JP5744604B2 - Heat shielding film - Google Patents

Heat shielding film Download PDF

Info

Publication number
JP5744604B2
JP5744604B2 JP2011085496A JP2011085496A JP5744604B2 JP 5744604 B2 JP5744604 B2 JP 5744604B2 JP 2011085496 A JP2011085496 A JP 2011085496A JP 2011085496 A JP2011085496 A JP 2011085496A JP 5744604 B2 JP5744604 B2 JP 5744604B2
Authority
JP
Japan
Prior art keywords
film
less
resin
heat
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011085496A
Other languages
Japanese (ja)
Other versions
JP2012219168A (en
Inventor
小野 光正
光正 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2011085496A priority Critical patent/JP5744604B2/en
Publication of JP2012219168A publication Critical patent/JP2012219168A/en
Application granted granted Critical
Publication of JP5744604B2 publication Critical patent/JP5744604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は熱遮蔽用フィルムに関する。さらに詳しくは、熱線反射による高い遮蔽効果を備える熱遮蔽用フィルムに関する。   The present invention relates to a heat shielding film. More specifically, the present invention relates to a heat shielding film having a high shielding effect by heat ray reflection.

近年、環境保護、省エネルギーなどの観点から、各種機器類の熱制御の要求が厳しくなってきている。また、各種機器の精密化に伴う熱制御の要求も大きくなっている。
熱制御の手法としては、発熱抑制のための機器設計、放熱促進のための形状設計や素材選択、入射・出射する熱の遮蔽などがあり、特に熱遮蔽は、重要な技術の一つである。
In recent years, from the viewpoints of environmental protection and energy saving, demands for thermal control of various devices have become stricter. In addition, there is an increasing demand for thermal control accompanying the refinement of various devices.
Thermal control methods include equipment design for suppressing heat generation, shape design and material selection for promoting heat dissipation, shielding of incident and outgoing heat, etc. Heat shielding is one of the important technologies. .

熱遮蔽の手法としては、断熱、吸熱、熱線反射などの効果を機器の外壁や筐体に持たせることが有効な手法のひとつであり、各種手段が提案されている。
例えば熱線反射膜として金属や金属酸化膜等を用いることが数多く提案されている(特許文献1など)。また、熱線反射効果に優れかつ光線透過率が高い熱線遮断板として、板状体酸化チタンで被覆したマイカを含む熱線反射板状体(特許文献2、3など)や、熱線遮蔽機能を有する粒子としてタングステン酸化物微粒子などを含む熱線遮蔽ポリエステルフィルム(特許文献4)が提案されている。
As a method of heat shielding, it is one of effective methods to give effects such as heat insulation, heat absorption, and heat ray reflection to the outer wall and casing of the device, and various means have been proposed.
For example, many proposals have been made to use a metal, a metal oxide film, or the like as the heat ray reflective film (Patent Document 1, etc.). In addition, as a heat ray blocking plate having an excellent heat ray reflection effect and high light transmittance, a heat ray reflection plate containing mica coated with a plate-like body titanium oxide (Patent Documents 2 and 3, etc.) and particles having a heat ray shielding function A heat ray-shielding polyester film (Patent Document 4) containing tungsten oxide fine particles and the like has been proposed.

最近は自動車や建造物などにおいて、内部の空調の効率を高めるために、自動車の車体や建材など大型の部材に対して、近赤外から遠赤外にいたる熱線を高度に遮蔽できるフィルムが求められるようになってきている。   Recently, in order to increase the efficiency of internal air conditioning in automobiles and buildings, a film that can highly shield heat rays from the near infrared to the far infrared is required for large parts such as automobile bodies and building materials. It is getting to be.

特開昭61−277437号公報JP-A 61-277437 特開平2−173060号公報JP-A-2-173060 特開平5−78544号公報JP-A-5-78544 特開2008−274054号公報JP 2008-274054 A

本発明の目的は、近赤外から遠赤外にいたる熱線を高度に遮蔽できる熱遮蔽用フィルムを提供することにある。
また本発明の第二の目的は、近赤外から遠赤外にいたる熱線を高度に遮蔽でき、しかも自動車の車体や建材など大型の部材に適した高い成形性も備える熱遮蔽用フィルムを提供することにある。
An object of the present invention is to provide a heat shielding film capable of highly shielding heat rays from the near infrared to the far infrared.
The second object of the present invention is to provide a heat shielding film that can highly shield heat rays from the near infrared to the far infrared, and also has high formability suitable for large members such as automobile bodies and building materials. There is to do.

本発明者は、前記課題を解決するために鋭意検討した結果、粒子径の大きな酸化チタン粒子をフィルムに含有させることにより、800〜2200nmの近赤外光線および2500〜8000nmの遠赤外光線に対する高度な熱遮蔽効果が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has incorporated titanium oxide particles having a large particle diameter into the film, so that it can be applied to near-infrared rays of 800 to 2200 nm and far-infrared rays of 2500 to 8000 nm. The inventors have found that a high heat shielding effect can be obtained, and have completed the present invention.

すなわち本発明の目的は、平均粒径が1.0μm以上5μm以下である酸化チタン粒子をフィルムの重量を基準として5重量%以上35重量%以下含有し、エチレンテレフタレート単位を主体とするポリエステル樹脂(I)およびブチレンテレフタレート単位を主体とするポリエステル樹脂(II)を含有し、フィルム厚みが10μm以上200μm以下であり、100℃における100%伸長時のフィルムの応力がフィルム長手方向、フィルム幅方向のいずれにおいても10MPa以上150MPa以下であり、かつそれらの方向の応力差が0MPa以上45MPa以下であって、100℃における100%伸長時のフィルム破断伸度がフィルム長手方向、フィルム幅方向のいずれにおいても250%以上であり、800nm〜2200nmの波長の入射光線に対する全光線反射率がいずれの波長においても55%以上であり、かつ2500nm〜8000nmの波長域の入射光線に対する平均光線透過率が45%未満である熱遮蔽用二軸延伸フィルムによって達成される。 That is, an object of the present invention is to provide a polyester resin containing titanium oxide particles having an average particle size of 1.0 μm or more and 5 μm or less in an amount of 5% by weight to 35% by weight based on the weight of the film, and mainly composed of ethylene terephthalate units. (I) and a polyester resin (II) mainly composed of a butylene terephthalate unit, the film thickness is 10 μm or more and 200 μm or less, and the film stress at 100% elongation at 100 ° C. is in the film longitudinal direction and the film width direction. In any case, the stress difference in the directions is 10 MPa or more and 150 MPa or less, and the elongation at break at 100% elongation at 100 ° C. is 100% in both the film longitudinal direction and the film width direction. 250% or more, 800 nm to 2200 nm The biaxially stretched film for heat shielding, wherein the total light reflectance for incident light with a wavelength of 55% or more at any wavelength and the average light transmittance for incident light in the wavelength range of 2500 nm to 8000 nm is less than 45% Achieved by:

また、本発明の熱遮蔽用フィルムは、その好ましい態様として、成形加工用途に用いられること、車体断熱用複合材、断熱建材または電気・電子機器の断熱部材の構成材として用いられること、の少なくともいずれか一つを具備するものを包含する。 Furthermore, heat-shielding film of the present invention, as a preferred embodiment, be used for forming the shape processing applications, body insulation composite material, that is used as a constituent material of the heat insulating building materials or electrical and electronic equipment of the heat insulating member, the Includes at least one of them.

本発明によれば、本発明の熱遮蔽用フィルムは、近赤外から遠赤外にいたる熱線を高度に遮蔽できることから、自動車の車体や建材などといった外部の太陽光に対する高い遮熱効果が求められる用途に好適に用いることができる。   According to the present invention, since the heat shielding film of the present invention can highly shield heat rays from the near infrared to the far infrared, a high heat shielding effect against external sunlight such as a car body or a building material of an automobile is required. It can be suitably used for the intended use.

フィルムの遮熱性評価に用いられる、断熱性材料で作成した箱(a)および箱内部の上下底面中央部に設置する熱電対タイプ温度センサー(b)、(c)に関する概略図である。It is the schematic regarding the thermocouple type temperature sensor (b) and (c) installed in the box (a) created with the heat insulating material used for the thermal-insulation evaluation of a film, and the upper-lower-bottom bottom center part inside a box.

以下、本発明を詳しく説明する。
本発明の熱遮蔽用フィルムは、平均粒径が0.5μm以上5μm以下である酸化チタン粒子を含有し、800nm〜2200nmの波長の入射光線に対する全光線反射率がいずれの波長においても55%以上であり、かつ2500nm〜8000nmの波長域の入射光線に対する平均光線透過率が45%未満である。
The present invention will be described in detail below.
The heat shielding film of the present invention contains titanium oxide particles having an average particle diameter of 0.5 μm or more and 5 μm or less, and the total light reflectance for incident light having a wavelength of 800 nm to 2200 nm is 55% or more at any wavelength. And the average light transmittance for incident light in the wavelength range of 2500 nm to 8000 nm is less than 45%.

(赤外光遮蔽性能)
本発明の熱遮蔽用フィルムは、800nm〜2200nmの波長の入射光線に対する全光線反射率がいずれの波長においても55%以上であり、かつ2500nm〜8000nmの波長域の入射光線に対する平均光線透過率が45%未満である。
(Infrared light shielding performance)
The heat shielding film of the present invention has a total light reflectance of 55% or more for incident light having a wavelength of 800 nm to 2200 nm at any wavelength, and an average light transmittance for incident light having a wavelength range of 2500 nm to 8000 nm. Less than 45%.

800nm〜2200nmの波長の入射光線に対する全光線反射率は、より好ましくは60%以上、さらに好ましくは65%以上、特に好ましくは70%以上である。
800nm〜2200nmの波長域の光は、いわゆる近赤外線であり、入射する太陽光線などの光の中で、エネルギー分布の大きい領域である。該波長域の入射光線に対する全光線反射率が下限値に満たない場合、例えば車体や建材などの熱遮蔽用フィルムとして用いたときに、外部の太陽光に対する高い遮熱効果が得られない。
The total light reflectance for incident light having a wavelength of 800 nm to 2200 nm is more preferably 60% or more, still more preferably 65% or more, and particularly preferably 70% or more.
Light in the wavelength range of 800 nm to 2200 nm is so-called near infrared light, and is a region having a large energy distribution in incident light such as sunlight. When the total light reflectance with respect to incident light in the wavelength range is less than the lower limit, for example, when used as a heat shielding film for a vehicle body or a building material, a high heat shielding effect against external sunlight cannot be obtained.

かかる全光線反射率は、分光光度計に積分球を取り付け、BaSO白板の全光線反射率を100%とし、得られたフィルムの全光線反射率を800nm〜2200nmの波長範囲で測定して求めることができる。 Such total light reflectivity is obtained by attaching an integrating sphere to the spectrophotometer, setting the total light reflectivity of the BaSO 4 white plate to 100%, and measuring the total light reflectivity of the obtained film in the wavelength range of 800 nm to 2200 nm. be able to.

また、2500nm〜8000nmの波長域の入射光線に対する光線透過率の平均値は、より好ましくは40%未満、さらに好ましくは37%未満である。
2500nm〜8000nmの波長域の光はいわゆる遠赤外線であり、人体に達することで大きな暑熱感を生じさせ、また、高温物体から発せられる輻射熱線の波長域でもある。該波長域の入射光線に対する光線透過率が上限値を超える場合も、例えば車体や建材などの熱遮蔽用フィルムとして用いたときに、外部の太陽光に対する高い遮熱効果が得られない。
Moreover, the average value of the light transmittance with respect to the incident light in the wavelength range of 2500 nm to 8000 nm is more preferably less than 40%, and still more preferably less than 37%.
The light in the wavelength range of 2500 nm to 8000 nm is so-called far-infrared rays, which causes a large heat sensation when reaching the human body, and is also the wavelength range of radiant heat rays emitted from high-temperature objects. Even when the light transmittance for incident light in the wavelength range exceeds the upper limit, for example, when used as a heat shielding film for a vehicle body or a building material, a high heat shielding effect against external sunlight cannot be obtained.

該波長域における平均光線透過率は、得られたフィルムをFT−IRなどの赤外分光光度計による透過率測定に供することで求めることができる。
これらの波長域における全光線反射率特性および平均光線透過率は、平均粒径の大きな酸化チタン粒子をフィルム中に多量に含有させることによって得ることができる。
The average light transmittance in the wavelength region can be determined by subjecting the obtained film to transmittance measurement using an infrared spectrophotometer such as FT-IR.
The total light reflectance characteristics and the average light transmittance in these wavelength regions can be obtained by containing a large amount of titanium oxide particles having a large average particle diameter in the film.

(酸化チタン粒子)
本発明の熱線遮蔽フィルムは、平均粒径が0.5μm以上5μm以下の酸化チタン粒子を含有することを特徴としている。
酸化チタン粒子は高い屈折率を有しており、かつこのように平均粒径の大きなものであることにより、2200nm近くの長波長の赤外光をも効率的に反射することが可能となる。酸化チタン粒子の平均粒径が下限値に満たない場合、長波長の近赤外光が前方散乱されてしまう度合いが高くなり、十分な熱遮蔽性が得られない。一方、酸化チタン粒子の平均粒径が上限値を超える場合は、きわめて大きな粒子がフィルム中に存在するため、成形時に破断したりフィルム生産時に破断が生じる。
(Titanium oxide particles)
The heat ray shielding film of the present invention is characterized by containing titanium oxide particles having an average particle size of 0.5 μm or more and 5 μm or less.
Since the titanium oxide particles have a high refractive index and have a large average particle diameter, it is possible to efficiently reflect infrared light having a long wavelength near 2200 nm. When the average particle diameter of the titanium oxide particles is less than the lower limit, the degree of long-wave near infrared light being scattered forward becomes high, and sufficient heat shielding properties cannot be obtained. On the other hand, when the average particle diameter of the titanium oxide particles exceeds the upper limit value, extremely large particles exist in the film, so that the titanium oxide particles break during molding or during film production.

酸化チタン粒子の平均粒径は、好ましくは1.0μm以上4.5μm以下、さらに好ましくは1.5μm以上4.0μm以下である。
かかる酸化チタン粒子の含有量は、フィルム重量を基準として2重量%以上50重量%以下であることが好ましい。酸化チタン粒子の含有量の下限値は、より好ましくは5重量%、さらに好ましくは8重量%、特に好ましくは10重量%である。また酸化チタン粒子の含有量の上限値は、より好ましくは35重量%、さらに好ましくは30重量%、特に好ましくは25重量%である。
平均粒径の大きな酸化チタン粒子をフィルム中に多量に含有させることによって本発明の赤外光遮蔽性能が発現する。
また、酸化チタン粒子がフィルム中に含有されていることにより、酸化チタン粒子を含むコーティング層をフィルム上に設ける手法に較べて熱遮蔽性の耐久性に優れている。
The average particle diameter of the titanium oxide particles is preferably 1.0 μm or more and 4.5 μm or less, and more preferably 1.5 μm or more and 4.0 μm or less.
The content of the titanium oxide particles is preferably 2% by weight or more and 50% by weight or less based on the film weight. The lower limit of the content of titanium oxide particles is more preferably 5% by weight, still more preferably 8% by weight, and particularly preferably 10% by weight. The upper limit of the content of titanium oxide particles is more preferably 35% by weight, still more preferably 30% by weight, and particularly preferably 25% by weight.
By containing a large amount of titanium oxide particles having a large average particle diameter in the film, the infrared light shielding performance of the present invention is exhibited.
In addition, since the titanium oxide particles are contained in the film, the heat shielding durability is excellent as compared with a method in which a coating layer containing titanium oxide particles is provided on the film.

(フィルム厚み)
本発明の赤外光遮蔽性能を得るにあたり、さらにフィルム厚みが10μm以上250μm以下であることが好ましい。本発明の大きさの酸化チタンを高濃度含有し、さらにそのフィルム厚みが厚いことにより、赤外光遮蔽性能を高めることができる。
具体的には、酸化チタン粒子濃度とフィルム厚みを掛け合わせた値で表わされる、フィルム面積あたりの酸化チタン含有量が高いことにより、赤外光遮蔽性能を高めることができる。
(Film thickness)
In obtaining the infrared light shielding performance of the present invention, the film thickness is preferably 10 μm or more and 250 μm or less. Infrared light shielding performance can be enhanced by containing a high concentration of titanium oxide of the size of the present invention and further increasing the film thickness.
Specifically, the infrared light shielding performance can be enhanced by a high titanium oxide content per film area represented by a value obtained by multiplying the titanium oxide particle concentration by the film thickness.

かかるフィルム厚みは、20μm以上200μm以下であることがより好ましく、30μm以上150μm以下であることがさらに好ましい。
フィルム厚みが下限値に満たない場合は、十分な熱遮蔽性を得るために酸化チタン粒子を大量に添加せざるを得ず、成形時に破断したり、フィルム生産時に破断が生じることがある。一方、上限値を超える厚みのフィルムは、成形加工性に乏しくなることがある。
The film thickness is more preferably 20 μm or more and 200 μm or less, and further preferably 30 μm or more and 150 μm or less.
If the film thickness is less than the lower limit, a large amount of titanium oxide particles must be added to obtain sufficient heat shielding properties, and may break during molding or during film production. On the other hand, a film having a thickness exceeding the upper limit may have poor moldability.

(樹脂)
本発明の熱線遮蔽フィルムは、フィルムを構成する樹脂として熱可塑性樹脂を広く用いることができるが、中でも成形性の観点から、ポリエステルやポリカーボネート樹脂などが好ましく、さらにポリエステルとして、エチレンテレフタレート単位を主体とするポリエステル樹脂(I)およびブチレンテレフタレート単位を主体とするポリエステル樹脂(II)を含有することが好ましい。熱線遮蔽フィルムがかかる樹脂成分によって構成されることにより、本発明のような平均粒径の大きな酸化チタン粒子が含まれていても大型成形に適した高い成形性を得ることができる。
(resin)
In the heat ray shielding film of the present invention, a thermoplastic resin can be widely used as a resin constituting the film. Among them, polyester and polycarbonate resin are preferable from the viewpoint of moldability, and the polyester is mainly composed of an ethylene terephthalate unit. The polyester resin (I) and the polyester resin (II) mainly comprising a butylene terephthalate unit are preferably contained. By comprising a heat ray shielding film with such a resin component, high moldability suitable for large-scale molding can be obtained even if titanium oxide particles having a large average particle diameter as in the present invention are contained.

エチレンテレフタレート単位を主体とするポリエステル樹脂(I)とは、ポリエステル樹脂(I)の全繰り返し単位を基準としてエチレンテレフタレート単位を75モル%以上含む樹脂であり、より好ましくは80モル%以上、さらに好ましくは85モル%以上含む樹脂である。
ブチレンテレフタレート単位を主体とするポリエステル樹脂(II)とは、ポリエステル樹脂(II)の全繰り返し単位を基準としてブチレンテレフタレート単位を75モル%以上含む樹脂であり、より好ましくは80モル%以上、さらに好ましくは85モル%以上含む樹脂である。
The polyester resin (I) mainly composed of ethylene terephthalate units is a resin containing 75 mol% or more of ethylene terephthalate units based on all repeating units of the polyester resin (I), more preferably 80 mol% or more, still more preferably. Is a resin containing 85 mol% or more.
The polyester resin (II) mainly composed of butylene terephthalate units is a resin containing 75 mol% or more of butylene terephthalate units based on all repeating units of the polyester resin (II), more preferably 80 mol% or more, and still more preferably. Is a resin containing 85 mol% or more.

これらポリエステル樹脂(I)およびポリエステル樹脂(II)は、以下の従たる成分を用いて共重合化した共重合ポリエステルであることが成形性向上の観点から好ましい。
共重合成分、すなわち従たる成分として、イソフタル酸、オルトフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、4,4’−ビフェニレンジカルボン酸などの芳香族ジカルボン酸成分、シクロヘキサン−1,4−ジカルボン酸などの脂環族ジカルボン酸成分、コハク酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸成分などのジカルボン酸成分が例示される。
また、好ましいジオール成分として、エチレングリコール、トリメチレングリコール、テトラメチレングリコールなどの脂肪族ジオール成分のうちの主たる成分以外のもの、シクロヘキサン−1,4−ジメタノールなどの脂環族ジオール成分、ビスフェノールAなどの芳香族ジオール成分、ジエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールなどのエーテル縮合型ジオール成分などが挙げられる。
また、好ましいジカルボン酸およびジオール成分以外の成分として、p−ヒドロキシ安息香酸、ω−ヒドロキシ酪酸、ω−ヒドロキシ吉草酸、乳酸などのヒドロキシカルボン酸成分、ポリカーボネートに見られるような炭酸成分、さらに、トリメリット酸、ピロメリット酸やグリセリンなどの3官能以上の成分が挙げられる。
これらの中でも、イソフタル酸、2,6−ナフタレンジカルボン酸またはジエチレングリコールが特に好ましい。これらの共重合成分の割合は、共重合ポリエステルの融点が後述する範囲になるように調整することが好ましく、例えば、ポリエチレンテレフタレートにイソフタル酸を共重合する場合は、全ジカルボン酸成分中に占めるイソフタル酸の割合を、おおよそ5.5〜18モル%の範囲にするのが好ましい。
The polyester resin (I) and the polyester resin (II) are preferably copolymerized polyesters copolymerized using the following subordinate components from the viewpoint of improving moldability.
Copolymerization components, i.e., secondary components such as isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 4,4′-biphenylenedicarboxylic acid, etc. Examples include dicarboxylic acid components such as aromatic dicarboxylic acid components, alicyclic dicarboxylic acid components such as cyclohexane-1,4-dicarboxylic acid, and aliphatic dicarboxylic acid components such as succinic acid, adipic acid, and sebacic acid.
Preferred diol components include those other than the main components of aliphatic diol components such as ethylene glycol, trimethylene glycol and tetramethylene glycol, alicyclic diol components such as cyclohexane-1,4-dimethanol, and bisphenol A. And aromatic diol components such as ether condensation type diol components such as diethylene glycol, polyethylene glycol, and polytetramethylene glycol.
Further, as components other than preferred dicarboxylic acid and diol components, p-hydroxybenzoic acid, ω-hydroxybutyric acid, ω-hydroxyvaleric acid, hydroxycarboxylic acid components such as lactic acid, carbonic acid components as found in polycarbonate, Trifunctional or higher functional components such as merit acid, pyromellitic acid and glycerin can be mentioned.
Among these, isophthalic acid, 2,6-naphthalenedicarboxylic acid or diethylene glycol is particularly preferable. The proportion of these copolymer components is preferably adjusted so that the melting point of the copolymer polyester falls within the range described below. For example, when isophthalic acid is copolymerized with polyethylene terephthalate, the isophthalic acid occupies the total dicarboxylic acid component. The acid ratio is preferably in the range of approximately 5.5 to 18 mol%.

また、これらのポリエステル樹脂(I)および(II)は、ポリエステル樹脂(I)とポリエステル樹脂(II)の合計量を基準として、ポリエステル樹脂(I)が40〜85重量%、ポリエステル樹脂(II)が15〜60重量%であることが好ましい。
ポリエステル樹脂(I)が40重量%に満たないか、ポリエステル樹脂(II)が60重量%を超えるものは、成形加工性に乏しくなることがある。
また、ポリエステル樹脂(I)が85重量%を超えるか、ポリエステル樹脂(II)が15重量%に満たないものは変形応力が高くなる場合が多く、成形加工性に乏しくなることがある。
Further, these polyester resins (I) and (II) are 40 to 85% by weight of polyester resin (I) and polyester resin (II) based on the total amount of polyester resin (I) and polyester resin (II). Is preferably 15 to 60% by weight.
When the polyester resin (I) is less than 40% by weight or the polyester resin (II) exceeds 60% by weight, the molding processability may be poor.
Further, when the polyester resin (I) exceeds 85% by weight or the polyester resin (II) is less than 15% by weight, the deformation stress is often increased, and the molding processability may be poor.

本発明のこれらポリエステルは、従来公知の方法、例えばジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとグリコールとを従来公知のエステル交換触媒で反応させた後、重縮合触媒の存在下で重合反応を行う方法で得ることができる。これらエステル交換触媒や重縮合触媒は従来公知のものを用いることができる。   These polyesters of the present invention can be obtained by a conventionally known method, for example, a method of directly obtaining a low-polymerization degree polyester by reaction of dicarboxylic acid and glycol, or a lower alkyl ester of dicarboxylic acid and glycol reacted with a conventionally known transesterification catalyst. Then, it can obtain by the method of performing a polymerization reaction in presence of a polycondensation catalyst. A conventionally well-known thing can be used for these transesterification catalysts and polycondensation catalysts.

本発明におけるこれらポリエステルの固有粘度は、o−クロロフェノール中、35℃において、0.40dl/g以上であることが好ましく、0.40〜0.90dl/gであることがさらに好ましい。これらポリエステルの固有粘度が0.40dl/g未満では、低分子量のため結晶化速度が著しく速くなり、成形時に破断したり、フィルム生産時に破断が生じることがある。また、これらポリエステルの固有粘度が0.9dl/gより高いと溶融粘度が高いため溶融押出性に乏しくなることがある。   The intrinsic viscosity of these polyesters in the present invention is preferably 0.40 dl / g or more, more preferably 0.40 to 0.90 dl / g at 35 ° C. in o-chlorophenol. When the intrinsic viscosity of these polyesters is less than 0.40 dl / g, the crystallization speed is remarkably increased due to the low molecular weight, and there are cases where the film breaks during molding or breaks during film production. In addition, if the intrinsic viscosity of these polyesters is higher than 0.9 dl / g, the melt viscosity is high and the melt extrudability may be poor.

これらのポリエステルを用いて得られたフィルムの融点は、210〜245℃であることが成形加工性を高める観点から好ましい。さらに好ましいフィルムの融点の範囲は、212〜235℃である。フィルムの融点が下限値に満たない場合は成形加工安定性が乏しくなることがある。一方、フィルムの融点が上限値を超える場合、変形応力が高くなることがあり、成形加工性に乏しくなることがある。   The melting point of the film obtained using these polyesters is preferably 210 to 245 ° C. from the viewpoint of improving the moldability. A more preferable range of the melting point of the film is 212 to 235 ° C. If the melting point of the film is less than the lower limit, the molding process stability may be poor. On the other hand, when the melting point of the film exceeds the upper limit value, the deformation stress may increase and the molding processability may be poor.

さらに、フィルムを構成する樹脂がポリエステルである場合、ポリエステルを主成分とし、得られたフィルムの特性が本発明の範囲を超えない限り、ポリエステル以外の樹脂との混合物を原材料としてもよい。ここで、「ポリエステルを主成分とする」とは、フィルムを構成する樹脂の合計重量を基準として、50重量%以上であればよく、さらに好ましくは75重量%以上、特に好ましくは90重量%以上である。
また、本発明の熱遮蔽用フィルムには、本発明の目的を損なわない範囲で、各種添加剤、例えば紫外線吸収剤、安定剤、帯電防止剤、染料、顔料、滑剤などを含有させてもよい。
Furthermore, when the resin constituting the film is polyester, a mixture with a resin other than polyester may be used as a raw material as long as the main component of the polyester is within the range of the present invention. Here, “based on polyester” may be 50% by weight or more, more preferably 75% by weight or more, particularly preferably 90% by weight or more, based on the total weight of the resin constituting the film. It is.
In addition, the heat shielding film of the present invention may contain various additives such as ultraviolet absorbers, stabilizers, antistatic agents, dyes, pigments, lubricants and the like within a range not to impair the purpose of the present invention. .

(機械特性)
本発明の熱遮蔽用フィルムは、100℃における100%伸長時の応力がフィルム長手方向(以下、連続製膜方向、縦方向、MD方向と称することがある)、フィルム幅方向(以下、横方向、TD方向と称することがある)のいずれの方向においても10MPa以上150MPa以下であり、かつそれらの方向の応力差が0MPa以上45MPa以下であることが好ましい。
かかる伸長時応力は、より好ましくはフィルム長手方向、フィルム幅方向のいずれの方向においても20MPa以上100MPa以下であり、さらに好ましくは20MPa以上70MPa以下である。
(Mechanical properties)
In the heat shielding film of the present invention, the stress at 100% elongation at 100 ° C. is the film longitudinal direction (hereinafter sometimes referred to as continuous film forming direction, longitudinal direction, MD direction), film width direction (hereinafter referred to as lateral direction). , Which may be referred to as the TD direction) in any direction, it is preferably 10 MPa or more and 150 MPa or less, and the stress difference in these directions is preferably 0 MPa or more and 45 MPa or less.
The stress at elongation is more preferably 20 MPa or more and 100 MPa or less, and further preferably 20 MPa or more and 70 MPa or less in any of the film longitudinal direction and the film width direction.

フィルムを絞りプレスなどの成形に供する場合に受ける変形の主たるものは引張変形であり、100℃における100%伸長時の応力がフィルム面内の一方向だけでなく、少なくとも二方向、さらにはフィルム面内の様々な方向において適正な範囲にあることで、変形度の高い成形加工において、さらに高い成形加工性を得ることができる。かかる伸長時応力が下限値に満たない場合、フィルム中の変形し始めた極所部分がそのまま伸び続けてしまい、厚みのばらつきによる遮熱性能の不均一化が生じたり、成形時に破断が生じることがある。一方、かかる伸長時応力が上限値を超える場合、フィルム中の厚みの少ない部分に変形が集中するため、同様に厚みのばらつきによる遮熱性能の不均一化が生じたり、成形時に破断が生じることがある。   The main deformation that occurs when the film is subjected to forming such as a drawing press is tensile deformation, and the stress at 100% elongation at 100 ° C. is not limited to one direction in the film plane, but at least in two directions, and further on the film plane. By being in an appropriate range in the various directions, higher molding processability can be obtained in a molding process with a high degree of deformation. If the stress at the time of elongation is less than the lower limit value, the part of the film that started to deform will continue to grow as it is, resulting in non-uniform heat shielding performance due to thickness variations, or breakage during molding There is. On the other hand, when the stress at the time of elongation exceeds the upper limit value, deformation concentrates on a portion with a small thickness in the film. There is.

また、フィルム長手方向およびフィルム幅方向の応力差が45MPa以下、より好ましくは40MPa以下、さらに好ましくは30MPa以下であることにより、フィルム面内においてより均一な成形加工性を得られるため好ましい。
また本発明の熱遮蔽用フィルムは、100℃における100%伸長時の破断伸度がフィルム長手方向、フィルム幅方向のいずれの方向においても250%以上であることが好ましい。かかる伸長時破断伸度はより高い方が好ましいが、非常に高い成形加工性を求められる場合でも1000%あれば十分であり、さらには700%以下でも十分である。かかる伸長時破断伸度が下限値に満たない場合、変形度の大きな成形においてはフィルムが破断してしまうことがある。
これらの伸長時応力特性、および伸長時破断伸度特性を得る方法として、上述のポリエステル樹脂(I)とポリエステル樹脂(II)を所定量ずつ用いることが挙げられる。
Moreover, it is preferable that the stress difference between the film longitudinal direction and the film width direction is 45 MPa or less, more preferably 40 MPa or less, and even more preferably 30 MPa or less, since more uniform forming processability can be obtained in the film plane.
The heat shielding film of the present invention preferably has a breaking elongation at 100% elongation at 100 ° C. of 250% or more in both the film longitudinal direction and the film width direction. A higher elongation at break is preferable, but even when very high moldability is required, 1000% is sufficient, and 700% or less is sufficient. When the elongation at break when the elongation is less than the lower limit, the film may break in molding with a large degree of deformation.
As a method for obtaining these elongation stress characteristics and elongation elongation at break characteristics, the above-described polyester resin (I) and polyester resin (II) may be used in predetermined amounts.

(フィルムの製造方法)
本発明のフィルムを構成する樹脂組成物は、あらかじめ酸化チタン粒子を所望する濃度に溶融混練などの方法で樹脂と混合したものを用いてもよく、また酸化チタン粒子を高濃度に含有せしめたマスターバッチを用いて溶融混合により希釈したものを用いてもよい。あるいは、酸化チタン粒子を直接樹脂ペレットと混合した樹脂組成物を押出機内で溶融混合する方法であってもよい。
また樹脂組成物としてポリエステル樹脂(I)、(II)をその構成成分とすることが好ましいが、これらの構成成分をあらかじめ溶融混練などの方法で混合して製造したものを用いてもよく、ポリエステル樹脂(I)、(II)の単独のペレットを混合して供給し、押出機内で溶融混合してもよい。
(Film production method)
The resin composition constituting the film of the present invention may be prepared by mixing titanium oxide particles with a resin at a desired concentration in advance by a method such as melt-kneading, or a master containing titanium oxide particles at a high concentration. You may use what was diluted by melt mixing using a batch. Or the method of melt-mixing the resin composition which mixed the titanium oxide particle with the resin pellet directly in an extruder may be sufficient.
In addition, it is preferable to use polyester resins (I) and (II) as the constituents as the resin composition, but those prepared by mixing these constituents in advance by a method such as melt kneading may be used. Single pellets of the resins (I) and (II) may be mixed and supplied and melt-mixed in an extruder.

本発明の熱遮蔽用フィルムを製造する方法として、公知の製膜方法を用いて製造することができ、かかる樹脂組成物を押出機で溶融押出し、冷却用ロール上でキャストして固化成形したシートを少なくとも一方向に延伸するフィルム製造方法が挙げられ、二方向に延伸した二軸配向フィルムであることが好ましい。二方向に延伸する場合、逐次二軸延伸または同時二軸延伸法で製造することができる。
例えば逐次二軸延伸により製膜する場合、未延伸フィルムを樹脂のガラス転移温度(以下Tgと称することがある)以上(Tg+80)℃以下の温度範囲で、縦方向および横方向に延伸することが好ましい。延伸温度のより好ましい範囲は(Tg+20)〜(Tg+60)℃である。
As a method for producing the heat shielding film of the present invention, it can be produced by using a known film-forming method. Such a resin composition is melt-extruded by an extruder, cast on a cooling roll and solidified and formed. The film manufacturing method which extends | stretches at least one direction is mentioned, It is preferable that it is a biaxially oriented film extended | stretched to two directions. When stretching in two directions, it can be produced by sequential biaxial stretching or simultaneous biaxial stretching.
For example, when a film is formed by sequential biaxial stretching, an unstretched film can be stretched in the longitudinal and lateral directions within a temperature range of the glass transition temperature (hereinafter sometimes referred to as Tg) of the resin to (Tg + 80) ° C. or less. preferable. A more preferable range of the stretching temperature is (Tg + 20) to (Tg + 60) ° C.

またフィルムの延伸倍率については、該未延伸フィルムを縦方向に2.5〜4.5倍および横方向に2.5〜5.0倍となる範囲で延伸処理を行うことが好ましい。縦方向の延伸倍率はさらに好ましくは3.0〜4.0倍、横方向の延伸倍率はさらに好ましくは3.0〜4.5倍である。かかる範囲の延伸倍率で延伸を行うことにより、得られる延伸フィルムの分子配向を適正なものとすることができ、フィルムに良好な成形性を具備させることができる。
かかる延伸方法によって得られたフィルムに、さらに樹脂のガラス転移温度以上、樹脂の融点Tmより5℃以上低い温度の範囲(Tg〜(Tm−5℃))で熱固定処理を行うことで、熱寸法安定性などの更なる特性を付与することもできる。ポリエステル樹脂の場合は150〜230℃の範囲で熱固定処理を行うことが好ましい。
Moreover, about the draw ratio of a film, it is preferable to perform an extending | stretching process in the range from which this unstretched film becomes 2.5 to 4.5 times in a vertical direction, and 2.5 to 5.0 times in a horizontal direction. The stretch ratio in the machine direction is more preferably 3.0 to 4.0 times, and the stretch ratio in the transverse direction is more preferably 3.0 to 4.5 times. By stretching at a stretching ratio in such a range, the molecular orientation of the obtained stretched film can be made appropriate, and the film can be provided with good moldability.
The film obtained by the stretching method is further subjected to heat setting treatment at a temperature range (Tg to (Tm-5 ° C.)) that is higher than the glass transition temperature of the resin and lower than the melting point Tm of the resin by 5 ° C. Additional properties such as dimensional stability can also be imparted. In the case of a polyester resin, it is preferable to perform the heat setting treatment in the range of 150 to 230 ° C.

さらに本発明のフィルムは、その特性が本発明の範囲を超えない限り、共押出法、溶融樹脂コーティング法などにより積層構造としてもよい。
また、本発明におけるフィルムは、他部材との貼合時の接着性向上などの目的で、必要に応じて、コーティング、コロナ放電、プラズマ処理などの表面活性化処理を施してもよい。この後加工は、フィルム延伸工程中に行ってもよく、また別工程で行ってもよい。
Furthermore, the film of the present invention may have a laminated structure by a coextrusion method, a molten resin coating method or the like as long as the characteristics do not exceed the scope of the present invention.
In addition, the film in the present invention may be subjected to a surface activation treatment such as coating, corona discharge, plasma treatment, or the like, for the purpose of improving the adhesiveness at the time of bonding with another member. This post-processing may be performed during the film stretching process or may be performed in a separate process.

(用途)
本発明の熱遮蔽用フィルムは熱遮蔽性が求められる用途に使用され、さらに成形加工を伴う用途に好ましく使用される。中でも熱遮蔽性が求められ、さらに成形加工性も求められる用途として、車体断熱用複合材、断熱建材、電気・電子機器などの断熱部材に好適に使用される。
例えば車体断熱用複合材として使用される場合、硬質ポリウレタンフォームなどの部材とともに本発明の熱遮蔽用フィルムを用いることが好ましい。その場合、硬質ポリウレタンフォーム上に直接本発明のフィルムを積層させてもよく、また接着剤や接着層を介して積層させてもよく、さらにその他の部材を介して積層させてもよい。
(Use)
The heat shielding film of the present invention is used for applications requiring heat shielding properties, and is preferably used for applications involving molding. Of these, heat shielding properties are demanded, and further, molding processability is also demanded, and it is suitably used for heat insulation members such as composite materials for vehicle body heat insulation, heat insulation building materials, and electric / electronic devices.
For example, when used as a composite material for vehicle body heat insulation, it is preferable to use the heat shielding film of the present invention together with a member such as rigid polyurethane foam. In that case, the film of the present invention may be laminated directly on the rigid polyurethane foam, may be laminated via an adhesive or an adhesive layer, or may be laminated via another member.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated, the part and% in an Example mean a weight part and weight%, respectively.

(1)光線反射率、光線透過率
<i>800nm〜2200nmの波長の入射光線に対する全光線反射率
分光光度計(島津製作所株式会社製、製品名「UV−3101PC」)に積分球を取り付け、BaSO白板の全光線反射率を100%としたときの、得られたフィルムの全光線反射率を800nm〜2200nmの波長範囲で測定(サンプリングピッチ=2.0nm)し、この区間の最低値をもって評価した。
<ii>2500nm〜8000nmの波長域の入射光線に対する平均光線透過率
分光光度計(パーキンエルマー社製、製品名「Spectrum100」)を用い、透過法にて得られたフィルムの透過率を2500nm〜8000nmの波長範囲(サンプリングピッチ=1cm−1)で測定し、この区間の平均値をもって評価した。
(1) Light reflectance, light transmittance <i> Total light reflectance for incident light with a wavelength of 800 nm to 2200 nm A spectrophotometer (manufactured by Shimadzu Corporation, product name “UV-3101PC”) is attached with an integrating sphere, When the total light reflectance of the BaSO 4 white plate is defined as 100%, the total light reflectance of the obtained film is measured in a wavelength range of 800 nm to 2200 nm (sampling pitch = 2.0 nm), and the minimum value in this section is obtained. evaluated.
<Ii> Average light transmittance for incident light in a wavelength range of 2500 nm to 8000 nm Using a spectrophotometer (manufactured by Perkin Elmer, product name “Spectrum 100”), the transmittance of the film obtained by the transmission method is 2500 nm to 8000 nm. In the wavelength range (sampling pitch = 1 cm −1 ), and the average value of this section was evaluated.

(2)粒子の平均粒径および濃度
包埋樹脂でフィルムを固定し断面をミクロトームで切断し、2%オスミウム酸で60℃、2時間染色して、透過型電子顕微鏡(日本電子製JEM2010)を用いて測定した。測定は、20個の粒子を対象として行、その平均値を平均粒径とした。ただし、粒子が真球状でない場合には各粒子について観測された形状の(長径+短径)/2をその粒子の平均粒径とした。
また、ポリエステルフィルム中の酸化チタン粒子の濃度は、樹脂を溶解させる溶媒を選択し、遠心分離により粒子を抽出し、乾燥した後、ポリエステルフィルムの重量を基準として求めた。
(2) Average particle diameter and concentration of particles The film was fixed with an embedding resin, the cross section was cut with a microtome, stained with 2% osmic acid at 60 ° C. for 2 hours, and a transmission electron microscope (JEOL JEM2010) was prepared. And measured. The measurement was performed on 20 particles, and the average value was defined as the average particle size. However, in the case where the particles are not true spheres, (major axis + minor axis) / 2 of the shape observed for each particle was taken as the average particle diameter of the particle.
The concentration of the titanium oxide particles in the polyester film was determined based on the weight of the polyester film after selecting the solvent in which the resin was dissolved, extracting the particles by centrifugation, and drying.

(3)フィルム厚み
フィルムサンプルをスピンドル検出器(安立電気(株)製K107C)にはさみ、デジタル差動電子マイクロメーター(安立電気(株)製K351)にて、異なる位置で厚みを10点測定し、平均値を求めフィルム厚みとした。
(3) Film thickness A film sample is sandwiched between spindle detectors (K107C manufactured by Anritsu Electric Co., Ltd.), and 10 points of thickness are measured at different positions using a digital differential electronic micrometer (K351 manufactured by Anritsu Electric Co., Ltd.). Then, the average value was obtained and defined as the film thickness.

(4)樹脂組成
H−NMR測定、13C−NMR測定により樹脂組成を特定した。
(4) Resin composition
The resin composition was specified by 1 H-NMR measurement and 13 C-NMR measurement.

(5)樹脂の融点
サンプル約20mgを測定用のアルミニウム製パンに封入して示差熱量計(TA Instruments社製、DSCQ100)に装着し、25℃から20℃/分の速度で290℃まで昇温させ、290℃で3分間保持した後取り出し、直ちに氷の上に移して急冷した。このパンを再度示差熱量計に装着し、25℃から20℃/分の速度で昇温させて、融点Tm(単位:℃)を測定した。
(5) Melting point of resin Approximately 20 mg of a sample was sealed in an aluminum pan for measurement and mounted on a differential calorimeter (TA Instruments, DSCQ100), and the temperature was raised from 25 ° C. to 290 ° C. at a rate of 20 ° C./min. The mixture was kept at 290 ° C. for 3 minutes and then taken out, immediately transferred onto ice and rapidly cooled. The pan was again attached to the differential calorimeter, and the temperature was raised from 25 ° C. to 20 ° C./min, and the melting point Tm (unit: ° C.) was measured.

(6)100℃における100%伸長時の応力(F100)、100℃における100%伸長時の破断伸度
測定装置としてチャック部を加熱チャンバーで覆った引張試験機(SHIMADZU製 Autograph AG−X)を用いた。サンプルフィルムを幅10mm、長さ100mmに切り出し、チャック間50mmにサンプルを装着し、JIS−C2151に従って引張速度50mm/minの条件で引張試験を行った。その際、引張試験機のチャック部分に設置されている加熱チャンバーにより、サンプルの存在する雰囲気下は100℃に保った。測定は5回行い、平均値を結果とした。100%伸長時応力は荷伸曲線の100%伸張時の荷重を引張前のサンプル断面積で割って算出(MPa)、破断伸度は破断時の伸度を引張前のサンプル長を100とした時の%として算出した。
なお、測定用サンプルを切り出すにあたり、測定方向(長片)がフィルム長手方向であるサンプルと測定方向(長片)がフィルム幅方向であるサンプルを準備し、それぞれの方向について測定を5回ずつ行った。
(6) Stress at 100% elongation at 100 ° C. (F100), elongation at break at 100% elongation at 100 ° C. A tensile tester (Autograph AG-X manufactured by SHIMADZU) with the chuck portion covered with a heating chamber was used as a measuring device. Using. A sample film was cut into a width of 10 mm and a length of 100 mm, and a sample was mounted at a distance of 50 mm between chucks. At that time, the atmosphere in which the sample exists was kept at 100 ° C. by a heating chamber installed in the chuck portion of the tensile tester. The measurement was performed 5 times, and the average value was used as the result. The stress at 100% elongation is calculated by dividing the load at 100% elongation of the load elongation curve by the cross-sectional area of the sample before tension (MPa), and the elongation at break is 100 when the sample length before tension is 100. Calculated as a percentage of time.
In addition, when cutting out a measurement sample, a sample in which the measurement direction (long piece) is the film longitudinal direction and a sample in which the measurement direction (long piece) is the film width direction are prepared, and measurement is performed five times for each direction. It was.

(7)フィルムの遮熱性
図1の概略図に示すとおり、内法10cm(W)×10cm(D)×5cm(H)の断熱性材料で作成した箱(a)の内部の上下底面中央部に熱電対タイプ温度センサー(b)、(c)を取付け、それぞれ温度B、温度Cの測定に供した。箱の上面および下面の厚みはそれぞれ10mm、側面の厚みは25mmのものを用いた。箱(a)の上底面上外側に15cm×15cmに切出したフィルム(d)を載せ、6.5cm上方から100Wのレフ電球で照射した。照射中のフィルム面の温度Aを放射温度計で測定し、測定ごとに同じ温度となるよう電球位置の微調整などを行った。照射開始後約1時間で温度上昇は飽和に達するので、その時の測定温度から、箱の上にフィルムをおかない比較測定と比べ、以下の指標により評価した。
○:比較測定対比、温度Bは15℃以上、Cは10℃以上、それぞれ低い。
△:比較測定対比の温度上昇防止効果が、温度Bは7℃以上15℃未満、Cは5℃以上10℃未満。
×:比較測定対比の温度上昇防止効果が、温度Bは7℃未満、Cは5℃未満。
(7) Thermal barrier property of film As shown in the schematic diagram of FIG. 1, the center part of the upper and lower bottoms inside the box (a) made of a heat insulating material having an inner method of 10 cm (W) × 10 cm (D) × 5 cm (H) Thermocouple type temperature sensors (b) and (c) were attached to and used for measurement of temperature B and temperature C, respectively. The upper and lower surfaces of the box had a thickness of 10 mm and the side had a thickness of 25 mm. A film (d) cut out to 15 cm × 15 cm was placed on the upper and lower sides of the upper bottom surface of the box (a), and irradiated with a 100 W reflex bulb from 6.5 cm above. The temperature A of the film surface during irradiation was measured with a radiation thermometer, and the bulb position was finely adjusted so that the temperature would be the same for each measurement. Since the temperature rise reached saturation in about 1 hour after the start of irradiation, evaluation was made based on the following index from the measurement temperature at that time in comparison with comparative measurement in which no film was placed on the box.
A: Comparative measurement contrast, temperature B is 15 ° C. or higher, and C is 10 ° C. or higher.
(Triangle | delta): The temperature rise prevention effect of comparative measurement contrast, temperature B is 7 degreeC or more and less than 15 degreeC, C is 5 degreeC or more and less than 10 degreeC.
X: The temperature rise prevention effect of the comparative measurement contrast, temperature B is less than 7 ° C, and C is less than 5 ° C.

(8)成形加工性
350mm×350mmサイズのフィルムをプレヒート温度170℃、プレヒート時間1minでフィルムを予熱した後、長さ180mm、幅140mm、深さ100mmの金型で成形圧力3kg/cmでプレス成形し、下記の基準で判断した。
○:ポケットの形状は金型通りであり、ポケット間のフィルムにしわの発生もない
△:ポケットにしわがあり、また角の部分の形状が金型通りでない
×:フィルム破れが発生するか、側面または底部の形状が金型通りでない
(8) Formability After preheating a 350 mm × 350 mm size film at a preheating temperature of 170 ° C. and a preheating time of 1 min, press it with a mold having a length of 180 mm, a width of 140 mm, and a depth of 100 mm at a molding pressure of 3 kg / cm 2 . Molded and judged according to the following criteria.
○: The shape of the pocket is according to the mold, and the film between the pockets is not wrinkled. Δ: The pocket is wrinkled, and the shape of the corner is not according to the mold. Or the shape of the bottom is not according to the mold

(9)耐溶剤削れ性
メチルエチルケトン/トルエン/シクロヘキサノン=1/1/1混合溶媒にフィルムを室温で1週間浸漬し、浸漬後のフィルムの表面をスチールウールで擦過した。該処理後のフィルムについて上記(1)<i>の光線反射率測定を行い、以下の基準で評価した。
○:反射率の低下率が処理前の5%以下
△:反射率の低下率が処理前の5%を越え25%以下
×:反射率の低下率が処理前の25%より大きい
(9) Solvent abrasion resistance The film was immersed in a mixed solvent of methyl ethyl ketone / toluene / cyclohexanone = 1/1/1 at room temperature for 1 week, and the surface of the immersed film was scraped with steel wool. The film after the treatment was subjected to the light reflectance measurement of (1) <i> above and evaluated according to the following criteria.
○: Reflection decrease rate is 5% or less before treatment Δ: Reflection decrease rate exceeds 5% before treatment and is 25% or less ×: Reflectivity decrease rate is greater than 25% before treatment

(10)車体断熱用複合材評価
(10−1)成形性
フィルムとポリウレタンフォームを貼り付けたものに接着スパンボンドシートと表皮材を重ねて150℃に設定したプレス機中で厚さ10mmのスペーサーを用いて180秒間プレスして表皮材/基材/裏面材が積層一体化された車両用内装材を作製した。なお、フィルム面を内側にした状態で160℃、180秒間熱絞り加工し、内径60mm×高さ20mm×厚み5mmのケースに成形した。このケースの胴部におけるフィルム外観を観察し、以下の基準で評価した。
○:外観上に変化が見られない。
△:フィルムの剥離が若干見られる、および/または、フィルムは剥離しないものの、フィルムに白化が見られる。
×:フィルムの著しい剥離が見られる。
(10) Evaluation of composite material for heat insulation of car body (10-1) Formability Spacer with a thickness of 10mm in a press machine set at 150 ° C by laminating adhesive spunbond sheet and skin material on film and polyurethane foam. Was used for 180 seconds to produce a vehicle interior material in which the skin material / base material / back surface material was laminated and integrated. The film surface was heat-drawn at 160 ° C. for 180 seconds with the film surface inside, and formed into a case having an inner diameter of 60 mm × height of 20 mm × thickness of 5 mm. The appearance of the film in the trunk of this case was observed and evaluated according to the following criteria.
○: No change in appearance.
Δ: Some peeling of the film is observed and / or the film is not peeled, but whitening is observed in the film.
X: Remarkable peeling of the film is observed.

(10−2)遮熱性
上記(10−1)で得られた内装材を晴天の屋外に1時間放置し、内装材の下の温度を測定し、内装材外の温度に対する温度上昇防止効果を測定し、別途作成したフィルムを貼り付けない内装材で同様の測定をしたケースと比較し、以下の基準で評価した。
○:温度差が5℃以上
△:温度差が2℃以上5℃未満
×:温度差が2℃未満
(10-2) Heat shielding property The interior material obtained in (10-1) above is left outdoors for 1 hour in a clear sky, the temperature under the interior material is measured, and the temperature rise prevention effect on the temperature outside the interior material is achieved. It was measured and compared with a case where the same measurement was performed with an interior material that was not attached with a separately prepared film, and evaluated according to the following criteria.
○: Temperature difference is 5 ° C or more △: Temperature difference is 2 ° C or more and less than 5 ° C ×: Temperature difference is less than 2 ° C

(10−3)総合評価
上記の評価結果から、以下の指標により車体断熱用複合材としての評価を行った。
○:(10−1)(10−2)ともに○評価
△:(10−1)(10−2)ともに×評価がない
×:(10−1)(10−2)のどちらかで×評価がある
(10-3) Comprehensive evaluation From the above evaluation results, evaluation as a composite material for vehicle body heat insulation was performed using the following indices.
○: Both (10-1) and (10-2) are evaluated as ○. Δ: Both (10-1) and (10-2) are not evaluated as ×. ×: × is evaluated at either (10-1) or (10-2). Is

[実施例1]
固有粘度0.65dl/g(35℃のo−クロロフェノール中で測定、以下同じ)で、テレフタル酸成分/イソフタル酸成分モル比が88/12であるポリエチレン(テレフタレート−イソフタレート)共重合体と、平均粒径2.0μmの酸化チタン粒子を樹脂組成物Iの組成物重量に対して24.3重量%含有する樹脂組成物Iからなるペレットと、固有粘度0.9dl/gのポリブチレンテレフタレート(樹脂組成物II)からなるペレットとをI/IIで表わされる重量比が62/38となるように混合した組成物(「(PET/IA12)//PBT」と表す。組成物中の酸化チタン粒子の含有量は15重量%、樹脂成分の(PET/IA12)とPBTの重量比は、55/45である)を用いた。
樹脂Iと樹脂IIとからなる組成物を160℃ドライヤーで4時間乾燥後、押出機に供給し、280℃で溶融混練して280℃のダイスよりシート状に成形した。この溶融物を表面温度20℃に維持した回転冷却ドラム上に溶融押出して、厚み480μmの未延伸フィルムを製膜した。次に、得られた未延伸フィルムを55℃に予熱し、低速ローラーと高速ローラーの間で15mm上方より800℃の表面温度の赤外線ヒーター1本にて加熱しながらフィルム製膜方向(MD方向)に3.0倍延伸し、さらに、MD方向に延伸したフィルムの両端をクリップで保持しながらテンターに導き、90℃に加熱された雰囲気中で製膜方向に垂直な方向(TD方向)に3.2倍延伸し、さらにTD方向に固定したまま全幅の3%の弛緩を与えながら180℃で熱処理し、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
[Example 1]
A polyethylene (terephthalate-isophthalate) copolymer having an intrinsic viscosity of 0.65 dl / g (measured in o-chlorophenol at 35 ° C., the same shall apply hereinafter) and a terephthalic acid component / isophthalic acid component molar ratio of 88/12; Pellets made of resin composition I containing titanium oxide particles having an average particle diameter of 2.0 μm with respect to the composition weight of resin composition I, and polybutylene terephthalate having an intrinsic viscosity of 0.9 dl / g It is represented as a composition ("(PET / IA12) // PBT") obtained by mixing pellets made of (resin composition II) so that the weight ratio represented by I / II is 62/38. Oxidation in the composition The content of titanium particles was 15% by weight, and the resin component (PET / IA12) / PBT weight ratio was 55/45).
A composition comprising Resin I and Resin II was dried with a 160 ° C. dryer for 4 hours, then supplied to an extruder, melted and kneaded at 280 ° C., and formed into a sheet from a 280 ° C. die. This melt was melt-extruded on a rotary cooling drum maintained at a surface temperature of 20 ° C. to form an unstretched film having a thickness of 480 μm. Next, the obtained unstretched film is preheated to 55 ° C., and heated with one infrared heater having a surface temperature of 800 ° C. from above 15 mm between the low speed roller and the high speed roller, and in the film forming direction (MD direction) The film was stretched 3.0 times in the MD direction and guided to the tenter while holding both ends of the film stretched in the MD direction with clips, and 3 in the direction perpendicular to the film forming direction (TD direction) in an atmosphere heated to 90 ° C. The film was stretched 2 times and further heat treated at 180 ° C. while giving relaxation of 3% of the total width while being fixed in the TD direction to obtain a biaxially stretched film having a thickness of 50 μm. The properties of the obtained film are shown in Table 1.

[実施例2]
樹脂Iと樹脂IIとを合計した全体の組成物中の酸化チタン粒子の含有量が5重量%となるよう、樹脂組成物Iにおける酸化チタン粒子の含有量を変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
[Example 2]
Example 1 except that the content of titanium oxide particles in the resin composition I was changed so that the content of titanium oxide particles in the total composition of the resin I and the resin II was 5% by weight. A biaxially stretched film was obtained by the same method. The properties of the obtained film are shown in Table 1.

[実施例3]
樹脂Iと樹脂IIの構成比を表1に示すとおりに変更し、さらに樹脂Iと樹脂IIとを合計した全体の組成物中の酸化チタン粒子の含有量が15重量%となるよう、樹脂組成物Iにおける酸化チタン粒子の含有量を変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
[Example 3]
The composition ratio of resin I and resin II was changed as shown in Table 1, and the resin composition was such that the content of titanium oxide particles in the total composition of resin I and resin II was 15% by weight. A biaxially stretched film was obtained by the same method as in Example 1 except that the content of the titanium oxide particles in the product I was changed. The properties of the obtained film are shown in Table 1.

[実施例4]
樹脂Iと樹脂IIの構成比を表1に示すとおりに変更し、さらに樹脂Iと樹脂IIとを合計した全体の組成物中の酸化チタン粒子の含有量が15重量%となるよう、樹脂組成物Iにおける酸化チタン粒子の含有量を変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
[Example 4]
The composition ratio of resin I and resin II was changed as shown in Table 1, and the resin composition was such that the content of titanium oxide particles in the total composition of resin I and resin II was 15% by weight. A biaxially stretched film was obtained by the same method as in Example 1 except that the content of the titanium oxide particles in the product I was changed. The properties of the obtained film are shown in Table 1.

[実施例5]
未延伸フィルムの厚みを1200μmとし、二軸延伸後のフィルムの厚みを125μmとした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
[Example 5]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was 1200 μm and the thickness of the biaxially stretched film was 125 μm. The properties of the obtained film are shown in Table 1.

比較例6]
未延伸フィルムの厚みを2880μmとし、二軸延伸後のフィルムの厚みを300μmとした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。遮熱効果は高いものの、成形加工性が若干乏しかった。
[ Comparative Example 6]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was 2880 μm and the thickness of the biaxially stretched film was 300 μm. The properties of the obtained film are shown in Table 1. Although the heat shielding effect was high, the moldability was slightly poor.

比較例7]
原料樹脂として、組成物(PET/IA12)//PBTに代えて固有粘度0.65dl/gのポリエチレン−2,6−ナフタレートを用い、組成物中の酸化チタン粒子の含有量が15重量%となるよう酸化チタン粒子を配合し、MD方向延伸時の予熱温度を125℃、TD方向延伸温度を145℃とした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。PET/PBTブレンド系と比較して引張変形に対する応力が高く、また引張破断伸度が低いため、成形加工性が若干乏しかった。
[ Comparative Example 7]
As a raw material resin, polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 dl / g was used instead of the composition (PET / IA12) // PBT, and the content of titanium oxide particles in the composition was 15% by weight. A biaxially stretched film was obtained by the same method as in Example 1 except that the titanium oxide particles were blended so that the preheating temperature during MD direction stretching was 125 ° C. and the TD direction stretching temperature was 145 ° C. The properties of the obtained film are shown in Table 1. Compared with the PET / PBT blend system, the stress on tensile deformation was high and the tensile elongation at break was low, so the molding processability was slightly poor.

比較例8]
原料樹脂として、組成物(PET/IA12)//PBTに代えて固有粘度0.65dl/gのポリエチレンテレフタレートを用い、組成物中の酸化チタン粒子の含有量が15重量%となるよう酸化チタン粒子を配合し、MD方向延伸時の予熱温度を75℃、TD方向延伸温度を115℃とした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。PET/PBTブレンド系と比較して引張変形に対する応力が高く引張破断伸度が低いため、成形加工性が若干乏しかった。
[ Comparative Example 8]
As raw material resin, polyethylene terephthalate having an intrinsic viscosity of 0.65 dl / g is used instead of the composition (PET / IA12) // PBT, and the titanium oxide particles in the composition are 15% by weight. A biaxially stretched film was obtained in the same manner as in Example 1 except that the preheating temperature during MD direction stretching was 75 ° C. and the TD direction stretching temperature was 115 ° C. The properties of the obtained film are shown in Table 1. Since the stress to tensile deformation was high and the tensile elongation at break was low compared to the PET / PBT blend system, the moldability was slightly poor.

比較例9]
原料樹脂として、組成物(PET/IA12)//PBTに代えて固有粘度0.9dl/gのポリブチレンテレフタレートを用い、組成物中の酸化チタン粒子の含有量が15重量%となるよう酸化チタン粒子を配合し、MD方向延伸時の予熱温度を25℃、TD方向延伸温度を45℃とした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。PET/PBTブレンド系と比較して結晶化速度が極めて高いためMD方向,TD方向の引張変形応力に差が生じ、成形の均一性が若干劣っていた。
[ Comparative Example 9]
Polybutylene terephthalate having an intrinsic viscosity of 0.9 dl / g was used as the raw material resin instead of the composition (PET / IA12) // PBT, and the titanium oxide particle content in the composition was 15% by weight. A biaxially stretched film was obtained in the same manner as in Example 1 except that the particles were blended, the preheating temperature during MD direction stretching was 25 ° C., and the TD direction stretching temperature was 45 ° C. The properties of the obtained film are shown in Table 1. Compared with the PET / PBT blend system, the crystallization speed was extremely high, so that a difference was caused in the tensile deformation stress in the MD direction and the TD direction, and the uniformity of molding was slightly inferior.

比較例10]
MD方向の延伸倍率を5.1倍、TD方向延伸倍率を1.9倍に変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。MD方向における引張変形に対する応力が高く、また引張破断伸度が低いうえ、MD方向、TD方向の引張変形応力に大きな差があり、実施例1に較べて成形加工性が低下した。
[ Comparative Example 10]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the draw ratio in the MD direction was changed to 5.1 times and the draw ratio in the TD direction was changed to 1.9 times. The properties of the obtained film are shown in Table 1. The stress for tensile deformation in the MD direction was high, the tensile elongation at break was low, and there was a large difference in the tensile deformation stress in the MD direction and the TD direction, resulting in a decrease in molding processability compared to Example 1.

比較例11]
MD方向の延伸倍率を1.9倍、TD方向延伸倍率を5.1倍に変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。TD方向における引張変形に対する応力が高く、また引張破断伸度が低いうえ、MD方向、TD方向の引張変形応力に大きな差があり、実施例1に較べて成形加工性が低下した。
[ Comparative Example 11]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the MD direction stretching ratio was changed to 1.9 times and the TD direction stretching ratio was changed to 5.1 times. The properties of the obtained film are shown in Table 1. The stress for tensile deformation in the TD direction was high, the tensile elongation at break was low, and there was a large difference in the tensile deformation stress in the MD direction and the TD direction, resulting in a decrease in molding processability as compared with Example 1.

[比較例1]
酸化チタン粒子の平均粒径を0.27μmとし、樹脂Iと樹脂IIとを合計した全体の組成物中の酸化チタン粒子の含有量が1.2重量%となるよう、樹脂組成物Iにおける酸化チタン粒子の含有量を変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
800nm〜2200nmの波長域の入射光線に対する十分な光線反射率が得られていないうえ、2500nm〜8000nmの波長域の入射光線に対する光線透過率が抑制できていないため、十分な遮熱効果が得られなかった。
[Comparative Example 1]
Oxidation in the resin composition I so that the average particle diameter of the titanium oxide particles is 0.27 μm and the content of the titanium oxide particles in the total composition of the resin I and the resin II is 1.2% by weight. A biaxially stretched film was obtained by the same method as in Example 1 except that the content of titanium particles was changed. The properties of the obtained film are shown in Table 1.
Insufficient light reflectivity for incident light in the wavelength range of 800 nm to 2200 nm is not obtained, and light transmittance for incident light in the wavelength range of 2500 nm to 8000 nm cannot be suppressed, so that a sufficient heat shielding effect is obtained. There wasn't.

[比較例2]
酸化チタン粒子の平均粒径を0.27μmとした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。800nm〜2200nmの波長域の入射光線に対する十分な光線反射率が得られず、十分な遮熱効果が得られなかった。
[Comparative Example 2]
A biaxially stretched film was obtained by the same method as in Example 1 except that the average particle size of the titanium oxide particles was 0.27 μm. The properties of the obtained film are shown in Table 1. A sufficient light reflectance for incident light in the wavelength range of 800 nm to 2200 nm could not be obtained, and a sufficient heat shielding effect could not be obtained.

[比較例3]
酸化チタン粒子の平均粒径を8μmとした以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。引張破断伸度が高くなく、また、粒子1個あたりのポリマーとの界面面積が大きいため粒子周囲を基点に破れるケースがあり、成形性が低下した。
[Comparative Example 3]
A biaxially stretched film was obtained by the same method as in Example 1 except that the average particle diameter of the titanium oxide particles was 8 μm. The properties of the obtained film are shown in Table 1. The tensile elongation at break was not high, and the interface area with the polymer per particle was large, so that there were cases in which the periphery of the particle was broken as a base point, and the moldability was lowered.

[比較例4]
樹脂Iと樹脂IIとを合計した全体の組成物中の酸化チタン粒子の含有量が1.2重量%となるよう、樹脂組成物Iにおける酸化チタン粒子の含有量を変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。
2500nm〜8000nmの波長域の入射光線に対する光線透過率が抑制できていないため、十分な遮熱効果が得られなかった。
[Comparative Example 4]
Example except that the content of titanium oxide particles in the resin composition I was changed so that the content of titanium oxide particles in the total composition of the resin I and the resin II was 1.2 wt% A biaxially stretched film was obtained in the same manner as in Example 1. The properties of the obtained film are shown in Table 1.
Since the light transmittance with respect to the incident light in the wavelength range of 2500 nm to 8000 nm could not be suppressed, a sufficient heat shielding effect could not be obtained.

[比較例5]
酸化チタン粒子を添加せず、(PET/IA12)とPBTの重量比が55/45となるように樹脂組成物を変更した以外は、実施例1と同様の方法によって二軸延伸フィルムを得た。得られた二軸延伸フィルムの片面に平均粒径2.0μmの酸化チタン粒子を含む塗布層をマイヤーバー#60を用いたコーティングにより25μm厚みの塗布層を有する熱遮蔽フィルムを形成した。酸化チタン粒子は塗布層の重量を基準として15重量%となるよう添加し、塗布層を構成する塗布成分として以下の組成のものを用いた。
得られたフィルムの特性を表1に示す。フィルム中に酸化チタン粒子を含む構成ではないため、耐溶剤削れ性が十分ではなかった。
[Comparative Example 5]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the titanium oxide particles were not added and the resin composition was changed so that the weight ratio of (PET / IA12) and PBT was 55/45. . A heat shielding film having a coating layer having a thickness of 25 μm was formed by coating a coating layer containing titanium oxide particles having an average particle diameter of 2.0 μm on one side of the obtained biaxially stretched film using a Mayer bar # 60. Titanium oxide particles were added at 15% by weight based on the weight of the coating layer, and those having the following composition were used as coating components constituting the coating layer.
The properties of the obtained film are shown in Table 1. Since the film does not contain titanium oxide particles, the solvent abrasion resistance was not sufficient.

(塗布成分)
下記に示す成分を配合し、ペイントコンディショナー中でφ1.5mmのガラスビーズとともに1時間分散させ、塗布成分液を得た。
JR−1000 ・・・ 8g
47−712(固形分50%)(大日本インキ化学工業(株)製) ・・・ 16g
トルエン/キシレン/酢酸エチル/ブチルセロソルブ=5/2/2/1 ・・・ 24g
(Coating components)
The following components were blended and dispersed for 1 hour with φ1.5 mm glass beads in a paint conditioner to obtain a coating component solution.
JR-1000 8g
47-712 (50% solid content) (Dainippon Ink Chemical Co., Ltd.) 16g
Toluene / xylene / ethyl acetate / butyl cellosolve = 5/2/2/1 24 g

Figure 0005744604
Figure 0005744604

本発明の熱遮蔽用フィルムは、近赤外から遠赤外にいたる熱線を高度に遮蔽できることから、自動車の車体や建材などといった外部の太陽光に対する遮熱効果が求められる用途に好適に用いることができる。   Since the heat shielding film of the present invention can highly shield heat rays from the near infrared to the far infrared, it is preferably used for applications that require a heat shielding effect against external sunlight, such as automobile bodies and building materials. Can do.

a 断熱性材料で作成した箱
b 箱内部の上底面中央部に設置する熱電対タイプ温度センサー
c 箱内部の下底面中央部に設置する熱電対タイプ温度センサー
a box made of heat-insulating material b thermocouple type temperature sensor installed in the center of the upper bottom of the box c thermocouple type temperature sensor installed in the center of the bottom of the box

Claims (3)

平均粒径が1.0μm以上5μm以下である酸化チタン粒子をフィルムの重量を基準として5重量%以上35重量%以下含有し、エチレンテレフタレート単位を主体とするポリエステル樹脂(I)およびブチレンテレフタレート単位を主体とするポリエステル樹脂(II)を含有し、フィルム厚みが10μm以上200μm以下であり、100℃における100%伸長時のフィルムの応力がフィルム長手方向、フィルム幅方向のいずれにおいても10MPa以上150MPa以下であり、かつそれらの方向の応力差が0MPa以上45MPa以下であって、100℃における100%伸長時のフィルム破断伸度がフィルム長手方向、フィルム幅方向のいずれにおいても250%以上であり、800nm〜2200nmの波長の入射光線に対する全光線反射率がいずれの波長においても55%以上であり、かつ2500nm〜8000nmの波長域の入射光線に対する平均光線透過率が45%未満であることを特徴とする熱遮蔽用二軸延伸フィルム。 Polyester resin (I) and butylene terephthalate unit mainly containing ethylene terephthalate units , containing titanium oxide particles having an average particle size of 1.0 μm or more and 5 μm or less, based on the weight of the film, of 5% by weight to 35% by weight The polyester resin (II) is mainly contained, the film thickness is 10 μm or more and 200 μm or less, and the stress of the film at 100% elongation at 100 ° C. is 10 MPa or more and 150 MPa or less in both the film longitudinal direction and the film width direction. And the stress difference between these directions is 0 MPa or more and 45 MPa or less, and the film breaking elongation at 100% elongation at 100 ° C. is 250% or more in both the film longitudinal direction and the film width direction, 800 nm For incident light with a wavelength of ~ 2200 nm A biaxially stretched film for heat shielding, characterized in that the total light reflectance is 55% or more at any wavelength and the average light transmittance for incident light in the wavelength range of 2500 nm to 8000 nm is less than 45%. 成形加工用途に用いられる、請求項1に記載の熱遮蔽用二軸延伸フィルム。 The biaxially stretched film for heat shielding according to claim 1, which is used for molding processing. 車体断熱用複合材、断熱建材または電気・電子機器の断熱部材の構成材として用いられる、請求項1または2に記載の熱遮蔽用二軸延伸フィルム。 The biaxially stretched film for heat shielding according to claim 1 or 2 , used as a constituent material of a composite material for heat insulation of a vehicle body, a heat insulating building material or a heat insulating member of an electric / electronic device.
JP2011085496A 2011-04-07 2011-04-07 Heat shielding film Active JP5744604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085496A JP5744604B2 (en) 2011-04-07 2011-04-07 Heat shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085496A JP5744604B2 (en) 2011-04-07 2011-04-07 Heat shielding film

Publications (2)

Publication Number Publication Date
JP2012219168A JP2012219168A (en) 2012-11-12
JP5744604B2 true JP5744604B2 (en) 2015-07-08

Family

ID=47271040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085496A Active JP5744604B2 (en) 2011-04-07 2011-04-07 Heat shielding film

Country Status (1)

Country Link
JP (1) JP5744604B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717928B2 (en) 2012-09-21 2015-05-13 帝人株式会社 Manufacturing method of composite material
JP6274434B2 (en) * 2014-07-30 2018-02-07 豊田合成株式会社 Silicone resin composition and light emitting device using the same
WO2016194757A1 (en) * 2015-05-29 2016-12-08 東洋紡株式会社 Infrared-light-transmitting polyester resin composition
WO2016194758A1 (en) * 2015-05-29 2016-12-08 東洋紡株式会社 Infrared-light-transmitting polyester resin composition
WO2020080355A1 (en) 2018-10-17 2020-04-23 富士フイルム株式会社 Projection image display member, windshield glass, and head-up display system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126841A (en) * 1990-09-17 1992-04-27 Kuraray Co Ltd Covering material having excellent light shielding property and heat blocking property
JP4047652B2 (en) * 2002-07-30 2008-02-13 三菱樹脂株式会社 Polyester resin decorative sheet
JP4913476B2 (en) * 2006-05-16 2012-04-11 三菱樹脂株式会社 Reflective film and reflector using the same

Also Published As

Publication number Publication date
JP2012219168A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
EP2786865B1 (en) Biaxially stretched laminated polyester film, infrared-ray-shielding structure for laminated glass which comprises said film, and laminated glass comprising said film or said structure
JP4839012B2 (en) Polyester film for in-mold molding
KR101617248B1 (en) Polyester film
JP5744604B2 (en) Heat shielding film
JP2006297853A (en) Film for use in molding
JP6139266B2 (en) Biaxially stretched laminated polyester film
JP2007203571A (en) Polyester film for simultaneous molding and decoration
JP2010138261A (en) Polyester film for laminated glass, and its layered product
JP2004224049A (en) Polyester film and its manufacturing method
JP2010138262A (en) Polyester film for laminated glass, and its layered product
JP4055897B2 (en) Polyester film for molding to cover the surface of components
JP2013056497A (en) Multilayer film, decorative molding film, and molding
JP2010229289A (en) Polyester film
JP6155728B2 (en) Polyester film for laminated glass
KR20130077185A (en) Polyester optical film and manufacturing method thereof
KR101797342B1 (en) Polyester film for molding and process for producing the same
JP5876750B2 (en) Translucent biaxially stretched polyester film for glass lamination
JP2692310B2 (en) Biaxially oriented polyester film for molding
JP6377911B2 (en) Polyester film
JP7238404B2 (en) laminated film
JP7375499B2 (en) Laminated polyester film and its manufacturing method
JP4183949B2 (en) Method for producing biaxially oriented polyester film
JP6972524B2 (en) Polyester film
JP5787736B2 (en) Translucent biaxially stretched polyester film for glass lamination
JP2014205275A (en) Laminate polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5744604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250