波数Fdifの交流電圧を印加し、測定装置11により複素インピーダンスの実軸成分Zrealを測定する。そして各電池モジュールMの微小短絡の有無、微小短絡が生じる可能性があるか否かを公知の方法で判定する。そして図3に示されるような分布図を作成し、その分布図から良品と不良品との境界となる下限閾値Zrminを設定する。   In this case, the lower limit threshold Zrmin of the real axis component Zreal is determined in the same manner as the procedure for determining the lower limit threshold Zjmin of the imaginary axis component Zimg in the first embodiment. That is, several hundred battery modules M are to be inspected, an AC voltage having a measurement frequency Fdif is applied, and the real axis component Zreal of the complex impedance is measured by the measuring device 11. And the presence or absence of the micro short circuit of each battery module M and whether a micro short circuit may arise are determined by a well-known method. Then, a distribution map as shown in FIG. 3 is created, and a lower limit threshold Zrmin that becomes a boundary between the non-defective product and the defective product is set from the distribution map.

次に本実施形態における電池状態判定装置10の動作について説明する。本実施形態の動作及び第1実施形態の動作の共通部分については、同一のステップ番号を付して説明を省略する。図6に示すように、判定装置12は、第1実施形態と同様に、測定装置11のSOC調整部11bを制御して、電池モジュールMのSOC調整を行う(ステップS1)。SOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCを低い状態にすると、SOCが高い状態に比べインピーダンス変化が顕著となり判定しやすくなる。またSOCを5%以下にすると、インピーダンス変化が特に顕著になり、判定精度をより向上できる。   Next, operation | movement of the battery state determination apparatus 10 in this embodiment is demonstrated. About the common part of the operation | movement of this embodiment and the operation | movement of 1st Embodiment, the same step number is attached | subjected and description is abbreviate | omitted. As illustrated in FIG. 6, the determination device 12 controls the SOC adjustment unit 11b of the measurement device 11 and performs the SOC adjustment of the battery module M (step S1), as in the first embodiment. The SOC adjusting unit 11b discharges (or charges) the battery module M to lower the SOC. Specifically, the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less. In this way, when the SOC is set to a low state, the impedance change becomes remarkable as compared with a state where the SOC is high, and the determination becomes easy. Further, when the SOC is 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy can be further improved.

また判定装置12は測定装置11を制御して、インピーダンス測定部11aにより電池モジュールMの複素インピーダンス測定を行う(ステップS2)。
インピーダンス測定部11aは、電池モジュールMの複素インピーダンスを測定すると、測定値を判定装置12に出力する。判定装置12は、測定値に基づき複素インピーダンスの実軸成分の絶対値(|Zreal|)を算出する(ステップS10)。また、判定装置12は、ROM12cから、実軸成分の絶対値の下限閾値Zrminを読み出し(ステップS11)、虚軸成分の絶対値|Zreal|が、下限閾値Zrmin未満であるか否かを判断する(ステップS12)。
Moreover, the determination apparatus 12 controls the measurement apparatus 11, and performs the complex impedance measurement of the battery module M by the impedance measurement part 11a (step S2).
When the impedance measurement unit 11 a measures the complex impedance of the battery module M, the impedance measurement unit 11 a outputs the measurement value to the determination device 12. The determination device 12 calculates the absolute value (| Zreal |) of the real axis component of the complex impedance based on the measured value (step S10). Further, the determination device 12 reads the lower limit threshold value Zrmin of the absolute value of the real axis component from the ROM 12c (step S11), and determines whether the absolute value | Zreal | of the imaginary axis component is less than the lower limit threshold value Zrmin. (Step S12).

実軸成分の絶対値|Zreal|が、下限閾値Zrmin以上である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(ステップS6)。即ち、ステップS6で良品判定された電池モジュールMは、微小短絡傾向状態ではなく、液抵抗・部品抵抗の増加による異常もない可能性が高い。   If the absolute value | Zreal | of the real axis component is equal to or greater than the lower limit threshold Zrmin, the determination device 12 determines that the battery module M to be determined is not in a micro short-circuit tendency state (step S6). That is, the battery module M determined to be non-defective in step S6 is not likely to be in a short-circuit tendency state, and there is a high possibility that there is no abnormality due to an increase in liquid resistance / component resistance.

一方、実軸成分の絶対値|Zreal|が、下限閾値Zrmin未満である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態であると判定する(ステップS7)。   On the other hand, when the absolute value | Zreal | of the real axis component is less than the lower limit threshold Zrmin, the determination device 12 determines that the battery module M to be determined is in a short-circuit tendency state (step S7).

以上説明したように、第2実施形態によれば、第1実施形態の(2)に記載の効果に加えて以下に列挙する効果が得られるようになる。
(3)第2実施形態では、電池モジュールMに対し、拡散抵抗領域の複素インピーダンスを測定し、複素インピーダンスの実軸成分の絶対値|Zreal|を微小短絡傾向状態を判定するためのパラメータとして検出する。拡散抵抗領域は、複素インピーダンス曲線Nのうち低周波数側に表れる部分であって、微小短絡傾向状態の電池モジュールMは拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した実軸成分の絶対値|Zreal|と予め設定した下限閾値Zrminとを比較することによって、微小短絡傾向状態の判定精度を向上できる。従って微小短絡傾向状態が生じたときに他のパラメータでは変化の小さい電池であっても、非破壊で微小短絡傾向状態を検出することができる。
As described above, according to the second embodiment, the effects listed below can be obtained in addition to the effects described in (2) of the first embodiment.
(3) In the second embodiment, the complex impedance of the diffused resistance region is measured for the battery module M, and the absolute value | Zreal | of the real axis component of the complex impedance is detected as a parameter for determining the micro short-circuit tendency state. To do. The diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve N, and the battery module M in the state of a minute short circuit has a significant impedance change in the diffused resistance region. For this reason, by comparing the absolute value | Zreal | of the detected real axis component with a preset lower limit threshold Zrmin, it is possible to improve the determination accuracy of the minute short-circuit tendency state. Therefore, even when the battery has a small change in other parameters when the minute short-circuit tendency state occurs, the minute short-circuit tendency state can be detected without destruction.

(第3実施形態)
次に、本発明を具体化した第3実施形態を図7にしたがって説明する。尚、第3実施形態は、第1実施形態の判定方法の手順を変更したのみの構成である。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. Note that the third embodiment has a configuration in which the procedure of the determination method of the first embodiment is changed.

本実施形態では、微小短絡傾向状態の判定に複素インピーダンスの絶対値(|Z|)を用いる。|Z|は以下のようにあらわされる。
|Z|={(Zimg)+(Zreal)}1/2
従って、複素インピーダンスの絶対値|Z|は実軸成分Zrealを含むが、液抵抗・部品抵抗等の増加を含めて判定する場合等には、実軸成分Zrealを判定用のパラメータとして用いることが好ましく、虚軸成分Zimgが含まれる複素インピーダンスの絶対値|Z|で判定することで、微小短絡傾向状態における判定精度も向上できる。
In the present embodiment, the absolute value (| Z |) of the complex impedance is used to determine the minute short-circuit tendency state. | Z | is expressed as follows.
| Z | = {(Zimg) 2 + (Zreal) 2 } 1/2
Therefore, the absolute value | Z | of the complex impedance includes the real axis component Zreal. However, in the case of determining including an increase in liquid resistance, component resistance, etc., the real axis component Zreal may be used as a determination parameter. Preferably, the determination accuracy in the short-circuit tendency state can be improved by determining the absolute value | Z | of the complex impedance including the imaginary axis component Zimg.

本実施形態の下限閾値Zminの設定方法は、第1実施形態と同様である。即ち上述した分布図の横軸となるパラメータが、複素インピーダンスの絶対値|Z|であることのみが異なる。   The setting method of the lower limit threshold Zmin of this embodiment is the same as that of the first embodiment. That is, the only difference is that the parameter on the horizontal axis of the above distribution map is the absolute value | Z | of the complex impedance.

次に本実施形態における電池状態判定装置10の動作について説明する。本実施形態の動作及び第1実施形態の動作の共通部分については、同一のステップ番号を付して説明を省略する。図7に示すように、判定装置12は、第1及び第2第1実施形態と同様に、電池モジュールMのSOC調整を行う(ステップS1)。このときSOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCを低い状態にすると、SOCが高い状態に比べインピーダンス変化が顕著となり判定しやすくなる。またSOCを5%以下にすると、インピーダンス変化が特に顕著になり、判定精度をより向上できる。   Next, operation | movement of the battery state determination apparatus 10 in this embodiment is demonstrated. About the common part of the operation | movement of this embodiment and the operation | movement of 1st Embodiment, the same step number is attached | subjected and description is abbreviate | omitted. As shown in FIG. 7, the determination device 12 performs the SOC adjustment of the battery module M as in the first and second first embodiments (step S <b> 1). At this time, the SOC adjusting unit 11b discharges (or charges) the battery module M to make the SOC low. Specifically, the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less. In this way, when the SOC is set to a low state, the impedance change becomes remarkable as compared with a state where the SOC is high, and the determination becomes easy. Further, when the SOC is 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy can be further improved.

また判定装置12は、インピーダンス測定部11aにより電池モジュールMの複素インピーダンス測定を行う(ステップS2)。
判定装置12は、インピーダンス測定部11aによる測定値に基づき複素インピーダンスの絶対値(|Z|)を算出する(ステップS20)。また、判定装置12は、ROM12cから、複素インピーダンスの絶対値の下限閾値Zminを読み出し(ステップS21)、複素インピーダンスの絶対値|Z|が、下限閾値Zmin以下であるか否かを判断する(ステップS22)。
Moreover, the determination apparatus 12 performs the complex impedance measurement of the battery module M by the impedance measurement unit 11a (step S2).
The determination device 12 calculates the absolute value (| Z |) of the complex impedance based on the measurement value obtained by the impedance measurement unit 11a (step S20). Further, the determination device 12 reads the lower limit threshold value Zmin of the absolute value of the complex impedance from the ROM 12c (step S21), and determines whether or not the absolute value | Z | of the complex impedance is equal to or lower than the lower limit threshold value Zmin (step S21). S22).

複素インピーダンスの絶対値|Z|が、下限閾値Zminよりも大きい場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(ステップS6)。一方、複素インピーダンスの絶対値|Z|が、下限閾値Zmin以下である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態であると判定する(ステップS7)。   If the absolute value | Z | of the complex impedance is greater than the lower limit threshold Zmin, the determination device 12 determines that the battery module M to be determined is not in a micro short-circuit tendency state (step S6). On the other hand, when the absolute value | Z | of the complex impedance is equal to or lower than the lower limit threshold Zmin, the determination device 12 determines that the battery module M to be determined is in a short-circuit tendency state (step S7).

以上説明したように、第3実施形態によれば、第1実施形態の(2)に記載の効果に加えて以下に列挙する効果が得られるようになる。
(4)第3実施形態では、電池モジュールMに対し、拡散抵抗領域の複素インピーダンスを測定し、複素インピーダンスの絶対値|Z|を微小短絡傾向状態を判定するためのパラメータとして検出する。拡散抵抗領域は、複素インピーダンス曲線Nのうち低周波数側に表れる部分であって、微小短絡傾向状態の電池モジュールMは拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した複素インピーダンスの絶対値|Z|と予め設定した下限閾値Zminとを比較することによって、微小短絡傾向状態の判定精度を向上できる。従って微小短絡傾向状態が生じたときに他のパラメータでは変化の小さい電池であっても、非破壊で微小短絡傾向状態を検出することができる。
As described above, according to the third embodiment, the effects listed below can be obtained in addition to the effects described in (2) of the first embodiment.
(4) In the third embodiment, the complex impedance of the diffused resistance region is measured for the battery module M, and the absolute value | Z | of the complex impedance is detected as a parameter for determining the micro short-circuit tendency state. The diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve N, and the battery module M in the state of a minute short circuit has a significant impedance change in the diffused resistance region. For this reason, by comparing the absolute value | Z | of the detected complex impedance with the preset lower limit threshold value Zmin, it is possible to improve the determination accuracy of the micro short-circuit tendency state. Therefore, even when the battery has a small change in other parameters when the minute short-circuit tendency state occurs, the minute short-circuit tendency state can be detected without destruction.

(第4実施形態)
次に、本発明を具体化した第4実施形態を図8にしたがって説明する。尚、第3実施形態は、第1実施形態の判定方法の手順を変更したのみの構成である。
(Fourth embodiment)
Next, a fourth embodiment embodying the present invention will be described with reference to FIG. Note that the third embodiment has a configuration in which the procedure of the determination method of the first embodiment is changed.

電池状態判定装置10の動作について説明する。本実施形態の動作及び第1実施形態の動作の共通部分については、同一のステップ番号を付して説明を省略する。本実施形態では微小短絡傾向状態の判定に複素インピーダンスの虚軸成分Zimg及び実軸成分Zrealを用い、これらの成分の両方が、各々設定された下限閾値Zjmin,Zrmin以上である場合に良品判定を行う。虚軸成分Zimgの下限閾値Zjminは第1実施形態と同様であり、実軸成分Zrealの下限閾値Zrminは第2実施形態と同様である。虚軸成分Zimg及び実軸成分Zrealの条件が満たされたもののみ良品判定を行うことによって、微小短絡傾向状態の判定精度を向上するとともに、液抵抗・部品抵抗等の増加による異常の有無についての評価を行うことができる。   The operation of the battery state determination device 10 will be described. About the common part of the operation | movement of this embodiment and the operation | movement of 1st Embodiment, the same step number is attached | subjected and description is abbreviate | omitted. In this embodiment, the imaginary axis component Zimg and the real axis component Zreal of the complex impedance are used for the determination of the micro short-circuit tendency state, and the non-defective product determination is performed when both of these components are equal to or higher than the set lower thresholds Zjmin and Zrmin, respectively. Do. The lower limit threshold Zjmin of the imaginary axis component Zimg is the same as that of the first embodiment, and the lower limit threshold Zrmin of the real axis component Zreal is the same as that of the second embodiment. By determining the non-defective product only when the conditions of the imaginary axis component Zimg and the real axis component Zreal are satisfied, the determination accuracy of the micro short-circuit tendency state is improved and the presence or absence of abnormality due to an increase in liquid resistance, component resistance, etc. Evaluation can be made.

図8に示すように、判定装置12は、測定装置11を制御して、電池モジュールMのSOC調整を行う(ステップS1)。SOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCを低い状態にすると、SOCが高い状態に比べインピーダンス変化が顕著となり判定しやすくなる。またSOCを5%以下にすると、インピーダンス変化が特に顕著になり、判定精度をより向上できる。   As shown in FIG. 8, the determination device 12 controls the measurement device 11 to perform SOC adjustment of the battery module M (step S1). The SOC adjusting unit 11b discharges (or charges) the battery module M to lower the SOC. Specifically, the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less. In this way, when the SOC is set to a low state, the impedance change becomes remarkable as compared with a state where the SOC is high, and the determination becomes easy. Further, when the SOC is 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy can be further improved.

また判定装置12は、電池モジュールMの複素インピーダンス測定(ステップS2)を行い、測定値に基づき複素インピーダンスの虚軸成分の絶対値|Zimg|及び実軸成分の絶対値|Zreal|を算出する(ステップS30)。このとき虚軸成分の絶対値|Zimg|及び実軸成分の絶対値|Zreal|は、一回の測定から得ることができるので判定にかかる時間が極端に長くなることはない。   Further, the determination device 12 performs the complex impedance measurement (step S2) of the battery module M, and calculates the absolute value | Zimg | of the imaginary axis component and the absolute value | Zreal | of the real axis component based on the measured value ( Step S30). At this time, since the absolute value | Zimg | of the imaginary axis component and the absolute value | Zreal | of the real axis component can be obtained from one measurement, the time required for the determination does not become extremely long.

また判定装置12は、ROM12cから、虚軸成分の絶対値の下限閾値Zjmin及び実軸成分の絶対値の下限閾値Zrminを読み出し(ステップS31)、虚軸成分の絶対値|Zimg|が下限閾値Zjmin未満、又は実軸成分の絶対値|Zreal|が下限閾値Zrmin未満であるか否かを判断する(ステップS32)。   Further, the determination device 12 reads the absolute value lower limit threshold Zjmin of the imaginary axis component and the lower limit threshold Zrmin of the absolute value of the real axis component from the ROM 12c (step S31), and the absolute value | Zimg | of the imaginary axis component is the lower limit threshold Zjmin. It is determined whether or not the absolute value | Zreal | of the real axis component is less than the lower limit threshold Zrmin (step S32).

虚軸成分の絶対値|Zimg|が下限閾値Zjmin以上、且つ実軸成分の絶対値|Zreal|が下限閾値Zrmin以上であると判断すると(ステップS32においてYES)、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(ステップS6)。   If it is determined that the absolute value | Zimg | of the imaginary axis component is equal to or greater than the lower limit threshold Zjmin and the absolute value | Zreal | of the real axis component is equal to or greater than the lower limit threshold Zrmin (YES in step S32), the battery module M to be determined is very small. A non-defective product is determined not to be in a short-circuit tendency state (step S6).

一方、虚軸成分の絶対値|Zimg|が下限閾値Zjminより小さい、又は実軸成分の絶対値|Zreal|が下限閾値Zrminより小さい場合には(ステップS32においてNO)、電池モジュールMが微小短絡傾向状態であると判定する(ステップS7)。即ち、虚軸成分の絶対値|Zimg|及び実軸成分の絶対値|Zreal|の両方が下限閾値Zjmin,Zrmin以上である電池モジュールMのみ良品判定をしているため、微小短絡傾向状態であるにも関わらず、誤って良品判定することを抑制できる。   On the other hand, when the absolute value | Zimg | of the imaginary axis component is smaller than the lower limit threshold Zjmin, or the absolute value | Zreal | of the real axis component is smaller than the lower limit threshold Zrmin (NO in step S32), the battery module M is slightly short-circuited. It determines with it being a tendency state (step S7). That is, only the battery module M in which the absolute value | Zimg | of the imaginary axis component and the absolute value | Zreal | of the real axis component are both equal to or lower than the lower thresholds Zjmin and Zrmin is judged as a non-defective product. Nevertheless, it is possible to suppress erroneous determination of non-defective products.

以上説明したように、第4実施形態によれば、第1実施形態の(1),(2)に記載の効果に加えて以下に列挙する効果が得られるようになる。
(5)第4実施形態では、電池状態判定装置10は、複素インピーダンスの虚軸成分の絶対値|Zimg|に加え、実軸成分の絶対値|Zreal|を微小短絡傾向状態を判定するためのパラメータとして検出する。そして絶対値|Zimg|が虚軸成分の下限閾値Zjminより小さい、又は絶対値|Zreal|が実軸成分の下限閾値Zrminより小さい場合には微小短絡傾向と判定し、各絶対値|Zimg|,|Zreal|が各下限閾値Zjmin,Zrmin以上である場合にのみ良品判定する。このため、微小短絡傾向状態であるにも関わらず、誤って良品判定することを抑制できる。
As described above, according to the fourth embodiment, the effects listed below can be obtained in addition to the effects described in (1) and (2) of the first embodiment.
(5) In the fourth embodiment, the battery state determination device 10 determines the absolute value | Zreal | of the real axis component in addition to the absolute value | Zimg | Detect as a parameter. If the absolute value | Zimg | is smaller than the lower limit threshold value Zjmin of the imaginary axis component, or if the absolute value | Zreal | is smaller than the lower limit threshold value Zrmin of the real axis component, it is determined that there is a tendency for a short circuit, and each absolute value | Zimg | A non-defective product is determined only when | Zreal | is equal to or greater than the lower thresholds Zjmin and Zrmin. For this reason, although it is in the state of a micro short circuit tendency, it can control judging a good article accidentally.

尚、上記実施形態は、以下のように適宜変更して実施することもできる。
・上記各実施形態では、SOCを20%以下とした電池モジュールMの複素インピーダンスを測定したが、SOCが20%超で微小短絡傾向状態が検出可能な電池であれば、電池モジュールMのSOCを20%超にした状態で測定しても構わない。
In addition, the said embodiment can also be suitably changed and implemented as follows.
In each of the above embodiments, the complex impedance of the battery module M with an SOC of 20% or less was measured. However, if the SOC is more than 20% and the battery can detect a micro short-circuit tendency state, the SOC of the battery module M is You may measure in the state which exceeded 20%.

・上記各実施形態では、電池モジュールMを判定対象とし、電池モジュールMを複数のバッテリーセルから構成したが、単数のバッテリーセルを判定対象としてもよい。また判定対象を、複数の電池モジュールMから構成される電池スタックとしてもよい。   In each of the above embodiments, the battery module M is a determination target and the battery module M is configured from a plurality of battery cells. However, a single battery cell may be the determination target. The determination target may be a battery stack including a plurality of battery modules M.

・上記実施形態では、測定装置11及び判定装置12を用いて、電池モジュールMの微小短絡傾向状態を判定したが、本発明の電池状態判定装置は、その構成に限定されない。例えば、測定装置11のSOC調整部11bとインピーダンス測定部11aは別の装置でもよい。   -In the above-mentioned embodiment, although the minute short circuit tendency state of battery module M was judged using measuring device 11 and judgment device 12, the battery state judgment device of the present invention is not limited to the composition. For example, the SOC adjusting unit 11b and the impedance measuring unit 11a of the measuring device 11 may be different devices.

・上記各実施形態では、SOCを測定する方法として充電電流の積算値を算出する方法を用いたが、電圧値や温度等の他のパラメータに基づき算出する方法、又は電流値を含めたそれらのパラメータを組み合わせて算出する方法を用いてもよい。   In each of the above embodiments, the method of calculating the integrated value of the charging current is used as a method of measuring the SOC, but the method of calculating based on other parameters such as the voltage value and temperature, or those including the current value A method of calculating by combining parameters may be used.

10…電池状態判定装置、11…測定装置、11a…インピーダンス測定部、12…検出部、記憶部、判定部を構成する判定装置、C…拡散抵抗領域、Fdif…測定周波数、M…二次電池としての電池モジュール、N…複素インピーダンス曲線、Z…複素インピーダンス、Zimg…虚軸成分、Zreal…実軸成分、Zjmin,Zrmin,Zmin…下限閾値。   DESCRIPTION OF SYMBOLS 10 ... Battery state determination apparatus, 11 ... Measurement apparatus, 11a ... Impedance measurement part, 12 ... Detection part, Memory | storage part, Determination apparatus which comprises determination part, C ... Diffusion resistance area | region, Fdif ... Measurement frequency, M ... Secondary battery N ... complex impedance curve, Z ... complex impedance, Zimg ... imaginary axis component, Zreal ... real axis component, Zjmin, Zrmin, Zmin ... lower limit threshold.

Claims (6)

二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、
拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部と、
前記インピーダンス測定部から得られた前記複素インピーダンスの虚軸成分の絶対値を検出する検出部と、
前記微小短絡傾向状態である二次電池の前記虚軸成分の絶対値の測定結果に基づき設定された下限閾値を記憶する記憶部と、
前記検出部によって検出された前記虚軸成分の絶対値と前記下限閾値とを比較し、前記虚軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する判定部とを備えた電池状態判定装置。
A battery state determination device for determining a micro short-circuit tendency state that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur with respect to a secondary battery,
An impedance measuring unit that measures the complex impedance by applying a frequency corresponding to the diffusion resistance region as a measurement frequency, and applying an AC voltage or an AC current of the measurement frequency to the secondary battery to be determined;
A detection unit for detecting an absolute value of an imaginary axis component of the complex impedance obtained from the impedance measurement unit;
A storage unit that stores a lower threshold set based on a measurement result of an absolute value of the imaginary axis component of the secondary battery that is in a state of a tendency toward short-circuiting,
The absolute value of the imaginary axis component detected by the detection unit is compared with the lower limit threshold value, and when the absolute value of the imaginary axis component is smaller than the lower limit threshold value, the secondary battery to be determined is the minute A battery state determination apparatus comprising: a determination unit that determines that a short-circuit tendency state exists.
前記インピーダンス測定部は、充電状態が20%以下の前記二次電池に対し複素インピーダンス測定を行う請求項1に記載の電池状態判定装置。   The battery state determination device according to claim 1, wherein the impedance measurement unit performs complex impedance measurement on the secondary battery having a charge state of 20% or less. 前記検出部は、前記虚軸成分の絶対値とともに前記複素インピーダンスの実軸成分の絶対値を算出し、
前記記憶部は、前記虚軸成分の絶対値に対応する第1の下限閾値とともに、前記微小短絡傾向状態である二次電池の前記実軸成分の絶対値の測定結果に基づき設定された第2の下限閾値を記憶し、
前記判定部は、判定対象の二次電池の前記虚軸成分の絶対値が前記第1の下限閾値よりも小さい、又は、前記実軸成分の絶対値が前記第2の下限閾値よりも小さい場合に、判定対象の二次電池が前記微小短絡傾向状態であると判定する請求項1又は2に記載の電池状態判定装置。
The detection unit calculates the absolute value of the real axis component of the complex impedance together with the absolute value of the imaginary axis component,
The storage unit is set based on a measurement result of an absolute value of the real axis component of the secondary battery that is in a short-circuit tendency state together with a first lower limit threshold value corresponding to the absolute value of the imaginary axis component. Remember the lower threshold of
In the case where the absolute value of the imaginary axis component of the secondary battery to be determined is smaller than the first lower limit threshold or the absolute value of the real axis component is smaller than the second lower limit threshold. The battery state determination apparatus according to claim 1, wherein the determination-target secondary battery is determined to be in the state of a tendency toward short-circuiting.
二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、
拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部と、
前記インピーダンス測定部から得られた前記複素インピーダンスの実軸成分の絶対値を検出する検出部と、
前記微小短絡傾向状態である二次電池の前記実軸成分の測定結果に基づき設定された下限閾値を記憶する記憶部と、
前記検出部によって検出された前記実軸成分の絶対値と前記下限閾値とを比較し、前記実軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する判定部とを備えた電池状態判定装置。
A battery state determination device for determining a micro short-circuit tendency state that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur with respect to a secondary battery,
An impedance measuring unit that measures the complex impedance by applying a frequency corresponding to the diffusion resistance region as a measurement frequency, and applying an AC voltage or an AC current of the measurement frequency to the secondary battery to be determined;
A detection unit for detecting an absolute value of a real axis component of the complex impedance obtained from the impedance measurement unit;
A storage unit that stores a lower limit threshold set based on a measurement result of the real axis component of the secondary battery that is in a state of a tendency toward short-circuiting,
The absolute value of the real axis component detected by the detection unit is compared with the lower limit threshold value, and when the absolute value of the real axis component is smaller than the lower limit threshold value, the secondary battery to be determined is the minute A battery state determination apparatus comprising: a determination unit that determines that a short-circuit tendency state exists.
二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、
拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部と、
前記インピーダンス測定部から得られた前記複素インピーダンスの絶対値を検出する検出部と、
前記微小短絡傾向状態である二次電池の前記複素インピーダンスの測定結果に基づき設定された下限閾値を記憶する記憶部と、
前記検出部によって検出された前記複素インピーダンスの絶対値と前記下限閾値とを比較し、前記複素インピーダンスの絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する判定部とを備えた電池状態判定装置。
A battery state determination device for determining a micro short-circuit tendency state that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur with respect to a secondary battery,
An impedance measuring unit that measures the complex impedance by applying a frequency corresponding to the diffusion resistance region as a measurement frequency, and applying an AC voltage or an AC current of the measurement frequency to the secondary battery to be determined;
A detection unit for detecting an absolute value of the complex impedance obtained from the impedance measurement unit;
A storage unit that stores a lower limit threshold set based on the measurement result of the complex impedance of the secondary battery that is in a state of a tendency toward short-circuiting,
The absolute value of the complex impedance detected by the detection unit is compared with the lower limit threshold value, and when the absolute value of the complex impedance is smaller than the lower limit threshold value, the secondary battery to be determined has a tendency to be short-circuited. The battery state determination apparatus provided with the determination part which determines with it being in a state.
前記インピーダンス測定部は、充電状態が20%以下の前記二次電池に対し複素インピーダンス測定を行う請求項4又は5に記載の電池状態判定装置。   6. The battery state determination device according to claim 4, wherein the impedance measurement unit performs complex impedance measurement on the secondary battery having a charge state of 20% or less.
JP2013083789A 2013-04-12 2013-04-12 Battery status judgment device Active JP5744957B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013083789A JP5744957B2 (en) 2013-04-12 2013-04-12 Battery status judgment device
CN201480019396.2A CN105122073B (en) 2013-04-12 2014-03-05 Battery status decision maker
PCT/JP2014/055545 WO2014167920A1 (en) 2013-04-12 2014-03-05 Battery state determination device
DE112014001900.3T DE112014001900T5 (en) 2013-04-12 2014-03-05 Device for detecting a battery condition
US14/782,788 US9995792B2 (en) 2013-04-12 2014-03-05 Battery state determination device determining a micro-short-circuiting tendency of a rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083789A JP5744957B2 (en) 2013-04-12 2013-04-12 Battery status judgment device

Publications (2)

Publication Number Publication Date
JP2014206442A JP2014206442A (en) 2014-10-30
JP5744957B2 true JP5744957B2 (en) 2015-07-08

Family

ID=51689334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083789A Active JP5744957B2 (en) 2013-04-12 2013-04-12 Battery status judgment device

Country Status (5)

Country Link
US (1) US9995792B2 (en)
JP (1) JP5744957B2 (en)
CN (1) CN105122073B (en)
DE (1) DE112014001900T5 (en)
WO (1) WO2014167920A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958487B2 (en) * 2016-02-04 2018-05-01 Dialog Semiconductor (Uk) Limited Method and apparatus for powering an electronic device
US10794962B2 (en) 2016-02-19 2020-10-06 Toyota Motor Europe Systems and methods for battery micro-short estimation
JP6369510B2 (en) * 2016-08-25 2018-08-08 トヨタ自動車株式会社 Diagnostic device and diagnostic method for lithium ion secondary battery
CN108241102A (en) * 2016-12-23 2018-07-03 华为技术有限公司 A kind of detection method and device of battery micro-short circuit
JP6614176B2 (en) * 2017-02-09 2019-12-04 トヨタ自動車株式会社 Battery state estimation device
JP6729460B2 (en) * 2017-03-17 2020-07-22 トヨタ自動車株式会社 In-vehicle battery charge controller
JP6552118B2 (en) * 2017-03-17 2019-07-31 本田技研工業株式会社 Navigation system, navigation method, and program
JP6881156B2 (en) * 2017-08-24 2021-06-02 トヨタ自動車株式会社 Impedance estimator
WO2019058613A1 (en) * 2017-09-21 2019-03-28 古河電気工業株式会社 Rechargeable battery short circuit prediction device and rechargeable battery short circuit prediction method
TWI657639B (en) 2017-12-04 2019-04-21 Industrial Technology Research Institute Method and system for determining a discharging flow of a battery
TWI649573B (en) 2017-12-04 2019-02-01 財團法人工業技術研究院 Method and system for detecting short circuit impedance in battery
CN110244230B (en) 2018-03-08 2022-07-08 财团法人工业技术研究院 Battery safety identification method, internal short circuit hazard grade setting method and warning system
JP7153196B2 (en) * 2018-12-26 2022-10-14 トヨタ自動車株式会社 BATTERY CHARACTERISTICS EVALUATION DEVICE AND BATTERY CHARACTERISTICS EVALUATION METHOD
EP4016096B1 (en) * 2019-08-12 2023-06-07 NISSAN MOTOR Co., Ltd. Secondary battery short-circuiting assessment device, short-circuiting assessment method, and short-circuiting assessment system
US11104242B2 (en) * 2019-10-01 2021-08-31 Ford Global Technologies, Llc Bus bar resistance identification via AC signal injection and battery control therefrom
JP7391621B2 (en) * 2019-11-12 2023-12-05 日産自動車株式会社 Secondary battery short circuit estimation device, short circuit estimation method, and short circuit estimation system
JP7244456B2 (en) * 2020-04-28 2023-03-22 プライムアースEvエナジー株式会社 SECONDARY BATTERY STATE DETERMINATION METHOD AND SECONDARY BATTERY STATE DETERMINATION DEVICE
US11977121B2 (en) 2020-09-15 2024-05-07 Analog Devices International Unlimited Company Autonomous battery monitoring system
KR102650095B1 (en) * 2021-11-30 2024-03-21 주식회사 민테크 Method and apparatus for detecting defects of rechargeable battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598873B2 (en) 1998-08-10 2004-12-08 トヨタ自動車株式会社 Secondary battery state determination method and state determination device, and secondary battery regeneration method
JP4887581B2 (en) * 2001-07-26 2012-02-29 パナソニック株式会社 Battery inspection method and inspection apparatus
JP2003317810A (en) * 2002-04-18 2003-11-07 Toyota Motor Corp Battery characteristics estimation method
CN2569158Y (en) * 2002-09-05 2003-08-27 北大先行科技产业有限公司 Micro short-circuit detector
JP5083709B2 (en) * 2007-06-14 2012-11-28 トヨタ自動車株式会社 Fuel cell system
US7856328B2 (en) 2007-10-10 2010-12-21 Texas Instruments Incorporated Systems, methods and circuits for determining potential battery failure based on a rate of change of internal impedance
JP5071747B2 (en) * 2011-01-13 2012-11-14 横河電機株式会社 Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
EP3032271B1 (en) * 2012-01-31 2019-07-31 Primearth EV Energy Co., Ltd. Battery state detection device

Also Published As

Publication number Publication date
US9995792B2 (en) 2018-06-12
CN105122073B (en) 2017-12-05
WO2014167920A1 (en) 2014-10-16
DE112014001900T5 (en) 2015-12-31
US20160061907A1 (en) 2016-03-03
CN105122073A (en) 2015-12-02
JP2014206442A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5744957B2 (en) Battery status judgment device
JP5744956B2 (en) Battery status judgment device
Feng et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm
WO2013115038A1 (en) Battery state detection device
EP2700966B1 (en) Apparatus and method for estimating battery state
JP5071747B2 (en) Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
EP2811310B1 (en) State of charge detection device
JP5846054B2 (en) Diagnostic device and diagnostic method
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
JP6742937B2 (en) Secondary battery state determination method and secondary battery state determination device
CN107210477A (en) The manufacture method of electrical storage device, the check device of structure
JP2014044149A (en) Method for estimating deterioration of lithium ion battery
JP5886225B2 (en) Battery control device and battery control method
JP2015195096A (en) Authenticity determination apparatus and authenticity determination method
JP2006030080A (en) Remaining capacity calculation device for electric power storage device
JP6031875B2 (en) Method and apparatus for inspecting assembled battery
US20110062918A1 (en) Method and device for monitoring the operating state of a battery
JP7364605B2 (en) Battery condition determination method and battery condition determination device
JP6996426B2 (en) Anomaly detection system
JP6156035B2 (en) Storage module abnormality detection method and abnormality detection apparatus
JP7400706B2 (en) battery system
JP7196868B2 (en) battery system
JP5928815B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5929711B2 (en) Charging system and voltage drop calculation method
JP2019200949A (en) Battery control device and battery control method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5744957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250