JP5737138B2 - Battery control device and battery control method - Google Patents

Battery control device and battery control method Download PDF

Info

Publication number
JP5737138B2
JP5737138B2 JP2011240392A JP2011240392A JP5737138B2 JP 5737138 B2 JP5737138 B2 JP 5737138B2 JP 2011240392 A JP2011240392 A JP 2011240392A JP 2011240392 A JP2011240392 A JP 2011240392A JP 5737138 B2 JP5737138 B2 JP 5737138B2
Authority
JP
Japan
Prior art keywords
value
open
circuit voltage
battery
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011240392A
Other languages
Japanese (ja)
Other versions
JP2013096861A (en
Inventor
秋田 宏之
宏之 秋田
裕喜 永井
裕喜 永井
小林 哲郎
哲郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011240392A priority Critical patent/JP5737138B2/en
Publication of JP2013096861A publication Critical patent/JP2013096861A/en
Application granted granted Critical
Publication of JP5737138B2 publication Critical patent/JP5737138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、正極板、及び、黒鉛からなる負極活物質粒子を含む負極板を有するリチウムイオン二次電池を制御する電池の制御装置、及び、電池の制御方法に関する。   The present invention relates to a battery control apparatus and a battery control method for controlling a lithium ion secondary battery having a positive electrode plate and a negative electrode plate containing negative electrode active material particles made of graphite.

近年、ハイブリッド自動車、電気自動車などの車両の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)が利用されている。この電池を電源として利用するにあたり、各時点での電池の充電状態(state of charge:SOC)を推定し、推定したSOCを用いて電池を制御する技術は知られている(例えば、特許文献1)。   In recent years, lithium-ion secondary batteries (hereinafter simply referred to as batteries) that can be charged and discharged have been used as power sources for driving vehicles such as hybrid cars and electric cars. In using this battery as a power source, a technique for estimating a state of charge (SOC) of the battery at each time point and controlling the battery using the estimated SOC is known (for example, Patent Document 1). ).

特開2011−106952号公報JP 2011-106952 A

しかしながら、検知した電流値には計測誤差などが含まれるため、その積算値である電池のSOCの推定値には誤差が累積することがある。このため、SOCの推定値が真のSOCの値からずれてしまう場合がある。   However, since the detected current value includes a measurement error or the like, an error may accumulate in the estimated value of the SOC of the battery that is the integrated value. For this reason, the estimated SOC value may deviate from the true SOC value.

ところで、負極活物質粒子に黒鉛を用いた電池の中には、自身の劣化の程度が、例えば、高劣化、中劣化、低劣化のいずれの場合でも、SOC=0〜100%の範囲内で、SOCの値と開放電圧の値との関係を示すグラフが、特定の不動点を通過する特性を有する電池が存在することが判ってきた。黒鉛を負極活物質粒子として含む負極板は、電池の蓄電量を変化させると、負極電位がわずかであるが階段状に変化する部分が存在する特性を有するためであると考えられる。   By the way, in the battery using graphite as the negative electrode active material particles, the degree of its own deterioration is within the range of SOC = 0 to 100%, for example, in any case of high deterioration, medium deterioration, and low deterioration. It has been found that there is a battery having a characteristic that the graph showing the relationship between the SOC value and the open-circuit voltage value passes through a specific fixed point. It is considered that the negative electrode plate containing graphite as negative electrode active material particles has a characteristic that there is a portion in which the negative electrode potential slightly changes but changes in a stepped manner when the storage amount of the battery is changed.

本発明は、かかる知見に基づいてなされたものであって、自身の劣化の程度がいずれの場合でも、充電状態の値と開放電圧の値との関係を示すグラフが特定の不動点を通過する特性を有する電池について、SOCの推定値を較正し、適切なSOCの推定値を利用可能とした電池の制御装置、及び、SOCの推定値を較正し、適切なSOCの推定値を利用可能とした電池の制御方法を提供することを目的とする。   The present invention has been made based on such knowledge, and the graph showing the relationship between the value of the charge state and the value of the open-circuit voltage passes through a specific fixed point regardless of the degree of deterioration of itself. A battery control device that calibrates an estimated SOC value and uses an appropriate estimated SOC value, and calibrates an estimated SOC value and uses an appropriate estimated SOC value for a battery having characteristics It is an object of the present invention to provide a method for controlling a battery.

本発明の一態様は、正極板、及び、黒鉛からなる負極活物質粒子を含む負極板、を有するリチウムイオン二次電池について、開放電圧の値が第1電圧値となったときの上記リチウムイオン二次電池の第1蓄電量QS1を充電状態(SOC)の値で0%とし、上記開放電圧の値が第2電圧値となったときの上記リチウムイオン二次電池の第2蓄電量QS2を上記充電状態の値で100%としたとき、上記リチウムイオン二次電池は、自身の劣化の程度が異なると、上記充電状態の値と上記開放電圧の値との関係を示すグラフが互いに異なる曲線となるが、劣化の程度がいずれの場合でも、各グラフは特定の不動点Aを通過する特性を有するものであり、上記不動点Aにおける上記開放電圧の値を不動点開放電圧値、上記不動点Aにおける上記充電状態の値を不動点充電状態値としたとき、上記充電状態の推定値を逐次算出するSOC推定値算出手段と、上記リチウムイオン二次電池の上記開放電圧の値を検知する開放電圧検知手段と、上記リチウムイオン二次電池の上記開放電圧の値を、上記不動点開放電圧値に調整する開放電圧値調整手段と、上記不動点開放電圧値とした上記リチウムイオン二次電池の上記充電状態の上記推定値を、上記不動点充電状
態値に較正するSOC較正手段と、を備える電池の制御装置である。
One aspect of the present invention is a lithium ion secondary battery including a positive electrode plate and a negative electrode plate including negative electrode active material particles made of graphite. The lithium ion when the open circuit voltage value becomes the first voltage value. The first storage amount QS1 of the secondary battery is set to 0% in the state of charge (SOC), and the second storage amount QS2 of the lithium ion secondary battery when the open circuit voltage value becomes the second voltage value is When the value of the state of charge is 100%, the lithium ion secondary battery has different graphs indicating the relationship between the value of the state of charge and the value of the open circuit voltage when the degree of deterioration of the lithium ion secondary battery is different. However, regardless of the degree of deterioration, each graph has a characteristic of passing through a specific fixed point A. The value of the open voltage at the fixed point A is the fixed point open voltage value, and the fixed value is The above charge at point A An SOC estimated value calculating means for sequentially calculating the estimated value of the charged state when the value of the state is a fixed point charged state value; and an open voltage detecting means for detecting the value of the open voltage of the lithium ion secondary battery; An open-circuit voltage value adjusting means for adjusting the open-circuit voltage value of the lithium-ion secondary battery to the fixed-point open-circuit voltage value; and the charging state of the lithium-ion secondary battery that is the fixed-point open-circuit voltage value. An SOC calibration unit that calibrates the estimated value to the fixed point charge state value.

リチウムイオン二次電池には、劣化の程度がいずれの場合でも、SOCの値と開放電圧の値との関係を示すグラフが特定の不動点Aを通過する特性を有する電池がある。このような電池の開放電圧の値を不動点Aの不動点開放電圧値とすると、その時点での電池のSOCの値は、劣化の程度に拘わらず、不動点充電状態値の値となる。
上述の電池の制御装置は、上述した特性を有する電池を制御する装置であり、この電池のSOCの推定値を不動点充電状態値に較正するSOC較正手段を備える。具体的には、電池の開放電圧の値を不動点開放電圧値とした場合に、現時点(開放電圧の値が不動点開放電圧値となっている時点)で得ているSOCの推定値がどのような値であっても、現時点でのSOCの推定値を不動点充電状態値に較正(置換)する。これにより、SOCの推定値が有していた誤差を解消することができる。かくして、それ以降、より正確なSOCの推定値を用いて適切に電池の制御をすることができる。
As a lithium ion secondary battery, there is a battery having a characteristic that a graph showing a relationship between an SOC value and an open-circuit voltage value passes a specific fixed point A regardless of the degree of deterioration. When such a battery open-circuit voltage value is the fixed-point open-circuit voltage value of the fixed point A, the SOC value of the battery at that time becomes the fixed-point charge state value regardless of the degree of deterioration.
The battery control device described above is a device that controls a battery having the above-described characteristics, and includes an SOC calibration unit that calibrates the estimated value of the SOC of the battery to a fixed point charge state value. Specifically, when the open-circuit voltage value of the battery is the fixed-point open-circuit voltage value, what is the estimated SOC value obtained at the present time (when the open-circuit voltage value is the fixed-point open-circuit voltage value)? Even if it is such a value, the estimated value of the current SOC is calibrated (replaced) with the fixed point charge state value. Thereby, the error which the estimated value of SOC had can be eliminated. Thus, thereafter, the battery can be appropriately controlled using a more accurate estimated value of SOC.

なお、「充電状態推定手段」としては、例えば、各時点で電池を流れる電流値から、この電池を出入りする電気量を積算して電池の蓄電量を逐次算出する。次いで、算出した蓄電量を、電池のSOCの値に換算して、各時点における電池のSOCの推定値を逐次算出する手段が挙げられる。
また、電池の性能を考慮して決定した、通常使用しうる開放電圧の値の範囲のうち、「第1電圧値」は、電池の下限の開放電圧値である。また、「第2電圧値」は、電池の上限の開放電圧値である。また、「不動点」とは、劣化の程度がそれぞれ異なる電池について、充電状態の値と開放電圧の値との関係を示すグラフをそれぞれ描いた場合に、いずれのグラフもが通過する特定の点を指す。なお、この不動点はグラフ中に、1点だけ存在する場合も、複数点存在する場合もある。また、不動点の充電状態の値や開放電圧の値は、例えば、電池をなす正極板の正極活物質粒子と負極活物質粒子との質量比や正極活物質粒子の材質によってそれぞれ異なる。
As the “charge state estimation means”, for example, the amount of electricity flowing in and out of the battery is integrated from the value of the current flowing through the battery at each time point, and the amount of electricity stored in the battery is sequentially calculated. Next, there is means for sequentially calculating the estimated value of the SOC of the battery at each time point by converting the calculated storage amount into the value of the SOC of the battery.
In addition, the “first voltage value” of the range of open-circuit voltage values that can be normally used determined in consideration of battery performance is the open-circuit voltage value at the lower limit of the battery. The “second voltage value” is the upper limit open-circuit voltage value of the battery. In addition, the “fixed point” is a specific point through which each graph passes when a graph showing the relationship between the state of charge and the value of the open circuit voltage is drawn for batteries with different degrees of deterioration. Point to. Note that there may be only one fixed point or a plurality of fixed points in the graph. In addition, the value of the charge state at the fixed point and the value of the open circuit voltage vary depending on, for example, the mass ratio of the positive electrode active material particles to the negative electrode active material particles of the positive electrode plate forming the battery and the material of the positive electrode active material particles.

さらに、上述の電池の制御装置であって、前記開放電圧の値を前記不動点開放電圧値に調整した前記リチウムイオン二次電池について、充電又は放電により、予め定めた一定の電気量Qxだけ蓄電量を変化させる蓄電量変化手段と、上記蓄電量変化手段による上記蓄電量の変化に伴って生じた上記開放電圧の値の変化量を、上記電気量Qxで除した値Pを算出する算出手段と、予め得ておいた、上記値Pと上記リチウムイオン二次電池の蓄電容量との相関関係に基づいて、上記値Pから当該時点における上記蓄電容量を推定する蓄電容量推定手段と、を備え、上記電気量Qxは、上記相関関係が、上記値Pから上記蓄電容量を一意に与える一価関数の関係となる電気量に選択されてなる電池の制御装置とすると良い。   Furthermore, in the battery control device described above, the lithium ion secondary battery in which the open-circuit voltage value is adjusted to the fixed-point open-circuit voltage value is stored by charging or discharging a predetermined amount of electricity Qx. A storage amount changing means for changing the amount, and a calculation means for calculating a value P obtained by dividing the amount of change in the open circuit voltage value caused by the change in the storage amount by the storage amount changing means by the amount of electricity Qx. And storage capacity estimation means for estimating the storage capacity at the time point from the value P based on the correlation between the value P and the storage capacity of the lithium ion secondary battery obtained in advance. The electric quantity Qx may be a battery control device in which the correlation is selected from the value P to an electric quantity that is a monovalent function that uniquely gives the storage capacity.

本発明で対象とする電池は、その開放電圧の値を不動点開放電圧値に調整すると、劣化の程度に拘わらず、そのSOCの値も不動点充電状態値に揃う。その後、SOCの値を不動点充電状態値とした電池について充電又は放電して、一定の電気量Qの分だけ不動点充電状態値からSOCをずらすと、電池の劣化の程度に応じた開放電圧の値をとる。
ところで、電池は、その劣化と共に、蓄電容量(SOC0〜100%、即ち、開放電圧の値を第1電圧値から第2電圧値とする間に蓄電しうる電気量)が徐々に低下する。そして、様々な程度に劣化した電池が有している、当該劣化状態における蓄電容量の大きさと、不動点A付近で電気量Qの分だけ蓄電量を変化させたことによる開放電圧の値の変化量を、電気量Qで割った値P(つまり、不動点A付近での充電状態の値と開放電圧の値との関係を示すグラフの傾き)との間には相関があることが判ってきた。
When the value of the open circuit voltage is adjusted to the fixed point open voltage value, the SOC value of the battery targeted by the present invention is aligned with the fixed point charge state value regardless of the degree of deterioration. After that, when the battery is charged or discharged with the SOC value as the fixed point charge state value and the SOC is shifted from the fixed point charge state value by a certain amount of electricity Q, the open circuit voltage according to the degree of deterioration of the battery Takes the value of
By the way, as the battery deteriorates, the storage capacity (SOC 0 to 100%, that is, the amount of electricity that can be stored while changing the open-circuit voltage value from the first voltage value to the second voltage value) gradually decreases. Then, the battery that has deteriorated to various degrees has a change in the value of the open-circuit voltage due to the amount of the storage capacity in the deteriorated state and the amount of electricity stored in the vicinity of the fixed point A by the amount of electricity Q. It has been found that there is a correlation between the value P obtained by dividing the quantity by the quantity of electricity Q (that is, the slope of the graph showing the relationship between the value of the charge state near the fixed point A and the value of the open circuit voltage). It was.

但し、上述の相関関係は、不動点充電状態値からSOCをずらす電気量Qの大きさによって、値Pから蓄電容量の大きさを一意に与える一価関数の関係や、1つの値Pから複数の蓄電容量の大きさが与えられる多価関数の関係になる場合がある。
例えば、値Pが大きい(又は、小さい)ほど、与えられる蓄電容量が小さくなるという一価関数の相関関係の場合には、値Pから一意に蓄電容量の大きさを与えることができる。しかし、1つの値Pを与えると、大小2つ以上の蓄電容量の値が与えられる多価関数の関係では、値Pによって蓄電容量の大きさを一意に与えることができない。
However, the above-described correlation may be a monovalent function relationship that uniquely gives the magnitude of the storage capacity from the value P depending on the magnitude of the electric quantity Q that shifts the SOC from the fixed-point charge state value, or a plurality of values from one value P. There is a case where the relationship of the multivalent function in which the magnitude of the storage capacity is given.
For example, in the case of a monovalent function correlation in which the larger the value P is (or the smaller), the smaller the storage capacity is given, the storage capacity can be uniquely given from the value P. However, if one value P is given, the magnitude of the storage capacity cannot be uniquely given by the value P in the relation of the multivalent function in which two or more storage capacity values are given.

そこで、上述の電池の制御装置では、電気量Qxを、相関関係が値Pから蓄電容量を一意に与える一価関数の関係となる値にしている。これにより、蓄電容量推定手段では、予め得ておいた値Pと蓄電容量との相関関係に基づいて、値Pから当該時点における電池の蓄電容量を一意に推定できる。このため、電池を第1電圧値及び第2電圧値となるまで充放電して、実際に電池の蓄電容量を測定しなくとも、現時点での(現状の劣化状況における)電池の蓄電容量を容易に推定することができる。かくして、現時点における電池の蓄電容量、及び、直前に得た不動点充電状態値に基づいて、電池の劣化状況を反映した、電池のSOCの推定値と開放電圧の値との間の関係について正確に把握し直すことができ、SOCの推定値を用いた、それ以降の電池の制御を適切に行わせることができる。   Therefore, in the battery control device described above, the quantity of electricity Qx is set to a value in which the correlation is a monovalent function that uniquely gives the storage capacity from the value P. Thus, the storage capacity estimation means can uniquely estimate the storage capacity of the battery at the time point from the value P based on the correlation between the value P and the storage capacity obtained in advance. For this reason, it is easy to charge the battery until the first voltage value and the second voltage value are reached and actually measure the storage capacity of the battery. Can be estimated. Thus, based on the current storage capacity of the battery and the fixed-point charge state value obtained immediately before, the relationship between the estimated value of the battery SOC and the value of the open-circuit voltage reflecting the battery deterioration state is accurate. Thus, the subsequent control of the battery using the estimated value of the SOC can be appropriately performed.

なお、電池の「蓄電容量」とは、SOCの値を0〜100%とする間、即ち、開放電圧の値を前述の第1電圧値から第2電圧値とする間に電池に蓄電しうる電気量であり、電池を第2電圧値としたときの蓄電量である第2蓄電量QS2から、第1電圧値としたときの蓄電量である第1蓄電量QS1を引いた値(QS2−QS1)である。   The “storage capacity” of the battery means that the battery can be charged while the SOC value is 0 to 100%, that is, while the open-circuit voltage value is changed from the first voltage value to the second voltage value. A value obtained by subtracting the first charged amount QS1 which is the charged amount when the first voltage value is obtained from the second charged amount QS2 which is the charged amount when the battery is set to the second voltage value (QS2− QS1).

さらに、本発明の他の一態様は、正極板、及び、黒鉛からなる負極活物質粒子を含む負極板、を有するリチウムイオン二次電池について、開放電圧の値が第1電圧値となったときの上記リチウムイオン二次電池の第1蓄電量QS1を充電状態(SOC)の値で0%とし、上記開放電圧の値が第2電圧値となったときの上記リチウムイオン二次電池の第2蓄電量QS2を上記充電状態の値で100%としたとき、上記リチウムイオン二次電池は、自身の劣化の程度が異なると、上記充電状態の値と上記開放電圧の値との関係を示すグラフが互いに異なる曲線となるが、劣化の程度がいずれの場合でも、各グラフは特定の不動点Aを通過する特性を有するものであり、上記不動点Aにおける上記開放電圧の値を不動点開放電圧値、上記不動点Aにおける上記充電状態の値を不動点充電状態値としたとき、上記リチウムイオン二次電池の上記充電状態の推定値を逐次算出するSOC推定値算出段階と、上記リチウムイオン二次電池の上記開放電圧の値を、上記不動点開放電圧値に調整する開放電圧値調整段階と、上記開放電圧値調整段階で上記不動点開放電圧値としたときに、上記SOC推定値算出段階で算出した上記リチウムイオン二次電池の上記充電状態の上記推定値を、上記不動点充電状態値に較正するSOC較正段階と、を備える電池の制御方法である。   Furthermore, in another aspect of the present invention, a lithium ion secondary battery having a positive electrode plate and a negative electrode plate containing negative electrode active material particles made of graphite has an open circuit voltage value of a first voltage value. When the first charged amount QS1 of the lithium ion secondary battery is 0% as a state of charge (SOC), the second of the lithium ion secondary battery when the open circuit voltage value becomes the second voltage value When the charged amount QS2 is 100% in terms of the state of charge, the lithium ion secondary battery shows the relationship between the value of the state of charge and the value of the open circuit voltage when the degree of deterioration of the lithium ion secondary battery is different. However, each graph has a characteristic of passing through a specific fixed point A regardless of the degree of deterioration, and the value of the open voltage at the fixed point A is the fixed point open voltage. Value, fixed point A above An SOC estimated value calculating step for sequentially calculating an estimated value of the charging state of the lithium ion secondary battery, and an open-circuit voltage of the lithium ion secondary battery, where the value of the charging state is a fixed point charging state value. The open-circuit voltage value adjustment stage for adjusting the value of the fixed-point open-circuit voltage value to the fixed-point open-circuit voltage value in the open-circuit voltage value adjustment stage, and the lithium ion calculated in the SOC estimated value calculation stage An SOC calibration step of calibrating the estimated value of the state of charge of the secondary battery to the fixed point state of charge value.

上述の電池の制御方法は、劣化の程度がいずれの場合でも、SOCの値と開放電圧の値との関係を示すグラフが特定の不動点Aを通過する特性を有する電池について、SOCの推定値を不動点充電状態値に較正するSOC較正段階を備える。具体的には、電池の開放電圧の値を不動点開放電圧値とした場合に、現時点(開放電圧の値が不動点開放電圧値となっている時点)で得ているSOCの推定値がどのような値であっても、現時点でのSOCの推定値を不動点充電状態値に較正(置換)する。これにより、SOCの推定値が有していた誤差を解消することができる。かくして、それ以降、より正確なSOCの推定値を用いて適切に電池の制御をすることができる。   In the battery control method described above, the estimated SOC value is obtained for a battery having a characteristic in which a graph indicating the relationship between the SOC value and the open-circuit voltage value passes through a specific fixed point A regardless of the degree of deterioration. SOC calibrating stage for calibrating to a fixed point charge state value. Specifically, when the open-circuit voltage value of the battery is the fixed-point open-circuit voltage value, what is the estimated SOC value obtained at the present time (when the open-circuit voltage value is the fixed-point open-circuit voltage value)? Even if it is such a value, the estimated value of the current SOC is calibrated (replaced) with the fixed point charge state value. Thereby, the error which the estimated value of SOC had can be eliminated. Thus, thereafter, the battery can be appropriately controlled using a more accurate estimated value of SOC.

さらに、上述の電池の制御方法であって、前記開放電圧の値を前記不動点開放電圧値に調整した前記リチウムイオン二次電池について、充電又は放電により、予め定めた一定の電気量Qxだけ蓄電量を変化させる蓄電量変化段階と、上記蓄電量変化段階において、上記蓄電量の変化に伴って生じた上記開放電圧の値の変化量を、上記電気量Qxで除した値Pを算出する算出段階と、予め得ておいた、上記値Pと上記リチウムイオン二次電池の蓄電容量との相関関係に基づいて、上記算出段階で算出した上記値Pから当該時点における上記蓄電容量を推定する蓄電容量推定段階と、を備え、上記電気量Qxは、上記相関関係が、上記値Pから上記蓄電容量を一意に与える一価関数の関係となる電気量に選択されてなる電池の制御方法とすると良い。   Further, in the battery control method described above, the lithium ion secondary battery in which the open-circuit voltage value is adjusted to the fixed-point open-circuit voltage value is stored by charging or discharging a predetermined amount of electricity Qx. Calculation to calculate a value P obtained by dividing the amount of change in the open-circuit voltage value caused by the change in the storage amount by the amount of electricity Qx in the storage amount change stage in which the amount is changed and the storage amount change stage. Based on the correlation between the stage and the value P obtained in advance and the storage capacity of the lithium ion secondary battery, the storage capacity for estimating the storage capacity at the time point from the value P calculated in the calculation stage A capacity estimation step, and the electric quantity Qx is a battery control method in which the correlation is selected from the value P to an electric quantity that is a monovalent function that uniquely gives the storage capacity. Good .

上述の電池の制御方法では、電気量Qxを、相関関係が値Pから蓄電容量を一意に与える一価関数の関係となる値にしている。これにより、蓄電容量推定段階では、予め得ておいた値Pと蓄電容量との相関関係に基づいて、値Pから当該時点における電池の蓄電容量を一意に推定できる。このため、電池を第1電圧値及び第2電圧値となるまで充放電して、実際に電池の蓄電容量を測定しなくとも、現時点での(現状の劣化状況における)電池の蓄電容量を容易に推定することができる。かくして、現時点における電池の蓄電容量、及び、直前に得た不動点充電状態値に基づいて、電池の劣化状況を反映した、電池のSOCの推定値と開放電圧の値との間の関係について正確に把握し直すことができ、SOCの推定値を用いた、それ以降の電池の制御を適切に行わせることができる。   In the battery control method described above, the amount of electricity Qx is set to a value in which the correlation is a monovalent function that uniquely gives the storage capacity from the value P. Thereby, in the storage capacity estimation stage, the storage capacity of the battery at the time point can be uniquely estimated from the value P based on the correlation between the value P and the storage capacity obtained in advance. For this reason, it is easy to charge the battery until the first voltage value and the second voltage value are reached and actually measure the storage capacity of the battery. Can be estimated. Thus, based on the current storage capacity of the battery and the fixed-point charge state value obtained immediately before, the relationship between the estimated value of the battery SOC and the value of the open-circuit voltage reflecting the battery deterioration state is accurate. Thus, the subsequent control of the battery using the estimated value of the SOC can be appropriately performed.

実施形態の車両の斜視図である。It is a perspective view of the vehicle of an embodiment. 実施形態の電池の斜視図である。It is a perspective view of the battery of an embodiment. 蓄電容量の異なる各電池のSOC値と開放電圧値との関係を示すグラフである。It is a graph which shows the relationship between the SOC value and open circuit voltage value of each battery from which an electrical storage capacity differs. 電池の蓄電量と負極電位との関係を示すグラフである。It is a graph which shows the relationship between the electrical storage amount of a battery, and negative electrode potential. 蓄電容量の異なる各電池のSOC値と開放電圧値との関係を示すグラフの不動点A付近を拡大したグラフである。It is the graph which expanded the fixed point A vicinity of the graph which shows the relationship between the SOC value of each battery in which electrical storage capacity differs, and an open circuit voltage value. 蓄電容量と値Pとの関係を示すグラフである。3 is a graph showing a relationship between a storage capacity and a value P. 実施形態にかかり、電池の制御装置によるSOC推定ルーチンの処理を示すフローチャートである。It is a flowchart which shows processing of the SOC estimation routine by the battery control apparatus according to the embodiment. 実施形態にかかり、電池の制御装置による較正ルーチンの処理を示すフローチャートである。It is a flowchart which shows the process of the calibration routine by the battery control apparatus concerning embodiment. 実施形態にかかり、電池の制御装置による較正ルーチンの処理のフローチャートのうち、開放電圧値調整サブルーチンの処理を示すフローチャートである。It is a flowchart which shows the process of an open circuit voltage value adjustment subroutine among the flowcharts of the process of the calibration routine by the battery control apparatus concerning embodiment. 実施形態にかかり、電池の制御装置による較正ルーチンの処理のフローチャートのうち、蓄電容量推定サブルーチンの処理を示すフローチャートである。It is a flowchart which shows the process of an electrical storage capacity estimation subroutine among the flowcharts of the process of the calibration routine by the battery control apparatus concerning embodiment.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかる電池の制御装置を用いる車両100について説明する。図1に車両100の斜視図を示す。
この車両100は、直列に接続され、組電池110をなす複数の電池1,1と、各電池1,1の電圧の電圧値Vを検知する電圧センサ130と、組電池110(電池1)を流れる電流の電流値Iを検知する電流センサ140と、組電池110(電池1)を制御するプラグインハイブリッド自動車制御装置(以下、PHV制御装置ともいう)120とを備えるプラグインハイブリッド電気自動車である。また、これらの他に、コンバータ150、エンジン160、インバータ170、フロントモータ181、リアモータ182、車体190、及び、プラグ195Pを先端に配置したプラグ付ケーブル195を備える。なお、これらのうち、電池1(組電池110)、PHV制御装置120、電圧センサ130、電流センサ140、コンバータ150及びプラグ付ケーブル195が、電池1を制御する電池制御装置M1をなしている(図1参照)。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, the vehicle 100 using the battery control device according to the present embodiment will be described. FIG. 1 shows a perspective view of the vehicle 100.
This vehicle 100 includes a plurality of batteries 1 and 1 that are connected in series and form an assembled battery 110, a voltage sensor 130 that detects a voltage value V of the voltage of each battery 1 and 1, and an assembled battery 110 (battery 1). A plug-in hybrid electric vehicle including a current sensor 140 that detects a current value I of a flowing current and a plug-in hybrid vehicle control device (hereinafter also referred to as a PHV control device) 120 that controls the assembled battery 110 (battery 1). . In addition to these, a converter 150, an engine 160, an inverter 170, a front motor 181, a rear motor 182, a vehicle body 190, and a plug-attached cable 195 having a plug 195P disposed at the tip thereof are provided. Of these, the battery 1 (the assembled battery 110), the PHV control device 120, the voltage sensor 130, the current sensor 140, the converter 150, and the cable with plug 195 constitute a battery control device M1 that controls the battery 1 ( (See FIG. 1).

この車両100は、フロントモータ181及びリアモータ182を用いて走行することができるほか、エンジン160、フロントモータ181及びリアモータ182を併用して走行することができる。一方、停車中に、車両100の外部に設置した外部電源XVに、プラグ付ケーブル195のプラグ195Pを挿入し、コンバータ150を通じて、組電池110中の複数の電池1,1に充電することができる。   The vehicle 100 can travel using the front motor 181 and the rear motor 182, and can travel using the engine 160, the front motor 181 and the rear motor 182 in combination. On the other hand, while the vehicle is stopped, the plug 195P of the cable with plug 195 is inserted into the external power source XV installed outside the vehicle 100, and the plurality of batteries 1 and 1 in the assembled battery 110 can be charged through the converter 150. .

車両100のPHV制御装置120は、CPU、ROM及びRAMを有し、所定のプログラムによって作動する図示しないマイクロコンピュータを含んでいる。そして、このPHV制御装置120は、図示しないシリアルバスを介して、電圧センサ130、電流センサ140、コンバータ150、エンジン160、インバータ170、フロントモータ181及びリアモータ182とそれぞれ通信可能となっており、各部の状況に応じて様々な制御を行う。例えば、車両100の走行状況に応じた、エンジン160の駆動力とフロントモータ181,リアモータ182の駆動力との組み合わせを制御したり、プラグ付ケーブル195及びコンバータ150を通じて、外部電源XVから組電池110(電池1)に充電する場合の充電制御を行う。   The PHV control device 120 of the vehicle 100 has a CPU, a ROM, and a RAM, and includes a microcomputer (not shown) that operates according to a predetermined program. The PHV control device 120 can communicate with the voltage sensor 130, the current sensor 140, the converter 150, the engine 160, the inverter 170, the front motor 181 and the rear motor 182 via a serial bus (not shown). Various controls are performed depending on the situation. For example, the combination of the driving force of the engine 160 and the driving force of the front motor 181 and the rear motor 182 according to the traveling state of the vehicle 100 is controlled, or the assembled battery 110 is connected from the external power source XV through the cable with plug 195 and the converter 150. Charge control when charging (battery 1) is performed.

また、電圧センサ130は、電池1の正極端子部91(図2参照)と負極端子部92との間の電位差(電圧)を検知する。なお、この電圧センサ130で検知した電圧値Vは、PHV制御装置120に入力される。   The voltage sensor 130 detects a potential difference (voltage) between the positive electrode terminal portion 91 (see FIG. 2) and the negative electrode terminal portion 92 of the battery 1. The voltage value V detected by the voltage sensor 130 is input to the PHV control device 120.

また、公知の直流電流センサである電流センサ140は、電池1(組電池110)を流れる直流電流の大きさ(電流値I)を検知する。なお、この電流センサ140で検知した電流値Iは、PHV制御装置120に入力される。   Moreover, the current sensor 140 which is a known DC current sensor detects the magnitude (current value I) of the DC current flowing through the battery 1 (the assembled battery 110). The current value I detected by the current sensor 140 is input to the PHV control device 120.

また、組電池110には、組電池ケース110A中に100個の電池1,1が配置されている。この組電池110をなす電池1は、矩形箱形の電池ケース80内に、電極体10、図示しない電解液を備える捲回形のリチウムイオン二次電池である(図2参照)。なお、これら複数の電池1,1は、図示しないバスバとのボルト締結にて、互いに直列に接続されている。   In the assembled battery 110, 100 batteries 1 and 1 are arranged in an assembled battery case 110A. The battery 1 constituting the assembled battery 110 is a wound lithium ion secondary battery including an electrode body 10 and an electrolyte (not shown) in a rectangular box-shaped battery case 80 (see FIG. 2). The plurality of batteries 1 and 1 are connected in series with each other by bolt fastening with a bus bar (not shown).

電池1の電極体10は、帯状の正極板20及び負極板30が、ポリエチレンからなる帯状のセパレータ40を介して扁平形状に捲回されてなる(図2参照)。この電極体10には、リチウムイオンを含む有機電解液(図示しない)が含浸されている。   The electrode body 10 of the battery 1 is formed by winding a belt-like positive electrode plate 20 and a negative electrode plate 30 into a flat shape via a belt-like separator 40 made of polyethylene (see FIG. 2). The electrode body 10 is impregnated with an organic electrolytic solution (not shown) containing lithium ions.

電極体10をなす帯状の正極板20は、正極箔28及び正極活物質層21からなる。このうち、正極活物質層21には、Li(Ni1/3Co1/3Mn1/3)O2からなる正極活物質粒子22が含まれている。
また、帯状の負極板30は、負極箔38及び負極活物質層31からなる。このうち、負極活物質層31には、天然黒鉛からなる負極活物質粒子32が含まれている。
The strip-like positive electrode plate 20 constituting the electrode body 10 includes a positive electrode foil 28 and a positive electrode active material layer 21. Among these, the positive electrode active material layer 21 includes positive electrode active material particles 22 made of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 .
The strip-shaped negative electrode plate 30 includes a negative electrode foil 38 and a negative electrode active material layer 31. Among these, the negative electrode active material layer 31 includes negative electrode active material particles 32 made of natural graphite.

なお、この電池1は、通常使用しうる開放電圧の値(以下、開放電圧値ともいう)VOの範囲が定められている。即ち、この電池1は、通常、開放電圧値VOの下限である下限電圧値VW(本実施形態では、3.00V)と、上限である上限電圧値VU(4.10V)との間で使用する。
また、開放電圧値VOを下限電圧値VWとしたときの電池1の第1蓄電量QS1を充電状態(SOC)の値(以下、SOC値ともいう)Sで0%とし、開放電圧値VOを上限電圧値VUとしたときの電池1の第2蓄電量QS2をSOC値Sで100%として、定義する。
The battery 1 has a range of open-circuit voltage values (hereinafter also referred to as open-circuit voltage values) VO that can be normally used. That is, the battery 1 is normally used between the lower limit voltage value VW (3.00 V in this embodiment) that is the lower limit of the open circuit voltage value VO and the upper limit voltage value VU (4.10 V) that is the upper limit. To do.
Further, when the open-circuit voltage value VO is set to the lower limit voltage value VW, the first charged amount QS1 of the battery 1 is set to 0% in the state of charge (SOC) (hereinafter also referred to as SOC value) S, and the open-circuit voltage value VO is set to The second storage amount QS2 of the battery 1 when the upper limit voltage value VU is set is defined as the SOC value S being 100%.

ところで、上述した電池1に関し、それぞれの劣化状況が異なる電池について、各電池の充電状態(SOC)の値と開放電圧の値との関係を調べた。
具体的には、まず、蓄電容量Cが4.20Ahの試料電池アのほか、使用により蓄電容量Cが、4.06Ah、3.93Ah及び3.66Ahとなった試料電池イ〜エを用意した。なお、蓄電容量Cが小さい試料電池ほど、劣化が進行していると考えられる。
そして、各試料電池ア〜エについて、各試料電池のSOC値Sと開放電圧値VOとの関係を公知の手法で調べた。図3に各試料電池ア〜エのSOC値Sと開放電圧値VOとの関係を示すグラフを重ねて示す。
By the way, regarding the battery 1 described above, the relationship between the value of the state of charge (SOC) of each battery and the value of the open circuit voltage was examined for the batteries having different deterioration states.
Specifically, first, in addition to the sample battery A having a storage capacity C of 4.20 Ah, sample batteries A to D having a storage capacity C of 4.06 Ah, 3.93 Ah, and 3.66 Ah were prepared. . In addition, it is thought that deterioration progresses, so that the sample battery with the smaller electrical storage capacity C.
Then, for each of the sample batteries A to D, the relationship between the SOC value S and the open circuit voltage value VO of each sample battery was examined by a known method. FIG. 3 is a graph showing the relationship between the SOC value S and the open-circuit voltage value VO of each of the sample batteries A to D.

図3によれば、各試料電池ア〜エについてのグラフはいずれも、SOC38%付近で同一点を通過していることが判る。即ち、蓄電容量Cの大小に拘わらず、SOCの値と開放電圧の値との関係を示すグラフはいずれも、特定の不動点A(SOC38.5%、VO=3.64V)を通過することが判ってきた。
天然黒鉛を負極活物質粒子として含む負極板は、例えば、図4に示すように、電池の蓄電量を変化させると、その負極電位がわずかであるが階段状に変化する部分が存在する特性を有するためであると考えられる。
図4に、電池の蓄電量と負極電位との関係を示す。このうち破線のグラフは、非晶質炭素を負極活物質粒子として含む負極板を用いた電池の結果を、実線のグラフは、電池1と同様、天然黒鉛を含む負極板を用いた電池の結果を示す。非晶質炭素を含む負極板では、電池の蓄電量が多くなるに連れて負極電位が低下しているのに対し、天然黒鉛を含む負極板では、図4中、一点鎖線で囲む部分で、階段状に変化している。
According to FIG. 3, it can be seen that all the graphs for each of the sample batteries A to D pass the same point in the vicinity of SOC 38%. That is, regardless of the magnitude of the storage capacity C, all the graphs showing the relationship between the SOC value and the open circuit voltage pass through a specific fixed point A (SOC 38.5%, VO = 3.64 V). Has come to understand.
For example, as shown in FIG. 4, the negative electrode plate containing natural graphite as negative electrode active material particles has a characteristic in which there is a portion in which the negative electrode potential slightly changes but changes in a stepped manner when the storage amount of the battery is changed. It is thought that it is for having.
FIG. 4 shows the relationship between the charged amount of the battery and the negative electrode potential. Among them, the broken line graph shows the result of the battery using the negative electrode plate containing amorphous carbon as the negative electrode active material particles, and the solid line graph shows the result of the battery using the negative electrode plate containing natural graphite as in the case of the battery 1. Indicates. In the negative electrode plate containing amorphous carbon, the negative electrode potential decreases as the charged amount of the battery increases, whereas in the negative electrode plate containing natural graphite, in the portion surrounded by the alternate long and short dash line in FIG. It changes in a staircase shape.

なお、図3に示すように、電池1の開放電圧値VOのうち、不動点Aにおけるものを不動点開放電圧値VA(=3.64V)、電池1のSOC値Sのうち、不動点Aにおけるものを不動点SOC値SA(=38.5%)とする。   As shown in FIG. 3, among the open circuit voltage value VO of the battery 1, the voltage at the fixed point A is the fixed point open voltage value VA (= 3.64 V), and the SOC value S of the battery 1 is the fixed point A. The fixed point SOC value is SA (= 38.5%).

また、各試料電池ア〜エについて、一定の電気量を充電した後の、各試料電池ア〜エのSOC値S及び開放電圧値VOを調べた。具体的には、各試料電池ア〜エの開放電圧値VOを一旦、不動点開放電圧値VAにそれぞれ調整した後、一定の電気量Qxをそれぞれ充電した。
充電後の各試料電池ア〜エの結果を、図3のグラフの不動点A付近を拡大した拡大図である図5にそれぞれプロットした。
Further, for each of the sample batteries A to D, the SOC value S and the open circuit voltage value VO of each of the sample batteries A to D after being charged with a certain amount of electricity were examined. Specifically, the open-circuit voltage value VO of each of the sample batteries A to D was once adjusted to the fixed point open-circuit voltage value VA, and then charged with a certain amount of electricity Qx.
The results of each of the sample batteries after charging were plotted in FIG. 5 which is an enlarged view of the vicinity of the fixed point A in the graph of FIG.

図5によれば、実線で示す試料電池アのグラフ上の点B(SB,VB)、一点鎖線で示す試料電池イのグラフ上の点C(SC,VC)、破線で示す試料電池ウのグラフ上の点D(SD,VD)、及び、二点鎖線で示す試料電池エのグラフ上の点E(SE,VE)がいずれも重なることなく、互いに異なっていることが判る。つまり、電気量Qxの分だけ不動点充電状態値SAからSOCを増やした場合には、電池の劣化の程度が異なれば、開放電圧値VO(VB,VC,VD,VE)もまた異なることが判る。   According to FIG. 5, point B (SB, VB) on the graph of the sample battery indicated by the solid line, point C (SC, VC) on the graph of the sample battery indicated by the alternate long and short dash line, and sample battery c indicated by the broken line It can be seen that the point D (SD, VD) on the graph and the point E (SE, VE) on the graph of the sample battery indicated by the two-dot chain line are different from each other without overlapping. That is, when the SOC is increased from the fixed point charge state value SA by the amount of electricity Qx, the open circuit voltage value VO (VB, VC, VD, VE) may also be different if the degree of deterioration of the battery is different. I understand.

そこで、各試料電池ア〜エの不動点Aの状態から一定の電気量Qxを充電した際の、開放電圧値VOの変化量ΔVを上述の電気量Qxで除した値(以下、値Pとする)と、蓄電容量Cとの間の相関関係について調べた。
具体的には、点Bに示す、充電後の試料電池アの開放電圧値(VB)を用いて、試料電池アの値Pを算出した(P=(VB−VA)/Qx)。そして、縦軸に蓄電容量C、横軸に値Pを示す、図6のグラフにプロットした。他の試料電池イ,ウ,エについても同様にして値Pを算出し、図6のグラフにそれぞれプロットした。
さらに、最小二乗法を用いて、図6に示すようにプロットされた各点から直線の近似式Fを得た。つまり、劣化の程度を示す蓄電容量Cの大きさと値Pとの間には、近似式Fの関係があることが判る。
Therefore, a value obtained by dividing the change amount ΔV of the open-circuit voltage value VO by the above-mentioned electric quantity Qx when the constant electric quantity Qx is charged from the state of the fixed point A of each of the sample batteries A to D (hereinafter referred to as a value P) And the storage capacity C were investigated.
Specifically, the value P of the sample battery was calculated using the open-circuit voltage value (VB) of the sample battery after charging as indicated by point B (P = (VB−VA) / Qx). And it plotted in the graph of FIG. 6 which shows the electrical storage capacity C on a vertical axis | shaft, and the value P on a horizontal axis. The value P was similarly calculated for the other sample batteries A, C, and D, and plotted in the graph of FIG.
Furthermore, a linear approximation formula F was obtained from each point plotted as shown in FIG. That is, it can be seen that there is a relationship of the approximate expression F between the value P of the storage capacity C indicating the degree of deterioration.

なお、図5を見れば判るように、電気量Qxの大きさによっては、図5において、上下方向に、点B〜Eが、この順に並ばない場合もある。このように、蓄電容量Cの大きさと値Pとの相関関係は、不動点充電状態値SAからSOCをずらす電気量Qxの大きさによって、値Pから蓄電容量Cの大きさを一意に与える一価関数の関係となるほか、1つの値Pから複数の蓄電容量Cの大きさが与えられる多価関数の関係になる場合があることが判ってきた。
例えば、上述の図6に示す関係、即ち、順に値Pが大きいほど、与えられる蓄電容量Cが小さくなる一価関数の相関関係では、値Pから蓄電容量Cの大きさを一意に与えることができる。しかし、1つの値Pを与えると、大小2つ以上の蓄電容量Cの値が与えられる多価関数の関係となっていると、値Pによって蓄電容量Cを一意に与えることができない。
そこで、本実施形態では、後述する較正ルーチンR2のステップS31における電気量Qxを、相関関係が値Pから蓄電容量Cを一意に与える一価関数の関係(近似式F)となる値(近似式Fを得るのに用いた値(SOCで5%に相当))にしている。
As can be seen from FIG. 5, depending on the magnitude of the electric quantity Qx, the points B to E may not be arranged in this order in the vertical direction in FIG. 5. As described above, the correlation between the magnitude of the storage capacity C and the value P is one that uniquely gives the magnitude of the storage capacity C from the value P depending on the magnitude of the electric quantity Qx that shifts the SOC from the fixed point charge state value SA. In addition to the relationship of the valence function, it has been found that there may be a relationship of a multivalent function in which a plurality of storage capacities C are given from one value P.
For example, in the relationship shown in FIG. 6 described above, that is, in the correlation of the monovalent function in which the given storage capacity C decreases as the value P increases, the magnitude of the storage capacity C can be uniquely given from the value P. it can. However, if one value P is given and the relationship is a multivalent function in which two or more values of the storage capacity C are given, the storage capacity C cannot be uniquely given by the value P.
Therefore, in the present embodiment, the electric quantity Qx in step S31 of the calibration routine R2 to be described later is a value (approximate expression F) that is a monovalent function relationship (approximate expression F) in which the correlation uniquely gives the storage capacity C from the value P. The value used to obtain F (corresponding to 5% in SOC)).

上述した特性を有する電池1からなる組電池110をPHV制御装置120で制御する。
ところで、充電状態(SOC)によって電池1の抵抗値が異なるため、組電池110を制御するにあたり、各時点での電池1(組電池110)の充電状態の値が必要とされる場合がある。また、劣化と共に電池1の蓄電容量Cの大きさが減少したり、蓄電容量Cの大きさによってSOCと電池1の抵抗値との関係が変わるので、各時点での蓄電容量Cの大きさを知る必要がある場合もある。本実施形態の車両100では、電池1のSOC値Sの推定値(SOC推定値SE)を、また、電池1の蓄電容量Cの大きさに関する推定値(蓄電容量推定値CE)をそれぞれ用いて、電池1を制御している。
そこで、SOC推定値SEを逐次算出するSOC推定ルーチンR1と、SOC推定値SEを較正すると共に、電池1の劣化状況における蓄電容量推定値CEを推定する較正ルーチンR2とについて、それぞれ以下に詳述する。
The assembled battery 110 including the battery 1 having the above-described characteristics is controlled by the PHV control device 120.
By the way, since the resistance value of the battery 1 varies depending on the state of charge (SOC), the value of the state of charge of the battery 1 (the assembled battery 110) at each time point may be required to control the assembled battery 110. Further, since the storage capacity C of the battery 1 decreases with deterioration, or the relationship between the SOC and the resistance value of the battery 1 changes depending on the storage capacity C, the storage capacity C at each time point is changed. Sometimes you need to know. In the vehicle 100 of the present embodiment, the estimated value (SOC estimated value SE) of the SOC value S of the battery 1 and the estimated value related to the size of the storage capacity C (storage capacity estimated value CE) of the battery 1 are used. The battery 1 is controlled.
Accordingly, an SOC estimation routine R1 that sequentially calculates the SOC estimation value SE and a calibration routine R2 that calibrates the SOC estimation value SE and estimates the storage capacity estimation value CE in the deterioration state of the battery 1 will be described in detail below. To do.

まず、図7に示すSOC推定ルーチンR1について説明する。なお、このSOC推定ルーチンR1は、次述するステップS2〜S7を、サイクル時間TJ(本実施形態では、TJ=0.1秒)の周期で繰り返す。
ステップS1では、車両100の作動が開始(キーオン)されたか否かを判別する。ここで、NO、即ちキーオンされていない場合、ステップS1を繰り返す一方、YES、即ちキーオンされた場合には、ステップS2に進み、電流センサ140を用いて電池1(組電池110)の電流値Iを検知する。なお、電池1の放電時の電流値Iを負の値とし、電池1の充電時の電流値Iを正の値とする。
First, the SOC estimation routine R1 shown in FIG. 7 will be described. The SOC estimation routine R1 repeats steps S2 to S7 described below at a cycle of a cycle time TJ (TJ = 0.1 seconds in the present embodiment).
In step S1, it is determined whether or not the operation of the vehicle 100 is started (key-on). If NO, that is, if the key is not turned on, step S1 is repeated. If YES, that is, if the key is turned on, the process proceeds to step S2, and the current value I of the battery 1 (the assembled battery 110) is determined using the current sensor 140. Is detected. The current value I when the battery 1 is discharged is a negative value, and the current value I when the battery 1 is charged is a positive value.

ステップS3では、1回のサイクル時間TJの間(0.1秒間)における電気量Qの変化量ΔQを算出する。具体的には、変化量ΔQは、測定した電流値Iとサイクル時間TJとの積(=I×0.1)である。   In step S3, a change amount ΔQ of the electric quantity Q during one cycle time TJ (0.1 second) is calculated. Specifically, the change amount ΔQ is a product (= I × 0.1) of the measured current value I and the cycle time TJ.

ステップS4では、現時点での電池1の蓄電量QSの推定値(蓄電量推定値)QSEを得る。具体的には、PHV制御装置120が記憶する蓄電量推定値QSEに、今回のサイクル時間TJの間に変化した電気量Qの変化量ΔQを加算して、この時点における新たな蓄電量推定値QSE(QSE=QSE+ΔQ)を得る。なお、得られた蓄電量推定値QSEを記憶する。   In step S4, an estimated value (charged amount estimated value) QSE of the current charged amount QS of the battery 1 is obtained. More specifically, the amount of change ΔQ of the amount of electricity Q that has changed during the current cycle time TJ is added to the amount of electricity estimated value QSE stored in the PHV control device 120, and a new amount of stored amount estimated at this time is added. QSE (QSE = QSE + ΔQ) is obtained. The obtained storage amount estimated value QSE is stored.

ステップS5では、ステップS4で得た蓄電量推定値QSEから、電池1のSOC値Sの推定値(SOC推定値)SEを算出する。具体的には、蓄電量推定値QSEを、PHV制御装置120が記憶する電池1の蓄電容量推定値CE(前述)で除した値の百分率(SE=QSE/CE×100)を、SOC推定値SEとする。   In step S5, an estimated value (SOC estimated value) SE of the SOC value S of the battery 1 is calculated from the stored electricity amount estimated value QSE obtained in step S4. Specifically, the percentage (SE = QSE / CE × 100) of the value obtained by dividing the storage amount estimation value QSE by the storage capacity estimation value CE (described above) of the battery 1 stored in the PHV control device 120 is calculated as the SOC estimation value. SE.

ステップS6では、前回からサイクル時間TJが経過したか否かを判別する。NOであれば、このステップS6を繰り返す一方、YESであれば、ステップS7に進み、車両100が作動を終了(キーオフ)したか否かを判定する。
ここで、NOであれば、ステップS2に戻って、ステップS2〜S7を繰り返す一方、YESであれば、SOC推定ルーチンR1を終了する。
このようにして、車両100のPHV制御装置120は、サイクル時間TJ毎に電池1のSOCのSOC推定値SEを逐次算出して記憶している。
In step S6, it is determined whether or not the cycle time TJ has elapsed since the previous time. If NO, this step S6 is repeated, while if YES, the routine proceeds to step S7, where it is determined whether or not the vehicle 100 has finished operating (key-off).
Here, if NO, the process returns to step S2 and repeats steps S2 to S7, while if YES, the SOC estimation routine R1 is terminated.
In this manner, the PHV control device 120 of the vehicle 100 sequentially calculates and stores the SOC estimated value SE of the SOC of the battery 1 for each cycle time TJ.

但し、電池1のSOC推定値SEは、上述のようにして、SOC推定ルーチンR1で逐次算出される。しかしながら、そのステップS2で検知した電流値Iには、計測誤差などが含まれるため、この電流値Iを用いて算出した電気量Qの変化量ΔQ、及び、蓄電量推定値QSEにもまた誤差を含んでしまう。これにより、SOC推定ルーチンR1のステップS2〜ステップS7を繰り返す毎に、ステップS5で算出するSOC推定値SEに、誤差が累積することがある。従って、SOC推定値SEが、電池1の真のSOC値Sから次第にずれてしまう場合がある。
そこで、SOC推定値SEの較正、及び、電池1の蓄電容量推定値CEの推定について、図8の較正ルーチンR2、図9の開放電圧値調整サブルーチン(S20)、及び、図10の蓄電容量推定サブルーチン(S30)を参照しつつ説明する。
However, the SOC estimation value SE of the battery 1 is sequentially calculated in the SOC estimation routine R1 as described above. However, since the current value I detected in step S2 includes a measurement error or the like, the change amount ΔQ of the electric quantity Q calculated using the current value I and the estimated amount of charge QSE are also errors. Will be included. Thus, an error may accumulate in the SOC estimated value SE calculated in step S5 each time step S2 to step S7 of the SOC estimation routine R1 are repeated. Therefore, the SOC estimated value SE may gradually deviate from the true SOC value S of the battery 1.
Therefore, for the calibration of the SOC estimated value SE and the estimation of the storage capacity estimation value CE of the battery 1, the calibration routine R2 in FIG. 8, the open-circuit voltage value adjustment subroutine (S20) in FIG. 9, and the storage capacity estimation in FIG. This will be described with reference to a subroutine (S30).

まず、較正ルーチンR2のステップS11では、車両100のプラグ付ケーブル195のプラグ195Pが、外部電源XVに挿入されたか否かを判別する(図8参照)。ここで、NO、即ちプラグ195Pが外部電源XVに挿入されていない場合、ステップS11を繰り返す。一方、YES、即ちプラグ195Pが外部電源XVに挿入された場合には、ステップS12に進む。   First, in step S11 of the calibration routine R2, it is determined whether or not the plug 195P of the cable with plug 195 of the vehicle 100 has been inserted into the external power source XV (see FIG. 8). Here, if NO, that is, if the plug 195P is not inserted into the external power source XV, step S11 is repeated. On the other hand, if YES, that is, if the plug 195P is inserted into the external power source XV, the process proceeds to step S12.

ステップS12では、電池1のSOC推定値SEを較正するタイミングが到来したか否かを判別する。較正するタイミングとしては、例えば、前回の較正(又は、電池1の使用開始時)から、3ヶ月、半年など一定の期間の経過した場合が挙げられる。また、前回の較正から、外部充電による充電回数が所定の回数を超えた場合が挙げられる。また、車検や定期点検などのタイミングが挙げられる。
ここで、NO、即ち、現時点は推定値SEを較正するタイミングでない場合、ステップS16に進み、プラグ付ケーブル195及びコンバータ150を用いて、外部電源XVの電力で電池1を充電する。一方、YES、即ち推定値SEを較正するタイミングである場合には、ステップS13に進む。
In step S12, it is determined whether or not it is time to calibrate the SOC estimated value SE of the battery 1. Examples of the calibration timing include a case where a certain period of time such as three months or half a year has passed since the previous calibration (or when the battery 1 is started to be used). Moreover, the case where the frequency | count of charge by external charge exceeded predetermined number from the last calibration is mentioned. There are also timings for vehicle inspections and periodic inspections.
Here, if NO, that is, if it is not the time to calibrate the estimated value SE at this time, the process proceeds to step S16, and the battery 1 is charged with the power of the external power source XV using the cable with plug 195 and the converter 150. On the other hand, if YES, that is, if it is time to calibrate the estimated value SE, the process proceeds to step S13.

一方、ステップS13では、前述した電圧センサ130を用いて、電池1の開放電圧値VOを検知する。そして、ステップS14では、前述した電圧センサ130で検知した開放電圧値VOが前述した不動点開放電圧値VA以下かどうかを判別する。ここで、NO、即ち開放電圧値VOが不動点開放電圧値VAよりも大きい場合には、ステップS16に進み、プラグ付ケーブル195及びコンバータ150を用いて、電池1を充電する。一方、YES、即ち開放電圧値VOが不動点開放電圧値VA以下の場合には、開放電圧値調整サブルーチン(S20)に進む。   On the other hand, in step S <b> 13, the open voltage value VO of the battery 1 is detected using the voltage sensor 130 described above. In step S14, it is determined whether or not the open circuit voltage value VO detected by the voltage sensor 130 is equal to or less than the fixed point open circuit voltage value VA. Here, if NO, that is, if the open-circuit voltage value VO is larger than the fixed-point open-circuit voltage value VA, the process proceeds to step S16, and the battery 1 is charged using the cable with plug 195 and the converter 150. On the other hand, if YES, that is, if the open circuit voltage value VO is equal to or less than the fixed point open circuit voltage value VA, the process proceeds to the open circuit voltage value adjustment subroutine (S20).

開放電圧値調整サブルーチン(S20)について、図9を参照しつつ説明する。
まず、ステップS21では、電池1の開放電圧値VOを検知する。そして、検知した開放電圧値VOが、前述した不動点開放電圧値VAに等しいか否かを判別する(ステップS22)。
ここで、YES、即ち開放電圧値VOが不動点開放電圧値VAに等しい場合、開放電圧値調整サブルーチンを終了し、較正ルーチンR2のステップS15に戻る。一方、NO、即ち開放電圧値VOが不動点開放電圧値VAとは異なる場合(つまり、開放電圧値VOが不動点開放電圧値VAよりも小さい場合)、ステップS23に進む。
The open-circuit voltage value adjustment subroutine (S20) will be described with reference to FIG.
First, in step S21, the open circuit voltage value VO of the battery 1 is detected. And it is discriminate | determined whether the detected open circuit voltage value VO is equal to the fixed point open circuit voltage value VA mentioned above (step S22).
If YES, that is, if the open-circuit voltage value VO is equal to the fixed-point open-circuit voltage value VA, the open-circuit voltage value adjustment subroutine is terminated and the process returns to step S15 of the calibration routine R2. On the other hand, if NO, that is, if the open voltage value VO is different from the fixed point open voltage value VA (that is, if the open voltage value VO is smaller than the fixed point open voltage value VA), the process proceeds to step S23.

ステップS23では、外部電源XVに接続したプラグ付ケーブル195及びコンバータ150を用いて、電池1にCP−CV充電を行う。即ち、電池1の電圧値Vが不動点開放電圧値VAになるまでは、一定電力で充電するCP充電を行う。そして、電圧値Vが不動点開放電圧値VAに到達したら、電圧値Vを不動点開放電圧値VAに保持しつつ、充電電流が0.01CとなるまでCV充電を行う。   In step S23, the battery 1 is subjected to CP-CV charging using the plugged cable 195 and the converter 150 connected to the external power source XV. That is, until the voltage value V of the battery 1 reaches the fixed point open voltage value VA, CP charging is performed with charging at a constant power. When the voltage value V reaches the fixed point open voltage value VA, CV charging is performed until the charging current reaches 0.01 C while holding the voltage value V at the fixed point open voltage value VA.

このCP−CV充電を行った後、ステップS21に戻り、開放電圧値VOを再び検知する。そして、ステップS22で、YES、即ち、検知した開放電圧値VOが不動点開放電圧値VAに等しいことを確認して、開放電圧値調整サブルーチンを終了し、較正ルーチンR2のステップS15に戻る。
一方、ステップS22で、仮に検知した開放電圧値VOが不動点開放電圧値VAとは異なる場合には、ステップS23に進み、再度、充電を行って、開放電圧値VOを調整する。
After performing this CP-CV charge, the process returns to step S21 to detect the open circuit voltage value VO again. In step S22, YES, that is, confirms that the detected open-circuit voltage value VO is equal to the fixed-point open-circuit voltage value VA, ends the open-circuit voltage value adjustment subroutine, and returns to step S15 of the calibration routine R2.
On the other hand, if the detected open-circuit voltage value VO is different from the fixed-point open-circuit voltage value VA in step S22, the process proceeds to step S23, and charging is performed again to adjust the open-circuit voltage value VO.

較正ルーチンR2のステップS15では、上述の開放電圧値調整サブルーチン(S20)で開放電圧値VOを不動点開放電圧値VAに調整した電池1についてSOC推定値SEを較正する(図8参照)。具体的には、前述のSOC推定ルーチンR1のステップS5で算出して得た現時点(開放電圧値VOが不動点開放電圧値VAとなっている時点)のSOC推定値SEを捨てて、不動点充電状態値SAに置換する。即ち、不動点充電状態値SAを新たなSOC推定値SEとして記憶する(SE=SA)。その後、蓄電容量推定サブルーチン(S30)に進む。   In step S15 of the calibration routine R2, the SOC estimated value SE is calibrated for the battery 1 in which the open-circuit voltage value VO is adjusted to the fixed-point open-circuit voltage value VA in the above-described open-circuit voltage value adjustment subroutine (S20) (see FIG. 8). Specifically, the SOC estimation value SE at the present time (when the open-circuit voltage value VO is the fixed-point open-circuit voltage value VA) obtained by calculation in step S5 of the aforementioned SOC estimation routine R1 is discarded, and the fixed point Replace with charge state value SA. That is, the fixed point charging state value SA is stored as a new SOC estimated value SE (SE = SA). Thereafter, the process proceeds to a storage capacity estimation subroutine (S30).

蓄電容量推定サブルーチン(S30)について、図10を参照しつつ説明する。
まず、ステップS31では、外部電源XVに接続したプラグ付ケーブル195及びコンバータ150を用いて、電池1に一定の電気量Qx(0.2Ah(SOC値Sで5%に相当))を充電する。なお、上述したように、この充電の直前の電池1は、前述の開放電圧値調整サブルーチンを終えた状態、つまり、開放電圧値VOが不動点開放電圧値VAに、SOC値Sが不動点充電状態値SAにそれぞれなっている状態である。
The storage capacity estimation subroutine (S30) will be described with reference to FIG.
First, in step S31, the battery 1 is charged with a certain amount of electricity Qx (0.2 Ah (corresponding to 5% in SOC value S)) using the plug-attached cable 195 and the converter 150 connected to the external power source XV. Note that, as described above, the battery 1 immediately before the charging is in a state where the open-circuit voltage value adjustment subroutine is completed, that is, the open-circuit voltage value VO is the fixed-point open-circuit voltage value VA and the SOC value S is the fixed-point charge. In this state, each of the state values is SA.

続いて、ステップS32では、電圧センサ130を用いて、充電後の電池1の開放電圧値VOを検知する。なお、検知した開放電圧値VOを充電後開放電圧値VXとする。   Subsequently, in step S <b> 32, the open voltage value VO of the battery 1 after charging is detected using the voltage sensor 130. The detected open-circuit voltage value VO is set as a post-charge open-circuit voltage value VX.

ステップS33では、電池1の開放電圧値VOの変化量ΔVを算出する。具体的には、検知した充電後開放電圧値VXから不動点開放電圧値VAを引いた差を算出する(ΔV=VX−VA)。
そして、ステップS34で、算出した変化量ΔVを電気量Qxで除して、電池1の値P(前述)を算出した(P=ΔV/Qx)。
In step S33, a change amount ΔV of the open circuit voltage value VO of the battery 1 is calculated. Specifically, the difference obtained by subtracting the fixed point open voltage value VA from the detected post-charge open voltage value VX is calculated (ΔV = VX−VA).
In step S34, the calculated change amount ΔV is divided by the amount of electricity Qx to calculate the value P (described above) of the battery 1 (P = ΔV / Qx).

次いで、ステップS35では、電池1の蓄電容量Cを推定する、即ち、現時点における電池1の蓄電容量推定値CEを取得する。
具体的には、PHV制御装置120に予め記憶させてあった、値Pと電池1の蓄電容量Cとの相関関係(前述した図6の近似式F)を表す値Pの関数F(P)を用い、ステップS34で算出した値Pから蓄電容量推定値CEを算出する。
その後、較正ルーチンR2のステップS16に戻る。
Next, in step S35, the storage capacity C of the battery 1 is estimated, that is, the current storage capacity estimation value CE of the battery 1 is acquired.
Specifically, the function F (P) of the value P representing the correlation (the approximate expression F in FIG. 6 described above) between the value P and the storage capacity C of the battery 1 stored in advance in the PHV control device 120. Is used to calculate the estimated storage capacity CE from the value P calculated in step S34.
Thereafter, the process returns to step S16 of the calibration routine R2.

ステップS16では、電池1の開放電圧値VOが上限電圧値VU(満充電)になるまで、外部電源XVを用いて電池1を充電する(図8参照)。充電後、較正ルーチンR2を終了する。   In step S16, the battery 1 is charged using the external power source XV until the open circuit voltage value VO of the battery 1 reaches the upper limit voltage value VU (full charge) (see FIG. 8). After charging, the calibration routine R2 ends.

なお、本実施形態では、SOC推定ルーチンR1を実行するPHV制御装置120(そのマイコン)がSOC推定値算出手段に、電圧センサ130が開放電圧検知手段に、開放電圧値サブルーチンS20を実行するPHV制御装置120が開放電圧値調整手段に、較正ルーチンR2のステップS15を実行するPHV制御装置120がSOC較正手段に、それぞれ対応する。
また、蓄電容量推定サブルーチンS30のステップS31を実行するPHV制御装置120、プラグ付ケーブル195及びコンバータ150が蓄電量変化手段に、ステップS34を実行するPHV制御装置120が算出手段に、ステップS35を実行するPHV制御装置120が蓄電容量推定手段に、それぞれ対応する。
In the present embodiment, the PHV control device 120 that executes the SOC estimation routine R1 (its microcomputer) is the SOC estimated value calculation means, the voltage sensor 130 is the open voltage detection means, and the PHV control that executes the open voltage value subroutine S20. The device 120 corresponds to the open-circuit voltage value adjusting means, and the PHV control device 120 that executes step S15 of the calibration routine R2 corresponds to the SOC calibration means.
Further, the PHV control device 120 that executes step S31 of the storage capacity estimation subroutine S30, the plug-attached cable 195, and the converter 150 execute the step S35, and the PHV control device 120 that executes step S34 performs the step S35. The PHV control device 120 that corresponds to the storage capacity estimation means.

また、本実施形態では、SOC推定ルーチンR1がSOC推定値算出段階に、開放電圧値サブルーチンS20が開放電圧値調整段階に、較正ルーチンR2のステップS15がSOC較正段階に、それぞれ対応する。
また、蓄電容量推定サブルーチンS30のステップS31が蓄電量変化段階に、ステップS34が算出手段に、ステップS35が蓄電容量推定手段に、それぞれ対応する。
In this embodiment, the SOC estimation routine R1 corresponds to the SOC estimated value calculation stage, the open circuit voltage value subroutine S20 corresponds to the open circuit voltage value adjustment stage, and step S15 of the calibration routine R2 corresponds to the SOC calibration stage.
Further, step S31 of the storage capacity estimation subroutine S30 corresponds to the storage amount change stage, step S34 corresponds to the calculation means, and step S35 corresponds to the storage capacity estimation means.

以上に説明したように、本実施形態にかかる電池制御装置M1は、前述した特性を有する電池1を制御する装置であり、この電池1のSOC推定値SEを不動点SOC値SAに較正するSOC較正手段(ステップS15を実行するPHV制御装置120)を備える。具体的には、電池1の開放電圧値VOを不動点開放電圧値VAとした場合に、現時点(開放電圧値VOが不動点開放電圧値VAとなっている時点)で得ているSOC推定値SEがどのような値であっても、現時点でのSOC推定値SEを不動点充電状態値SAに較正(置換)する。これにより、SOC推定値SEが有していた誤差を解消することができる。かくして、それ以降、より正確なSOC推定値SEを用いて適切に電池1の制御をすることができる。   As described above, the battery control device M1 according to the present embodiment is a device that controls the battery 1 having the above-described characteristics, and the SOC that calibrates the SOC estimated value SE of the battery 1 to the fixed point SOC value SA. Calibration means (PHV control device 120 for executing step S15) is provided. Specifically, when the open-circuit voltage value VO of the battery 1 is the fixed point open voltage value VA, the estimated SOC value obtained at the present time (when the open voltage value VO becomes the fixed point open voltage value VA). Regardless of the value of SE, the current SOC estimated value SE is calibrated (replaced) with the fixed point charge state value SA. Thereby, the error which SOC estimated value SE had can be eliminated. Thus, thereafter, the battery 1 can be appropriately controlled using a more accurate SOC estimated value SE.

また、電気量Qxを、相関関係が値Pから蓄電容量Cを一意に与える一価関数の関係(近似式F(値Pの関数F(P)))となる値にしている。これにより、蓄電容量推定手段(ステップS35を実行するPHV制御装置120)では、予め得ておいた値Pと蓄電容量Cとの相関関係(近似式F)に基づいて、値Pから当該時点における電池1の蓄電容量Cを一意に推定できる(即ち、蓄電容量推定値CEを算出できる)。これにより、電池1を下限電圧値VW及び上限電圧値VUとなるまで充放電して、実際に電池1の蓄電容量Cを測定することなく、現時点での(現状の劣化状況における)電池1の蓄電容量Cを容易に推定することができる。かくして、現時点における電池1の蓄電容量C、及び、直前に得た不動点SOC値SAに基づいて、電池1の劣化状況を反映した、電池1のSOC推定値SEと開放電圧値VOとの間の関係について正確に把握し直すことができる。さらに、SOC推定値SEを用いた、それ以降の電池1の制御を適切に行わせることができる。   Further, the electric quantity Qx is set to a value in which the correlation is a monovalent function relationship (approximation formula F (function F (P) of the value P)) that uniquely gives the storage capacity C from the value P. Thereby, in the storage capacity estimation means (PHV control device 120 that executes step S35), based on the correlation (approximation F) between the value P and the storage capacity C obtained in advance, the value P The storage capacity C of the battery 1 can be estimated uniquely (that is, the storage capacity estimated value CE can be calculated). As a result, the battery 1 is charged / discharged until the lower limit voltage value VW and the upper limit voltage value VU are reached, and the current storage capacity C of the battery 1 is not actually measured. The storage capacity C can be easily estimated. Thus, based on the current storage capacity C of the battery 1 and the fixed point SOC value SA obtained immediately before, between the SOC estimated value SE and the open-circuit voltage value VO of the battery 1 reflecting the deterioration state of the battery 1. It is possible to accurately grasp the relationship. Further, the subsequent control of the battery 1 using the SOC estimated value SE can be appropriately performed.

本実施形態にかかる電池1の制御方法は、劣化の程度がいずれの場合でも、SOC値Sと開放電圧値VOとの関係を示すグラフが特定の不動点Aを通過する特性を有する電池1について、SOC推定値SEを不動点充電状態値SAに較正するSOC較正段階(ステップS15)を備える。具体的には、電池1の開放電圧値VOを不動点開放電圧値VAとした場合に、現時点(開放電圧値VOが不動点開放電圧値VAとなっている時点)で得ているSOC推定値SEがどのような値であっても、現時点でのSOC推定値SEを不動点充電状態値SAに較正(置換)する。これにより、SOC推定値SEが有していた誤差を解消することができる。かくして、それ以降、より正確なSOC推定値SEを用いて適切に電池1の制御をすることができる。   The control method of the battery 1 according to the present embodiment is such that the graph showing the relationship between the SOC value S and the open circuit voltage value VO passes through a specific fixed point A regardless of the degree of deterioration. And an SOC calibration step (step S15) for calibrating the SOC estimated value SE to the fixed point charge state value SA. Specifically, when the open-circuit voltage value VO of the battery 1 is the fixed point open voltage value VA, the estimated SOC value obtained at the present time (when the open voltage value VO becomes the fixed point open voltage value VA). Regardless of the value of SE, the current SOC estimated value SE is calibrated (replaced) with the fixed point charge state value SA. Thereby, the error which SOC estimated value SE had can be eliminated. Thus, thereafter, the battery 1 can be appropriately controlled using a more accurate SOC estimated value SE.

また、電気量Qxを、相関関係が値Pから蓄電容量Cを一意に与える一価関数の関係(近似式F)となる値にしている。これにより、蓄電容量推定段階(ステップS35)では、予め得ておいた値Pと蓄電容量Cとの相関関係に基づいて、値Pから当該時点における電池1の蓄電容量Cを一意に推定できる(即ち、蓄電容量推定値CEを算出できる)。これにより、電池1を下限電圧値VW及び上限電圧値VUとなるまで充放電して、実際に電池1の蓄電容量Cを測定することなく、現時点での(現状の劣化状況における)電池1の蓄電容量Cを容易に推定することができる。かくして、現時点における電池1の蓄電容量C、及び、直前に得た不動点SOC値SEに基づいて、電池1の劣化状況を反映した、電池1のSOC推定値SEと開放電圧値VOとの間の関係について正確に把握し直すことができ、SOC推定値SEを用いたそれ以降の電池1の制御を適切に行わせることができる。   Further, the electric quantity Qx is set to a value in which the correlation is a monovalent function relationship (approximate expression F) that uniquely gives the storage capacity C from the value P. Thereby, in the storage capacity estimation stage (step S35), the storage capacity C of the battery 1 at the time point can be uniquely estimated from the value P based on the correlation between the value P and the storage capacity C obtained in advance ( That is, the storage capacity estimated value CE can be calculated). As a result, the battery 1 is charged / discharged until the lower limit voltage value VW and the upper limit voltage value VU are reached, and the current storage capacity C of the battery 1 is not actually measured. The storage capacity C can be easily estimated. Thus, based on the current storage capacity C of the battery 1 and the fixed point SOC value SE obtained immediately before, between the SOC estimated value SE of the battery 1 and the open-circuit voltage value VO reflecting the deterioration state of the battery 1. Therefore, the subsequent control of the battery 1 using the SOC estimated value SE can be appropriately performed.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、蓄電容量推定サブルーチン(S30)のステップS31では、電池1に一定の電気量Qxを充電する手法を示した。しかし、予め定めた一定の電気量Qxだけ蓄電量を変化させれば良く、電池1から一定の電気量Qxを放電させても良い。また、電池を、正極板にLi(Ni1/3Co1/3Mn1/3)O2からなる正極活物質粒子を含むものとしたが、これ以外のLi(NixCoyMn(1-x-y))O2や、LixCoO2(0<x≦1.0)やLixNiO2(0<x≦1.0)などの層状酸化物や、LiMn24等のスピネル系酸化物などの正極活物質粒子を用いることもできる。
また、実施形態の車両をプラグインハイブリッド電気自動車としたが、例えば、電気自動車や、ハイブリッド電気自動車としても良い。また、実施形態では、電池の開放電圧値を不動点開放電圧値に調整する形態として、開放電圧値が不動点開放電圧値よりも小さい電池について、充電することにより開放電圧値を調整する形態を示した。しかし、開放電圧値が不動点開放電圧値よりも大きい電池について、放電して開放電圧値を調整する形態としても良い。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, in step S31 of the storage capacity estimation subroutine (S30), a method of charging the battery 1 with a certain amount of electricity Qx is shown. However, it is only necessary to change the charged amount by a predetermined constant amount of electricity Qx, and the constant amount of electricity Qx may be discharged from the battery 1. Further, the battery includes positive electrode active material particles made of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 in the positive electrode plate, but other Li (Ni x Co y Mn (1 -xy) ) O 2 , layered oxides such as Li x CoO 2 (0 <x ≦ 1.0) and Li x NiO 2 (0 <x ≦ 1.0), and spinel systems such as LiMn 2 O 4 Positive electrode active material particles such as oxides can also be used.
Moreover, although the vehicle of the embodiment is a plug-in hybrid electric vehicle, for example, it may be an electric vehicle or a hybrid electric vehicle. Further, in the embodiment, as a mode for adjusting the open-circuit voltage value of the battery to the fixed point open-circuit voltage value, a mode for adjusting the open-circuit voltage value by charging a battery whose open-circuit voltage value is smaller than the fixed point open-circuit voltage value. Indicated. However, a battery in which the open-circuit voltage value is larger than the fixed-point open-circuit voltage value may be discharged to adjust the open-circuit voltage value.

1 リチウムイオン二次電池
20 正極板
22 正極活物質粒子
30 負極板
32 負極活物質粒子
120 プラグインハイブリッド自動車制御装置(SOC推定値算出手段,開放電圧値調整手段,SOC較正手段,蓄電量変化手段,算出手段,蓄電容量推定手段)
130 電圧センサ(開放電圧検知手段)
140 電流センサ
150 コンバータ(蓄電量変化手段)
195 プラグ付ケーブル(蓄電量変化手段)
A 不動点
C 蓄電容量
F 近似式(相関関係)
M1 電池制御装置(電池の制御装置)
P (開放電圧の値の変化量を一定の電気量Qxで除した)値
Q 電気量
QS 蓄電量
QS1 第1蓄電量
QS2 第2蓄電量
Qx 一定の電気量
S SOC値(充電状態の値)
SA 不動点SOC値(不動点充電状態値)
SE SOC推定値(充電状態の推定値)
VA 不動点開放電圧値
VO 開放電圧値(開放電圧の値)
VU 上限電圧値(第2電圧値)
VW 下限電圧値(第1電圧値)
ΔV (開放電圧の値の)変化量
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 20 Positive electrode plate 22 Positive electrode active material particle 30 Negative electrode plate 32 Negative electrode active material particle 120 Plug-in hybrid vehicle control apparatus (SOC estimated value calculation means, open-circuit voltage value adjustment means, SOC calibration means, storage amount change means , Calculation means, storage capacity estimation means)
130 Voltage sensor (open voltage detection means)
140 Current sensor 150 Converter (electric storage amount changing means)
195 Cable with plug (electric storage amount changing means)
A Fixed point C Storage capacity F Approximate expression (correlation)
M1 battery control device (battery control device)
P (change amount of open-circuit voltage value divided by constant amount of electricity Qx) value Q amount of electricity QS storage amount QS1 first storage amount QS2 second storage amount Qx constant amount of electricity S SOC value (value of charge state)
SA Fixed point SOC value (Fixed point charge state value)
SE SOC estimated value (estimated state of charge)
VA Fixed point open-circuit voltage value VO Open-circuit voltage value (open-circuit voltage value)
VU upper limit voltage value (second voltage value)
VW lower limit voltage value (first voltage value)
ΔV (open circuit voltage value) change

Claims (4)

正極板、及び、黒鉛からなる負極活物質粒子を含む負極板、を有するリチウムイオン二次電池について、
開放電圧の値が第1電圧値となったときの上記リチウムイオン二次電池の第1蓄電量QS1を充電状態(SOC)の値で0%とし、
上記開放電圧の値が第2電圧値となったときの上記リチウムイオン二次電池の第2蓄電量QS2を上記充電状態の値で100%としたとき、
上記リチウムイオン二次電池は、
自身の劣化の程度が異なると、上記充電状態の値と上記開放電圧の値との関係を示すグラフが互いに異なる曲線となるが、劣化の程度がいずれの場合でも、各グラフは特定の不動点Aを通過する特性を有するものであり、
上記不動点Aにおける上記開放電圧の値を不動点開放電圧値、上記不動点Aにおける上記充電状態の値を不動点充電状態値としたとき、
上記リチウムイオン二次電池の充電状態の推定値を逐次算出するSOC推定値算出手段と、
上記リチウムイオン二次電池の上記開放電圧の値を検知する開放電圧検知手段と、
上記リチウムイオン二次電池の上記開放電圧の値を、上記不動点開放電圧値に調整する開放電圧値調整手段と、
上記不動点開放電圧値とした上記リチウムイオン二次電池の上記充電状態の推定値を、上記不動点充電状態値に較正するSOC較正手段と、を備える
電池の制御装置。
About a lithium ion secondary battery having a positive electrode plate and a negative electrode plate containing negative electrode active material particles made of graphite,
The first storage amount QS1 of the lithium ion secondary battery when the value of the open-circuit voltage becomes the first voltage value is set to 0% in the state of charge (SOC),
When the second storage amount QS2 of the lithium ion secondary battery when the open circuit voltage value becomes the second voltage value is 100% as the value of the charged state,
The lithium ion secondary battery is
If the degree of deterioration is different, the graphs showing the relationship between the value of the charging state and the value of the open circuit voltage are different from each other, but each graph has a specific fixed point regardless of the degree of deterioration. Having a characteristic of passing through A,
When the value of the open voltage at the fixed point A is a fixed point open voltage value, and the value of the charged state at the fixed point A is a fixed point charged state value,
SOC estimated value calculating means for sequentially calculating an estimated value of the state of charge of the lithium ion secondary battery;
An open-circuit voltage detecting means for detecting the value of the open-circuit voltage of the lithium ion secondary battery;
An open-circuit voltage value adjusting means for adjusting the open-circuit voltage value of the lithium ion secondary battery to the fixed-point open-circuit voltage value;
A battery control device comprising: SOC calibration means for calibrating the estimated value of the state of charge of the lithium ion secondary battery as the fixed point open voltage value to the fixed point state of charge value.
請求項1に記載の電池の制御装置であって、
前記開放電圧の値を前記不動点開放電圧値に調整した前記リチウムイオン二次電池について、充電又は放電により、予め定めた一定の電気量Qxだけ蓄電量を変化させる蓄電量変化手段と、
上記蓄電量変化手段による上記蓄電量の変化に伴って生じた上記開放電圧の値の変化量を、上記電気量Qxで除した値Pを算出する算出手段と、
予め得ておいた、上記値Pと上記リチウムイオン二次電池の蓄電容量との相関関係に基づいて、上記値Pから当該時点における上記蓄電容量を推定する蓄電容量推定手段と、を備え、
上記電気量Qxは、
上記相関関係が、上記値Pから上記蓄電容量を一意に与える一価関数の関係となる電気量に選択されてなる
電池の制御装置。
The battery control device according to claim 1,
About the lithium ion secondary battery in which the value of the open-circuit voltage is adjusted to the fixed point open-circuit voltage value, the storage amount changing means for changing the storage amount by a predetermined constant amount of electricity Qx by charging or discharging;
Calculating means for calculating a value P obtained by dividing the amount of change in the open circuit voltage value caused by the change in the charged amount by the charged amount changing means by the amount of electricity Qx;
A storage capacity estimation means for estimating the storage capacity at the time point from the value P based on the correlation between the value P and the storage capacity of the lithium ion secondary battery obtained in advance;
The amount of electricity Qx is
A battery control device in which the correlation is selected from the value P to a quantity of electricity that is a monovalent function that uniquely gives the storage capacity.
正極板、及び、黒鉛からなる負極活物質粒子を含む負極板、を有するリチウムイオン二次電池について、
開放電圧の値が第1電圧値となったときの上記リチウムイオン二次電池の第1蓄電量QS1を充電状態(SOC)の値で0%とし、
上記開放電圧の値が第2電圧値となったときの上記リチウムイオン二次電池の第2蓄電量QS2を上記充電状態の値で100%としたとき、
上記リチウムイオン二次電池は、
自身の劣化の程度が異なると、上記充電状態の値と上記開放電圧の値との関係を示すグラフが互いに異なる曲線となるが、劣化の程度がいずれの場合でも、各グラフは特定の不動点Aを通過する特性を有するものであり、
上記不動点Aにおける上記開放電圧の値を不動点開放電圧値、上記不動点Aにおける上記充電状態の値を不動点充電状態値としたとき、
上記リチウムイオン二次電池の充電状態の推定値を逐次算出するSOC推定値算出段階と、
上記リチウムイオン二次電池の上記開放電圧の値を、上記不動点開放電圧値に調整する開放電圧値調整段階と、
上記開放電圧値調整段階で上記不動点開放電圧値としたときに、上記SOC推定値算出段階で算出した上記リチウムイオン二次電池の上記充電状態の推定値を、上記不動点充電状態値に較正するSOC較正段階と、を備える
電池の制御方法。
About a lithium ion secondary battery having a positive electrode plate and a negative electrode plate containing negative electrode active material particles made of graphite,
The first storage amount QS1 of the lithium ion secondary battery when the value of the open-circuit voltage becomes the first voltage value is set to 0% in the state of charge (SOC),
When the second storage amount QS2 of the lithium ion secondary battery when the open circuit voltage value becomes the second voltage value is 100% as the value of the charged state,
The lithium ion secondary battery is
If the degree of deterioration is different, the graphs showing the relationship between the value of the charging state and the value of the open circuit voltage are different from each other, but each graph has a specific fixed point regardless of the degree of deterioration. Having a characteristic of passing through A,
When the value of the open voltage at the fixed point A is a fixed point open voltage value, and the value of the charged state at the fixed point A is a fixed point charged state value,
SOC estimated value calculation stage for sequentially calculating an estimated value of the state of charge of the lithium ion secondary battery;
An open-circuit voltage value adjusting stage for adjusting the open-circuit voltage value of the lithium-ion secondary battery to the fixed-point open-circuit voltage value;
When the open-point voltage value is set to the fixed-point open-circuit voltage value in the open-circuit voltage value adjustment stage, the estimated charge state value of the lithium ion secondary battery calculated in the SOC estimated value calculation stage is calibrated to the fixed-point charge state value. And a SOC calibration step.
請求項3に記載の電池の制御方法であって、
前記開放電圧の値を前記不動点開放電圧値に調整した前記リチウムイオン二次電池について、充電又は放電により、予め定めた一定の電気量Qxだけ蓄電量を変化させる蓄電量変化段階と、
上記蓄電量変化段階において、上記蓄電量の変化に伴って生じた上記開放電圧の値の変化量を、上記電気量Qxで除した値Pを算出する算出段階と、
予め得ておいた、上記値Pと上記リチウムイオン二次電池の蓄電容量との相関関係に基づいて、上記算出段階で算出した上記値Pから当該時点における上記蓄電容量を推定する蓄電容量推定段階と、を備え、
上記電気量Qxは、
上記相関関係が、上記値Pから上記蓄電容量を一意に与える一価関数の関係となる電気量に選択されてなる
電池の制御方法。
The battery control method according to claim 3,
Regarding the lithium ion secondary battery in which the open-circuit voltage value is adjusted to the fixed-point open-circuit voltage value, a charge amount changing step of changing the charge amount by a predetermined constant amount of electricity Qx by charging or discharging;
A calculation step of calculating a value P obtained by dividing the amount of change in the value of the open-circuit voltage caused by the change in the amount of stored electricity by the amount of electricity Qx in the step of changing the amount of stored electricity;
A storage capacity estimation stage for estimating the storage capacity at the time point from the value P calculated in the calculation stage based on the correlation between the value P and the storage capacity of the lithium ion secondary battery obtained in advance. And comprising
The amount of electricity Qx is
A battery control method in which the correlation is selected from the value P to a quantity of electricity that is a monovalent function that uniquely gives the storage capacity.
JP2011240392A 2011-11-01 2011-11-01 Battery control device and battery control method Active JP5737138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240392A JP5737138B2 (en) 2011-11-01 2011-11-01 Battery control device and battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240392A JP5737138B2 (en) 2011-11-01 2011-11-01 Battery control device and battery control method

Publications (2)

Publication Number Publication Date
JP2013096861A JP2013096861A (en) 2013-05-20
JP5737138B2 true JP5737138B2 (en) 2015-06-17

Family

ID=48618936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240392A Active JP5737138B2 (en) 2011-11-01 2011-11-01 Battery control device and battery control method

Country Status (1)

Country Link
JP (1) JP5737138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808130A (en) * 2017-04-28 2018-11-13 通用汽车环球科技运作有限责任公司 The minimized lithium plating in lithium ion battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018608B1 (en) * 2014-03-17 2017-11-24 Commissariat Energie Atomique METHOD OF ESTIMATING THE HEALTH STATUS OF A BATTERY CELL
FR3018607B1 (en) * 2014-03-17 2017-11-24 Commissariat Energie Atomique METHOD OF ESTIMATING AND RECALING THE CHARGING STATE OF A BATTERY CELL
KR102032505B1 (en) * 2016-09-19 2019-10-15 주식회사 엘지화학 Apparatus and method for testing a battery
CN113109716B (en) * 2021-04-06 2022-08-23 江苏大学 Lithium battery SOP estimation method based on electrochemical model

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452529C (en) * 2004-03-18 2009-01-14 松下电器产业株式会社 Power system and its management method
JP5261828B2 (en) * 2009-05-12 2013-08-14 本田技研工業株式会社 Battery state estimation device
US9263773B2 (en) * 2010-01-19 2016-02-16 Gs Yuasa International Ltd. Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808130A (en) * 2017-04-28 2018-11-13 通用汽车环球科技运作有限责任公司 The minimized lithium plating in lithium ion battery

Also Published As

Publication number Publication date
JP2013096861A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5862836B2 (en) Battery system
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
US10254346B2 (en) SOC estimation device for secondary battery
US8274291B2 (en) Charged state estimating device and charged state estimating method of secondary battery
US10838011B2 (en) Method for estimating state of charge and on-vehicle battery system
US10859632B2 (en) Secondary battery system and SOC estimation method for secondary battery
US10281530B2 (en) Battery capacity measuring device and battery capacity measuring method
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
JP5419831B2 (en) Battery degradation degree estimation device
JP6668905B2 (en) Battery deterioration estimation device
US10677850B2 (en) State of charge estimation method and state of charge estimation apparatus
WO2003061054A1 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
JP5737138B2 (en) Battery control device and battery control method
JP5565276B2 (en) Method for correcting the amount of charge in a lithium ion battery
EP3145021A1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
WO2012042585A1 (en) Battery control system
JP2010066229A (en) Device and method for detecting failure of battery
JP2010019595A (en) Residual capacity calculating apparatus of storage device
JP2010217070A (en) Capacity estimation device and vehicle
US10794961B2 (en) Internal state estimating device
US11217832B2 (en) Power supply system
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP5673422B2 (en) Secondary battery charging system
JP5625282B2 (en) Battery deterioration determination device and battery deterioration determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151