JP5736900B2 - Reflective exposure mask - Google Patents

Reflective exposure mask Download PDF

Info

Publication number
JP5736900B2
JP5736900B2 JP2011075616A JP2011075616A JP5736900B2 JP 5736900 B2 JP5736900 B2 JP 5736900B2 JP 2011075616 A JP2011075616 A JP 2011075616A JP 2011075616 A JP2011075616 A JP 2011075616A JP 5736900 B2 JP5736900 B2 JP 5736900B2
Authority
JP
Japan
Prior art keywords
film
substrate
oxide
multilayer reflective
oxynitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011075616A
Other languages
Japanese (ja)
Other versions
JP2012208415A (en
Inventor
陽 坂田
陽 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2011075616A priority Critical patent/JP5736900B2/en
Publication of JP2012208415A publication Critical patent/JP2012208415A/en
Application granted granted Critical
Publication of JP5736900B2 publication Critical patent/JP5736900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、反射型露光用マスクに関する。   The present invention relates to a reflective exposure mask.

半導体デバイスの製造プロセスにおいては、半導体デバイスの微細化に伴い、フォトリソグラフィ技術の微細化に対する要求が高まっている。既に、リソグラフィの露光も従来の波長が193nmのArFエキシマレーザー光を用いた露光から、波長が13.5nmのEUV(Extreme Ultra Violet:極端紫外線)領域の光を用いた露光に置き換わりつつある。   In the manufacturing process of semiconductor devices, with the miniaturization of semiconductor devices, there is an increasing demand for miniaturization of photolithography technology. Already, lithography exposure has been replaced by exposure using EUV (Extreme Ultra Violet) light having a wavelength of 13.5 nm, instead of conventional exposure using ArF excimer laser light having a wavelength of 193 nm.

EUV露光用のマスク(EUVマスク)は、EUV領域の光に対してほとんどの物質が高い光吸収性をもつために、従来の透過型のマスクとは異なり、反射型のマスクである(例えば、特許文献1参照)。特許文献1には、ガラス基板上にモリブデン(Mo)層及びシリコン(Si)層を交互に積層して多層膜からなる光反射膜を形成し、その上に、タンタル(Ta)を主成分とする光吸収体により、パターンを形成する技術が開示されている。   A mask for EUV exposure (EUV mask) is a reflection type mask unlike a conventional transmission type mask because most substances have high light absorption with respect to light in the EUV region (for example, Patent Document 1). In Patent Document 1, a molybdenum (Mo) layer and a silicon (Si) layer are alternately laminated on a glass substrate to form a light reflection film composed of a multilayer film, and tantalum (Ta) is a main component on the light reflection film. A technique for forming a pattern using a light absorber is disclosed.

また、EUV光は、前記の通り、光の透過を利用する屈折光学系を使用できないことから、露光機の光学系も反射型となる。このため、透過型のビームスプリッターを利用した偏向が不可能である。従って、反射型マスクでは、マスクへの入射光と反射光が同軸上に設計できないという欠点があった。ここで、EUVマスクは、6度程度光軸を傾けてマスクへ入射した光の反射光を半導体基板に導く手法が採用されている。この手法では、光軸を傾斜することから、マスクパターンに対する光の入射方向に依存して半導体基板上でマスクの配線パターンがマスクパターンとは異なる線幅となる射影効果と呼ばれる問題が指摘されている。
そこで、この射影効果を抑制ないし軽減するためにマスクパターンを形成している吸収膜の膜厚を薄膜化する提案がなされている。
Further, as described above, since EUV light cannot use a refractive optical system that utilizes light transmission, the optical system of the exposure machine is also of a reflective type. For this reason, deflection using a transmissive beam splitter is impossible. Therefore, the reflective mask has a drawback that the incident light to the mask and the reflected light cannot be designed on the same axis. Here, the EUV mask employs a technique in which the reflected light of the light incident on the mask is guided to the semiconductor substrate with the optical axis inclined by about 6 degrees. In this method, since the optical axis is inclined, a problem called a projection effect is pointed out in which the wiring pattern of the mask on the semiconductor substrate has a line width different from that of the mask pattern depending on the incident direction of light with respect to the mask pattern. Yes.
Therefore, in order to suppress or reduce this projection effect, proposals have been made to reduce the thickness of the absorption film forming the mask pattern.

この薄膜化の手法では、EUV光を吸収するのに必要な光の減衰量が不足する。このため、半導体基板への反射光が増加し、半導体基板上に塗布されたレジスト膜を感光させてしまうという問題が発生する。また、半導体基板では、チップを多面付で露光するために、隣接するチップにおいてはその境界領域において多重露光が発生する。さらに、EUV光源は、13.5nmにその放射スペクトルのピークを有するが、アウトオブバンド(Out of Band)と呼ばれる13.5nm帯以外の真空紫外線から近赤外線領域の光も放射することが知られている。このアウトオブバンドは本来不必要なものであり、これは半導体基板に塗布されたレジストを感光してしまうことから、フィルターなどで除去すべき不要な光である。   This thinning method lacks the amount of light attenuation necessary to absorb EUV light. For this reason, the reflected light to a semiconductor substrate increases and the problem that the resist film apply | coated on the semiconductor substrate will be exposed generate | occur | produces. Further, in the semiconductor substrate, in order to expose the chips with multiple surfaces, multiple exposure occurs in the boundary region between adjacent chips. Furthermore, although the EUV light source has a peak of its emission spectrum at 13.5 nm, it is known to emit light in the near infrared region from vacuum ultraviolet rays other than the 13.5 nm band called “Out of Band”. ing. This out-of-band is unnecessary in nature, and this is unnecessary light that should be removed by a filter or the like because the resist applied to the semiconductor substrate is exposed to light.

しかしながら、タンタル(Ta)を用いた光吸収膜は、真空紫外線から遠紫外線(Deep Ultra Violet:遠紫外線)領域の光も反射することから、上述の通り、隣接したチップの境界領域近傍の半導体配線部分において無視できない光量が積算され、配線パターンの寸法に影響を与えるという問題が発生する。   However, since the light absorption film using tantalum (Ta) reflects light in the vacuum ultraviolet to deep ultraviolet (Deep Ultra Violet) region, as described above, the semiconductor wiring in the vicinity of the boundary region between adjacent chips. A problem arises in that the amount of light that cannot be ignored is integrated in the portion, which affects the dimensions of the wiring pattern.

特開2007−273651号公報JP 2007-273651 A

本発明は、上記課題を解決するためになされたもので、その目的とするところは、半導体基板で多重露光されるチップの境界領域に相応するマスク領域からEUVおよびDUVの反射を除去した反射型露光用マスクを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reflection type in which EUV and DUV reflections are removed from a mask region corresponding to a boundary region of a chip that is subjected to multiple exposure on a semiconductor substrate. An object is to provide an exposure mask.

本発明に従った反射型露光用マスクは、
基板と、
該基板上に形成された露光光を反射する多層反射膜と、
該多層反射膜上に形成された多層反射膜を保護する保護膜と、
該保護膜上に形成された露光光を吸収する吸収膜と、
該基板の多層反射膜とは反対面上に形成された裏面導電膜を有した、
波長5から15nmの光を露光光とするリソグラフィで用いられる反射型露光用マスクであって、
前記基板は石英(SiO)を主成分とし、酸化チタン(TiO)を含む材料で形成され、
前記多層反射膜は前記基板上にモリブデン(Mo)を材料とする層と珪素(Si)を材料とする層とが重ねられた層が複数重ねられることで構成された多層構造で形成され、
前記保護膜は前記多層反射膜上に形成され、単層構造もしくは積層構造となっており、ルテニウム(Ru)またはシリコン(Si)のいずれかを含む材料で形成され、積層構造の場合はその最上層がルテニウム(Ru)の酸化物、窒化物、酸窒化物や珪素(Si)の酸化物、窒化物、酸窒化物のいずれかを含む材料で形成され、
前記吸収膜は、前記保護膜上に形成され、単層構造もしくは積層構造となっており、タンタル(Ta)及びその酸化物、窒化物、酸窒化物のいずれかを含む材料で形成され、積層構造の場合はその最上層がタンタル(Ta)の酸化物、窒化物、酸窒化物や珪素(Si)の酸化物、窒化物、酸窒化物のいずれかを含む材料で形成され、
前記基板の多層反射膜とは反対面上に形成された裏面導電膜は、単層構造もしくは積層構造となっており、クロム(Cr)またはタンタル(Ta)のいずれかの金属もしくはその酸化物、窒化物、酸窒化物で形成され、積層構造の場合はその基板側の層はクロム(Cr)またはタンタル(Ta)のいずれかの金属もしくはその酸化物、窒化物、酸窒化物、または酸化珪素(SiOx)のいずれかを含む材料で形成されている。
A reflective exposure mask according to the present invention comprises:
A substrate,
A multilayer reflective film that reflects exposure light formed on the substrate;
A protective film for protecting the multilayer reflective film formed on the multilayer reflective film;
An absorption film that absorbs exposure light formed on the protective film;
Having a back conductive film formed on the surface opposite to the multilayer reflective film of the substrate,
The wavelength 5 A reflective exposure mask used in lithography for the light of 15nm is used as the exposure light beam,
The substrate is made of a material containing quartz (SiO 2 ) as a main component and titanium oxide (TiO 2 ),
The multilayer reflective film is formed in a multilayer structure formed by stacking a plurality of layers in which a layer made of molybdenum (Mo) and a layer made of silicon (Si) are stacked on the substrate,
The protective film is formed on the multilayer reflective film and has a single layer structure or a laminated structure, and is formed of a material containing either ruthenium (Ru) or silicon (Si). The upper layer is formed of a material containing any of ruthenium (Ru) oxide, nitride, oxynitride and silicon (Si) oxide, nitride, oxynitride,
The absorption film is formed on the protective film and has a single-layer structure or a multilayer structure, and is formed of a material including tantalum (Ta) and its oxide, nitride, or oxynitride, and is laminated. In the case of the structure, the uppermost layer is formed of a material containing any of tantalum (Ta) oxide, nitride, oxynitride or silicon (Si) oxide, nitride, oxynitride,
The back conductive film formed on the surface opposite to the multilayer reflective film of the substrate has a single layer structure or a laminated structure, and is either a metal of chromium (Cr) or tantalum (Ta) or an oxide thereof, It is formed of nitride or oxynitride, and in the case of a laminated structure, the layer on the substrate side is either chromium (Cr) or tantalum (Ta) metal or its oxide, nitride, oxynitride, or silicon oxide that is formed of a material containing either (SiOx).

本発明に従った反射型露光用マスクはさらに、前記吸収膜を選択的に除去することで回路パターンが形成され、前記回路パターンを除く前記回路パターンの周囲の部分に、前記吸収膜と前記保護膜と前記多層反射膜とを選択的に除去した枠状の領域が形成され、前記基板に対して対向位置の裏面導電膜の一部が前記枠状の領域と同形状を選択的に除去した枠状の領域が形成されることを特徴とする。 In the reflective exposure mask according to the present invention, a circuit pattern is formed by selectively removing the absorption film, and the absorption film and the protection are formed around the circuit pattern excluding the circuit pattern. A frame-like region is formed by selectively removing the film and the multilayer reflective film, and a part of the back surface conductive film at a position facing the substrate is selectively removed from the same shape as the frame-like region. it characterized in that the frame-like region is formed.

本発明によれば、EUVおよびDUVの反射を除去する手段として、半導体基板で多重露光されるチップの境界領域に相応するマスク領域の吸収層、保護層および多層反射膜の一部を選択的に除去して枠状の領域を形成し、また、基板に対して対向位置の裏面導電膜の一部を除去し、前記枠状の領域と略同形状の枠状領域を形成することを特徴とするフォトマスクを提供できる。   According to the present invention, as a means for removing EUV and DUV reflections, a part of the absorption layer, the protective layer, and the multilayer reflective film in the mask region corresponding to the boundary region of the chip that is multiple-exposed on the semiconductor substrate is selectively used. Forming a frame-shaped region by removing a part of the back surface conductive film at a position facing the substrate to form a frame-shaped region having substantially the same shape as the frame-shaped region; A photomask can be provided.

本発明の実施例の反射型露光用マスクの為のマスクブランクスを説明する断面図。Sectional drawing explaining the mask blank for the reflection type exposure mask of the Example of this invention. 本発明の実施例の反射型露光用マスクを説明する平面図。The top view explaining the reflective mask for the Example of this invention. 本発明の実施例の反射型露光用マスクの製造方法を説明する工程図。Process drawing explaining the manufacturing method of the reflective exposure mask of the Example of this invention. 本発明の実施例の反射型露光用マスクの製造方法の各工程での断面図。Sectional drawing in each process of the manufacturing method of the reflective exposure mask of the Example of this invention. 本発明の実施例の反射型露光用マスクの製造方法の各工程での断面図。Sectional drawing in each process of the manufacturing method of the reflective exposure mask of the Example of this invention. 本発明の実施例の反射型露光用マスクの製造方法の各工程での断面図。Sectional drawing in each process of the manufacturing method of the reflective exposure mask of the Example of this invention. 本発明の実施例の反射型露光用マスクの製造方法を説明する工程図。Process drawing explaining the manufacturing method of the reflective exposure mask of the Example of this invention.

以下、図面を参照しつつ、本発明の実施形態について説明する。本発明ではその説明のため、膜と記載しているが、膜を層と理解してもよい。
先ず、本発明の実施形態について図1を参照して説明する。図1は、反射型露光用マスクの為のマスクブランクス10の断面図である。より具体的には、EUV光を用いた露光に使用するマスク用のブランクスである。EUV光の波長は、例えば13.5nmである。
基板11の一面上に、多層反射膜12、保護膜13、吸収膜14を、この順に形成する。基板11の、多層反射膜12とは反対側面には裏面導電膜15を積層して形成する。多層反射膜12、保護膜13、吸収膜14及び裏面導電膜15は、公知のスパッタリング法を用いて形成することができる。吸収膜14は、図1(a)で示す単層14aの場合と、図1(b)で示す積層14bの場合がある。また、裏面導電膜15についても図1(a)で示す単層15aの場合と図1(b)で示す積層15bの場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present invention, a film is described for the purpose of explanation, but the film may be understood as a layer.
First, it will be described with reference to FIG. 1 for the implementation of the invention. FIG. 1 is a cross-sectional view of a mask blank 10 for a reflective exposure mask. More specifically, mask blanks used for exposure using EUV light. The wavelength of EUV light is, for example, 13.5 nm.
On one surface of the substrate 11, a multilayer reflective film 12, a protective film 13, and an absorption film 14 are formed in this order. A back surface conductive film 15 is laminated on the side surface of the substrate 11 opposite to the multilayer reflective film 12. The multilayer reflective film 12, the protective film 13, the absorption film 14, and the back surface conductive film 15 can be formed using a known sputtering method. The absorption film 14 may be a single layer 14a shown in FIG. 1A or a stacked layer 14b shown in FIG. Also, the back conductive film 15 may be a single layer 15a shown in FIG. 1 (a) or a laminated layer 15b shown in FIG. 1 (b).

次に、本発明の実施形態について、図2を参照して説明する。図2は、図1で示したマスクブランクス10を用いた反射型露光用マスク100であって、図2(a)はその反射型露光用マスク100の平面図、図2(b)はその反射型露光用マスク100の断面図である。
この図2(a)(b)に示すように、回路パターンAの領域の外側に位置して、吸収膜14、保護膜13及び多層反射膜12の一部にわたり遮光枠領域Bを形成した構造である。また、裏面導電膜15には上記遮光枠領域Bに対向して一部重なる遮光枠領域Cを形成する。この遮光枠領域Cは遮光枠領域B以上の幅で形成する。
Next, the implementation form of the present invention will be described with reference to FIG. Figure 2 is a reflective exposure mask 100 using the mask blank 10 shown in FIG. 1, FIG. 2 (a) is a plan view of the reflective exposure mask 100, FIG. 2 (b) thereof It is sectional drawing of the mask 100 for reflection type exposure .
As shown in FIGS. 2A and 2B, a structure in which a light shielding frame region B is formed over a part of the absorption film 14, the protective film 13, and the multilayer reflective film 12 is located outside the region of the circuit pattern A. It is. Further, a light shielding frame region C that partially overlaps the light shielding frame region B is formed on the back surface conductive film 15. The light shielding frame region C is formed with a width equal to or larger than the light shielding frame region B.

次に、本マスクの製造方法を図3乃至図6に示す。ここで、図3は工程のステップを示し、図4乃至図6は各工程での加工状態の断面図を示す。
まず、図1のマスクブランクス10を用意し、吸収膜14に回路パターンAと領域Bを形成する。つまり、電子線に反応を示す化学増幅系や非化学増幅系レジスト21を吸収膜14に塗布し(S1)、所定の回路パターンAと遮光枠領域Bを描画する(S2)、その後に、アルカリ溶液などで現像を行い(S3)、これにより形成したレジスト21のパターンをマスクにして、フッ素系ガスや塩素系ガスを用いたガスプラズマによるエッチングを行い(S4)、不要なレジスト21のパターンを酸素プラズマによる灰化や硫酸やオゾン水などの酸化薬液による分解ないしは有機溶剤などで溶解除去する(S5)。その後、必要に応じて、酸・アルカリ系薬品やオゾンガスや水素ガスなどを溶解した超純水や有機アルカリ系薬品、界面活性剤などによる洗浄処理(S6)と、遠心力を利用したスピン乾燥(S7)を行う。
以上の工程により回路パターンAと遮光枠領域Bが形成される。
Next, the manufacturing method of this mask is shown in FIGS. Here, FIG. 3 shows the steps of the process, and FIGS. 4 to 6 show cross-sectional views of the processed state in each process.
First, the mask blank 10 of FIG. 1 is prepared, and the circuit pattern A and the region B are formed in the absorption film 14. That is, a chemical amplification system or non-chemical amplification system resist 21 that reacts to an electron beam is applied to the absorption film 14 (S1), a predetermined circuit pattern A and a light shielding frame region B are drawn (S2), and then an alkali Development is performed with a solution or the like (S3). Using the resist 21 pattern formed thereby as a mask, etching with gas plasma using fluorine-based gas or chlorine-based gas is performed (S4), and an unnecessary resist 21 pattern is formed. Ashing with oxygen plasma, decomposition with an oxidizing chemical such as sulfuric acid or ozone water, or dissolution and removal with an organic solvent (S5). Then, if necessary, cleaning treatment (S6) with ultrapure water, organic alkaline chemicals, surfactants, etc. in which acid / alkaline chemicals, ozone gas, hydrogen gas, etc. are dissolved, and spin drying using centrifugal force ( S7) is performed.
The circuit pattern A and the light shielding frame region B are formed by the above process.

次に、遮光枠領域Bの保護膜13と多層反射膜12の部分を形成する。まず、上記のマスクに紫外線または電子線に反応を示すレジスト21を塗布する(S8)。この後、遮光枠領域Bを露光または電子線で描画する(S9)。前記同様、現像(S10)、エッチング(S11)、レジストの除去(S12)、洗浄(S13)、乾燥(S14)を行い、領域Bを完成する。エッチング工程(S11)では、まず、保護膜13の除去を、フッ素系ガスプラズマを用い、多層反射膜12は保護膜13と同じくフッ素系ガスプラズマもしくは塩素ガス系プラズマを交互に用いる方法で行ない、遮光枠領域Bを形成する。   Next, the protective film 13 and the multilayer reflective film 12 in the light shielding frame region B are formed. First, a resist 21 that reacts to ultraviolet rays or electron beams is applied to the mask (S8). Thereafter, the light shielding frame region B is drawn by exposure or electron beam (S9). As described above, development (S10), etching (S11), resist removal (S12), cleaning (S13), and drying (S14) are performed to complete region B. In the etching step (S11), first, the protective film 13 is removed by using a fluorine-based gas plasma, and the multilayer reflective film 12 is subjected to a method of alternately using fluorine-based gas plasma or chlorine gas-based plasma like the protective film 13, A light shielding frame region B is formed.

これに引き続き、裏面導電膜15上に紫外線または電子線に反応を示すレジスト21を塗布する(S15)。
次に、遮光枠領域Cを露光または電子線で描画する(S16)。前記と同じく現像(S17)、エッチング(S18)、レジストの除去(S19)、洗浄(S20)、乾燥(S21)を行い、遮光枠領域Cを完成させる。
以上の工程により反射型露光用マスク100が完成する。
Subsequently, a resist 21 that reacts to ultraviolet rays or electron beams is applied on the back conductive film 15 (S15).
Next, the light shielding frame region C is drawn by exposure or electron beam (S16). Development (S17), etching (S18), resist removal (S19), cleaning (S20), and drying (S21) are performed as described above to complete the light shielding frame region C.
The reflective exposure mask 100 is completed through the above steps.

遮光枠領域Bの形成だけでは基板11を一旦透過して裏面導電膜15から反射して再度戻ってくる光成分を除去しきれない。しかし、本発明では、裏面導電膜を単層型もしくは積層型とし、基板11側をアウトオブバンド光に対する反射防止膜としているが、裏面導電膜15にさらに遮光枠領域Cを設けることにより、アウトオブバンド光が半導体基板側に導かれず、半導体基板上に塗布されたレジストの感光を避けることが可能となった。   The formation of the light shielding frame region B alone cannot remove the light component that once passes through the substrate 11 and is reflected from the back conductive film 15 and returns again. However, in the present invention, the back surface conductive film is a single layer type or a laminated type, and the substrate 11 side is an antireflection film for out-of-band light. However, by providing a light shielding frame region C on the back surface conductive film 15, Since the out-of-band light is not guided to the semiconductor substrate side, it is possible to avoid the exposure of the resist applied on the semiconductor substrate.

本発明の別の実施形態について図7を引用して説明する。前記実施形態では回路パターンAの形成後に遮光枠領域B,Cを形成したが、必ずしも、この順番である必要はない。本実施例では、遮光枠領域Cを最初に形成し、次に、領域Aを、その次に遮光枠領域Bを形成する工程を示す。これらの工程を説明する図面は図4乃至図6を引用し、図7にその工程フローを示す。各工程の説明は図4乃至図6の場合と同じであるために省略する。   Another embodiment of the present invention will be described with reference to FIG. In the above embodiment, the light shielding frame regions B and C are formed after the circuit pattern A is formed, but it is not always necessary to use this order. In this embodiment, a process of forming the light shielding frame region C first, then forming the region A, and then forming the light shielding frame region B is shown. FIGS. 4 to 6 are referred to in the drawings for explaining these processes, and the process flow is shown in FIG. The description of each step is the same as in the case of FIGS.

本発明は前記実施形態そのままに限定されるものでなく、本発明の要旨を逸脱しない限り、変形して具体化できる。また、明細書に示される事項の適宜の組み合わせによって種々の発明を想定できるものである。   The present invention is not limited to the above embodiments as they are, and can be modified and embodied without departing from the gist of the present invention. Various inventions can be envisaged by appropriately combining the matters shown in the specification.

10 スクブランクス
11 基板
12 多層反射膜
13 保護膜
14a 吸収膜
14b 吸収膜
15a 裏面導電膜
15b 裏面導電膜
21 レジスト(パターン)
100 反射型露光用マスク
10 mask blank 11 substrate 12 multilayer reflective film 13 protective film 14a absorbing film 14b absorbing film 15a backside conductive layer 15b back surface conductive film 21 resist (pattern)
100 Reflective exposure mask

Claims (2)

基板と、
該基板上に形成された露光光を反射する多層反射膜と、
該多層反射膜上に形成された多層反射膜を保護する保護膜と、
該保護膜上に形成された露光光を吸収する吸収膜と、
該基板の多層反射膜とは反対面上に形成された裏面導電膜を有した、
波長5から15nmの光を露光光とするリソグラフィで用いられる反射型露光用マスクであって、
前記基板は石英(SiO)を主成分とし、酸化チタン(TiO)を含む材料で形成され、
前記多層反射膜は前記基板上にモリブデン(Mo)を材料とする層と珪素(Si)を材料とする層とが重ねられた層が複数重ねられることで構成された多層構造で形成され、
前記保護膜は前記多層反射膜上に形成され、単層構造もしくは積層構造となっており、ルテニウム(Ru)またはシリコン(Si)のいずれかを含む材料で形成され、積層構造の場合はその最上層がルテニウム(Ru)の酸化物、窒化物、酸窒化物や珪素(Si)の酸化物、窒化物、酸窒化物のいずれかを含む材料で形成され、
前記吸収膜は、前記保護膜上に形成され、単層構造もしくは積層構造となっており、タンタル(Ta)及びその酸化物、窒化物、酸窒化物のいずれかを含む材料で形成され、積層構造の場合はその最上層がタンタル(Ta)の酸化物、窒化物、酸窒化物や珪素(Si)の酸化物、窒化物、酸窒化物のいずれかを含む材料で形成され、
前記基板の多層反射膜とは反対面上に形成された裏面導電膜は、単層構造もしくは積層構造となっており、クロム(Cr)またはタンタル(Ta)のいずれかの金属もしくはその酸化物、窒化物、酸窒化物で形成され、積層構造の場合はその基板側の層はクロム(Cr)またはタンタル(Ta)のいずれかの金属もしくはその酸化物、窒化物、酸窒化物、または酸化珪素(SiOx)のいずれかを含む材料で形成され、
前記吸収膜を選択的に除去することで回路パターンが形成され、前記回路パターンを除く前記回路パターンの周囲の部分に、前記吸収膜と前記保護膜と前記多層反射膜とを選択的に除去した枠状の領域が形成され、前記基板に対して対向位置の裏面導電膜の一部が前記枠状の領域と同形状を選択的に除去した枠状の領域が形成されることを特徴とする反射型露光用マスク。
A substrate,
A multilayer reflective film that reflects exposure light formed on the substrate;
A protective film for protecting the multilayer reflective film formed on the multilayer reflective film;
An absorption film that absorbs exposure light formed on the protective film;
Having a back conductive film formed on the surface opposite to the multilayer reflective film of the substrate,
The wavelength 5 a reflective exposure mask used in lithography for the light of 15nm is used as the exposure light beam,
The substrate is made of a material containing quartz (SiO 2 ) as a main component and titanium oxide (TiO 2 ),
The multilayer reflective film is formed in a multilayer structure formed by stacking a plurality of layers in which a layer made of molybdenum (Mo) and a layer made of silicon (Si) are stacked on the substrate,
The protective film is formed on the multilayer reflective film and has a single layer structure or a laminated structure, and is formed of a material containing either ruthenium (Ru) or silicon (Si). The upper layer is formed of a material containing any of ruthenium (Ru) oxide, nitride, oxynitride and silicon (Si) oxide, nitride, oxynitride,
The absorption film is formed on the protective film and has a single-layer structure or a multilayer structure, and is formed of a material including tantalum (Ta) and its oxide, nitride, or oxynitride, and is laminated. In the case of the structure, the uppermost layer is formed of a material containing any of tantalum (Ta) oxide, nitride, oxynitride or silicon (Si) oxide, nitride, oxynitride,
The back conductive film formed on the surface opposite to the multilayer reflective film of the substrate has a single layer structure or a laminated structure, and is either a metal of chromium (Cr) or tantalum (Ta) or an oxide thereof, It is formed of nitride or oxynitride, and in the case of a laminated structure, the layer on the substrate side is either chromium (Cr) or tantalum (Ta) metal or its oxide, nitride, oxynitride, or silicon oxide Formed of a material containing any of (SiOx) ,
A circuit pattern is formed by selectively removing the absorption film, and the absorption film, the protective film, and the multilayer reflective film are selectively removed in a portion around the circuit pattern excluding the circuit pattern. A frame-like region is formed, and a frame-like region is formed by selectively removing the same shape as the frame-like region from a part of the back surface conductive film at a position opposed to the substrate. Reflective exposure mask.
前記裏面導電膜の一部を選択的に除去した前記枠状の領域が、前記吸収膜と前記保護膜と前記多層反射膜とを選択的に除去した前記枠状の領域以上の幅で形成されている、ことを特徴とする請求項1に記載の反射型露光用マスク。The frame-shaped region in which a part of the back surface conductive film is selectively removed is formed with a width equal to or larger than the frame-shaped region in which the absorption film, the protective film, and the multilayer reflective film are selectively removed. The reflective exposure mask according to claim 1, wherein the mask is a reflective exposure mask.
JP2011075616A 2011-03-30 2011-03-30 Reflective exposure mask Expired - Fee Related JP5736900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075616A JP5736900B2 (en) 2011-03-30 2011-03-30 Reflective exposure mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075616A JP5736900B2 (en) 2011-03-30 2011-03-30 Reflective exposure mask

Publications (2)

Publication Number Publication Date
JP2012208415A JP2012208415A (en) 2012-10-25
JP5736900B2 true JP5736900B2 (en) 2015-06-17

Family

ID=47188189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075616A Expired - Fee Related JP5736900B2 (en) 2011-03-30 2011-03-30 Reflective exposure mask

Country Status (1)

Country Link
JP (1) JP5736900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754592B2 (en) * 2011-08-25 2015-07-29 凸版印刷株式会社 Reflective mask manufacturing method and reflective mask
JP5881633B2 (en) * 2013-02-28 2016-03-09 株式会社東芝 Light-reflective photomask for EUV exposure, mask blank, and method for manufacturing semiconductor device
JP6171490B2 (en) * 2013-03-29 2017-08-02 凸版印刷株式会社 Manufacturing method of mask for EUV exposure
JP6225478B2 (en) * 2013-05-20 2017-11-08 凸版印刷株式会社 Reflective mask
EP3043375B1 (en) * 2013-09-06 2023-10-11 Toppan Photomask Co., Ltd. Reflective photomask and production method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035516B2 (en) * 2005-12-08 2012-09-26 信越化学工業株式会社 Method for producing titania-doped quartz glass for photomask
JP4946136B2 (en) * 2006-03-31 2012-06-06 凸版印刷株式会社 Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, and pattern transfer method
JP4602430B2 (en) * 2008-03-03 2010-12-22 株式会社東芝 Reflective mask and manufacturing method thereof
JP5045498B2 (en) * 2008-03-04 2012-10-10 凸版印刷株式会社 Method and apparatus for detecting end point of dry etching
JP4663749B2 (en) * 2008-03-11 2011-04-06 大日本印刷株式会社 Inspection method and manufacturing method of reflective mask
JP5304097B2 (en) * 2008-08-18 2013-10-02 凸版印刷株式会社 Reflective photomask, gripping apparatus, and exposure apparatus
JP5239762B2 (en) * 2008-11-13 2013-07-17 大日本印刷株式会社 Reflective mask and reflective mask manufacturing method
JP5381441B2 (en) * 2009-07-16 2014-01-08 旭硝子株式会社 Method for manufacturing a reflective mask blank for EUV lithography
JP5772135B2 (en) * 2011-03-28 2015-09-02 凸版印刷株式会社 Reflective mask blank and reflective mask

Also Published As

Publication number Publication date
JP2012208415A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5772135B2 (en) Reflective mask blank and reflective mask
KR101596177B1 (en) Reflective mask and method for manufacturing same
JP5953833B2 (en) Reflective photomask and method of manufacturing the same
JP5239762B2 (en) Reflective mask and reflective mask manufacturing method
JP5736900B2 (en) Reflective exposure mask
JP5881633B2 (en) Light-reflective photomask for EUV exposure, mask blank, and method for manufacturing semiconductor device
KR102371950B1 (en) Photomask blank, method of manufacturing photomask, and photomask
WO2013046641A1 (en) Reflective mask blank, reflective mask, and methods for manufacturing reflective mask blank and reflective mask
JP5948778B2 (en) Reflective mask blank
JP6171490B2 (en) Manufacturing method of mask for EUV exposure
JP5240396B2 (en) Reflective mask and reflective mask manufacturing method
JP2013074202A (en) Reflective mask and manufacturing method therefor
JP5990961B2 (en) Reflective mask
JP2013206936A (en) Reflective mask and method of manufacturing reflective mask
JP2013191663A (en) Reflective mask blank and reflective mask
JP5970901B2 (en) REFLECTIVE MASK AND METHOD FOR PRODUCING REFLECTIVE MASK
JP2018010192A (en) Blank for reflective mask, reflective mask, and method for manufacturing reflective mask
JP5950535B2 (en) Reflective mask blank and reflective mask
JP2014183075A (en) Reflective mask, and method of manufacturing the same
JP5909964B2 (en) Reflective mask blank and reflective mask
JP6319368B2 (en) Reflective photomask and method of manufacturing the same
JP6260149B2 (en) Reflective mask blank and reflective mask
JP5754592B2 (en) Reflective mask manufacturing method and reflective mask
JP5803517B2 (en) Reflective mask, mask blank, and manufacturing method thereof
JP2012182289A (en) Reflective mask blank and manufacturing method thereof, and reflective mask and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees