JP5736667B2 - NC program creation device - Google Patents

NC program creation device Download PDF

Info

Publication number
JP5736667B2
JP5736667B2 JP2010112814A JP2010112814A JP5736667B2 JP 5736667 B2 JP5736667 B2 JP 5736667B2 JP 2010112814 A JP2010112814 A JP 2010112814A JP 2010112814 A JP2010112814 A JP 2010112814A JP 5736667 B2 JP5736667 B2 JP 5736667B2
Authority
JP
Japan
Prior art keywords
tool
axis direction
workpiece
drive
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010112814A
Other languages
Japanese (ja)
Other versions
JP2011242905A (en
Inventor
綾子 山田
綾子 山田
中野 浩之
浩之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2010112814A priority Critical patent/JP5736667B2/en
Publication of JP2011242905A publication Critical patent/JP2011242905A/en
Application granted granted Critical
Publication of JP5736667B2 publication Critical patent/JP5736667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Description

本発明は、工具と被加工物との相対的な動作を行うための複数の駆動軸を有する工作機械に適用され、各駆動軸の駆動を実行するためのNCプログラムを作成するNCプログラム作成装置に関するものである。   The present invention is applied to a machine tool having a plurality of drive shafts for performing relative operations of a tool and a workpiece, and an NC program creation device for creating an NC program for executing the drive of each drive shaft It is about.

金型などの三次元曲面を加工する際には、例えばボールエンドミルにより等高線加工を行う。等高線加工とは、ボールエンドミルの回転軸方向(Z軸方向)の位置を固定した状態で、当該回転軸方向に直交する方向(X軸方向およびY軸方向)に切り込むことにより行う加工方法である。そして、X軸方向およびY軸方向の切込量(ピックフィード量とも称する)は、例えば、特許文献1,2に記載されているように、同一値に設定されている。一般に、CAMシステムにおいて、X軸方向の切込量とY軸方向の切込量は同一であることを前提とした入力が行われる。すなわち、X軸方向およびY軸方向の切込量として、共通の入力項目が用意されている。   When processing a three-dimensional curved surface such as a mold, contour processing is performed by a ball end mill, for example. Contour line machining is a machining method performed by cutting in a direction (X-axis direction and Y-axis direction) orthogonal to the rotation axis direction in a state where the position of the ball end mill in the rotation axis direction (Z-axis direction) is fixed. . Further, the cutting amounts (also referred to as pick feed amounts) in the X-axis direction and the Y-axis direction are set to the same value as described in Patent Documents 1 and 2, for example. In general, in a CAM system, input is performed on the premise that the cut amount in the X-axis direction and the cut amount in the Y-axis direction are the same. That is, common input items are prepared as the cut amounts in the X-axis direction and the Y-axis direction.

特開平11−123631号公報(図6)Japanese Patent Laid-Open No. 11-123631 (FIG. 6) 特開平9−325807号公報(図6,7)JP-A-9-325807 (FIGS. 6 and 7)

ここで、高精度に加工するために、X軸方向およびY軸方向の切込量は、工作機械のX軸方向およびY軸方向の剛性を考慮して決定される。しかし、工作機械において、X軸方向の剛性とY軸方向の剛性は同一ではない。そのため、X軸方向およびY軸方向の共通の切込量は、X軸方向の剛性とY軸方向の剛性のうち低い方を考慮した値とせざるを得なかった。そのため、X軸方向の剛性とY軸方向の剛性のうち高い方における軸方向については、十分な性能を発揮しているものではなかった。   Here, in order to perform machining with high accuracy, the cut amounts in the X-axis direction and the Y-axis direction are determined in consideration of the rigidity in the X-axis direction and the Y-axis direction of the machine tool. However, in a machine tool, the rigidity in the X-axis direction and the rigidity in the Y-axis direction are not the same. Therefore, the common cut amount in the X-axis direction and the Y-axis direction has to be a value that takes into account the lower of the rigidity in the X-axis direction and the rigidity in the Y-axis direction. Therefore, sufficient performance is not exhibited in the higher axial direction of the rigidity in the X-axis direction and the rigidity in the Y-axis direction.

本発明は、このような事情に鑑みてなされたものであり、各駆動軸の性能を十分に発揮させるNCプログラムを作成して、所望の加工精度を確保しつつ、加工時間の短縮を図ることができるNCプログラム作成装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and by creating an NC program that fully demonstrates the performance of each drive shaft, the processing time can be shortened while ensuring the desired processing accuracy. An object of the present invention is to provide an NC program creation device capable of

請求項1に係るNCプログラム作成装置は、工具と被加工物との相対的な動作を行うための複数の駆動軸を有する工作機械に適用され、各前記駆動軸の駆動を実行するためのNCプログラムを作成するNCプログラム作成装置であって、前記被加工物の素材形状と製品形状に基づいて、各前記駆動軸の剛性に応じて、各前記駆動軸の駆動方向における前記工具による前記被加工物の切込量を決定し、決定した各前記切込量により、前記NCプログラムである前記被加工物に対する前記工具の移動経路のデータを作成するものである。 An NC program creation device according to claim 1 is applied to a machine tool having a plurality of drive shafts for performing relative operations of a tool and a workpiece, and an NC for driving each of the drive shafts. An NC program creation device for creating a program, wherein the workpiece is processed by the tool in the drive direction of each drive shaft according to the rigidity of each drive shaft based on the material shape and product shape of the workpiece. A cutting amount of an object is determined, and data of a moving path of the tool with respect to the workpiece as the NC program is created based on the determined cutting amounts .

請求項2に係るNCプログラム作成装置は、前記工具は、回転工具であり、前記工作機械における複数の前記駆動軸は、前記回転工具の回転軸に対して直交方向に駆動する複数の工具軸直交駆動軸であり、各前記工具軸直交駆動軸の剛性に応じて、各前記工具軸直交駆動軸の駆動方向における前記回転工具による前記被加工物の切込量を決定するものである。
請求項3に係るNCプログラム作成装置は、決定した各前記切込量により、等高線加工方法に適用される前記NCプログラムである前記被加工物に対する前記工具の移動経路のデータを作成するものである。
The NC program creation device according to claim 2, wherein the tool is a rotary tool, and the plurality of drive shafts in the machine tool are driven in a direction orthogonal to the rotation axis of the rotary tool. It is a drive shaft, and the amount of cut of the workpiece by the rotary tool in the drive direction of each tool axis orthogonal drive shaft is determined according to the rigidity of each tool axis orthogonal drive shaft.
An NC program creation device according to claim 3 creates data of a movement path of the tool with respect to the workpiece, which is the NC program applied to the contour line machining method, based on each determined cut amount. .

請求項1に係るNCプログラム作成装置によれば、各駆動軸の剛性に応じて各駆動軸の駆動方向における工具による被加工物の切込量を決定している。ここで、駆動軸の剛性とは、工具が被加工物により当該駆動軸の駆動方向に力(切削抵抗)を受けた場合に、当該駆動方向における工具と被加工物との相対変位量の関係を意味する。例えば、駆動軸の剛性が大きい場合には、その駆動軸の駆動方向に工具が被加工物により力を受けた場合に、当該駆動方向おける工具と被加工物との相対変位量は小さくなる。逆に、駆動軸の剛性が小さい場合には、その駆動軸の駆動方向に工具が被加工物により力を受けた場合に、当該駆動方向おける工具と被加工物との相対変位量は大きくなる。 According to the NC program creation device of the first aspect, the amount of cut of the workpiece by the tool in the drive direction of each drive shaft is determined according to the rigidity of each drive shaft. Here, the rigidity of the drive shaft is the relationship between the relative displacement between the tool and the workpiece in the drive direction when the tool receives a force (cutting resistance) in the drive direction of the drive shaft by the workpiece. Means. For example, when the rigidity of the drive shaft is large, when the tool receives a force from the workpiece in the drive direction of the drive shaft, the relative displacement between the tool and the workpiece in the drive direction is small. Conversely, when the rigidity of the drive shaft is small, when the tool receives a force from the workpiece in the drive direction of the drive shaft, the relative displacement between the tool and the workpiece in the drive direction increases. .

つまり、本発明によれば、例えば、駆動軸の剛性が大きいほどその駆動方向における切込量を大きく設定し、駆動軸の剛性が小さいほどその駆動方向における切込量を小さく設定する。従って、剛性が大きな駆動軸においては、剛性が小さな駆動軸に比べて、その駆動方向の切込量を相対的に大きくすることができる。そして、このように切込量を駆動軸毎に異なるようにしたとしても、所望の加工精度を確保することができる。つまり、従来に比べてある駆動軸の駆動方向の切込量を大きくすることにより、所望の加工精度を確保しつつ、加工時間を短縮することができる。 That is, according to the present invention, for example, the greater the rigidity of the drive shaft, the larger the cut amount in the drive direction, and the smaller the drive shaft rigidity, the smaller the cut amount in the drive direction. Accordingly, in a drive shaft having a high rigidity, the cutting amount in the drive direction can be relatively increased compared to a drive shaft having a low rigidity. And even if it makes a cutting amount different for every drive shaft in this way, desired processing accuracy can be ensured. That is, the machining time can be shortened while ensuring the desired machining accuracy by increasing the amount of cutting in the drive direction of a certain drive shaft as compared with the prior art.

請求項2に係る発明によれば、いわゆるX軸方向の切込量とY軸方向の切込量を、それぞれの剛性に応じて決定することができる。つまり、本発明によれば、マシニングセンタなどによる加工が対象となる。これにより、加工対象を金型などとした場合において、所望の加工精度を確保しつつ、加工時間の短縮を図ることができる。
請求項3に係る発明によれば、等高線加工を行うことにより、加工時間の短縮を図るという効果が顕著となる。
According to the invention of claim 2, the depth of cut of depth of cut and Y-axis direction of the so-called X-axis direction can be determined according to the respective rigidity. That is, according to the present invention, machining by a machining center or the like is targeted. As a result, when the object to be processed is a mold or the like, the processing time can be shortened while ensuring a desired processing accuracy.
According to the invention which concerns on Claim 3, the effect of aiming at shortening of processing time becomes remarkable by performing contour line processing.

マシニングセンタの機械構成を示す図である。It is a figure which shows the machine structure of a machining center. CAMシステムの処理を示すフローチャートである。It is a flowchart which shows the process of a CAM system. 矩形ポケット形状を等高線加工する場合におけるX−Y平面上の工具移動経路を示す図である。It is a figure which shows the tool movement path | route on XY plane in the case of contour-line processing a rectangular pocket shape. 円形ポケット形状を等高線加工する場合におけるX−Y平面上の工具移動経路を示す図である。It is a figure which shows the tool movement path | route on XY plane in the case of contour-line processing a circular pocket shape.

以下、本発明のNCプログラム作成装置を具体化した実施形態について図面を参照しつつ説明する。   Hereinafter, an embodiment embodying the NC program creation device of the present invention will be described with reference to the drawings.

(マシニングセンタの機械構成)
本発明のNCプログラム作成装置により作成されるNCプログラムを実行する工作機械として、立形マシニングセンタを例に挙げて説明する。立形マシニングセンタとは、機械設置面に対して垂直な方向に回転工具の回転軸が向くように構成されたマシニングセンタである。この立形マシニングセンタは、ベッド10の上面に被加工物Wを載置するテーブル20が固定される。また、ベッド10の上面のうちテーブル20が載置される位置とは異なる位置に、Y軸方向に移動可能なサドル30が配置されている。
(Machining center machine configuration)
A vertical machining center will be described as an example of a machine tool that executes an NC program created by the NC program creation device of the present invention. The vertical machining center is a machining center configured such that the rotation axis of the rotary tool faces in a direction perpendicular to the machine installation surface. In the vertical machining center, a table 20 on which the workpiece W is placed is fixed on the upper surface of the bed 10. Further, a saddle 30 that is movable in the Y-axis direction is disposed at a position different from the position where the table 20 is placed on the upper surface of the bed 10.

さらに、このサドル30の上面に、X軸方向に移動可能なコラム40が配置されている。つまり、コラム40は、ベッド10に対してX軸方向に移動可能であると共に、Y軸方向に移動可能である。このコラム40のうちテーブル20側には、主軸頭50がZ軸方向に移動可能に配置されている。主軸頭50には例えばボールエンドミルなどの回転工具60がZ軸回りに回転可能に支持されている。つまり、回転工具60は、テーブル20に載置された被加工物Wに対して、X,Y,Z軸方向に移動可能である。   Further, a column 40 that is movable in the X-axis direction is disposed on the upper surface of the saddle 30. That is, the column 40 is movable in the X axis direction with respect to the bed 10 and is movable in the Y axis direction. A spindle head 50 is disposed on the table 20 side of the column 40 so as to be movable in the Z-axis direction. A rotating tool 60 such as a ball end mill is supported on the spindle head 50 so as to be rotatable around the Z axis. That is, the rotary tool 60 is movable in the X, Y, and Z axis directions with respect to the workpiece W placed on the table 20.

このような構成からなる立形マシニングセンタでは、X軸の剛性は、Y軸の剛性に比べて低い。各駆動軸の剛性とは、回転工具60が被加工物Wにより当該駆動軸の駆動方向に力(切削抵抗)を受けた場合に、当該駆動方向における回転工具60と被加工物Wとの相対変位量の関係を意味する。例えば、駆動軸の剛性が大きい場合には、その駆動軸の駆動方向に回転工具60が被加工物Wにより力を受けた場合に、当該駆動方向おける回転工具60と被加工物Wとの相対変位量は小さくなる。逆に、駆動軸の剛性が小さい場合には、その駆動軸の駆動方向に回転工具60が被加工物Wにより力を受けた場合に、当該駆動方向おける回転工具60と被加工物Wとの相対変位量は大きくなる。従って、相対変位量、すなわち加工精度を所望値とした場合には、X軸方向に受けることができる最大の切削抵抗は、Y軸方向に受けることができる最大の切削抵抗よりも小さくなる。   In the vertical machining center having such a configuration, the rigidity of the X axis is lower than the rigidity of the Y axis. The rigidity of each drive shaft refers to the relative relationship between the rotary tool 60 and the workpiece W in the drive direction when the rotary tool 60 receives a force (cutting resistance) in the drive direction of the drive shaft by the workpiece W. It means the relationship of displacement. For example, when the rigidity of the drive shaft is large, when the rotary tool 60 receives a force from the workpiece W in the drive direction of the drive shaft, the relative relationship between the rotary tool 60 and the workpiece W in the drive direction. The displacement becomes smaller. Conversely, when the rigidity of the drive shaft is small, when the rotary tool 60 receives a force from the workpiece W in the drive direction of the drive shaft, the rotation tool 60 and the workpiece W in the drive direction are in contact with each other. The relative displacement amount increases. Accordingly, when the relative displacement amount, that is, the machining accuracy is set to a desired value, the maximum cutting resistance that can be received in the X-axis direction is smaller than the maximum cutting resistance that can be received in the Y-axis direction.

従って、回転工具60を被加工物に対してX軸方向に移動させて被加工物Wを加工した場合に所望の加工精度を得るための切込量Pxの最大値は、回転工具60を被加工物に対してY軸方向に移動させて被加工物Wを加工した場合に所望の加工精度を得るための切込量Pyの最大値より小さくなる。   Therefore, when the workpiece W is machined by moving the rotary tool 60 in the X-axis direction with respect to the workpiece, the maximum value of the cutting amount Px for obtaining a desired machining accuracy is the same as that for the rotary tool 60. When the workpiece W is machined by moving the workpiece in the Y-axis direction, it becomes smaller than the maximum value of the cutting amount Py for obtaining a desired machining accuracy.

(CAMシステムの構成)
次に、CAMシステム(本発明のNCプログラム作成装置に相当する)について、図2を参照して説明する。CAMシステムは、上述した立形マシニングセンタなどに適用され、当該立形マシニングセンタの各駆動軸(X,Y,Z軸)の駆動を実行するためのNCプログラムを作成する。
(Configuration of CAM system)
Next, a CAM system (corresponding to the NC program creation device of the present invention) will be described with reference to FIG. The CAM system is applied to the above-described vertical machining center and the like, and creates an NC program for executing driving of each drive shaft (X, Y, Z axis) of the vertical machining center.

このCAMシステムの処理について説明する。まず、被加工物Wの素材形状(加工前形状)と製品形状(加工後形状)を入力する(S1)。続いて、NCプログラムを適用する立形マシニングセンタのX軸方向の剛性とY軸方向の剛性の比率を入力する(S2)。上述した立形マシニングセンタにおいては、例えば、X軸方向の剛性とY軸方向の剛性との比率は、1:3などとする。続いて、素材形状から製品形状に加工するための加工工程を決定する(S3)。この加工工程には、荒加工工程や仕上げ加工工程などの工程種類、それぞれの工程種類に用いる工具種類、それぞれの工程種類における加工条件が含まれる。加工条件には、工具送り速度、X,Y,Z軸方向の切込量などが含まれる。   The processing of this CAM system will be described. First, the material shape (pre-processing shape) and product shape (post-processing shape) of the workpiece W are input (S1). Subsequently, the ratio of the rigidity in the X-axis direction and the rigidity in the Y-axis direction of the vertical machining center to which the NC program is applied is input (S2). In the above-described vertical machining center, for example, the ratio between the rigidity in the X-axis direction and the rigidity in the Y-axis direction is 1: 3. Subsequently, a processing step for processing from the material shape to the product shape is determined (S3). This machining process includes process types such as a roughing process and a finishing process, tool types used for each process type, and machining conditions for each process type. The machining conditions include tool feed speed, cutting amounts in the X, Y, and Z axis directions.

この加工工程の決定において、例えば、荒加工工程において等高線加工を行う場合に、加工条件として、Z軸方向(回転工具60の回転軸方向)の切込量Pzと、X軸方向の切込量Pxを入力する。そして、X軸方向の切込量PxとステップS2にて入力された剛性比率とにより、Y軸方向の切込量Pyを算出する。X軸方向の剛性とY軸方向の剛性との比率を1:3とした場合には、Y軸方向の切込量Pyは、X軸方向の切込量Pxの3倍の値となる。また、仕上げ加工工程においても荒加工工程と同様に、各軸の切込量Px,Py,Pzを決定する。続いて、決定された加工工程に従って、NCプログラムを作成する(S4)。NCプログラムは、被加工物Wに対する回転工具60の移動経路を示す点群データである。つまり、上述した各軸の切込量Px,Py,Pzを考慮したNCプログラムが作成される。   In the determination of this machining process, for example, when contour processing is performed in the rough machining process, the cutting conditions Pz in the Z-axis direction (the rotational axis direction of the rotary tool 60) and the cutting quantity in the X-axis direction are used as machining conditions Enter Px. Then, the cutting amount Py in the Y-axis direction is calculated from the cutting amount Px in the X-axis direction and the rigidity ratio input in step S2. When the ratio between the rigidity in the X-axis direction and the rigidity in the Y-axis direction is 1: 3, the cutting amount Py in the Y-axis direction is a value that is three times the cutting amount Px in the X-axis direction. Also, in the finishing process, the cutting amounts Px, Py, and Pz of each axis are determined in the same manner as the roughing process. Subsequently, an NC program is created according to the determined machining process (S4). The NC program is point cloud data indicating the movement path of the rotary tool 60 relative to the workpiece W. That is, an NC program that takes into account the cutting depths Px, Py, and Pz of each axis described above is created.

(工具移動経路)
上述したCAMシステムにより作成されたNCプログラムによる第一例の工具移動経路について図3を参照して説明する。ここで、第一例として、製品形状が、素材形状に対して矩形ポケット形状(矩形凹形状)を加工した形状である場合とする。図3の工具移動経路にて示すように、Y軸方向の切込量Pyは、X軸方向の切込量Pxの3倍となる。
(Tool movement path)
A first example of the tool movement path by the NC program created by the CAM system described above will be described with reference to FIG. Here, as a first example, it is assumed that the product shape is a shape obtained by processing a rectangular pocket shape (rectangular concave shape) with respect to the material shape. As shown by the tool movement path in FIG. 3, the cut amount Py in the Y-axis direction is three times the cut amount Px in the X-axis direction.

ここで、従来は、X軸とY軸のうち剛性の低い方、すなわち上記の例によればX軸の剛性を考慮してX軸方向およびY軸方向の共通の切込量Pxyが決定されていた。一方、本実施形態によれば、所望の加工精度を確保した場合に、X軸方向の切込量Pxは同一であるが、Y軸方向の切込量Pyを従来に比べて大幅に大きくすることができる。その結果、所望の加工精度を確保しつつ、加工時間を短縮することができる。   Here, conventionally, the cut amount Pxy common to the X-axis direction and the Y-axis direction is determined in consideration of the rigidity of the X-axis and the Y-axis, that is, the rigidity of the X-axis according to the above example. It was. On the other hand, according to the present embodiment, when a desired machining accuracy is ensured, the cut amount Px in the X-axis direction is the same, but the cut amount Py in the Y-axis direction is significantly increased as compared with the prior art. be able to. As a result, the processing time can be shortened while ensuring the desired processing accuracy.

次に、第二例における工具移動経路について図4を参照して説明する。ここで、第二例として、製品形状が、素材形状に対して円形ポケット形状(円形凹形状)を加工した形状である場合とする。図4の工具移動経路にて示すように、Y軸方向の切込量Pyは、X軸方向の切込量Pxの3倍となる。なお、工具移動経路がX軸方向成分とY軸方向成分を有する場合には、その成分比率が、1:3となっている。この場合にも、図3に示した場合と同様に、所望の加工精度を確保しつつ、加工時間を短縮することができる。   Next, the tool movement path in the second example will be described with reference to FIG. Here, as a second example, it is assumed that the product shape is a shape obtained by processing a circular pocket shape (circular concave shape) with respect to the material shape. As shown by the tool movement path in FIG. 4, the cut amount Py in the Y-axis direction is three times the cut amount Px in the X-axis direction. When the tool movement path has an X-axis direction component and a Y-axis direction component, the component ratio is 1: 3. In this case as well, as in the case shown in FIG. 3, the processing time can be shortened while ensuring the desired processing accuracy.

(その他)
上記実施形態においては、X軸の剛性およびY軸の剛性に応じてX軸方向の切込量PxおよびY軸方向の切込量Pyを決定した。これに替えて、各駆動軸における回転工具60と被加工物Wとの相対的な送り速度を異なるようにしてもよい。つまり、X軸の剛性およびY軸の剛性に応じて、X軸方向の送り速度およびY軸の送り速度を異なるように決定する。このように決定された各軸の送り速度により、NCプログラムを作成する。この場合も同様の効果を奏する。
(Other)
In the above embodiment, the cutting amount Px in the X-axis direction and the cutting amount Py in the Y-axis direction are determined according to the rigidity of the X-axis and the rigidity of the Y-axis. Instead of this, the relative feed rates of the rotary tool 60 and the workpiece W on each drive shaft may be different. That is, the feed rate in the X-axis direction and the feed rate in the Y-axis are determined differently according to the stiffness of the X-axis and the stiffness of the Y-axis. An NC program is created based on the determined feed speed of each axis. In this case, the same effect is obtained.

また、上記実施形態においては、立形マシニングセンタを例に挙げて説明したが、横型マシニングセンサにも同様に適用できる。また、機械構成によって、X軸方向の剛性とY軸方向の剛性は異なるものであるため、対象の機械構成に応じた剛性を採用する必要がある。   In the above-described embodiment, the vertical machining center has been described as an example, but the present invention can be similarly applied to a horizontal machining sensor. Moreover, since the rigidity in the X-axis direction and the rigidity in the Y-axis direction are different depending on the machine configuration, it is necessary to employ rigidity corresponding to the target machine configuration.

10:ベッド、 20:テーブル、 30:サドル、 40:コラム
50:主軸頭、 60:回転工具、 W:被加工物
10: Bed, 20: Table, 30: Saddle, 40: Column 50: Spindle head, 60: Rotary tool, W: Workpiece

Claims (3)

工具と被加工物との相対的な動作を行うための複数の駆動軸を有する工作機械に適用され、各前記駆動軸の駆動を実行するためのNCプログラムを作成するNCプログラム作成装置であって、
前記被加工物の素材形状と製品形状に基づいて、各前記駆動軸の剛性に応じて、各前記駆動軸の駆動方向における前記工具による前記被加工物の切込量を決定し
決定した各前記切込量により、前記NCプログラムである前記被加工物に対する前記工具の移動経路のデータを作成することを特徴とするNCプログラム作成装置。
An NC program creation device that is applied to a machine tool having a plurality of drive shafts for performing relative motion between a tool and a workpiece, and creates an NC program for executing drive of each drive shaft. ,
Based on the material shape and product shape of the workpiece, according to the rigidity of each drive shaft , determine the cutting amount of the workpiece by the tool in the drive direction of each drive shaft,
An NC program creation device that creates data of a movement path of the tool with respect to the workpiece, which is the NC program, based on the determined cut amounts .
請求項1において、
前記工具は、回転工具であり、
前記工作機械における複数の前記駆動軸は、前記回転工具の回転軸に対して直交方向に駆動する複数の工具軸直交駆動軸であり、
各前記工具軸直交駆動軸の剛性に応じて、各前記工具軸直交駆動軸の駆動方向における前記回転工具による前記被加工物の切込量を決定することを特徴とするNCプログラム作成装置。
In claim 1,
The tool is a rotary tool;
The plurality of drive shafts in the machine tool are a plurality of tool axis orthogonal drive shafts that drive in a direction orthogonal to the rotation axis of the rotary tool,
An NC program creation device that determines a cutting amount of the workpiece by the rotary tool in the drive direction of each tool axis orthogonal drive shaft according to the rigidity of each tool axis orthogonal drive shaft.
請求項2において、
決定した各前記切込量により、等高線加工方法に適用される前記NCプログラムである前記被加工物に対する前記工具の移動経路のデータを作成することを特徴とするNCプログラム作成装置。
In claim 2,
An NC program creation device that creates data of a movement path of the tool with respect to the workpiece, which is the NC program applied to the contour line machining method, based on the determined cut amounts .
JP2010112814A 2010-05-17 2010-05-17 NC program creation device Expired - Fee Related JP5736667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112814A JP5736667B2 (en) 2010-05-17 2010-05-17 NC program creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112814A JP5736667B2 (en) 2010-05-17 2010-05-17 NC program creation device

Publications (2)

Publication Number Publication Date
JP2011242905A JP2011242905A (en) 2011-12-01
JP5736667B2 true JP5736667B2 (en) 2015-06-17

Family

ID=45409504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112814A Expired - Fee Related JP5736667B2 (en) 2010-05-17 2010-05-17 NC program creation device

Country Status (1)

Country Link
JP (1) JP5736667B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219555B2 (en) * 2018-06-04 2023-02-08 株式会社日立製作所 NC program conversion processing method and processing system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256546A (en) * 1991-02-04 1992-09-11 Okuma Mach Works Ltd Automatic programming device for grinding machine
JPH0588737A (en) * 1991-09-25 1993-04-09 Okuma Mach Works Ltd Automatic generation of cutting path for nc lathe
JP2004098229A (en) * 2002-09-10 2004-04-02 Okuma Corp Contouring working method
JP2004246493A (en) * 2003-02-12 2004-09-02 Mori Seiki Co Ltd Automatic programming device
JP4802170B2 (en) * 2007-10-18 2011-10-26 株式会社ソディック Machining time calculation device and program thereof
JP5347421B2 (en) * 2008-10-16 2013-11-20 株式会社ジェイテクト Numerical control device for NC and NC data analysis device

Also Published As

Publication number Publication date
JP2011242905A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5818987B2 (en) Grooving method, machine tool control device, and tool path generation device
JP6620393B2 (en) Gear machining method
US10088824B2 (en) Toolpath evaluation method, toolpath generation method, and toolpath generation device
WO2015114734A1 (en) Cutting method and tool path generating device
JP6606967B2 (en) Gear processing apparatus and gear processing method
JP5881850B2 (en) Machine tool control device and machine tool
JP5911595B2 (en) Machine tool control device and machine tool
JP6038331B2 (en) Tool path generation method and tool path generation apparatus
JP6566594B2 (en) End mill processing device, CAM device, NC program, and processing method
JP6008294B2 (en) Non-circular machining method by turning
JP6563133B2 (en) Machining program generation device and machining method
JP5736667B2 (en) NC program creation device
CN103576610A (en) Machine tool, machining method, program and NC data generation device
JP2006235776A (en) Machine tool and processing method by this machine tool
JP7289563B2 (en) Machining method, machining equipment and machining program
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP6430217B2 (en) Profile grinding machine
JP7073721B2 (en) Gear processing equipment and gear processing method
JP5636841B2 (en) Machining method and NC program creation device
JP2015006713A (en) Gear processing device
JP7058103B2 (en) Work end face cutting method
JP2002160103A (en) Curved surface machine method and its device
JP2008004124A (en) Numerical control machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees