JP5726630B2 - Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine - Google Patents

Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine Download PDF

Info

Publication number
JP5726630B2
JP5726630B2 JP2011110698A JP2011110698A JP5726630B2 JP 5726630 B2 JP5726630 B2 JP 5726630B2 JP 2011110698 A JP2011110698 A JP 2011110698A JP 2011110698 A JP2011110698 A JP 2011110698A JP 5726630 B2 JP5726630 B2 JP 5726630B2
Authority
JP
Japan
Prior art keywords
core
coil
electromagnetic induction
induction heating
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011110698A
Other languages
Japanese (ja)
Other versions
JP2012240254A (en
Inventor
祐一朗 太田
祐一朗 太田
清澤 裕
裕 清澤
洋介 長谷川
洋介 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Toyota Boshoku Corp
Original Assignee
Neturen Co Ltd
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Toyota Boshoku Corp filed Critical Neturen Co Ltd
Priority to JP2011110698A priority Critical patent/JP5726630B2/en
Publication of JP2012240254A publication Critical patent/JP2012240254A/en
Application granted granted Critical
Publication of JP5726630B2 publication Critical patent/JP5726630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

この発明は、複数枚のコア板が積層されて全体として円筒形状に形成された回転電機におけるロータコア等のコアを、電磁誘導加熱により加熱するための電磁誘導加熱方法及び電磁誘導加熱装置に関するものである。   The present invention relates to an electromagnetic induction heating method and an electromagnetic induction heating device for heating a core, such as a rotor core, in a rotating electrical machine formed by laminating a plurality of core plates into a cylindrical shape as a whole by electromagnetic induction heating. is there.

一般に、回転電機のロータでは、複数枚のコア板が積層されることにより、全体として円筒形状をなすロータコアが構成されている。そして、このロータコアの両端面間に貫設された複数の収容孔内に永久磁石が収容されるとともに、その永久磁石と収容孔との間の隙間に熱硬化性合成樹脂が射出されることにより、永久磁石がロータコアに対して一体化されている。この場合、射出成形時における合成樹脂の流動性や硬化性を良好にするために、その射出成形に先立って、ロータコアの各収容孔に永久磁石を収容した状態で、ロータコアに対して電磁誘導加熱方法等により加熱処理が施される。   In general, in a rotor of a rotating electrical machine, a plurality of core plates are stacked to form a rotor core having a cylindrical shape as a whole. And while a permanent magnet is accommodated in the some accommodation hole penetrated between the both end surfaces of this rotor core, a thermosetting synthetic resin is inject | poured into the clearance gap between the permanent magnet and the accommodation hole. The permanent magnet is integrated with the rotor core. In this case, in order to improve the fluidity and curability of the synthetic resin at the time of injection molding, electromagnetic induction heating is performed on the rotor core in a state in which the permanent magnet is accommodated in each accommodation hole of the rotor core prior to the injection molding. Heat treatment is performed by a method or the like.

そして、従来、この種の回転電機のコアの電磁誘導加熱方法としては、例えば特許文献1に開示されるような方法が提案されている。この従来方法においては、図7に示すように、ロータコアWの軸線方向の両端面に対応して、一対の加熱コイル41,42が配置される。この状態で、両加熱コイル41,42に交流電流が流されることにより、加熱コイル41,42の周辺に磁界が発生し、その磁界によってロータコアWの両端面に渦電流が流れる。このとき、抵抗熱として発生するジュール熱により、ロータコアWの加熱が行われる。   Conventionally, as an electromagnetic induction heating method for the core of this type of rotating electrical machine, for example, a method disclosed in Patent Document 1 has been proposed. In this conventional method, as shown in FIG. 7, a pair of heating coils 41 and 42 are arranged corresponding to both end faces of the rotor core W in the axial direction. In this state, when an alternating current is passed through both the heating coils 41 and 42, a magnetic field is generated around the heating coils 41 and 42, and an eddy current flows through both end faces of the rotor core W due to the magnetic field. At this time, the rotor core W is heated by Joule heat generated as resistance heat.

特開2006−35831号公報JP 2006-35831 A

ところが、この従来の電磁誘導加熱方法では、前記のように加熱コイル41,42がロータコアWの両端面に対向配置される。この場合、各コア板Waの表面にコーティングが施されて、隣接するコア板Wa間が絶縁されていることもあって、渦電流がロータコアWの端面側のコア板Wa以外のコア板Waには生じにくい。よって、ロータコアWの両端面付近のコア板Waについては加熱され易いが、ロータコアWの厚さ方向の中間部付近のコア板Waについては加熱され難くて、せいぜい熱伝導によって加熱される程度である。従って、ロータコアWの全体を均一に加熱しようとすれば、きわめて時間がかかるものであった。そして、場合によっては、端面側のコア板Waの外面側のみが高温になって、その端面側のコア板Waが反るように湾曲して、他のコア板Waとずれてしまうこともあった。   However, in this conventional electromagnetic induction heating method, the heating coils 41 and 42 are disposed opposite to both end faces of the rotor core W as described above. In this case, the surface of each core plate Wa is coated and the adjacent core plates Wa are insulated, and eddy currents are applied to the core plates Wa other than the core plate Wa on the end face side of the rotor core W. Is unlikely to occur. Therefore, although the core plate Wa near both end faces of the rotor core W is easily heated, the core plate Wa near the intermediate portion in the thickness direction of the rotor core W is hardly heated and is heated by heat conduction at most. . Therefore, it takes a very long time to uniformly heat the entire rotor core W. In some cases, only the outer surface side of the core plate Wa on the end surface side becomes high temperature, the core plate Wa on the end surface side is curved so as to be warped, and may be displaced from other core plates Wa. It was.

この発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的は、コアの両端付近のコア板から厚さ方向の中間部付近のコア板までムラなく均一に加熱することができる回転電機のコアの電磁誘導加熱方法及び電磁誘導装置を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art. The object is to provide an electromagnetic induction heating method and an electromagnetic induction device for a core of a rotating electrical machine that can uniformly and uniformly heat a core plate near both ends of the core to a core plate near the middle in the thickness direction. is there.

上記の目的を達成するために、この発明は、複数枚のコア板が積層されて全体として円筒形状に形成された回転電機のコアの電磁誘導加熱方法において、円筒状をなす外周側コイルを前記コアの外周側に配置し、円筒形状をなす内周側コイルであって、巻き線が前記外周側コイルの巻き線よりも高密度である内周側コイルを前記コアの内周側に配置し、各コイルに交流電流を流すことによりコアを加熱することを特徴としている。 To achieve the above object, the present invention is a plurality of core plates electromagnetic induction heating method of a core for rotary electric machine is formed in a cylindrical shape as a whole are stacked, the outer peripheral coil having a cylindrical shape An inner peripheral coil disposed on the outer peripheral side of the core and having a cylindrical shape, the inner peripheral coil having a winding density higher than that of the outer peripheral coil is disposed on the inner peripheral side of the core. The core is heated by passing an alternating current through each coil.

従って、この発明の加熱方法においては、内周側コイル及び外周側コイルに交流電流が流されることにより、それらのコイルの周辺に磁界が発生し、その磁界によってコアの各コア板に渦電流が流れる。このため、各コア板の表面に樹脂コーティングが施されていても、積層状態の各コア板に渦電流が有効に流れて、その際に抵抗熱として発生するジュール熱により、コアの両端付近のコア板から厚さ方向の中間部付近のコア板まで均一に加熱される。よって、コアを短時間に効率よく加熱することができて、作業時間の短縮及び消費エネルギの削減を図ることができる。   Therefore, in the heating method of the present invention, when an alternating current is passed through the inner and outer coils, a magnetic field is generated around these coils, and eddy currents are generated in each core plate of the core by the magnetic field. Flowing. For this reason, even if the resin coating is applied to the surface of each core plate, eddy currents effectively flow through each core plate in the laminated state, and Joule heat generated as resistance heat at that time causes the vicinity of both ends of the core. Heat is uniformly applied from the core plate to the core plate near the middle in the thickness direction. Therefore, the core can be efficiently heated in a short time, and the working time and energy consumption can be reduced.

前記の加熱方法において、前記内周側コイル及び外周側コイルの軸線方向両端をコアの両端面より外方に位置させるように配置するとよい In the heating method described above, it is preferable that both ends in the axial direction of the inner peripheral coil and the outer peripheral coil are positioned outward from both end surfaces of the core .

前記の加熱方法において、前記コアの両端面間に貫設された収容孔内に永久磁石を収容するとともに、前記収容孔を塞ぐようにコアの一端面にコアを構成しない金属板を当て、この状態で前記各コイルに交流電流を流すようにするとよい。   In the heating method, the permanent magnet is accommodated in an accommodation hole penetrating between both end faces of the core, and a metal plate that does not constitute the core is applied to one end face of the core so as to close the accommodation hole. In this state, an alternating current may be passed through each coil.

また、この発明は、複数枚のコア板が積層されて全体として円筒形状に形成された回転電機のコアの電磁誘導加熱装置において、それぞれ円筒状をなすとともに、同軸上に配置され、交流電流が流される内周側コイル及び外周側コイルと、前記コアを支持し、そのコアを前記内周側コイル及び外周側コイルの間において両コイルと同軸上に位置するコイル間位置と、そのコイル間位置の外側に離脱する離脱位置とに移動させる移動手段とを備え、前記内周側コイルの巻き線が外周側コイルの巻き線よりも高密度であることを特徴としている。 In addition, the present invention provides an electromagnetic induction heating device for a core of a rotating electrical machine in which a plurality of core plates are laminated to form a cylindrical shape as a whole. An inner-coil and an outer-coil to be flown, and a position between the coils that supports the core and is positioned coaxially with both the coils between the inner-periphery-coil and the outer-coil and the position between the coils And a moving means for moving to a disengagement position that disengages from the outside of the coil. The winding of the inner peripheral coil is higher in density than the winding of the outer coil .

従って、この発明の加熱装置においては、移動手段によりコアを内周側コイルと外周側コイルとの間のコイル間位置と、そのコイル間位置の外側の離脱位置とに移動させながら、コアを高能率で均一に加熱することができる。   Accordingly, in the heating apparatus of the present invention, the moving means moves the core to the inter-coil position between the inner peripheral coil and the outer peripheral coil and to the disengagement position outside the inter-coil position, while moving the core high. It can be heated uniformly with high efficiency.

前記の構成において、前記移動手段は、コアの下面に設けられた板をその下面側から支持した状態で昇降される昇降部材と、コアの上面を押さえた状態で昇降される押さえ部材とを備えることが好ましい。   In the above configuration, the moving means includes an elevating member that is moved up and down while supporting a plate provided on the lower surface side of the core from the lower surface side, and a pressing member that is moved up and down while holding the upper surface of the core. It is preferable.

前記の構成において、前記押さえ部材は、セラミックによって構成されることが好ましい。   The said structure WHEREIN: It is preferable that the said pressing member is comprised with a ceramic.

以上のように、この発明によれば、コアの両端付近のコア板から中間部付近のコア板まで均一に加熱することができるという効果を発揮する。   As described above, according to the present invention, it is possible to uniformly heat the core plate near both ends of the core to the core plate near the intermediate portion.

一実施形態の回転電機のロータコアの電磁誘導加熱装置を示す断面図。Sectional drawing which shows the electromagnetic induction heating apparatus of the rotor core of the rotary electric machine of one Embodiment. 図1の加熱装置によるロータコアの加熱方法を示す断面図。Sectional drawing which shows the heating method of the rotor core by the heating apparatus of FIG. 同ロータコアの加熱方法を図2に続いて示す断面図。Sectional drawing which shows the heating method of the same rotor core following FIG. 図3におけるロータコアの加熱状態を拡大して示す部分断面図。The fragmentary sectional view which expands and shows the heating state of the rotor core in FIG. (a)は図4のロータコアの平面図、(b)は収容孔内を示す一部拡大断面図。(A) is a top view of the rotor core of FIG. 4, (b) is a partially expanded sectional view which shows the inside of an accommodation hole. ロータコアを示す分解斜視図。The disassembled perspective view which shows a rotor core. 従来の回転電機のロータコアの電磁誘導加熱方法を示す断面図。Sectional drawing which shows the electromagnetic induction heating method of the rotor core of the conventional rotary electric machine.

以下に、この発明を具体化した一実施形態を図1〜図6に従って説明する。
はじめに、図5(a)(b)及び図6に従ってロータコアWの構成を説明する。ロータコアWは複数枚のコア板Waが積層されてコア本体WAが構成されている。コア本体WAには、その周方向に沿って複数の収容孔Wbが厚さ方向に貫設されており、その収容孔Wb内には永久磁石Mが収容されている。収容孔Wb内には永久磁石Mを固定するためのエポキシ樹脂等の熱硬化性樹脂Rが充填されている。コア本体WAの中心には回転軸(図示しない)を通すための軸孔Wcが貫設されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
First, the configuration of the rotor core W will be described with reference to FIGS. The rotor core W is formed by stacking a plurality of core plates Wa to form a core body WA. A plurality of accommodation holes Wb are provided in the core body WA along the circumferential direction in the thickness direction, and the permanent magnet M is accommodated in the accommodation hole Wb. The accommodation hole Wb is filled with a thermosetting resin R such as an epoxy resin for fixing the permanent magnet M. A shaft hole Wc for passing a rotating shaft (not shown) is provided through the center of the core body WA.

次に、この実施形態の電磁誘導加熱装置11の構成を説明する。図1に示すように、フレーム12の上下方向の中央部にはコアとしてのロータコアWを載置するための載置台13が設けられる。図4及び図5に示すように、そして、ロータコアWの各収容孔Wb内に永久磁石Mが収容されるとともに、各収容孔Wbの下面側を塞ぐように、ロータコアWの下端面にコアを構成せず、コア板Waより厚い金属板Pが当てられた状態で、ロータコアWが載置台13上に載置され、この状態の載置台13が図示しない搬送装置によりフレーム12内に搬入されて、所定位置に設置される。   Next, the configuration of the electromagnetic induction heating device 11 of this embodiment will be described. As shown in FIG. 1, a mounting table 13 for mounting a rotor core W as a core is provided at the center in the vertical direction of the frame 12. As shown in FIGS. 4 and 5, the permanent magnet M is accommodated in each accommodation hole Wb of the rotor core W, and the core is attached to the lower end surface of the rotor core W so as to close the lower surface side of each accommodation hole Wb. Without being configured, the rotor core W is placed on the mounting table 13 in a state where the metal plate P thicker than the core plate Wa is applied, and the mounting table 13 in this state is carried into the frame 12 by a transport device (not shown). Are installed at predetermined positions.

前記載置台13の位置の上方においてフレーム12には、それぞれ円筒形状をなす内周側コイル14及び外周側コイル15が上下方向に延びる一軸線を中心にして同心上に配置されている。載置台13の位置の上方においてフレーム12には、押圧装置16が配置されている。この押圧装置16は、フレーム12に昇降可能に支持された昇降板17と、その昇降板17の下部に複数の支持ロッド18を介して支持された押さえ部材としての押さえ板19と、昇降板17を昇降動作させるシリンダ等のアクチュエータ20とから構成されている。押さえ板19はセラミックよりなる円環状の非磁性体により形成され、内周側コイル14と外周側コイル15との間において、載置台13上のロータコアWの上端面に接離可能に対向配置されている。そして、アクチュエータ20により昇降板17が下降されることによって、押さえ板19がロータコアWの上端面に当接され、ロータコアWがコア板Waの積層方向の上方から押圧される。   Above the position of the mounting table 13, the inner peripheral side coil 14 and the outer peripheral side coil 15 each having a cylindrical shape are disposed concentrically around the uniaxial line extending in the vertical direction. A pressing device 16 is disposed on the frame 12 above the position of the mounting table 13. The pressing device 16 includes an elevating plate 17 supported by the frame 12 so as to be movable up and down, a pressing plate 19 as a pressing member supported by a lower portion of the elevating plate 17 via a plurality of support rods 18, and the elevating plate 17. And an actuator 20 such as a cylinder for moving up and down. The holding plate 19 is formed of an annular nonmagnetic material made of ceramic, and is disposed between the inner peripheral side coil 14 and the outer peripheral side coil 15 so as to be able to contact and separate from the upper end surface of the rotor core W on the mounting table 13. ing. Then, when the elevating plate 17 is lowered by the actuator 20, the pressing plate 19 is brought into contact with the upper end surface of the rotor core W, and the rotor core W is pressed from above in the stacking direction of the core plates Wa.

前記載置台13の位置の下方においてフレーム12には、移動手段としての移動装置21が配置されている。この移動装置21は、フレーム12に上下動可能に支持された移動板22と、その移動板22上に立設された昇降部材としての複数の移動ロッド23と、移動板22を上下動させるための作動機構24とから構成されている。図3及び図4に示すように、前記移動ロッド23は、載置台13の孔13aを通って前記金属板Pの下面の凹部Paに係合する。作動機構24は、モータ等のアクチュエータ25と、そのアクチュエータ25によりプーリ26,27及びベルト28を介して回転されるボールネジ29と、そのボールネジ29に螺合するナット30とから構成されている。そして、作動機構24により移動板22及び移動ロッド23が上下動されることにより、ロータコアWが内周側コイル14及び外周側コイル15の間において両コイル14,15と同軸上に位置するコイル間位置S1(図3参照)と、そのコイル間位置S1よりも外側下方に離脱する離脱位置S2(図1及び図2参照)とに移動される。   Below the position of the mounting table 13, the frame 12 is provided with a moving device 21 as a moving means. The moving device 21 is configured to move the moving plate 22 up and down, a moving plate 22 supported by the frame 12 so as to be movable up and down, a plurality of moving rods 23 as elevating members standing on the moving plate 22, and the moving plate 22. The operation mechanism 24 is configured. As shown in FIGS. 3 and 4, the moving rod 23 is engaged with the recess Pa on the lower surface of the metal plate P through the hole 13 a of the mounting table 13. The operating mechanism 24 includes an actuator 25 such as a motor, a ball screw 29 that is rotated by the actuator 25 via pulleys 26 and 27 and a belt 28, and a nut 30 that is screwed into the ball screw 29. When the moving plate 22 and the moving rod 23 are moved up and down by the operating mechanism 24, the rotor core W is located between the inner coil 14 and the outer coil 15 between the coils 14 and 15 coaxially positioned. The position is moved to a position S1 (see FIG. 3) and a disengagement position S2 (see FIGS. 1 and 2) that disengages outward and downward from the position S1 between the coils.

図4に示すように、前記内周側コイル14及び外周側コイル15は、それらの軸線方向の両端部がロータコアWの両端面より軸方向の外方に突出するように形成されている。すなわち、内周側コイル14及び外周側コイル15の軸線方向の長さL1が、ロータコアWの軸線方向の長さL2よりも長くなるように設定されている。例えばロータコアWの軸線方向の長さL2が70mmの場合、金属板Pの板厚L3が9mm、両コイル14,15の軸線方向の長さL1が140mm、ロータコアWの上端面から上方への両コイル14,15の突出長さL4が25mm、金属板Pの下端面から下方への両コイル14,15の突出長さL5が36mmとなるように設定されている。   As shown in FIG. 4, the inner peripheral coil 14 and the outer peripheral coil 15 are formed such that both end portions in the axial direction protrude outward in the axial direction from both end surfaces of the rotor core W. That is, the axial length L1 of the inner peripheral coil 14 and the outer peripheral coil 15 is set to be longer than the axial length L2 of the rotor core W. For example, when the length L2 in the axial direction of the rotor core W is 70 mm, the plate thickness L3 of the metal plate P is 9 mm, the length L1 in the axial direction of both the coils 14 and 15 is 140 mm, The projecting length L4 of the coils 14 and 15 is set to 25 mm, and the projecting length L5 of both the coils 14 and 15 downward from the lower end surface of the metal plate P is set to 36 mm.

また、前記内周側コイル14の巻き線が外周側コイル15の巻き線よりも高密度となるように設定されている。すなわち、内周側コイル14と外周側コイル15との巻き線の巻き数比は、内周側コイル14が大きくなるように設定されている。例えば内周側コイル14と外周側コイル15との巻き線の巻き数比が、10対6となるように設定されている。   The winding of the inner peripheral coil 14 is set to have a higher density than the winding of the outer peripheral coil 15. That is, the turn ratio of the windings of the inner peripheral coil 14 and the outer peripheral coil 15 is set so that the inner peripheral coil 14 is larger. For example, the turn ratio of the windings between the inner peripheral coil 14 and the outer peripheral coil 15 is set to 10: 6.

次に、前記のように構成された電磁誘導加熱装置11によりロータコアWを加熱する場合の作用について説明する。
この電磁誘導加熱装置11の運転時には、ロータコアWの各収容孔Wb内に永久磁石Mを収容するとともに、下端面に金属板Pを当てた状態で、ロータコアWが載置台13上に載置され、この状態の載置台13が図示しない搬送装置によりフレーム12内に搬入される。このため、図1に示すように、ロータコアWが内周側コイル14及び外周側コイル15の下方の離脱位置S2に配置される。この状態で、押圧装置16のアクチュエータ20が作動されて、図2に示すように、昇降板17が下降されて、押さえ板19がロータコアWの上端面に当接され、ロータコアWがコア板Waの積層方向の上方から押圧される。その後、移動装置21における作動機構24のアクチュエータ25が作動されると、移動板22及び移動ロッド23が上方に移動され、そのロッド23が金属板Pの下面の凹部Paに係合される。そして、ロータコアWが金属板Pとともに押さえ板19と移動ロッド23との間に挟持された状態で離脱位置S2から押し上げられる。このため、図3及び図4に示すように、ロータコアWが内周側コイル14と外周側コイル15との間のコイル間位置S1に配置される。
Next, the operation when the rotor core W is heated by the electromagnetic induction heating device 11 configured as described above will be described.
During operation of the electromagnetic induction heating device 11, the rotor core W is placed on the mounting table 13 with the permanent magnet M housed in each housing hole Wb of the rotor core W and the metal plate P applied to the lower end surface. The mounting table 13 in this state is carried into the frame 12 by a transport device (not shown). For this reason, as shown in FIG. 1, the rotor core W is disposed at a separation position S <b> 2 below the inner peripheral side coil 14 and the outer peripheral side coil 15. In this state, the actuator 20 of the pressing device 16 is actuated, the elevator plate 17 is lowered as shown in FIG. 2, the presser plate 19 is brought into contact with the upper end surface of the rotor core W, and the rotor core W is moved to the core plate Wa. It is pressed from above in the stacking direction. Thereafter, when the actuator 25 of the operating mechanism 24 in the moving device 21 is operated, the moving plate 22 and the moving rod 23 are moved upward, and the rod 23 is engaged with the concave portion Pa on the lower surface of the metal plate P. Then, the rotor core W is pushed up from the disengagement position S <b> 2 while being sandwiched between the pressing plate 19 and the moving rod 23 together with the metal plate P. For this reason, as shown in FIGS. 3 and 4, the rotor core W is disposed at the inter-coil position S <b> 1 between the inner peripheral side coil 14 and the outer peripheral side coil 15.

この状態において、内周側コイル14及び外周側コイル15に交流電流が供給される。そして、コイル14,15に発生する磁界によって、図5に矢印で示すように、ロータコアWの各コア板Waの内周側及び外周側に渦電流が流れる。そして、この際に抵抗熱として発生するジュール熱により、ロータコアWが永久磁石M及び金属板Pとともに発熱によって加熱される。この場合、ロータコアWの内周及び外周に対向して内周側コイル14及び外周側コイル15が近接して配置されていることにより、各コア板Waがその内周及び外周から加熱される。このため、結果として、中間部付近のコア板Waとの間で加熱むらが発生するおそれがなく、コア本体WAの全体が均一に加熱される。   In this state, an alternating current is supplied to the inner peripheral coil 14 and the outer peripheral coil 15. Then, due to the magnetic fields generated in the coils 14 and 15, eddy currents flow on the inner peripheral side and the outer peripheral side of each core plate Wa of the rotor core W, as indicated by arrows in FIG. At this time, the rotor core W is heated by the heat generation together with the permanent magnet M and the metal plate P by Joule heat generated as resistance heat. In this case, the inner peripheral coil 14 and the outer peripheral coil 15 are disposed close to each other so as to face the inner periphery and the outer periphery of the rotor core W, whereby each core plate Wa is heated from the inner periphery and the outer periphery. Therefore, as a result, there is no possibility of uneven heating with the core plate Wa in the vicinity of the intermediate portion, and the entire core body WA is heated uniformly.

そして、ロータコアWの加熱が終了すると、前記の場合とは逆順に、移動装置21における作動機構24のアクチュエータ25の作動により、移動板22及び移動ロッド23が下方に移動される。この移動により、ロータコアW及び金属板Pが押さえ板19と移動ロッド23との間に挟持された状態で、図3に示すコイル間位置S1から図2に示す離脱位置S2に移動される。その後、押圧装置16のアクチュエータ20の作動により、昇降板17が上昇されて、図1に示すように、押さえ板19がロータコアWの上端面から離間される。この状態で、図示しない搬送装置により、加熱処理済みのロータコアWが載置台13とともにフレーム12内からから搬出されて、図示しない合成樹脂の射出成形工程に搬送される。   When the heating of the rotor core W is completed, the moving plate 22 and the moving rod 23 are moved downward by the operation of the actuator 25 of the operating mechanism 24 in the moving device 21 in the reverse order to the above case. By this movement, the rotor core W and the metal plate P are moved from the inter-coil position S1 shown in FIG. 3 to the disengagement position S2 shown in FIG. 2 while being sandwiched between the presser plate 19 and the moving rod 23. Thereafter, the lifting plate 17 is raised by the operation of the actuator 20 of the pressing device 16, and the pressing plate 19 is separated from the upper end surface of the rotor core W as shown in FIG. 1. In this state, the heat-treated rotor core W is unloaded from the frame 12 together with the mounting table 13 by a conveying device (not shown) and conveyed to a synthetic resin injection molding step (not shown).

引き続き、加熱処理前の後続のロータコアWが載置台13とともにフレーム12内に搬入されて、前記と同様な加熱動作が繰り返し行われる。
従って、この実施形態によれば、以下のような効果を得ることができる。
Subsequently, the subsequent rotor core W before the heat treatment is carried into the frame 12 together with the mounting table 13, and the same heating operation as described above is repeatedly performed.
Therefore, according to this embodiment, the following effects can be obtained.

(1) この実施形態においては、円筒形状をなす内周側コイル14及び外周側コイル15をコアWの内周側及び外周側に同心状に配置した状態で、各コイル14,15に交流電流を流すようにしている。このため、コイル14,15の周辺に発生する磁界によって、コアWの各コア板Waの内周及び外周付近に渦電流が流れる。従って、積層状態の各コア板Waが抵抗熱として発生するジュール熱により、コアWの両端付近のコア板Waから厚さ方向の中間部付近のコア板Waまで均一に加熱される。その結果、コアWを短時間に効率よく加熱することができて、作業時間の短縮及び消費エネルギの削減を図ることができる。   (1) In this embodiment, an alternating current is applied to each of the coils 14 and 15 in a state where the cylindrical inner peripheral side coil 14 and outer peripheral side coil 15 are arranged concentrically on the inner peripheral side and the outer peripheral side of the core W. I try to flow. For this reason, an eddy current flows in the vicinity of the inner periphery and the outer periphery of each core plate Wa of the core W by the magnetic field generated around the coils 14 and 15. Therefore, each core plate Wa in the laminated state is uniformly heated from the core plate Wa near both ends of the core W to the core plate Wa near the middle in the thickness direction by Joule heat generated as resistance heat. As a result, the core W can be efficiently heated in a short time, and the working time and energy consumption can be reduced.

(2) この実施形態においては、前記内周側コイル14及び外周側コイル15の軸線方向両端をコアWの両端面より外方に位置させるようにしている。すなわち、内周側コイル14及び外周側コイル15の軸線方向の長さL1が、コアWの軸線方向の長さL2よりも大きくなるようにしている。このため、コアWの両端面付近のコア板Waが加熱不足になるのを防止することができて、積層状態の複数枚のコア板Waを一層均一に加熱することができる。   (2) In this embodiment, both axial ends of the inner peripheral coil 14 and the outer peripheral coil 15 are positioned outward from both end surfaces of the core W. That is, the axial length L1 of the inner peripheral coil 14 and the outer peripheral coil 15 is set to be larger than the axial length L2 of the core W. For this reason, it is possible to prevent the core plates Wa in the vicinity of both end faces of the core W from being insufficiently heated, and it is possible to more uniformly heat the plurality of core plates Wa in the laminated state.

(3) この実施形態においては、前記内周側コイル14の巻き線が外周側コイル15の巻き線よりも高密度となるようにしている。すなわち、内周側コイル14は、コアWの内周面よりも内方に位置しているため、内周側コイル14が外周側コイル15と同密度では、内周側コイル14の全体の巻き線長さが短くなって加熱機能が不足する。これに対し、この実施形態では、内周側コイル14と外周側コイル15との巻き線の巻き数比が、内周側コイル14ほど大きくなるようにしている。このため、コアWの内周側が外周側よりも加熱不足になるのを防止することができて、コアWを半径方向に対しても加熱むらなく均一に加熱することができる。   (3) In this embodiment, the winding of the inner peripheral coil 14 is set to have a higher density than the winding of the outer peripheral coil 15. That is, since the inner peripheral side coil 14 is located inward from the inner peripheral surface of the core W, when the inner peripheral side coil 14 has the same density as the outer peripheral side coil 15, the entire inner peripheral side coil 14 is wound. The wire length is shortened and the heating function is insufficient. On the other hand, in this embodiment, the turn ratio of the windings of the inner peripheral side coil 14 and the outer peripheral side coil 15 is made larger as the inner peripheral side coil 14. For this reason, it is possible to prevent the inner peripheral side of the core W from being underheated more than the outer peripheral side, and the core W can be uniformly heated in the radial direction without uneven heating.

(4) この実施形態においては、前記コアWの両端面間に貫設された収容孔Wb内に永久磁石Mを収容するとともに、収容孔Wbを塞ぐようにコアWの一端面にコア板Waより厚い金属板Pを当て、この状態で各コイル14,15に交流電流を流すようにしている。このため、コアWの収容孔Wbと永久磁石Mとの間の隙間に熱硬化性合成樹脂を射出成形するのに先立って、コアWを永久磁石M及び金属板Pとともに、効果的に加熱することができるとともに、金属板Pが蓄熱作用を果たすことになる。従って、加熱終了時から射出終了時までコアWの冷めやすい下部側を含む全体を高温状態に維持できて、永久磁石を高品質な樹脂で有効に固定できる。   (4) In this embodiment, the permanent magnet M is accommodated in the accommodation hole Wb penetrating between both end faces of the core W, and the core plate Wa is disposed on one end surface of the core W so as to close the accommodation hole Wb. A thicker metal plate P is applied, and an alternating current is allowed to flow through the coils 14 and 15 in this state. For this reason, prior to injection molding the thermosetting synthetic resin into the gap between the accommodation hole Wb of the core W and the permanent magnet M, the core W is effectively heated together with the permanent magnet M and the metal plate P. In addition, the metal plate P performs a heat storage action. Accordingly, the entire core W including the lower side where the core W is easily cooled can be maintained at a high temperature from the end of heating to the end of injection, and the permanent magnet can be effectively fixed with a high quality resin.

(5) この実施形態においては、移動装置21によりコアWが内周側コイル14と外周側コイル15との間のコイル間位置S1と、そのコイル間位置S1の外側の離脱位置S2とに移動されるようになっている。このため、内周側コイル14及び外周側コイル15を移動させる構成と比較して、装置の構成を簡単にできる。   (5) In this embodiment, the moving device 21 moves the core W to the inter-coil position S1 between the inner peripheral coil 14 and the outer peripheral coil 15 and the separation position S2 outside the inter-coil position S1. It has come to be. For this reason, compared with the structure which moves the inner peripheral side coil 14 and the outer peripheral side coil 15, the structure of an apparatus can be simplified.

(6) この実施形態においては、押圧装置16によりコアWの端面が積層方向に押圧された状態で、移動装置21によるコアWのコイル間位置S1と離脱位置S2との間の移動、及び加熱が行われるようになっている。このため、コアWの移動中に、その移動によってコアWに位置ずれが生じたり、コアWの加熱中にコア板Waが熱膨張によって湾曲したりするおそれを抑制することができる。   (6) In this embodiment, in a state where the end surface of the core W is pressed in the stacking direction by the pressing device 16, the moving device 21 moves and heats the core W between the inter-coil position S <b> 1 and the separation position S <b> 2. Is to be done. For this reason, during the movement of the core W, it is possible to suppress the possibility that the core W is displaced due to the movement, or the core plate Wa is bent due to thermal expansion during the heating of the core W.

(7) この実施形態においては、押圧装置16の押さえ板19がセラミックによって構成されているため、コアWが高温になっても変形等の問題が生じないばかりでなく、押さえ板19の内部に渦電流が生じないため、エネルギーロスを避けることができる。   (7) In this embodiment, since the pressing plate 19 of the pressing device 16 is made of ceramic, problems such as deformation do not occur even when the core W reaches a high temperature. Since no eddy current occurs, energy loss can be avoided.

(変更例)
なお、前記実施形態は、次のように変更して具体化することも可能である。
・ 内周側コイル14及び外周側コイル15の軸線方向の長さL1や、コアWのコイル間位置S1における両コイル14,15との対応位置関係を前記実施形態とは異なる数値に変更すること。
(Example of change)
In addition, the said embodiment can also be changed and actualized as follows.
The length L1 in the axial direction of the inner peripheral coil 14 and the outer peripheral coil 15 and the corresponding positional relationship between the coils 14 and 15 in the inter-coil position S1 of the core W are changed to values different from those in the above embodiment. .

・ 内周側コイル14と外周側コイル15との巻き線の巻き数比を前記実施形態とは異なる比,例えば10対5等に変更すること。
・ コアWが固定位置にあって、内周側コイル14及び外周側コイル15が昇降されるように構成すること。
-Change the winding ratio of the inner coil 14 and the outer coil 15 to a ratio different from that in the above embodiment, for example, 10 to 5.
The core W is in a fixed position, and the inner peripheral coil 14 and the outer peripheral coil 15 are moved up and down.

・ 押さえ部材としての押さえ板19の材質として、セラミック以外に磁束の影響を受けない非磁性体、例えば耐熱性樹脂やアルミニウム等の金属を用いること。
・ 回転電機のステータコアの加熱に本発明を適用すること。
As a material of the pressing plate 19 as a pressing member, a non-magnetic material that is not affected by magnetic flux other than ceramic, for example, a metal such as a heat resistant resin or aluminum is used.
-The present invention is applied to heating a stator core of a rotating electrical machine.

11…電磁誘導加熱装置、14…内周側コイル、15…外周側コイル、16…押圧装置、17…昇降板、19…押さえ板、20…アクチュエータ、21…移動手段としての移動装置、22…移動板、23…移動ロッド、24…作動機構、25…アクチュエータ、W…コアとしてのロータコア、Wa…コア板、Wb…収容孔、M…永久磁石、P…金属板、L1…コイルの軸線方向の長さ、L2…コアの軸線方向の長さ、S1…コイル間位置、S2…離脱位置。   DESCRIPTION OF SYMBOLS 11 ... Electromagnetic induction heating device, 14 ... Inner peripheral side coil, 15 ... Outer peripheral side coil, 16 ... Pressing device, 17 ... Elevating plate, 19 ... Holding plate, 20 ... Actuator, 21 ... Moving device as moving means, 22 ... Moving plate, 23 ... Moving rod, 24 ... Actuating mechanism, 25 ... Actuator, W ... Rotor core as core, Wa ... Core plate, Wb ... Housing hole, M ... Permanent magnet, P ... Metal plate, L1 ... Axial direction of coil L2,... Length of the core in the axial direction, S1... Position between coils, S2.

Claims (6)

複数枚のコア板が積層されて全体として円筒形状に形成された回転電機のコアの電磁誘導加熱方法において、
円筒状をなす外周側コイルを前記コアの外周側に配置し、
円筒形状をなす内周側コイルであって、巻き線が前記外周側コイルの巻き線よりも高密度である内周側コイルを前記コアの内周側に配置し、
各コイルに交流電流を流すことによりコアを加熱することを特徴とした回転電機のコアの電磁誘導加熱方法。
In the electromagnetic induction heating method for the core of a rotating electrical machine in which a plurality of core plates are laminated and formed into a cylindrical shape as a whole,
A cylindrical outer peripheral coil is disposed on the outer peripheral side of the core,
An inner peripheral coil having a cylindrical shape, the inner winding of which the winding is higher in density than the winding of the outer peripheral coil is disposed on the inner peripheral side of the core;
An electromagnetic induction heating method for a core of a rotating electrical machine, wherein the core is heated by passing an alternating current through each coil.
前記内周側コイル及び外周側コイルの軸線方向両端がコアの両端面より外方に位置することを特徴とした請求項1に記載の回転電機のコアの電磁誘導加熱方法。   2. The electromagnetic induction heating method for a core of a rotating electrical machine according to claim 1, wherein both axial ends of the inner peripheral coil and the outer peripheral coil are positioned outward from both end surfaces of the core. 前記コアの両端面間に貫設された収容孔内に永久磁石を収容するとともに、前記収容孔を塞ぐようにコアの一端面にコアを構成しない金属板を当て、この状態で前記各コイルに交流電流を流すことを特徴とした請求項1又は請求項2に記載の回転電機のコアの電磁誘導加熱方法。 A permanent magnet is accommodated in an accommodation hole penetrating between both end faces of the core, and a metal plate that does not constitute a core is applied to one end face of the core so as to close the accommodation hole. 3. An electromagnetic induction heating method for a core of a rotating electrical machine according to claim 1, wherein an alternating current is passed. 複数枚のコア板が積層されて全体として円筒形状に形成された回転電機のコアの電磁誘導加熱装置において、
それぞれ円筒状をなすとともに、同軸上に配置され、交流電流が流される内周側コイル及び外周側コイルと、
前記コアを支持し、そのコアを前記内周側コイル及び外周側コイルの間において両コイルと同軸上に位置するコイル間位置と、そのコイル間位置の外側に離脱する離脱位置とに相対移動させる移動手段とを備え
前記内周側コイルの巻き線が外周側コイルの巻き線よりも高密度であることを特徴とする回転電機のコアの電磁誘導加熱装置。
In the electromagnetic induction heating device for the core of a rotating electrical machine in which a plurality of core plates are laminated and formed into a cylindrical shape as a whole,
Each of them has a cylindrical shape, is arranged on the same axis, and an inner peripheral coil and an outer peripheral coil through which an alternating current flows,
The core is supported, and the core is relatively moved between the inner peripheral coil and the outer peripheral coil to an inter-coil position that is coaxial with both coils and a disengagement position that is disengaged outside the inter-coil position. Moving means ,
An electromagnetic induction heating device for a core of a rotating electrical machine, wherein the winding of the inner peripheral coil has a higher density than the winding of the outer peripheral coil .
前記移動手段は、コアの下面に設けられた板をその下面側から支持した状態で昇降される昇降部材と、コアの上面を押さえた状態で昇降される押さえ部材とを備えたことを特徴とする請求項に記載の電磁誘導加熱装置。 The moving means includes an elevating member that is moved up and down while supporting a plate provided on the lower surface of the core from the lower surface side, and a pressing member that is moved up and down while holding the upper surface of the core. The electromagnetic induction heating device according to claim 4 . 前記押さえ部材は、セラミックによって構成されたことを特徴とする請求項に記載の電磁誘導加熱装置。 The electromagnetic induction heating device according to claim 5 , wherein the pressing member is made of ceramic.
JP2011110698A 2011-05-17 2011-05-17 Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine Active JP5726630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110698A JP5726630B2 (en) 2011-05-17 2011-05-17 Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110698A JP5726630B2 (en) 2011-05-17 2011-05-17 Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine

Publications (2)

Publication Number Publication Date
JP2012240254A JP2012240254A (en) 2012-12-10
JP5726630B2 true JP5726630B2 (en) 2015-06-03

Family

ID=47462462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110698A Active JP5726630B2 (en) 2011-05-17 2011-05-17 Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine

Country Status (1)

Country Link
JP (1) JP5726630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274096B2 (en) * 2014-09-17 2018-02-07 トヨタ自動車株式会社 Rotor core heating method and heating apparatus
JP6339123B2 (en) 2016-03-17 2018-06-06 本田技研工業株式会社 Stator manufacturing method and stator manufacturing jig

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326406B2 (en) * 1999-05-21 2002-09-24 バンドー化学株式会社 Electromagnetic induction heating method for cylindrical mold and electromagnetic induction heating apparatus
JP4137962B2 (en) * 2006-01-11 2008-08-20 株式会社三井ハイテック Resin sealing method of permanent magnet to rotor laminated core
JP4920363B2 (en) * 2006-10-12 2012-04-18 内浜化成株式会社 Manufacturing method of insert molded product

Also Published As

Publication number Publication date
JP2012240254A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
KR101044166B1 (en) Method and device for heating stator
JP4818940B2 (en) Stator coil heating device
CN101951106B (en) Ultrathin high-power direct current magnetoelectric motor
JP6226194B2 (en) Rotating electric machine stator
JP2012175110A5 (en)
JP2015084640A (en) System and method for heating ferrite magnet motors for low temperatures
JP2015171202A (en) Stator of rotary electric machine
JP4727552B2 (en) Stator coil and core heating apparatus and heating method
JP5799759B2 (en) Heat treatment method and heat treatment apparatus for rotor core
JP6274096B2 (en) Rotor core heating method and heating apparatus
JP5726630B2 (en) Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine
JP5444134B2 (en) Stator heating method and apparatus using induction heating
CN102348299A (en) Method and apparatus for heating sheet material
JP6791939B2 (en) Heater device and controllable heating process
JP6332042B2 (en) Manufacturing method of electric equipment coil, varnish dripping impregnation apparatus and rotating electric machine manufacturing method
JP2018534902A (en) Electric motor
JP2006353076A (en) Rotor manufacturing method, rotor manufactured by this method, and motor using this rotor
WO2015037069A1 (en) Dynamo-electric machine
JP2013219904A (en) Manufacturing method of stator and stator
JP2015084312A (en) Rotor core heating apparatus and rotor core shrink fit method
JP6976038B2 (en) Manufacturing method of magnetic member of rotating machine
JP2009295443A (en) Induction coil and electromagnetic induction heating apparatus
JP2015084312A5 (en)
JP4039638B2 (en) Induction core of heatable godet roll and inductor and induction heatable godet roll
JP2007005055A (en) Induction heating roller device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250