JP5732962B2 - Method for producing zirconium amide compound - Google Patents

Method for producing zirconium amide compound Download PDF

Info

Publication number
JP5732962B2
JP5732962B2 JP2011069396A JP2011069396A JP5732962B2 JP 5732962 B2 JP5732962 B2 JP 5732962B2 JP 2011069396 A JP2011069396 A JP 2011069396A JP 2011069396 A JP2011069396 A JP 2011069396A JP 5732962 B2 JP5732962 B2 JP 5732962B2
Authority
JP
Japan
Prior art keywords
zirconium
cyclopentadiene
formula
general formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011069396A
Other languages
Japanese (ja)
Other versions
JP2012201652A (en
Inventor
白井 昌志
昌志 白井
弘之 桜井
弘之 桜井
千尋 長谷川
千尋 長谷川
央 二瓶
央 二瓶
将城 立沢
将城 立沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011069396A priority Critical patent/JP5732962B2/en
Publication of JP2012201652A publication Critical patent/JP2012201652A/en
Application granted granted Critical
Publication of JP5732962B2 publication Critical patent/JP5732962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、例えば、化合物半導体材料や重合用触媒として、特にジルコニウム含有薄膜を形成させる際に使用可能なジルコニウムアミド化合物の製造方法に関する。   The present invention relates to a method for producing a zirconium amide compound that can be used, for example, as a compound semiconductor material or a polymerization catalyst, particularly when a zirconium-containing thin film is formed.

近年、DRAMに代表される半導体メモリー及びデバイスの微細化に伴って、高誘電体材料であるジルコニウム含有薄膜はキャパシタの分野で注目されている。又、強誘電体キャパシタ、絶縁膜等の電子材料の用途として活発に研究開発が行われている。   In recent years, with the miniaturization of semiconductor memories and devices represented by DRAMs, zirconium-containing thin films, which are high dielectric materials, have attracted attention in the field of capacitors. In addition, active research and development is being conducted for applications of electronic materials such as ferroelectric capacitors and insulating films.

ジルコニウム含有薄膜の製造方法としては、例えば、スパッタ法やゾルゲル法が報告されている。しかし、優れた薄膜の均一性や組成制御、その量産性から、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)及び原子層蒸着法(Atomic Layer Deposition法;以下、ALD法と称する)での製造が現在の主流になっていると言える。   As a method for producing a zirconium-containing thin film, for example, a sputtering method or a sol-gel method has been reported. However, due to excellent thin film uniformity and composition control, and mass production, chemical vapor deposition (Chemical Vapor Deposition method; hereinafter referred to as CVD method) and atomic layer deposition (Atomic Layer deposition method; hereinafter referred to as ALD method) It can be said that the manufacturing method is now mainstream.

従来、CVD法又はALD法の原料に使用されるジルコニウムアミド化合物の製造方法としては、例えば、四塩化ジルコニウムとエチルシクロペンタジエニルナトリウムを反応させて中間体である(エチルシクロペンタジエニル)トリクロロジルコニウムを製造し、次いで、この中間体とジメチルアミドリチウムと反応させて(エチルシクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムを製造する方法(例えば、特許文献1参照)、又、テトラキス(ジメチルアミド)ジルコニウムとシクロペンタジエンを溶媒中で加熱反応させることで(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムを製造する方法(例えば、非特許文献1及び2参照)が開示されている。   Conventionally, as a method for producing a zirconium amide compound used as a raw material for a CVD method or an ALD method, for example, zirconium tetrachloride and ethylcyclopentadienyl sodium are reacted to form an intermediate (ethylcyclopentadienyl) trichloro. Zirconium is produced, and then this intermediate is reacted with dimethylamidolithium to produce (ethylcyclopentadienyl) tris (dimethylamido) zirconium (see, for example, Patent Document 1). Tetrakis (dimethylamido) ) A method for producing (cyclopentadienyl) tris (dimethylamido) zirconium by heating and reacting zirconium and cyclopentadiene in a solvent (for example, see Non-Patent Documents 1 and 2).

特表2010−506378号公報Special table 2010-506378

Journal of the Chemical Society(A),1940(1968)Journal of the Chemical Society (A), 1940 (1968) Journal of Molecular Cat.A:Chemical,170,127(2001)Journal of Molecular Cat. A: Chemical, 170, 127 (2001)

前記特許文献1の方法では、エチルシクロペンタジエンとナトリウム源とを反応させてエチルシクロペンタジエニルナトリウム(原料)を製造、そして、アルキルリチウムとジメチルアミンとを反応させてジメチルアミドリチウム(原料)を製造し、次いで、ふたつの原料を用いて目的物の製造を行わなければならず、更に目的物の収率も35%と低いという問題がある。   In the method of Patent Document 1, ethylcyclopentadiene and a sodium source are reacted to produce ethylcyclopentadienyl sodium (raw material), and alkyllithium and dimethylamine are reacted to obtain dimethylamidolithium (raw material). Next, there is a problem that the target product must be manufactured using two raw materials and the yield of the target product is as low as 35%.

一方、非特許文献1及び2の製造方法では、アルキルリチウムとジメチルアミンとを反応させてジメチルアミドリチウムを製造、次いで、これに四塩化ジルコニウムを反応させてテトラキス(ジメチルアミド)ジルコニウムを製造した後、更に、シクロペンタジエンを反応させるといった多段階での反応が必須となっていた。そのため。工業的に好適な製造方法としては問題があった。   On the other hand, in the production methods of Non-Patent Documents 1 and 2, after alkyllithium and dimethylamine are reacted to produce dimethylamidolithium, this is then reacted with zirconium tetrachloride to produce tetrakis (dimethylamido) zirconium. Furthermore, a multi-step reaction such as reacting cyclopentadiene has become essential. for that reason. There was a problem as an industrially suitable production method.

本発明の課題は、即ち、ジルコニウムハロゲン化物を出発原料として、高収率及び高選択率にてジルコニウムアミド化合物を製造する、工業的に好適なジルコニウムアミド化合物の製造方法を提供することである。   An object of the present invention is to provide an industrially suitable method for producing a zirconium amide compound, in which a zirconium amide compound is produced with a high yield and a high selectivity using a zirconium halide as a starting material.

本発明の課題は、一般式(1) The subject of this invention is general formula (1).

(式中、Xはハロゲン原子を示す。なお、4つのXは同一でも互いに異なっていても良い。)
で示されるジルコニウムハロゲン化物と一般式(2)
(In the formula, X represents a halogen atom. The four Xs may be the same or different from each other.)
Zirconium halide represented by the general formula (2)

(式中、R及びRは炭素原子数1〜6の直鎖又は分枝状のアルキル基を示す。なお、RとRは互いに結合して環を形成していても良い。)
で示されるジアルキルアミンと混合した後、次いで、一般式(3)
(In the formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 6 carbon atoms. Note that R 1 and R 2 may be bonded to each other to form a ring. )
And then mixed with a dialkylamine represented by the general formula (3)

(式中、Lは炭素原子数1〜5のアルキル基で置換されていても良いシクロペンタジエニル基を示す。)
で示される置換基を有していても良いシクロペンタジエン及びアルキルアルカリ金属を反応させることを特徴とする、一般式(4)
(In the formula, L represents a cyclopentadienyl group which may be substituted with an alkyl group having 1 to 5 carbon atoms.)
A cyclopentadiene which may have a substituent represented by the formula (4) is reacted with an alkyl alkali metal.

(式中、R及びR、Lは前記と同義である。)
で示されるジルコニウムアミド化合物の製造方法によって解決される。
(In the formula, R 1, R 2 and L are as defined above.)
It solves by the manufacturing method of the zirconium amide compound shown by these.

本発明により、例えば、化合物半導体材料や重合用触媒、特にジルコニウム含有薄膜を形成させる際に使用可能なジルコニウムアミド化合物の効率的な製造方法を提供することが出来る。   The present invention can provide an efficient method for producing a zirconium amide compound that can be used, for example, when forming a compound semiconductor material or a polymerization catalyst, particularly a zirconium-containing thin film.

本発明の反応で使用するジルコニウムハロゲン化物は、前記の一般式(1)で示される。その一般式(2)において、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を示し、4つのXは同一でも互いに異なっていても良い。なお、金属ハロゲン化物は、単独又は二種以上を混合して使用しても良い。   The zirconium halide used in the reaction of the present invention is represented by the general formula (1). In the general formula (2), X represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and the four Xs may be the same or different from each other. In addition, you may use a metal halide individually or in mixture of 2 or more types.

本発明で使用するアミン化合物は、前記の一般式(2)で示される。その一般式(2)において、R及びRは、同一又は異なっていても良く、炭素原子数1〜6の直鎖又は分岐状のアルキル基を示すが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基である。なお、R及びRは、互いに結合して環を形成していても良い。 The amine compound used in the present invention is represented by the general formula (2). In the general formula (2), R 1 and R 2 may be the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms. For example, a methyl group, an ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group and hexyl group. R 1 and R 2 may be bonded to each other to form a ring.

これらアミン化合物の具体例としては、例えば、ジメチルアミン、エチル(メチル)アミン、イソプロピル(メチル)アミン、n−プロピル(メチル)アミン、ジエチルアミン、エチル(イソプロピル)アミン、エチル(n−プロピル)アミン、ジ(イソプロピル)アミン、ジ(n−プロピル)アミン、イソプロピル(n−プロピル)アミン、ジ(n−ブチル)アミン、ジペンチルアミン、ジヘキシルアミン、ピロリジン、ピペリジン、1−メチルピロリジン、ピロール等が挙げられるが、好ましくはジメチルアミン、エチルメチルアミン、イソプロピル(メチル)アミン、n−プロピル(メチル)アミン、ジエチルアミン、エチル(イソプロピル)アミン、エチル(n−プロピル)アミン、ピロリジン、1−メチルピロリジン、更に好ましくはジメチルアミン、エチルメチルアミン、イソプロピル(メチル)アミン、ジエチルアミン、が使用される。なお、これらのアミン化合物は、単独又は二種以上を混合して使用しても良い。   Specific examples of these amine compounds include, for example, dimethylamine, ethyl (methyl) amine, isopropyl (methyl) amine, n-propyl (methyl) amine, diethylamine, ethyl (isopropyl) amine, ethyl (n-propyl) amine, Examples include di (isopropyl) amine, di (n-propyl) amine, isopropyl (n-propyl) amine, di (n-butyl) amine, dipentylamine, dihexylamine, pyrrolidine, piperidine, 1-methylpyrrolidine, and pyrrole. Are preferably dimethylamine, ethylmethylamine, isopropyl (methyl) amine, n-propyl (methyl) amine, diethylamine, ethyl (isopropyl) amine, ethyl (n-propyl) amine, pyrrolidine, 1-methylpyrrolidine, and more preferably Better Dimethylamine, ethyl methylamine, isopropyl (methyl) amine, diethylamine, is used. In addition, you may use these amine compounds individually or in mixture of 2 or more types.

本発明におけるアミン化合物の使用形態は、気体、液体又は固体、もしくはそれらが共存した状態のいずれの形態でも良く、例えば、ジメチルアミンであれば、気体として反応系内に導入しても、加圧又は冷却して液体としても、又は有機溶媒に溶解させた常態で使用しても良い。又、固体のアミンであれば、それを粉砕して粉末として使用しても、過熱して融解させて使用しても、又、溶媒に溶解させて使用しても良い。   The use form of the amine compound in the present invention may be any form of gas, liquid or solid, or a state in which they coexist. For example, in the case of dimethylamine, it may be introduced into the reaction system as a gas or pressurized. Alternatively, it may be used as a liquid after cooling or in a normal state dissolved in an organic solvent. If it is a solid amine, it may be pulverized and used as a powder, it may be used after being heated and melted, or it may be used after being dissolved in a solvent.

前記ジアルキルアミンの使用量は、ジルコニウムハロゲン化物1モルに対して、好ましくは20.0〜3.0モル、更に好ましくは10.0〜4.0モルである。   The amount of the dialkylamine used is preferably 20.0 to 3.0 mol, more preferably 10.0 to 4.0 mol, per 1 mol of zirconium halide.

本発明で使用する置換基を有していても良いシクロペンタジエン(LH)は、前記の一般式(3)で示される。その一般式(3)において、Lは炭素原子数1〜5のアルキル基で置換されていても良いシクロペンタジエニル基を示すが、その置換基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基等の炭素原子数1〜5のアルキル基を示す。なお、置換基は1又は複数でも良く、置換位置も特に限定されない。   The cyclopentadiene (LH) which may have a substituent used in the present invention is represented by the general formula (3). In the general formula (3), L represents a cyclopentadienyl group which may be substituted with an alkyl group having 1 to 5 carbon atoms. Examples of the substituent include a methyl group, an ethyl group, and n. -An alkyl group having 1 to 5 carbon atoms such as propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group and pentyl group. One or a plurality of substituents may be used, and the substitution position is not particularly limited.

これら置換基を有していても良いシクロペンタジエンとしては、例えば、シクロペンタジエン;メチルシクロペンタジエン、エチルシクロペンタジエン、n−プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、n−ブチルシクロペンタジエン、t−ブチルシクロペンタジエン、sec−ブチルシクロペンタジエン等のモノアルキルシクロペンタジエン;ジメチルシクロペンタジエン、メチルエチルシクロペンタジエン、ジエチルシクロペンタジエン、ジn−プロピルシクロペンタジエン、ジイソプロピルシクロペンタジエン、ジn−ブチルシクロペンタジエン、ジsec−ブチルシクロペンタジエン、ジt−ブチルシクロペンタジエン等のジアルキルシクロペンタジエン;トリメチルシクロペンタジエン、ジメチル(エチル)シクロペンタジエン、ジエチル(メチル)シクロペンタジエン、トリt−ブチルシクロペンタジエン等のトリアルキルシクロペンタジエン;テトラメチルシクロペンタジエン等のテトラアルキルシクロペンタジエン;ペンタメチルシクロペンタジエン等のペンタアルキルシクロペンタジエンが挙げられる。なお、これらのシクロペンタジエンは、各種位置異性体を含む。   Examples of the cyclopentadiene which may have these substituents include, for example, cyclopentadiene; methylcyclopentadiene, ethylcyclopentadiene, n-propylcyclopentadiene, isopropylcyclopentadiene, n-butylcyclopentadiene, t-butylcyclopentadiene, monoalkylcyclopentadiene such as sec-butylcyclopentadiene; dimethylcyclopentadiene, methylethylcyclopentadiene, diethylcyclopentadiene, di-n-propylcyclopentadiene, diisopropylcyclopentadiene, di-n-butylcyclopentadiene, disec-butylcyclopentadiene, Dialkylcyclopentadiene such as di-t-butylcyclopentadiene; trimethylcyclopentadiene, dimethyl (ethyl) silane Examples include trialkylcyclopentadiene such as clopentadiene, diethyl (methyl) cyclopentadiene, tri-t-butylcyclopentadiene; tetraalkylcyclopentadiene such as tetramethylcyclopentadiene; pentaalkylcyclopentadiene such as pentamethylcyclopentadiene. In addition, these cyclopentadiene includes various positional isomers.

置換基を有していても良いシクロペンタジエンは、例えば、その二量体等を熱分解(クラッキング)させる等の方法により取得することができる。   The cyclopentadiene which may have a substituent can be obtained, for example, by a method such as thermal decomposition (cracking) of the dimer or the like.

前記置換基を有していても良いシクロペンタジエンの使用量は、ジルコニウムハロゲン化物1モルに対して、好ましくは0.8〜2.0モル、更に好ましくは1.0〜1.5モルである。   The amount of the cyclopentadiene which may have a substituent is preferably 0.8 to 2.0 mol, more preferably 1.0 to 1.5 mol, per 1 mol of zirconium halide. .

本発明で使用するアルキルアルカリ金属は、例えば、n−ブチルリチウム、n−ヘキシルリチウム、t−ブチルリチウム、メチルリチウム、ジn−ブチルマグネシウム、n−ブチル(エチル)マグネシウム、塩化エチルマグネシウム、塩化t−ブチルマグネシウム、塩化ベンジルマグネシウム等が挙げられるが、好ましくはn−ブチルリチウム、n−ヘキシルリチウム、t−ブチルリチウム、メチルリチウム、更に好ましくはn−ブチルリチウムが使用される。なお、これらのアルキルアルカリ金属は、単独又は二種以上を混合して使用しても良い。   Examples of the alkyl alkali metal used in the present invention include n-butyl lithium, n-hexyl lithium, t-butyl lithium, methyl lithium, di-n-butyl magnesium, n-butyl (ethyl) magnesium, ethyl magnesium chloride, t-chloride. -Butylmagnesium, benzylmagnesium chloride and the like can be mentioned, preferably n-butyllithium, n-hexyllithium, t-butyllithium, methyllithium, more preferably n-butyllithium. In addition, you may use these alkyl alkali metals individually or in mixture of 2 or more types.

前記アルキルアルカリ金属の使用量は、ジルコニウムハロゲン化物1モルに対して、好ましくは3.0〜5.0モル、更に好ましくは3.5〜4.5モルである。   The amount of the alkyl alkali metal used is preferably 3.0 to 5.0 mol, more preferably 3.5 to 4.5 mol, per 1 mol of zirconium halide.

本発明の反応においては、溶媒中で反応を行うのが望ましく、使用される溶媒としては反応を阻害しないものならば特に限定されないが、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル類が挙げられるが、好ましくは、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、トルエン、キシレン、更に好ましくは、n−ヘキサン、n−ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、トルエン、キシレンが使用される。なお、これらの溶媒は単独又は二種以上を混合して使用しても良い。   In the reaction of the present invention, the reaction is preferably carried out in a solvent, and the solvent used is not particularly limited as long as it does not inhibit the reaction. For example, n-pentane, n-hexane, n-heptane, n -Aliphatic hydrocarbons such as octane, isooctane, cyclohexane, methylcyclohexane and ethylcyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; and ethers such as diethyl ether, tetrahydrofuran and dimethoxyethane are preferred, Is n-hexane, n-heptane, n-octane, isooctane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene, xylene, more preferably n-hexane, n-heptane, cyclohexane, methylcyclohexane, ethylcyclohexane. Toluene, xylene are used. In addition, you may use these solvents individually or in mixture of 2 or more types.

本発明の反応は、例えば、ジルコニウムハロゲン化物とジアルキルアミンと混合した後、次いで、置換基を有していても良いシクロペンタジエン及びアルキルアルカリ金属を加え、攪拌しながら反応させる等の方法によって行われる。   The reaction of the present invention is carried out, for example, by mixing zirconium halide and dialkylamine, and then adding cyclopentadiene and alkyl alkali metal which may have a substituent, and reacting with stirring. .

より具体的には、即ち、以下のいずれかの方法によって行われる。
方法(1);ジルコニウムハロゲン化物とジアルキルアミンと混合した後、次いで、置換基を有していても良いシクロペンタジエンとアルキルアルカリ金属とを混合した溶液を加えて反応させる。
More specifically, that is, it is performed by any of the following methods.
Method (1): After mixing a zirconium halide and a dialkylamine, a solution in which a cyclopentadiene which may have a substituent and an alkyl alkali metal is mixed is added and reacted.

(式中、X、R及びR、Lは前記と同義である。) (In the formula, X, R 1, R 2 and L are as defined above.)

方法(2);ジルコニウムハロゲン化物とジアルキルアミンと混合した後、次いで、アルキルアルカリ金属、置換基を有していても良いシクロペンタジエンの順で加えて反応させる。 Method (2): After mixing the zirconium halide and the dialkylamine, the alkyl alkali metal and the optionally substituted cyclopentadiene are then added and reacted in this order.

(式中、X、R及びR、Lは前記と同義である。) (In the formula, X, R 1, R 2 and L are as defined above.)

方法(3);ジルコニウムハロゲン化物とジアルキルアミンと混合した後、次いで、置換基を有していても良いシクロペンタジエン、アルキルアルカリ金属の順で加えて反応させる。 Method (3): After mixing the zirconium halide and the dialkylamine, the cyclopentadiene which may have a substituent and the alkyl alkali metal are added and reacted in this order.

(式中、X、R及びR、Lは前記と同義である。) (In the formula, X, R 1, R 2 and L are as defined above.)

以上の方法(1)〜(3)の中でも、好ましくは方法(2)、方法(3)、更に好ましくは方法(3)が採用される。これらの方法を採用することで、Lの導入をスムーズに進行させることができる。   Among the above methods (1) to (3), the method (2) and the method (3) are preferably employed, and the method (3) is more preferably employed. By adopting these methods, L can be introduced smoothly.

前記反応の際の反応温度は、好ましくは−200〜200℃、更に好ましくは−100〜150℃であり、反応圧力は特に制限されない。   The reaction temperature during the reaction is preferably −200 to 200 ° C., more preferably −100 to 150 ° C., and the reaction pressure is not particularly limited.

本発明の反応によって得られたジルコニウムアミド化合物の製造方法は、反応終了後、中和、抽出、濾過、濃縮、蒸留、昇華、再結晶、カラムクロマトグラフィー等による一般的な方法によって単離・精製される。   The method for producing a zirconium amide compound obtained by the reaction of the present invention is isolated and purified by a general method such as neutralization, extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography after the reaction is completed. Is done.

なお、本発明のジルコニウムアミド化合物が(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウム場合には、方法(3)で合成を行うと、一般式(5)   In addition, when the zirconium amide compound of the present invention is (cyclopentadienyl) tris (dimethylamide) zirconium, the synthesis is performed by the method (3), and the general formula (5)

(式中、R及びR、前記と同義である。)
で示されるテトラキス(ジアルキルアミド)ジルコニウムの含有量が1%未満であり、かつ一般式(6)
(Wherein R 1 and R 2 have the same meanings as described above.)
The content of tetrakis (dialkylamido) zirconium represented by the formula is less than 1%, and the general formula (6)

(式中、R及びR、Lは前記と同義である。)
で示されるビス(シクロペンタジエニル)ビス(ジアルキルアミド)ジルコニウムの含有量が1%未満である。
(In the formula, R 1, R 2 and L are as defined above.)
The content of bis (cyclopentadienyl) bis (dialkylamido) zirconium represented by the formula is less than 1%.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.

実施例1(方法(3);(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムの合成) Example 1 (Method (3); Synthesis of (cyclopentadienyl) tris (dimethylamido) zirconium)

攪拌装置及び温度計を備えた内容積200mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム6.01g(25.79mmol)及びトルエン60mlを混合した後、混合液を冷却した。次いで、液体のジメチルアミン10.51g(233.14mmol)を液温が−10℃を超えないようにゆるやかに滴下した。その後、反応混合液に1.65mol/Lのn−ブチルリチウムヘキサン溶液66ml(108.90mmol)を液温が−10℃を超えないようにゆるやかに滴下した。更に、シクロペンタジエン2.21g(33.43mmol)をゆるやかに滴下して1時間反応させた。
反応終了後、反応液を濾過した後に濾液を濃縮した。得られた濃縮物を減圧蒸留(90℃、16Pa)し、淡黄色液体として、(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウム5.35gを得た(単離収率;71.7%)。
In a 200-ml flask equipped with a stirrer and a thermometer, 6.01 g (25.79 mmol) of zirconium tetrachloride and 60 ml of toluene were mixed in an argon atmosphere, and then the mixture was cooled. Next, 10.51 g (233.14 mmol) of liquid dimethylamine was slowly added dropwise so that the liquid temperature did not exceed -10 ° C. Thereafter, 66 ml (108.90 mmol) of a 1.65 mol / L n-butyllithium hexane solution was slowly added dropwise to the reaction mixture so that the liquid temperature did not exceed -10 ° C. Further, 2.21 g (33.43 mmol) of cyclopentadiene was slowly added dropwise and reacted for 1 hour.
After completion of the reaction, the reaction solution was filtered and then the filtrate was concentrated. The obtained concentrate was distilled under reduced pressure (90 ° C., 16 Pa) to obtain 5.35 g of (cyclopentadienyl) tris (dimethylamido) zirconium as a pale yellow liquid (isolated yield; 71.7%). .

なお、得られた(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウム中には、テトラキス(ジアルキルアミド)ジルコニウムの含有量が1%未満であり、ビス(シクロペンタジエニル)ビス(ジアルキルアミド)ジルコニウムの含有量が1%未満であった。   In the obtained (cyclopentadienyl) tris (dimethylamide) zirconium, the content of tetrakis (dialkylamido) zirconium is less than 1%, and bis (cyclopentadienyl) bis (dialkylamido) zirconium. The content of was less than 1%.

実施例2(方法(3);(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムの合成) Example 2 (Method (3); Synthesis of (cyclopentadienyl) tris (dimethylamido) zirconium)

攪拌装置及び温度計を備えた内容積3Lのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム92.48g(0.397mol)及びトルエン1Lを混合した後、混合液を冷却した。次いで、気体のジメチルアミン127.88g(2.837mol)を液温が10℃を超えないようにゆるやかに吹き込んだ。その後、反応混合液に1.63mol/Lのn−ブチルリチウムヘキサン溶液1.02L(1.663mol)を液温が10℃を超えないようにゆるやかに滴下した。更に、シクロペンタジエン31.10g(0.471mol)を滴下して2時間反応させた。
反応終了後、反応液を濾過した後に濾液を濃縮した。得られた濃縮物を減圧蒸留(90〜100℃、20Pa)し、淡黄色液体として、(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウム89.89gを得た(単離収率;73.9%)。
In a 3 L flask equipped with a stirrer and a thermometer, 92.48 g (0.397 mol) of zirconium tetrachloride and 1 L of toluene were mixed in an argon atmosphere, and then the mixture was cooled. Next, 127.88 g (2.837 mol) of gaseous dimethylamine was gently blown so that the liquid temperature did not exceed 10 ° C. Thereafter, 1.03 L (1.663 mol) of a 1.63 mol / L n-butyllithium hexane solution was slowly added dropwise to the reaction mixture so that the liquid temperature did not exceed 10 ° C. Furthermore, 31.10 g (0.471 mol) of cyclopentadiene was added dropwise and reacted for 2 hours.
After completion of the reaction, the reaction solution was filtered and then the filtrate was concentrated. The obtained concentrate was distilled under reduced pressure (90 to 100 ° C., 20 Pa) to obtain 89.89 g of (cyclopentadienyl) tris (dimethylamido) zirconium as a pale yellow liquid (isolation yield: 73.9). %).

なお、得られた(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウム中には、テトラキス(ジアルキルアミド)ジルコニウムの含有量が1%未満であり、ビス(シクロペンタジエニル)ビス(ジアルキルアミド)ジルコニウムの含有量が1%未満であった。   In the obtained (cyclopentadienyl) tris (dimethylamide) zirconium, the content of tetrakis (dialkylamido) zirconium is less than 1%, and bis (cyclopentadienyl) bis (dialkylamido) zirconium. The content of was less than 1%.

比較例2(方法(2);(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムの合成) Comparative Example 2 (Method (2); Synthesis of (cyclopentadienyl) tris (dimethylamido) zirconium)

攪拌装置及び温度計を備えた内容積200mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム6.03g(25.88mmol)及びトルエン60mlを混合した後、混合液を冷却した。次いで、液体のジメチルアミン8.30g(184.12mmol)を液温が−10℃を超えないようにゆるやかに滴下した。その後、反応混合液に、シクロペンタジエン2.21g(33.43mmol)をゆるやかに滴下した。更に、1.62mol/Lのn−ブチルリチウムヘキサン溶液64ml(103.68mmol)を液温が−10℃を超えないようにゆるやかに滴下し1時間反応させた。
反応終了後、反応液を濾過した後に濾液を濃縮した。得られた濃縮物を減圧蒸留(60〜130℃、24Pa)し、淡黄色液体として、(シクロペンタジエニル)トリス(ジメチルアミノ)ジルコニウムを収率20%で得た(H−NMRによる分析値)。
なお、白色固体としてテトラキス(ジメチルアミド)ジルコニウムが15%、黄色固体としてビス(シクロペンタジエニル)ビス(ジメチルアミド)ジルコニウムが5%生成していた(H−NMRによる分析値)。
In a 200-ml flask equipped with a stirrer and a thermometer, 6.03 g (25.88 mmol) of zirconium tetrachloride and 60 ml of toluene were mixed in an argon atmosphere, and then the mixture was cooled. Next, 8.30 g (184.12 mmol) of liquid dimethylamine was slowly added dropwise so that the liquid temperature did not exceed −10 ° C. Thereafter, 2.21 g (33.43 mmol) of cyclopentadiene was gently added dropwise to the reaction mixture. Further, 64 ml (103.68 mmol) of a 1.62 mol / L n-butyllithium hexane solution was slowly added dropwise so that the liquid temperature did not exceed −10 ° C. and reacted for 1 hour.
After completion of the reaction, the reaction solution was filtered and then the filtrate was concentrated. The obtained concentrate was distilled under reduced pressure (60 to 130 ° C., 24 Pa), and (cyclopentadienyl) tris (dimethylamino) zirconium was obtained as a pale yellow liquid in a yield of 20% (analysis by 1 H-NMR). value).
In addition, 15% of tetrakis (dimethylamido) zirconium was produced as a white solid, and 5% of bis (cyclopentadienyl) bis (dimethylamido) zirconium was produced as a yellow solid (analytical value by 1 H-NMR).

比較例1((シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムの合成) Comparative Example 1 (Synthesis of (cyclopentadienyl) tris (dimethylamido) zirconium)

攪拌装置及び温度計を備えた内容積200mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム6.80g(29.18mmol)及びトルエン60mlを混合した後、反応混合液を冷却した。次いで、シクロペンタジエン2.47g(37.37mmol)を液温が−10℃を超えないようにゆるやかに滴下した。その後、反応混合液に、液体のジメチルアミン11.94g(264.86mmol)を液温が−10℃を超えないようにゆるやかに滴下した。更に、1.62mol/Lのn−ブチルリチウムヘキサン溶液74ml(119.88mmol)を液温が−10℃を超えないようにゆるやかに滴下して1時間反応させた。
反応終了後、反応液を濾過した後に濾液を濃縮した。得られた濃縮物を減圧蒸留(60〜90℃、16Pa)したところ、白色固体としてテトラキス(ジメチルアミド)ジルコニウムのみが得られ(3.02g)、目的とする(シクロペンタジエニル)トリス(ジメチルアミド)ジルコニウムは生成していなかった。
After mixing 6.80 g (29.18 mmol) of zirconium tetrachloride and 60 ml of toluene in an argon atmosphere in a 200 ml flask equipped with a stirrer and a thermometer, the reaction mixture was cooled. Next, 2.47 g (37.37 mmol) of cyclopentadiene was slowly added dropwise so that the liquid temperature did not exceed -10 ° C. Thereafter, 11.94 g (264.86 mmol) of liquid dimethylamine was slowly added dropwise to the reaction mixture so that the liquid temperature did not exceed -10 ° C. Furthermore, 74 ml (119.88 mmol) of a 1.62 mol / L n-butyllithium hexane solution was dropped slowly so that the liquid temperature did not exceed −10 ° C., and reacted for 1 hour.
After completion of the reaction, the reaction solution was filtered and then the filtrate was concentrated. When the obtained concentrate was distilled under reduced pressure (60 to 90 ° C., 16 Pa), only tetrakis (dimethylamido) zirconium was obtained as a white solid (3.02 g), and the desired (cyclopentadienyl) tris (dimethyl) was obtained. Amido) zirconium was not produced.

本発明により、例えば、化合物半導体材料や重合用触媒、特にジルコニウム含有薄膜を形成させる際に使用可能なジルコニウムアミド化合物ジルコニウムを提供することが出来る。   The present invention can provide a zirconium amide compound zirconium that can be used, for example, when forming a compound semiconductor material or a polymerization catalyst, particularly a zirconium-containing thin film.

Claims (1)

一般式(1)
(式中、Xはハロゲン原子を示す。なお、4つのXは同一でも互いに異なっていても良い
。)
で示されるジルコニウムハロゲン化物と一般式(2)
(式中、R1及びR2は炭素原子数1〜6の直鎖又は分枝状のアルキル基を示す。なお、
R1とR2は互いに結合して環を形成していても良い。)
で示されるジアルキルアミンと混合した後、次いで、一般式(3)
(式中、Lは炭素原子数1〜5のアルキル基で置換されていても良いシクロペンタジエニ
ル基を示す。)
で示される置換基を有していても良いシクロペンタジエン及びアルキルアルカリ金属を反
応させ
前記一般式(1)で示されるジルコニウムハロゲン化物、及び前記一般式(2)で示されるジアルキルアミンの反応を行った後に、連続して、前記置換基を有していても良いシクロペンタジエン及びアルキルアルカリ金属を反応させ、
置換基を有していても良いシクロペンタジエン及びアルキルアルカリ金属を反応させる際に、アルキルアルカリ金属、置換基を有していても良いシクロペンタジエンの順で加えて反応させることを特徴とする、一般式(4)
(式中、R1及びR2、Lは前記と同義である。)
で示されるジルコニウムアミド化合物の製造方法。
General formula (1)
(In the formula, X represents a halogen atom. The four Xs may be the same or different from each other.)
Zirconium halide represented by the general formula (2)
(In the formula, R1 and R2 represent a linear or branched alkyl group having 1 to 6 carbon atoms.
R1 and R2 may be bonded to each other to form a ring. )
And then mixed with a dialkylamine represented by the general formula (3)
(In the formula, L represents a cyclopentadienyl group which may be substituted with an alkyl group having 1 to 5 carbon atoms.)
A cyclopentadiene which may have a substituent represented by and an alkyl alkali metal ,
Cyclopentadiene and alkyl which may have the above-mentioned substituent continuously after the reaction of the zirconium halide represented by the general formula (1) and the dialkylamine represented by the general formula (2). React with alkali metals,
When reacting cyclopentadiene which may have a substituent and alkylalkali metal, the reaction is performed by adding alkylalkali metal and cyclopentadiene which may have a substituent in this order. Formula (4)
(Wherein R1, R2, and L are as defined above.)
The manufacturing method of the zirconium amide compound shown by these.
JP2011069396A 2011-03-28 2011-03-28 Method for producing zirconium amide compound Expired - Fee Related JP5732962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069396A JP5732962B2 (en) 2011-03-28 2011-03-28 Method for producing zirconium amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069396A JP5732962B2 (en) 2011-03-28 2011-03-28 Method for producing zirconium amide compound

Publications (2)

Publication Number Publication Date
JP2012201652A JP2012201652A (en) 2012-10-22
JP5732962B2 true JP5732962B2 (en) 2015-06-10

Family

ID=47183002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069396A Expired - Fee Related JP5732962B2 (en) 2011-03-28 2011-03-28 Method for producing zirconium amide compound

Country Status (1)

Country Link
JP (1) JP5732962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008445B1 (en) * 2014-02-26 2019-08-08 주식회사 유진테크 머티리얼즈 Precursor compositions for forming zirconium-containing film and method of forming zirconium-containing film using them as precursors
CN107188908A (en) * 2017-06-26 2017-09-22 江苏南大光电材料股份有限公司 Three(Dimethylamino)The preparation method of cyclopentadienyl group zirconium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140813A1 (en) * 2006-06-02 2007-12-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
CN103147062A (en) * 2007-09-14 2013-06-12 西格玛-奥吉奇有限责任公司 Methods of preparing thin films by atomic layer deposition using monocyclopentadienyl trialkoxy hafnium and zirconium precursors
EP2250146B1 (en) * 2008-02-29 2014-05-07 Albemarle Corporation Processes for producing transition metal amido and imido compounds

Also Published As

Publication number Publication date
JP2012201652A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5857970B2 (en) (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound
JP6065840B2 (en) Tris (dialkylamide) aluminum compound and method for producing aluminum-containing thin film using the aluminum compound
CN116897158A (en) Method for preparing organic tin compound
CN115768777A (en) Process for preparing organotin compounds
KR20230131941A (en) Method for producing organotin compounds
JP5732962B2 (en) Method for producing zirconium amide compound
JP5276043B2 (en) Ruthenium complex having aromatic ring substituted with silicon-containing substituent as ligand and method for producing the same
KR101306811B1 (en) Novel tungsten aminoamide halide compounds, preparation method thereof and process for the formation of thin films using the same
JP5488786B2 (en) Process for producing azaboracyclopentene compound and synthetic intermediate thereof
Bai et al. Highly regio-and stereoselective palladium-catalyzed allene bifunctionalization cascade via π-allyl intermediate
JP2015134799A (en) High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material
JP5463750B2 (en) Method for producing azaboracyclopentene compound
JP2012201630A (en) Method for producing metal tetra(1-alkylisobutyl alkoxide)
JP5448572B2 (en) Acetyl compound, method for producing the acetyl compound, and method for producing a naphthol compound using the acetyl compound
JP5488789B2 (en) Process for producing alkoxyazaboracyclopentene compound
JP2014214152A (en) Method for producing asymmetric dialkylamine compound
JP2012201629A (en) High purity zirconium alkoxide raw material and production method of the same, and analysis method of the raw material
JP2013173716A (en) Mixture of cobalt compound and method of producing cobalt-containing thin film using mixture of the cobalt compound
KR101306812B1 (en) Novel tungsten silylamide compounds, preparation method thereof and process for the formation of thin films using the same
JP5423212B2 (en) Method for producing aminoazaboracyclopentene compound
TWI835435B (en) Organometallic compounds and processes for preparing same
JP2006249047A (en) Method for purifying organometallic amide complex
JP7023176B2 (en) Method for producing 9- (1-naphthyl) -9H-carbazole derivative
JPWO2009081872A1 (en) Process for producing 6-halogeno-3-arylpyridine derivatives
JP2021178811A (en) Production method of aromatic ether compound or aromatic sulfhydryl compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5732962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees