JP5729925B2 - Heat source machine - Google Patents

Heat source machine Download PDF

Info

Publication number
JP5729925B2
JP5729925B2 JP2010130310A JP2010130310A JP5729925B2 JP 5729925 B2 JP5729925 B2 JP 5729925B2 JP 2010130310 A JP2010130310 A JP 2010130310A JP 2010130310 A JP2010130310 A JP 2010130310A JP 5729925 B2 JP5729925 B2 JP 5729925B2
Authority
JP
Japan
Prior art keywords
heat source
carbon dioxide
emission amount
unit
dioxide emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010130310A
Other languages
Japanese (ja)
Other versions
JP2011257034A (en
Inventor
文雄 小粥
文雄 小粥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2010130310A priority Critical patent/JP5729925B2/en
Priority to AU2011202528A priority patent/AU2011202528B2/en
Priority to CN201110142908.2A priority patent/CN102269422B/en
Priority to US13/151,725 priority patent/US20110296838A1/en
Publication of JP2011257034A publication Critical patent/JP2011257034A/en
Application granted granted Critical
Publication of JP5729925B2 publication Critical patent/JP5729925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/14Differentiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/38Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/04Heating water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • F24D2200/046Condensing boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、二酸化炭素排出量の削減度合を表示する機能を有する熱源機に関する。   The present invention relates to a heat source machine having a function of displaying a reduction degree of carbon dioxide emission.

従来の熱源機として、潜熱回収型の給湯装置において、基準となる給湯装置(標準的な給湯装置)に対する二酸化炭素排出量の削減量を算出し、この二酸化炭素排出量の削減量の情報をリモコンの表示画面に表示するようにしたものが提案されている(例えば、特許文献1参照)。   As a conventional heat source device, in a latent heat recovery type hot water supply device, the amount of carbon dioxide emission reduction with respect to the standard hot water supply device (standard hot water supply device) is calculated, and the information on the reduction amount of carbon dioxide emission is remote controlled. Have been proposed (see, for example, Patent Document 1).

特許文献1に記載された給湯装置によれば、使用者は、潜熱回収型の給湯装置への交換により、基準となる給湯装置に対してどの程度二酸化炭素排出量が削減されたかを認識することができる。   According to the hot water supply apparatus described in Patent Document 1, the user recognizes how much the amount of carbon dioxide emission has been reduced with respect to the reference hot water supply apparatus by replacing the latent heat recovery type hot water supply apparatus. Can do.

特開2004−20150号公報JP 2004-20150 A

使用者がそれまで使っていた熱源機よりも熱効率が良い熱源機に交換した場合、使用者は、熱源機の交換により、二酸化炭素排出量がどの程度削減されたかについて興味を抱くと考えられる。しかし、上述した従来の熱源機では、基準となる画一的な熱源機との比較による二酸化炭素排出量の削減量しか表示されないため、使用者の興味に応えることができなかった。   When the user replaces the heat source device with a higher heat efficiency than the heat source device that has been used, the user may be interested in how much the carbon dioxide emission has been reduced by replacing the heat source device. However, in the conventional heat source device described above, since only a reduction amount of carbon dioxide emission by comparison with a standard heat source device as a reference is displayed, it has not been possible to meet the interest of the user.

そこで、本発明は、以前に使用されていた熱源機に対する二酸化炭素排出量の削減度合を表示することができる熱源機を提供することを目的とする。   Then, an object of this invention is to provide the heat source machine which can display the reduction degree of the carbon dioxide emission amount with respect to the heat source machine used before.

本発明は上記目的を達成するためになされたものであり、加熱部により湯水を加熱する加熱運転を行なう熱源機に関する。   The present invention has been made to achieve the above object, and relates to a heat source apparatus that performs a heating operation in which hot water is heated by a heating unit.

そして、比較対象とする基準熱源機の仕様を入力する比較対象入力部と、前記加熱運転を実行する際に消費されるエネルギーを得るために排出された二酸化炭素の量である第1二酸化炭素排出量を算出する第1排出量算出部と、前記基準熱源機により、前記加熱運転と同等の運転を行なうと仮定したときに、前記基準熱源機で消費されるエネルギーを得るために排出される二酸化炭素の想定量である第2二酸化炭素排出量を算出する第2排出量算出部と、前記第1二酸化炭素排出量と前記第2二酸化炭素排出量との相違に応じて、熱源機の変更による二酸化炭素排出量の削減度合を表示する二酸化炭素排出量削減度合表示部とを備えたことを特徴とする(第1発明)。   And the comparison object input part which inputs the specification of the reference | standard heat source machine used as a comparison object, and the 1st carbon dioxide emission which is the quantity of the carbon dioxide discharged | emitted in order to obtain the energy consumed when performing the said heating operation When it is assumed that an operation equivalent to the heating operation is performed by the first emission amount calculation unit that calculates the amount and the reference heat source device, the dioxide dioxide that is discharged to obtain energy consumed by the reference heat source device Depending on the difference between the second carbon dioxide emission amount, which is an assumed amount of carbon, and the difference between the first carbon dioxide emission amount and the second carbon dioxide emission amount, A carbon dioxide emission reduction degree display unit that displays the reduction degree of carbon dioxide emission is provided (first invention).

第1発明によれば、熱源機を交換した使用者、或いは転居によりそれまで使用していた熱源機と異なる熱源機を使用するようになった使用者は、前記比較対象入力部により、以前使用していた熱源機の仕様を入力することができる。そして、前記二酸化炭素排出量削減度合表示部は、前記比較対象入力部により入力された仕様の熱源機を前記基準熱源機として、熱源機の変更による二酸化炭素排出量の削減度合を表示する。そのため、使用者は、以前使用していた熱源機よりも熱効率の高い熱源機を使うようになったときに、この表示を視認することによって、熱源機の変更による二酸化炭素排出量の削減度合を認識することができる。   According to the first invention, a user who has replaced a heat source machine, or a user who has started to use a heat source machine different from the heat source machine that has been used by relocation, can be used by the comparison target input unit. It is possible to input the specifications of the heat source machine. The carbon dioxide emission reduction degree display unit displays the reduction degree of carbon dioxide emission due to the change of the heat source machine, with the heat source machine having the specification input by the comparison target input unit as the reference heat source machine. Therefore, when a user starts to use a heat source unit that has a higher thermal efficiency than the heat source unit that was previously used, the user can visually check this display to reduce the degree of carbon dioxide emissions by changing the heat source unit. Can be recognized.

なお、前記加熱運転を実行する際に消費されるエネルギーとは、熱源機がガス熱源機や石油熱源機であるときには、バーナで燃料を燃焼することにより生じる熱エネルギーであり、熱源機が電気温水器等の電気熱源機であるときには、電力から変換された熱エネルギーである。そして、前記加熱運転を実行する際に消費されるエネルギーを得るために排出された二酸化炭素とは、熱源機がガス熱源機や石油熱源機であるときは、バーナで燃料を燃焼するときに排出された二酸化酸素であり、熱源機が電気熱源機であるときには、発電(火力発電等)の際に排出された二酸化炭素である。   Note that the energy consumed when the heating operation is performed is thermal energy generated by burning fuel with a burner when the heat source device is a gas heat source device or a petroleum heat source device. When it is an electric heat source machine such as a container, it is heat energy converted from electric power. The carbon dioxide discharged to obtain the energy consumed when the heating operation is performed means that when the heat source machine is a gas heat source machine or an oil heat source machine, it is emitted when the fuel is burned by the burner. When the heat source machine is an electric heat source machine, it is carbon dioxide discharged during power generation (thermal power generation or the like).

また、前記二酸化炭素排出量削減度合表示部により表示される二酸化炭素排出量の削減度合には、基準熱源機に対する二酸化炭素排出量の削減量(絶対量)及び削減割合(相対量)が含まれる。   The carbon dioxide emission reduction degree displayed by the carbon dioxide emission reduction degree display unit includes a reduction amount (absolute amount) and a reduction ratio (relative amount) of carbon dioxide emission with respect to the reference heat source machine. .

また、前記加熱部は、バーナと、該バーナの燃焼排気から主に顕熱を吸熱して熱交換する主熱交換器と、該バーナの燃焼排気から主に潜熱を吸熱して熱交換する副熱交換器とを有し、前記比較対象入力部は、比較対象とする前記基準熱源機の仕様として、バーナと該バーナの燃焼排気から主に顕熱を吸熱して熱交換する熱交換器のみを有する給湯器の入力が可能であることを特徴とする(第発明)。 The heating unit includes a burner, a main heat exchanger that mainly absorbs sensible heat from the combustion exhaust of the burner and exchanges heat, and a secondary heat exchanger that mainly absorbs latent heat from the combustion exhaust of the burner and exchanges heat. A heat exchanger, and the comparison target input unit is only a heat exchanger that performs heat exchange mainly by absorbing sensible heat from the combustion exhaust of the burner and the burner as a specification of the reference heat source machine to be compared. It is possible to input a hot water heater having ( 2nd invention).

発明によれば、主に顕熱を吸熱して熱交換する熱交換器のみを有する熱源機を前記基準熱源機として、前記二酸化炭素排出量削減度合表示部により、主に顕熱を吸熱して熱交換する前記主熱交換器、及び主に潜熱を吸熱して熱交換器する前記副熱交換器を備えた潜熱回収型の熱源機に交換したことによる二酸化炭素排出量の削減度合を表示させることができる。 According to the second aspect of the present invention, the heat source device having only a heat exchanger that mainly absorbs sensible heat and exchanges heat is used as the reference heat source device, and the carbon dioxide emission reduction degree display unit mainly absorbs sensible heat. The degree of reduction in carbon dioxide emissions due to the replacement of the main heat exchanger that exchanges heat and the latent heat recovery type heat source device that includes the auxiliary heat exchanger that mainly absorbs latent heat and exchanges heat. Can be displayed.

また、前記加熱部として、前記加熱運転として給湯管に湯を供給する給湯運転を行なうための第1加熱部と、前記加熱運転として暖房回路に湯を供給する暖房運転を行なうための第2加熱部とを備え、前記第1排出量算出部は、前記給湯運転を実行するときの前記第1二酸化炭素排出量と、前記暖房運転を実行するときの前記第1二酸化炭素排出量とを区別して算出し、前記第2排出量算出部は、前記給湯運転を実行するときの前記第2二酸化炭素排出量と、前記暖房運転を実行するときの前記第2二酸化炭素排出量とを区別して算出し、前記二酸化炭素排出量削減度合表示部は、前記給湯運転を実行するときの熱源機の変更による二酸化炭素排出量の削減度合と、前記暖房運転を実行するときの熱源機の変更による二酸化炭素排出量の削減度合とを区別して算出して、表示することを特徴とする(第3発明)。 In addition, as the heating unit, a first heating unit for performing a hot water supply operation for supplying hot water to a hot water supply pipe as the heating operation, and a second heating for performing a heating operation for supplying hot water to a heating circuit as the heating operation. The first emission amount calculation unit distinguishes between the first carbon dioxide emission amount when the hot water supply operation is performed and the first carbon dioxide emission amount when the heating operation is performed. And the second emission amount calculation unit separately calculates the second carbon dioxide emission amount when the hot water supply operation is executed and the second carbon dioxide emission amount when the heating operation is executed. The carbon dioxide emission reduction degree display unit is configured to reduce the carbon dioxide emission amount by changing the heat source unit when performing the hot water supply operation, and carbon dioxide emission by changing the heat source unit when performing the heating operation. Reduction in quantity It is calculated by distinguishing and covering, and displaying (third invention).

発明によれば、給湯運転と暖房運転を行なう複合型の熱源機において、給湯運転を実行するときの熱源機の変更による二酸化炭素排出量の削減度合と、暖房運転を行なうときの熱源機の変更による二酸化炭素排出量の削減度合を、個別に使用者に認識させることができる。
また、前記基準熱源機の仕様には前記基準熱源機の年式が含まれ、前記第2排出量算出部は、前記基準熱源機の年式に応じた効率換算値を用いて、前記第2二酸化炭素排出量を算出することを特徴とする(第4発明)。
According to the third aspect of the present invention, in the combined heat source apparatus that performs the hot water supply operation and the heating operation, the degree of carbon dioxide emission reduction by changing the heat source apparatus when the hot water supply operation is performed, and the heat source apparatus when the heating operation is performed. The user can be made to recognize the degree of carbon dioxide emission reduction due to the change in each.
In addition, the specification of the reference heat source unit includes a year type of the reference heat source unit, and the second emission amount calculation unit uses the efficiency conversion value according to the year type of the reference heat source unit, The carbon dioxide emission amount is calculated (fourth invention).

熱源機の構成図。The block diagram of a heat source machine. 比較対象選択画面の説明図。Explanatory drawing of a comparison object selection screen. 二酸化炭素排出量の削減度合を表示する処理のフローチャート。The flowchart of the process which displays the reduction degree of a carbon dioxide emission amount. CO削減度合表示画面1の説明図。Illustration of CO 2 reduction degree display screen 1. CO削減度合表示画面2の説明図。Illustration of CO 2 reduction degree display screen 2.

本実施の形態について、図1〜図5を参照して説明する。   The present embodiment will be described with reference to FIGS.

図1を参照して、本実施の形態のガス熱源機1(本発明の熱源機に相当する)は、給湯機能と暖房機能を有する潜熱回収型の高効率の熱源機であり、燃料ガスとして天然ガスを使用する。   Referring to FIG. 1, a gas heat source device 1 (corresponding to the heat source device of the present invention) of the present embodiment is a latent heat recovery type high-efficiency heat source device having a hot water supply function and a heating function. Use natural gas.

ガス熱源機1は、給湯管105の途中に設けられて給湯管105を流通する湯水を加熱する給湯主熱交換器100a(給湯バーナ101の燃焼排気から主に顕熱を吸熱する)及び給湯副熱交換器100b(給湯バーナ101の燃焼排気から主に潜熱を吸熱する)と、暖房回路115の途中に設けられて暖房回路115を流通する湯水を加熱する暖房主熱交換器110a(暖房バーナ111の燃焼排気から主に顕熱を吸熱する)及び暖房副熱交換器110b(暖房バーナ111の燃焼排気から主に潜熱を吸熱する)とを備えている。   The gas heat source unit 1 is provided in the middle of the hot water supply pipe 105, and supplies a hot water main heat exchanger 100a (mainly absorbing sensible heat from the combustion exhaust of the hot water burner 101) and a hot water supply sub. Heat exchanger 100b (mainly absorbs latent heat from the combustion exhaust of hot water supply burner 101) and heating main heat exchanger 110a (heating heater burner 111) that is provided in the middle of the heating circuit 115 and heats hot water flowing through the heating circuit 115 And a heating sub heat exchanger 110b (mainly absorbing latent heat from the combustion exhaust of the heating burner 111).

給湯バーナ101は、大バーナ101aと中バーナ101bと小バーナ101cとにより構成され、暖房バーナ111は、大バーナ111aと小バーナ111bとにより構成されている。   The hot water supply burner 101 is composed of a large burner 101a, a middle burner 101b, and a small burner 101c, and the heating burner 111 is composed of a large burner 111a and a small burner 111b.

なお、給湯主熱交換器100aと給湯副熱交換器100bと給湯バーナ101とにより、本発明の第1加熱部が構成される。また、暖房主熱交換器110aと暖房副熱交換器110bと暖房バーナ111とにより、本発明の第2加熱部が構成される。   In addition, the 1st heating part of this invention is comprised by the hot water supply main heat exchanger 100a, the hot water supply sub heat exchanger 100b, and the hot water supply burner 101. FIG. Further, the heating main heat exchanger 110a, the heating sub heat exchanger 110b, and the heating burner 111 constitute the second heating unit of the present invention.

ガス熱源機1は、大バーナ101aへの燃料ガスの供給と遮断とを切換える給湯ガス電磁弁71、中バーナ101bへの燃料ガスの供給と遮断とを切換える給湯ガス電磁弁72、小バーナ101cへの燃料ガスの供給と遮断とを切換える給湯ガス電磁弁73、大バーナ111aへの燃料ガスの供給と遮断とを切換える暖房ガス電磁弁74、小バーナ111bへの燃料ガスの供給と遮断とを切換える暖房ガス電磁弁75、給湯バーナ101と暖房バーナ111への燃料ガスの供給と遮断とを切換える元ガス電磁弁70、給湯バーナ101と暖房バーナ111への燃料ガスの供給流量を調節するガス比例弁121、及び給湯バーナ101と暖房バーナ111に燃焼用空気を供給するファン130を備えている。   The gas heat source unit 1 supplies the hot water gas solenoid valve 71 for switching between supply and shutoff of the fuel gas to the large burner 101a, the hot water supply gas solenoid valve 72 for switching between supply and shutoff of the fuel gas to the middle burner 101b, and the small burner 101c. Hot water supply gas solenoid valve 73 for switching between supply and cutoff of the fuel gas, heating gas solenoid valve 74 for switching supply and cutoff of the fuel gas to the large burner 111a, and supply and cutoff of fuel gas to the small burner 111b are switched Heating gas solenoid valve 75, original gas solenoid valve 70 for switching between supply and shutoff of fuel gas to hot water supply burner 101 and heating burner 111, and gas proportional valve for adjusting the supply flow rate of fuel gas to hot water supply burner 101 and heating burner 111 121, and a fan 130 for supplying combustion air to the hot water supply burner 101 and the heating burner 111.

さらに、ガス熱源機1は、元ガス電磁弁70、ガス比例弁121、給湯ガス電磁弁71,72,73、暖房ガス電磁弁74,75、及びファン130の作動を制御して、給湯管105に出湯する湯の温度を制御しながら行う給湯運転、及び暖房回路115に出湯する湯の温度を制御しながら行う暖房運転を実行するコントローラ10を備えている。   Further, the gas heat source unit 1 controls the operation of the original gas solenoid valve 70, the gas proportional valve 121, the hot water supply solenoid valve 71, 72, 73, the heating gas solenoid valve 74, 75, and the fan 130, and the hot water supply pipe 105. A controller 10 is provided that performs a hot water supply operation performed while controlling the temperature of hot water to be discharged to the hot water and a heating operation performed while controlling the temperature of hot water to be discharged to the heating circuit 115.

コントローラ10は、図示しないCPU,メモリ等により構成された電子ユニットであり、CPUにガス熱源機1の制御プログラムを実行させることによって、CPUが、比較対象入力部11、第1排出量算出部12、第2排出量算出部13、及び二酸化炭素排出量削減度合表示部14として機能する。また、コントローラ10には、ガス熱源機1を遠隔制御するためのリモコン20が接続されている。   The controller 10 is an electronic unit configured by a CPU, a memory, and the like (not shown). By causing the CPU to execute a control program for the gas heat source unit 1, the CPU performs the comparison target input unit 11 and the first discharge amount calculation unit 12. , Function as a second emission amount calculation unit 13 and a carbon dioxide emission reduction degree display unit 14. The controller 10 is connected to a remote controller 20 for remotely controlling the gas heat source device 1.

比較対象入力部11、第1排出量算出部12、第2排出量算出部13、及び二酸化炭素排出量削減度合表示部14は、ガス熱源機1の使用者が、以前に使用していた他の熱源機を基準として、ガス熱源機1に替えたことによる二酸化炭素排出量の削減度合を、リモコン20のディスプレイ30に表示させるための構成である。   The comparison target input unit 11, the first emission calculation unit 12, the second emission calculation unit 13, and the carbon dioxide emission reduction degree display unit 14 are other than those previously used by the user of the gas heat source unit 1. This is a configuration for causing the display 30 of the remote controller 20 to display the degree of carbon dioxide emission reduction due to the change to the gas heat source unit 1 with the heat source unit as a reference.

図2を参照して、比較対象入力部11は、使用者がリモコン20のモード切換スイッチ21を操作して、「比較対象入力モード」にすると、リモコン20のディスプレイ30に、以前に使用していた熱源機の選択を促す比較対象選択画面50を表示する。   Referring to FIG. 2, comparison target input unit 11 has been previously used on display 30 of remote controller 20 when the user operates mode changeover switch 21 of remote controller 20 to enter “comparison target input mode”. A comparison target selection screen 50 for prompting selection of the selected heat source device is displayed.

使用者は、比較対象選択画面50により、UPスイッチ22或いはDOWNスイッチ23を操作して、以前使用していた熱源機の仕様(1:従来型ガス熱源機(天然ガス用)、2:従来型ガス熱源機(LPG用)、3:石油熱源機、4:電気温水器、のうちのいすれか)を選択する。図2は、石油熱源機が選択された状態を示している。なお、従来型ガス熱源機とは、顕熱回収用の熱交換器のみを有し、潜熱回収用の熱交換器を有していないガス熱源機である。   The user operates the UP switch 22 or the DOWN switch 23 on the comparison target selection screen 50 to specify the specifications of the heat source machine that has been used before (1: conventional gas heat source machine (for natural gas), 2: conventional type) Gas heat source machine (for LPG), 3: Oil heat source machine, 4: Electric water heater, whichever is selected). FIG. 2 shows a state in which the oil heat source machine is selected. The conventional gas heat source machine is a gas heat source machine that has only a heat exchanger for sensible heat recovery and does not have a heat exchanger for latent heat recovery.

使用者が決定スイッチ24を操作することで、比較対象とする熱源機(基準熱源機)が決定される。なお、熱源機の加熱運転において、天然ガス、LPG(Liquefied Petroleum Gas,液化石油ガス)、石油をバーナで燃焼させることに生じる熱エネルギー、及び電力から変換された熱エネルギーが、本発明の加熱運転を実行する際に消費されるエネルギーに相当する。   When the user operates the determination switch 24, the heat source machine (reference heat source machine) to be compared is determined. In the heating operation of the heat source unit, natural gas, LPG (Liquefied Petroleum Gas, liquefied petroleum gas), thermal energy generated by burning petroleum with a burner, and thermal energy converted from electric power are the heating operation of the present invention. Equivalent to the energy consumed when performing

次に、図3に示したフローチャートに従って、ガス熱源機1が給湯運転を行なうときの第1排出量算出部12、第2排出量算出部13、及び二酸化炭素排出量削減度合表示部14による処理について説明する。   Next, according to the flowchart shown in FIG. 3, processing by the first emission amount calculation unit 12, the second emission amount calculation unit 13, and the carbon dioxide emission reduction degree display unit 14 when the gas heat source device 1 performs the hot water supply operation. Will be described.

STEP1〜STEP3は、第1排出量算出部12による処理である。第1排出量算出部12は、STEP1で、ガス熱源機1(現ガス熱源機)の給湯運転時の給水温度、設定温度、給水流量を用いて計算される燃料ガス(天然ガス)の消費量(output量)を、1日単位で積算する。   STEP 1 to STEP 3 are processes by the first discharge amount calculation unit 12. The first emission amount calculation unit 12 is the consumption amount of fuel gas (natural gas) calculated using the feed water temperature, set temperature, and feed water flow rate during the hot water supply operation of the gas heat source unit 1 (current gas heat source unit) in STEP 1. (Output amount) is integrated on a daily basis.

続くSTEP2で、第1排出量算出部12は、STEP1で算出した燃料ガスの積算量Gcを、以下の表1に示した効率変換値μ11で除して、給湯運転において使用された積算エネルギー量(input量)Se(本発明の加熱運転を実行する際に消費されるエネルギーに相当する)を算出する。   In subsequent STEP 2, the first emission amount calculation unit 12 divides the fuel gas integrated amount Gc calculated in STEP 1 by the efficiency conversion value μ 11 shown in Table 1 below to calculate the integrated energy amount used in the hot water supply operation. (Input amount) Se (corresponding to energy consumed when the heating operation of the present invention is executed) is calculated.

次のSTEP3で、第1排出量算出部12は、積算エネルギー量Seを得るための天然ガスの燃焼に伴って排出された二酸化炭素の排出量であるEx1(第1二酸化炭素排出量)を、以下の式(1)により算出する。   In the next STEP3, the first emission amount calculation unit 12 calculates Ex1 (first carbon dioxide emission amount), which is the emission amount of carbon dioxide emitted along with the combustion of natural gas to obtain the accumulated energy amount Se. It calculates with the following formula | equation (1).

Ex1 = Se × K1 ・・・・・ (1)
但し、K1:以下の表1によるCO単位換算値。ガス熱源機1は天然ガス用なので、K1=0.0506 となる。
Ex1 = Se x K1 (1)
However, K1: CO 2 unit conversion value according to Table 1 below. Since the gas heat source unit 1 is for natural gas, K1 = 0.0506.

Figure 0005729925
Figure 0005729925

続くSTEP4は、第2排出量算出部13による処理である。第2排出量算出部13は、比較対象である石油熱源機(基準熱源機)により、ガス熱源機1と同等の給湯運転を実行させたと仮定したときに、石油の燃焼に伴って排出される二酸化炭素の想定量Ex2(第2二酸化炭素排出量)を、以下の式(2)により算出する。   The subsequent STEP 4 is processing by the second emission amount calculation unit 13. When it is assumed that the hot water supply operation equivalent to that of the gas heat source unit 1 is executed by the oil heat source unit (reference heat source unit) to be compared, the second emission amount calculation unit 13 is discharged along with the combustion of oil. An estimated amount of carbon dioxide Ex2 (second carbon dioxide emission) is calculated by the following equation (2).

Ex2 = Ex1×(μ11/μ21)×(K2/K1) ・・・・・ (2)
但し、Ex1:積算エネルギー量Seを得るための天然ガスの燃焼に伴って排出された二酸化炭素の排出量、μ11:ガス熱源機1の給湯運転時の効率換算値(=0.95)、μ21:以下の表2による石油熱源機の給湯運転時の効率換算値(=0.84)、K1:ガス熱源機1のCO単位換算値(=0.0506)、K2:以下の表2による石油熱源機のCO単位換算値(=0.0678)。
Ex2 = Ex1 x (μ11 / μ21) x (K2 / K1) (2)
However, Ex1: Emission amount of carbon dioxide emitted with combustion of natural gas to obtain accumulated energy amount Se, μ11: Efficiency conversion value (= 0.95) during hot water supply operation of gas heat source unit 1, μ21: below The efficiency conversion value (= 0.84) during the hot water supply operation of the oil heat source unit according to Table 2 in the table, K1: CO 2 unit conversion value (= 0.0506) of the gas heat source unit 1, K2: CO 2 of the oil heat source unit according to Table 2 below Unit conversion value (= 0.0678).

Figure 0005729925
Figure 0005729925

なお、上記表1,表2のデータは、予めメモリに保持されている。   The data in Tables 1 and 2 are stored in advance in the memory.

次のSTEP5〜STEP7は、二酸化炭素排出量削減度合表示部14による処理である。二酸化炭素排出量削減度合表示部14は、STEP5で、第1排出量算出部12により算出された第1二酸化炭素排出量Ex1と、第2排出量算出部13により算出された第2二酸化炭素排出量Ex2との差ΔExを、ガス熱源機1(現熱源機)の石油熱源機(以前使用されていた熱源機,基準熱源機)に対する二酸化炭素排出量の削減量として算出する。   The next STEP 5 to STEP 7 are processes by the carbon dioxide emission reduction degree display unit 14. The carbon dioxide emission reduction degree display unit 14 includes the first carbon dioxide emission Ex1 calculated by the first emission calculation unit 12 and the second carbon dioxide emission calculated by the second emission calculation unit 13 in STEP5. A difference ΔEx from the amount Ex2 is calculated as a reduction amount of carbon dioxide emission with respect to the petroleum heat source machine (the heat source machine used previously, the reference heat source machine) of the gas heat source machine 1 (current heat source machine).

続くSTEP6,STEP7で、二酸化炭素排出量削減度合表示部14は、図4に示したように、リモコン20のディスプレイ30に、CO削減量表示画面60を表示する。CO削減量表示画面60においては、CO削減量表示部61に当日及び使用開始時から累積した二酸化炭素排出量の削減量が表示され、累積した二酸化炭素排出量の削減量を、杉の木の本数に換算した値62及び杉の木の大きさに換算したグラフィック63が表示される。 In subsequent STEP 6 and STEP 7, the carbon dioxide emission reduction degree display unit 14 displays the CO 2 reduction amount display screen 60 on the display 30 of the remote controller 20 as shown in FIG. 4. On the CO 2 reduction amount display screen 60, the CO 2 reduction amount display unit 61 displays the reduction amount of the carbon dioxide emission accumulated from the day of use and the start of use. A value 62 converted to the number of trees and a graphic 63 converted to the size of a cedar tree are displayed.

また、二酸化炭素排出量削減度合表示部14は、図5に示したように、二酸化炭素排出量の削減量の累積値が一定量以上となったときに、リモコン20のディスプレイ30に、この削減量に相当する杉の木の森の個数71と、森のイメージのグラフィック72を示すCO削減量表示画面70を表示する。 Further, as shown in FIG. 5, the carbon dioxide emission reduction degree display unit 14 displays this reduction on the display 30 of the remote controller 20 when the cumulative value of the reduction amount of the carbon dioxide emission becomes a certain amount or more. A CO 2 reduction amount display screen 70 showing the number 71 of cedar tree forests corresponding to the amount and the graphic 72 of the forest image is displayed.

図4,5に示したように、リモコン20のディスプレイ30に、二酸化炭素排出量の削減度合を表示することにより、従来の石油熱源機から潜熱回収型の高効率のガス熱源機1に交換した使用者に対して、この交換により自然環境の保護に貢献することができているという、満足感を与えることができる。   As shown in FIGS. 4 and 5, the degree of carbon dioxide emission reduction is displayed on the display 30 of the remote controller 20, thereby replacing the conventional oil heat source machine with the latent heat recovery type high efficiency gas heat source machine 1. The user can be satisfied that the exchange contributes to the protection of the natural environment.

なお、図3のフローチャートでは、ガス熱源機1が給湯運転を行なう場合について説明したが、ガス熱源機1が暖房運転を行なう場合にも、上記表1の暖房運転用の効率換算値μ12と、上記表2の暖房運転用の効率換算値μ22を用いることで、ガス熱源機1に替えたことによる二酸化炭素排出量の削減量を算出して、リモコン20のディスプレイ30に表示することができる。   In the flowchart of FIG. 3, the case where the gas heat source unit 1 performs the hot water supply operation has been described. However, when the gas heat source unit 1 performs the heating operation, the efficiency conversion value μ12 for the heating operation in Table 1 above, By using the efficiency conversion value μ22 for heating operation in Table 2 above, it is possible to calculate the reduction amount of carbon dioxide emission due to the change to the gas heat source unit 1 and display it on the display 30 of the remote controller 20.

また、以前に使用されていた熱源機として、石油熱源機が選択された場合を例として説明したが、従来型の(潜熱回収型ではない)ガス給湯器(天然ガス用,LPG用)、或いは電気温水器が選択された場合も、上記表2により対応するCO単位換算値K2と、効率換算値μ21,μ22を用いることで、同様にして二酸化炭素排出量の削減量を算出して、リモコン20のディスプレイ30に表示することができる。 Moreover, although the case where the petroleum heat source machine was selected as an example as a heat source machine used before was explained as an example, the conventional type (not the latent heat recovery type) gas water heater (for natural gas, for LPG), or Even when an electric water heater is selected, by using the corresponding CO 2 unit conversion value K2 and efficiency conversion values μ21 and μ22 according to Table 2 above, the reduction amount of carbon dioxide emission is calculated in the same manner, It can be displayed on the display 30 of the remote controller 20.

また、本実施の形態では、比較対象とする熱源機として、従来の(潜熱回収型ではない)ガス熱源機(天然ガス用、LPG用)、石油熱源機、及び電気温水器の中から選択する例を示したが、必ずしもこれらの全てを選択対象とする必要はない。また、比較対象とする熱源機の機種名を入力する構成としてもよい。さらに、比較対象とする熱源機の年式を合わせて入力し、年式に応じて効率換算値の設定を変更する構成としてもよい。   In the present embodiment, the heat source device to be compared is selected from conventional (not latent heat recovery type) gas heat source devices (for natural gas and LPG), petroleum heat source devices, and electric water heaters. Although an example is shown, it is not always necessary to select all of them. Moreover, it is good also as a structure which inputs the model name of the heat source machine made into a comparison object. Furthermore, it is good also as a structure which inputs together the year model of the heat source machine made into a comparison object, and changes the setting of an efficiency conversion value according to a model year.

また、本実施の形態では、本発明の熱源機として、主熱交換器100a,110a、及び副熱交換器100b,110bを備えた潜熱回収型の天然ガス用のガス熱源機1を示したが、他の種類の熱源機に対しても本発明の適用が可能である。   In the present embodiment, the latent heat recovery type natural gas gas heat source unit 1 including the main heat exchangers 100a and 110a and the sub heat exchangers 100b and 110b is shown as the heat source unit of the present invention. The present invention can be applied to other types of heat source machines.

また、本実施の形態では、本発明の熱源機として、給湯運転と暖房運転を行なう複合型のガス熱源機1を示したが、給湯専用の熱源機及び暖房専用の熱源機に対しても本発明の適用が可能である。   In the present embodiment, the combined gas heat source unit 1 that performs hot water supply operation and heating operation is shown as the heat source device of the present invention, but the present invention is also applied to a heat source device dedicated to hot water supply and a heat source device dedicated to heating. The invention can be applied.

また、本実施の形態において、二酸化炭素排出量削減度合表示部14は、CO削減度合表示画面60,70により、基準熱源機に対する二酸化酸素削減度合を削減量(絶対値)で表示したが、削減割合(相対値)で表示するようにしてもよい。削減割合は、上記式(1)で算出されたEx1及び上記式(2)で算出されたEx2を用いて、例えば以下の式(3)により算出すればよい。 Further, in the present embodiment, the carbon dioxide emission reduction degree display unit 14 displays the degree of oxygen dioxide reduction with respect to the reference heat source machine as a reduction amount (absolute value) on the CO 2 reduction degree display screens 60 and 70. The reduction ratio (relative value) may be displayed. The reduction ratio may be calculated by, for example, the following equation (3) using Ex1 calculated by the above equation (1) and Ex2 calculated by the above equation (2).

削減割合 =(Ex2−Ex1)/Ex2 × 100 (%) ・・・・・ (3)   Reduction ratio = (Ex2-Ex1) / Ex2 x 100 (%) (3)

1…ガス熱源機、10…コントローラ、11…比較対象入力部、12…第1排出量算出部、13…第2排出量算出部、14…二酸化炭素排出量削減度合表示部、20…リモコン、30…ディスプレイ、50…比較対象選択画面、60,70…CO削減度合表示画面。 DESCRIPTION OF SYMBOLS 1 ... Gas heat source machine, 10 ... Controller, 11 ... Comparison object input part, 12 ... 1st emission amount calculation part, 13 ... 2nd emission amount calculation part, 14 ... Carbon dioxide emission amount reduction display part, 20 ... Remote control, 30 ... display, 50 ... comparison target selection screen, 60, 70 ... CO 2 reduction degree display screen.

Claims (4)

加熱部により湯水を加熱する加熱運転を行なう熱源機であって、
比較対象とする基準熱源機の仕様を入力する比較対象入力部と、
前記加熱運転を実行する際に消費されるエネルギーを得るために排出された二酸化炭素の量である第1二酸化炭素排出量を算出する第1排出量算出部と、
前記基準熱源機により、前記加熱運転と同等の運転を行なうと仮定したときに、前記基準熱源機で消費されるエネルギーを得るために排出される二酸化炭素の想定量である第2二酸化炭素排出量を算出する第2排出量算出部と、
前記第1二酸化炭素排出量と前記第2二酸化炭素排出量との相違に応じて、熱源機の変更による二酸化炭素排出量の削減度合を表示する二酸化炭素排出量削減度合表示部と
を備えたことを特徴とする熱源機。
A heat source machine that performs a heating operation in which hot water is heated by a heating unit,
A comparison target input unit for inputting the specifications of the reference heat source machine to be compared;
A first emission amount calculation unit that calculates a first carbon dioxide emission amount that is an amount of carbon dioxide emitted to obtain energy consumed when performing the heating operation;
A second carbon dioxide emission amount that is an assumed amount of carbon dioxide discharged to obtain energy consumed by the reference heat source device when it is assumed that the reference heat source device performs an operation equivalent to the heating operation. A second emission amount calculation unit for calculating
According to the difference between the first carbon dioxide emission amount and the second carbon dioxide emission amount, a carbon dioxide emission reduction degree display unit that displays a reduction degree of the carbon dioxide emission amount by changing the heat source device is provided. A heat source machine characterized by
請求項1に記載の熱源機において、
前記加熱部は、バーナと、該バーナの燃焼排気から主に顕熱を吸熱して熱交換する主熱交換器と、該バーナの燃焼排気から主に潜熱を吸熱して熱交換する副熱交換器とを有し、
前記比較対象入力部は、比較対象とする前記基準熱源機の仕様として、バーナと該バーナの燃焼排気から主に顕熱を吸熱して熱交換する熱交換器のみを有する熱源機の入力が可能であることを特徴とする熱源機。
The heat source machine according to claim 1,
The heating section includes a burner, a main heat exchanger that mainly absorbs sensible heat from the combustion exhaust of the burner and exchanges heat, and a secondary heat exchange that mainly absorbs latent heat from the combustion exhaust of the burner and exchanges heat. And
As the specification of the reference heat source device to be compared, the comparison target input unit can input a heat source device having only a burner and a heat exchanger that mainly absorbs sensible heat from the combustion exhaust of the burner to exchange heat. The heat source machine characterized by being.
請求項1又は請求項2に記載の熱源機において、
前記加熱部として、前記加熱運転として給湯管に湯を供給する給湯運転を行なうための第1加熱部と、前記加熱運転として暖房回路に湯を供給する暖房運転を行なうための第2加熱部とを備え、
前記第1排出量算出部は、前記給湯運転を実行するときの前記第1二酸化炭素排出量と、前記暖房運転を実行するときの前記第1二酸化炭素排出量とを区別して算出し、
前記第2排出量算出部は、前記給湯運転を実行するときの前記第2二酸化炭素排出量と、前記暖房運転を実行するときの前記第2二酸化炭素排出量とを区別して算出し、
前記二酸化炭素排出量削減度合表示部は、前記給湯運転を実行するときの熱源機の変更による二酸化炭素排出量の削減度合と、前記暖房運転を実行するときの熱源機の変更による二酸化炭素排出量の削減度合とを区別して算出して、表示することを特徴とする熱源機。
In the heat source machine according to claim 1 or 2,
As the heating unit, a first heating unit for performing a hot water supply operation for supplying hot water to a hot water supply pipe as the heating operation, and a second heating unit for performing a heating operation for supplying hot water to a heating circuit as the heating operation, With
The first emission amount calculation unit distinguishes and calculates the first carbon dioxide emission amount when the hot water supply operation is executed and the first carbon dioxide emission amount when the heating operation is executed,
The second emission amount calculating unit distinguishes and calculates the second carbon dioxide emission amount when executing the hot water supply operation and the second carbon dioxide emission amount when executing the heating operation,
The carbon dioxide emission reduction degree display unit is configured to reduce the carbon dioxide emission amount by changing the heat source unit when performing the hot water supply operation and the carbon dioxide emission amount by changing the heat source unit when performing the heating operation. A heat source device that calculates and displays the degree of reduction separately.
請求項1から請求項3のうちいずれか1項記載の熱源機において、
前記基準熱源機の仕様には前記基準熱源機の年式が含まれ、
前記第2排出量算出部は、前記基準熱源機の年式に応じた効率換算値を用いて、前記第2二酸化炭素排出量を算出することを特徴とする熱源機。
In the heat source machine according to any one of claims 1 to 3,
The specification of the reference heat source machine includes the model year of the reference heat source machine,
The second emission amount calculation unit calculates the second carbon dioxide emission amount using an efficiency conversion value corresponding to a model year of the reference heat source unit.
JP2010130310A 2010-06-07 2010-06-07 Heat source machine Active JP5729925B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010130310A JP5729925B2 (en) 2010-06-07 2010-06-07 Heat source machine
AU2011202528A AU2011202528B2 (en) 2010-06-07 2011-05-30 Heat source machine
CN201110142908.2A CN102269422B (en) 2010-06-07 2011-05-30 Heat source device
US13/151,725 US20110296838A1 (en) 2010-06-07 2011-06-02 Heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130310A JP5729925B2 (en) 2010-06-07 2010-06-07 Heat source machine

Publications (2)

Publication Number Publication Date
JP2011257034A JP2011257034A (en) 2011-12-22
JP5729925B2 true JP5729925B2 (en) 2015-06-03

Family

ID=45051800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130310A Active JP5729925B2 (en) 2010-06-07 2010-06-07 Heat source machine

Country Status (4)

Country Link
US (1) US20110296838A1 (en)
JP (1) JP5729925B2 (en)
CN (1) CN102269422B (en)
AU (1) AU2011202528B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256423A1 (en) * 2011-11-18 2013-10-03 Richard G. Lord Heating System Including A Refrigerant Boiler
US9746190B2 (en) * 2014-06-06 2017-08-29 Intellihot, Inc. Combined heating system capable of bi-directional heating
US11619400B2 (en) * 2015-11-06 2023-04-04 Mestek, Inc. Networked boiler system and method
JP6972704B2 (en) * 2017-06-26 2021-11-24 株式会社ノーリツ Hot water supply system
JP2023070475A (en) * 2021-11-09 2023-05-19 ヤンマーホールディングス株式会社 Display device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7902313A (en) * 1979-03-23 1980-09-25 Kema Nv HEAT QUANTITY METER.
JPS5880440A (en) * 1981-11-05 1983-05-14 Matsushita Electric Ind Co Ltd Hot air type space heater equipped with hot water supply
JP3683400B2 (en) * 1998-01-23 2005-08-17 リンナイ株式会社 Combined water heater
JPH11295358A (en) * 1998-04-10 1999-10-29 Ryosaku Takada Consumed power display device which function for calculating and displaying electricity bill and temporary carbon dioxide emission amount
JP3744472B2 (en) * 2002-06-20 2006-02-08 株式会社ノーリツ Water heater
JP3931162B2 (en) * 2003-08-08 2007-06-13 リンナイ株式会社 Hot water heater
US6971335B2 (en) * 2003-08-20 2005-12-06 Paloma Industries, Limited Water heater
JP4081030B2 (en) * 2004-03-02 2008-04-23 リンナイ株式会社 Combined combustion device
US7647897B2 (en) * 2004-03-25 2010-01-19 Noritz Corporation Heating apparatus
JP2005345146A (en) * 2004-05-31 2005-12-15 Tdk Corp Measuring instrument of concentration of carbon dioxide, method for measuring concentration of carbon dioxide and combustion device
JP4655621B2 (en) * 2004-12-22 2011-03-23 株式会社ノーリツ Water heater
JP4929866B2 (en) * 2006-06-16 2012-05-09 株式会社ノーリツ Heat exchanger and hot water device provided with the same
US20080216770A1 (en) * 2007-03-05 2008-09-11 Rinnai America Corporation, A Corporation Of Georgia Water heating system
US8353463B2 (en) * 2007-04-24 2013-01-15 Rinnai America Corporation Methods and apparatus for heating air with hot water
JP5127358B2 (en) * 2007-08-13 2013-01-23 旭化成ホームズ株式会社 Housing equipment selection support system
JP5196228B2 (en) * 2007-11-22 2013-05-15 株式会社ノーリツ Latent heat recovery water heater
US20100287012A1 (en) * 2008-04-08 2010-11-11 Bloom Energy Corporation Method and system for measuring carbon dioxide reduction
US20100042453A1 (en) * 2008-08-12 2010-02-18 Efficiency 2.0, LLC. Methods and apparatus for greenhouse gas footprint monitoring
JP2010101608A (en) * 2008-10-27 2010-05-06 Chubu Electric Power Co Inc Performance data comparison support system for various type of floor heating device and computer program and storage medium used for the same
JP2010152475A (en) * 2008-12-24 2010-07-08 Toshiba Corp Information processing apparatus and energy saving effect display method
US8626450B2 (en) * 2009-06-04 2014-01-07 Alstom Technology Ltd Method for determination of carbon dioxide emissions from combustion sources used to heat a working fluid

Also Published As

Publication number Publication date
JP2011257034A (en) 2011-12-22
AU2011202528B2 (en) 2014-03-20
CN102269422A (en) 2011-12-07
US20110296838A1 (en) 2011-12-08
CN102269422B (en) 2015-09-09
AU2011202528A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5729925B2 (en) Heat source machine
Chicco et al. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators
Comodi et al. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency
JP2009281381A5 (en)
CN104422142A (en) Method for controlling water heater adaptable to gas with various heat values
JP5559414B1 (en) Energy system optimization method, energy system optimization device and program
WO2019242284A1 (en) Multi-heat-source hot water unit, and method and apparatus for controlling multi-heat-source hot water unit
WO2018006690A1 (en) Heating control method and device, and combined heating system
Khanmohammadi et al. Exergoeconomic evaluation of a two-pressure level fired combined-cycle power plant
JP2002115886A (en) Method and device for operating installation cost of air conditioner
Açıkkalp et al. Advanced exergoenvironmental assessment of a building from the primary energy transformation to the environment
CN106968796B (en) A kind of selection method of distributing-supplying-energy system gas turbine
JP5642016B2 (en) Production plan creation system and production plan creation method
Shelar et al. Thermodynamic and economic analysis of diesel engine based trigeneration systems for an Indian hotel
JP6490218B2 (en) Energy management apparatus, energy management method, and program
CN104728857B (en) Coal-burning boiler secondary air register baffle plate control method based on burner thermic load
CN103333976A (en) Flue gas waste heat utilization system and flue gas waste heat utilization method of hot blast furnace
de Macedo Rodrigues et al. Small scale biomass CHP plant: An assessment for an animal feed industry
Mattarelli et al. EN 15316 Calculation methods for the generation sub-system: the influence of input data on the results
WO2012120555A1 (en) Solar heat utilization gas turbine system
US20230146771A1 (en) Display Unit
JP2005261021A (en) Operational planning system and employment drafted planning program
CN205690452U (en) A kind of energy-conservation cooking stove of waste heat recovery air blowing gas
JP2008182865A (en) Evaluation method and program of consumer energy system
JP6594684B2 (en) Program, information processing apparatus and information processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5729925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250