JP5720364B2 - Ion exchanger - Google Patents

Ion exchanger Download PDF

Info

Publication number
JP5720364B2
JP5720364B2 JP2011072519A JP2011072519A JP5720364B2 JP 5720364 B2 JP5720364 B2 JP 5720364B2 JP 2011072519 A JP2011072519 A JP 2011072519A JP 2011072519 A JP2011072519 A JP 2011072519A JP 5720364 B2 JP5720364 B2 JP 5720364B2
Authority
JP
Japan
Prior art keywords
chamber
exchange resin
ion exchange
water
communication pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011072519A
Other languages
Japanese (ja)
Other versions
JP2012205994A (en
Inventor
長雄 福井
長雄 福井
石塚 諭
諭 石塚
洋一 宮▲崎▼
洋一 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011072519A priority Critical patent/JP5720364B2/en
Priority to KR1020120030579A priority patent/KR101918771B1/en
Priority to TW101110381A priority patent/TWI585045B/en
Priority to CN201210094212.1A priority patent/CN102730796B/en
Publication of JP2012205994A publication Critical patent/JP2012205994A/en
Application granted granted Critical
Publication of JP5720364B2 publication Critical patent/JP5720364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D41/00Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、アニオン交換樹脂とカチオン交換樹脂とを備えた再生型のイオン交換装置に関する。   The present invention relates to a regenerative ion exchange apparatus provided with an anion exchange resin and a cation exchange resin.

電子産業等における純水や超純水製造設備などにおいて、イオン交換装置が広く用いられている。このイオン交換装置の1つとして、混床式イオン交換装置が周知である。   Ion exchange devices are widely used in pure water and ultrapure water production facilities in the electronics industry. As one of the ion exchange devices, a mixed bed type ion exchange device is well known.

混床式イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合された混合イオン交換樹脂層を有するイオン交換塔を備え、例えば原水の下降流通水によりイオン交換塔において原水中のカチオン及びアニオンを同時にイオン交換して純度の高い純水を製造するようにしている。そして、各イオン交換樹脂の再生を行う時には同一塔内で、混合イオン交換樹脂層を逆洗分離し、各イオン交換樹脂の比重差により上層に強塩基性アニオン交換樹脂層を、下層に強酸性カチオン交換樹脂層を形成した後、各イオン交換樹脂層にそれぞれの再生剤を通液して両イオン交換樹脂を個別に再生するようにしている。この再生操作は同一塔内で行われることもあるし、各イオン交換樹脂を別の塔に個別に抜き出し、それぞれの塔内で個別に再生を行うこともある。   The mixed bed type ion exchange apparatus includes an ion exchange tower having a mixed ion exchange resin layer in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed. High-purity pure water is produced by simultaneously exchanging cations and anions in water. When each ion exchange resin is regenerated, the mixed ion exchange resin layer is backwashed and separated in the same column. Due to the specific gravity difference of each ion exchange resin, a strong basic anion exchange resin layer is formed in the upper layer and a strong acidity is formed in the lower layer. After forming the cation exchange resin layer, the respective regenerants are passed through each ion exchange resin layer to regenerate both ion exchange resins individually. This regeneration operation may be performed in the same column, or each ion exchange resin may be individually extracted in another column and may be individually regenerated in each column.

従来の混床式イオン交換装置にあっては、「逆再生」と呼ばれるカチオン・アニオン交換樹脂の分離不完全による不具合が生じることがある。   In the conventional mixed bed type ion exchange apparatus, there may be a problem due to incomplete separation of the cation / anion exchange resin called “reverse regeneration”.

即ち、カチオン交換樹脂はH形で使用され、その再生は酸溶液を通液することにより行われる。一方、アニオン交換樹脂はOH形で使用され、その再生はアルカリ溶液を通液することにより行われる。前述の通り、混床式脱塩塔のイオン交換樹脂の再生に先立って、先ず混床に上向流通水を施して、アニオン交換樹脂とカチオン交換樹脂とを比重差で分離した後、例えば、HClを塔下部から導入してカチオン交換樹脂の再生を行い、またNaOHを塔上部から導入してアニオン交換樹脂の再生を行う。各々の再生廃液は、アニオン交換樹脂床とカチオン交換樹脂床との界面部分に設けた排出配管より排出する。その後、Nガスを塔底部から導入してアニオン交換樹脂とイオン交換樹脂を混合して混床とし、通水を再開する。 That is, the cation exchange resin is used in the H form, and its regeneration is performed by passing an acid solution. On the other hand, the anion exchange resin is used in the OH form, and its regeneration is performed by passing an alkaline solution. As described above, prior to the regeneration of the ion exchange resin of the mixed bed type desalting tower, first, the mixed bed is first subjected to upward circulating water, and the anion exchange resin and the cation exchange resin are separated by a specific gravity difference. HCl is introduced from the bottom of the tower to regenerate the cation exchange resin, and NaOH is introduced from the top of the tower to regenerate the anion exchange resin. Each regeneration waste liquid is discharged from a discharge pipe provided at the interface between the anion exchange resin bed and the cation exchange resin bed. Thereafter, N 2 gas is introduced from the bottom of the tower, the anion exchange resin and the ion exchange resin are mixed to form a mixed bed, and water flow is resumed.

このような再生型混床式イオン交換塔においては、HCl,NaOHによる各イオン交換樹脂の再生に先立って、カチオン交換樹脂とアニオン交換樹脂とを十分に分離する必要がある。この分離が完全に行われず、例えば、アニオン交換樹脂中にカチオン交換樹脂が混入すると、アルカリ(主として水酸化ナトリウムが使用される。)による再生(逆再生)でカチオン交換樹脂がNa形となり、この樹脂を使って脱イオンを行うとナトリウムイオンが放出される。また、カチオン交換樹脂中にアニオン交換樹脂が混入すると、酸(主として硫酸又は塩酸が使用される。)による再生(逆再生)でアニオン交換樹脂がSO形又はCl形となり、脱イオンに際して硫酸イオン又は塩素イオンが放出される。 In such a regeneration type mixed bed type ion exchange column, it is necessary to sufficiently separate the cation exchange resin and the anion exchange resin prior to the regeneration of each ion exchange resin with HCl and NaOH. For example, when the cation exchange resin is mixed in the anion exchange resin, the cation exchange resin becomes Na form by regeneration (reverse regeneration) with alkali (mainly sodium hydroxide). When deionization is performed using a resin, sodium ions are released. In addition, when an anion exchange resin is mixed in the cation exchange resin, the anion exchange resin becomes SO 4 form or Cl form by regeneration (reverse regeneration) with an acid (mainly sulfuric acid or hydrochloric acid is used). Or chlorine ions are released.

このような逆再生を防止しようとしたイオン交換装置として、特開平10−137751(特許文献1)には、塔内を通水性の仕切板で上下2室に区画し、一方の室にカチオン交換樹脂を充填し、他方の室にアニオン交換樹脂を充填したものが記載されている。この仕切板は、水の流通を許容するが、イオン交換樹脂の流通は、阻止するものであり、アニオン交換樹脂とカチオン交換樹脂との混合が防止される。この特許文献1の塔体は一塔式であり、装置面積が小さい。   As an ion exchange device that attempts to prevent such reverse regeneration, Japanese Patent Laid-Open No. 10-137751 (Patent Document 1) divides the inside of the tower into two upper and lower chambers with a water-based partition plate, and exchanges cation in one chamber. A resin is filled and the other chamber is filled with an anion exchange resin. Although this partition plate permits the flow of water, the flow of the ion exchange resin is blocked, and mixing of the anion exchange resin and the cation exchange resin is prevented. The tower body of this patent document 1 is a single tower type, and an apparatus area is small.

特開平10−137751JP 10-137751

上記特開平10−137751のイオン交換装置は、アニオン交換樹脂層とカチオン交換樹層とを仕切る仕切板が通水性であるため、再生時には、カチオン交換樹脂再生用の酸溶液が仕切板を通過してアニオン交換樹脂と接触することにより、逆再生が生じる。また、アニオン交換樹脂再生用のアルカリ溶液が仕切板を通過してカチオン交換樹脂と接触することにより、逆再生が生じる。特許文献1の0023,0027,0028段落には、再生時に一方の再生剤が他方のイオン交換樹脂層に流入しないように純水をバランス水として通水することが記載されているが、再生剤の混入を完全に防止するには不十分であり、逆再生が生じてしまう。   In the ion exchange apparatus disclosed in JP-A-10-137751, since the partition plate that partitions the anion exchange resin layer and the cation exchange tree layer is water-permeable, an acid solution for cation exchange resin regeneration passes through the partition plate during regeneration. In reverse contact with the anion exchange resin occurs. Further, reverse regeneration occurs when the alkaline solution for anion exchange resin regeneration passes through the partition plate and comes into contact with the cation exchange resin. In paragraphs 0023, 0027, and 0028 of Patent Document 1, it is described that pure water is passed as balance water so that one regenerant does not flow into the other ion exchange resin layer during regeneration. Insufficient to completely prevent the contamination of the material, it causes reverse regeneration.

本発明は、塔内部におけるアニオン交換樹脂及びカチオン交換樹脂の逆再生が確実に防止され、再生直後でも高水質の脱イオン水を生産することができるイオン交換装置を提供することを目的とする。   An object of the present invention is to provide an ion exchange apparatus that can reliably prevent reverse regeneration of an anion exchange resin and a cation exchange resin in a column and can produce high-quality deionized water even immediately after the regeneration.

本発明のイオン交換装置は、塔体の内部にイオン交換樹脂が充填されたイオン交換装置において、該塔体内に遮水性の仕切板によって上室と下室とが区画形成されており、該塔体外を引き回された連通手段によって該上室と下室とが連通されているイオン交換装置であって、該塔体の上室及び下室のうち一方に収容されたカチオン交換樹脂と、他方に収容されたアニオン交換樹脂と、該上室の上部に液を供給又は排出するための上部給排配管と、該下室の下部に液を供給又は排出するための下部給排配管と、を備えており、前記連通手段は、該上室の下部に液を給排するための第1の連通配管と、該下室の上部に液を給排するための第2の連通配管と、該第1の連通配管と第2の連通配管とを連通する第3の連通配管と、該第3の連通配管の開閉手段と、該第1の連通配管及び第2の連通配管にそれぞれ設けられた再生液の給排手段と、前記上室の上部、上室の下部、下室の上部及び下室の下部にそれぞれ配置された、水は通すがイオン交換樹脂の通過を阻止する集配水部材と、を備え、前記上部給排配管、第1の連通配管、第2の連通配管及び下部給排配管の末端がそれぞれ該集配水部材に接続されており、前記上室の上部及び下室の上部にそれぞれ粒状の不活性樹脂が充填されており、上室上部の集配水部材及び下室上部の集配水部材がそれぞれ該不活性樹脂中に埋設されており、該上室の下部及び下室の下部にそれぞれ該室のイオン交換樹脂よりも高比重の粒子が充填されており、該上室下部の集配水部材及び下室下部の集配水部材がそれぞれ該高比重粒子中に埋設されていることを特徴とするものである。   The ion exchange apparatus of the present invention is an ion exchange apparatus in which an ion exchange resin is filled in a tower body, and an upper chamber and a lower chamber are partitioned by a water shielding partition plate in the tower body. An ion exchange device in which the upper chamber and the lower chamber communicate with each other by a communication means routed outside the body, the cation exchange resin accommodated in one of the upper chamber and the lower chamber of the tower, and the other An anion exchange resin housed in the upper chamber, an upper supply / discharge pipe for supplying or discharging liquid to the upper portion of the upper chamber, and a lower supply / discharge pipe for supplying or discharging liquid to the lower portion of the lower chamber, The communication means includes: a first communication pipe for supplying and discharging liquid to the lower part of the upper chamber; a second communication pipe for supplying and discharging liquid to the upper part of the lower chamber; A third communication pipe that communicates the first communication pipe and the second communication pipe; and the third communication pipe A closing means, a regenerating liquid supply / discharge means provided in each of the first communication pipe and the second communication pipe, and an upper portion of the upper chamber, a lower portion of the upper chamber, an upper portion of the lower chamber, and a lower portion of the lower chamber. And a water collecting / distribution member arranged to pass the water but prevent the ion exchange resin from passing through, respectively, and the ends of the upper supply / discharge pipe, the first communication pipe, the second communication pipe and the lower supply / discharge pipe are provided. The upper and lower chambers are respectively connected to the water collecting and distributing members, and the upper and lower chambers are filled with granular inert resin, respectively, and the upper chamber upper water collecting and distributing members and the lower chamber upper and lower water collecting members Each embedded in the inert resin, the lower part of the upper chamber and the lower part of the lower chamber are filled with particles having a higher specific gravity than the ion exchange resin of the chamber, respectively, And the water collection and distribution members at the bottom of the lower chamber are embedded in the high specific gravity particles, respectively. It is characterized in.

請求項2のイオン交換装置は、請求項1において、該高比重粒子は不活性樹脂粒子又はガラスビーズであることを特徴とするものである。   The ion exchange apparatus according to claim 2 is characterized in that, in claim 1, the high specific gravity particles are inert resin particles or glass beads.

本発明のイオン交換装置においては、上室と下室とが遮水性の仕切板で区画され、一方の室にカチオン交換樹脂が収容され、他方の室にアニオン交換樹脂が収容されている。被処理水(原水)は、一方の室に供給され、連通手段を介して他方の室に流入し、該他方の室から取り出される。   In the ion exchange apparatus of the present invention, the upper chamber and the lower chamber are partitioned by a water-tight partition plate, the cation exchange resin is accommodated in one chamber, and the anion exchange resin is accommodated in the other chamber. The treated water (raw water) is supplied to one chamber, flows into the other chamber through the communication means, and is taken out from the other chamber.

このイオン交換装置では、イオン交換樹脂の再生時には、各室に別々に酸又はアルカリが供給される。従って、カチオン交換樹脂とアニオン交換樹脂とが混合することは全くなく、しかも、両室を区画する仕切板は遮水性であり、一方の室に供給された酸又はアルカリが仕切板を通過して他方の室に流入することは全くなく、逆再生が防止される。   In this ion exchange apparatus, when the ion exchange resin is regenerated, acid or alkali is separately supplied to each chamber. Therefore, the cation exchange resin and the anion exchange resin are not mixed at all, and the partition plate that partitions both chambers is water-blocking, and the acid or alkali supplied to one chamber passes through the partition plate. There is no flow into the other chamber and reverse regeneration is prevented.

本発明のイオン交換装置は、内部を仕切板で上下2室に区画したものであり、アニオン交換塔とカチオン交換塔とを別々に設置したものと比べて設置スペースが少なくなり、配管の長さも少なくて済み、さらにイオン交換樹脂を充填するイオン交換樹脂室間を1枚の仕切板で分離するようにしたことにより、イオン交換装置の高さを低くできる。また、安価に製作できる。   The ion exchange apparatus of the present invention has an interior divided into upper and lower chambers by a partition plate, and requires less installation space and a longer pipe length than those in which an anion exchange tower and a cation exchange tower are separately installed. The height of the ion exchange device can be reduced by separating the ion exchange resin chambers filled with the ion exchange resin with a single partition plate. Moreover, it can be manufactured at low cost.

本発明のイオン交換装置では、第1の連通配管及び第2の連通配管を介して上室及び下室にそれぞれ酸又はアルカリを容易に通水して効率よく再生を行うことができる。この際、第3の連通配管を閉とすることにより、酸、アルカリの混合が完全に防止される。そして、上室及び下室のイオン交換樹脂を同時に再生することができ、再生時間を大幅に短縮することができる。   In the ion exchange apparatus of the present invention, acid or alkali can be easily passed through the upper chamber and the lower chamber through the first communication pipe and the second communication pipe, respectively, and the regeneration can be performed efficiently. At this time, the mixture of acid and alkali is completely prevented by closing the third communication pipe. And the ion exchange resin of an upper chamber and a lower chamber can be reproduced | regenerated simultaneously, and reproduction | regeneration time can be shortened significantly.

本発明のイオン交換装置によれば、上室及び下室の上部及び下部にそれぞれ集配水部材を配置して上室内及び下室内に通水するので、上室及び下室に水の局部的な滞留が生じることがなく、効率よく処理水(脱イオン水)の生産及びイオン交換樹脂の再生を行うことができる。   According to the ion exchange apparatus of the present invention, since the water collecting and distributing members are arranged at the upper and lower portions of the upper chamber and the lower chamber, respectively, and the water is passed through the upper chamber and the lower chamber, the water is locally distributed in the upper chamber and the lower chamber. There is no stagnation, and it is possible to efficiently produce treated water (deionized water) and regenerate the ion exchange resin.

本発明のイオン交換装置は、上室及び下室の上部に不活性樹脂を充填しており、イオン交換樹脂の流動が抑制される。イオン交換樹脂が流動すると、採水時又は再生時に液が均等にイオン交換樹脂と接触しないため水質の低下が生じるおそれがあるが、この請求項5によれば、かかる水質低下が防止され、高水質の処理水を得ることができる。また、採水時と再生時の被処理水と再生剤の通水方向は特に限定されないが、採水を上向流、再生を下向流とする方が、高水質の処理水を得ることができるため望ましい。これは不活性樹脂の充填により、十分に再生されたイオン交換樹脂が各イオン交換樹脂の上部に固定され、採水時は被処理水の出口側にこのイオン交換樹脂が位置する為と考えられる。   In the ion exchange apparatus of the present invention, the upper chamber and the lower chamber are filled with an inert resin, and the flow of the ion exchange resin is suppressed. When the ion exchange resin flows, there is a possibility that the water quality is deteriorated because the liquid is not uniformly contacted with the ion exchange resin at the time of water sampling or regeneration. Treated water with quality can be obtained. In addition, the flow direction of the water to be treated and the regenerant at the time of sampling and regeneration is not particularly limited, but it is possible to obtain treated water with higher water quality when sampling water is flowing upward and regeneration is flowing downward. This is desirable. This is thought to be due to the fact that the fully regenerated ion exchange resin is fixed to the upper part of each ion exchange resin by filling with the inert resin, and this ion exchange resin is located on the outlet side of the water to be treated at the time of sampling. .

本発明のイオン交換装置では、上室及び下室の下部にそれぞれ高比重粒子を充填し、上室下部及び下室下部の集配水部材を該高比重粒子に埋設しているので、これらの集配水部材から上向流にて各室に通水するときに、集配水部材から流出した水が高比重粒子の充填層で広く均一に分散されるようになる。このため、各室内に均一に通水され、各室内のイオン交換樹脂と水とが効率よく接触し、イオン交換効率が向上する。   In the ion exchange apparatus of the present invention, high specific gravity particles are respectively filled in the lower part of the upper chamber and the lower chamber, and the water collecting and distributing members at the lower part of the upper chamber and the lower part of the lower chamber are embedded in the high specific gravity particles. When water flows from the water distribution member to each chamber in an upward flow, the water flowing out from the water collection and distribution member is dispersed widely and uniformly in the packed bed of high specific gravity particles. For this reason, water is uniformly passed through each room, the ion exchange resin and water in each room come into efficient contact, and the ion exchange efficiency is improved.

実施の形態に係るイオン交換装置を示す概略的な断面図である。1 is a schematic cross-sectional view showing an ion exchange device according to an embodiment.

以下、図1を参照し、実施の形態について説明する。   Hereinafter, an embodiment will be described with reference to FIG.

塔体1は筒軸心方向を鉛直方向とした円筒部1aと、頂部の鏡板部1bと、底部の鏡板部1cとによって外殻が構成されている。鏡板部1bは上に凸に湾曲し、鏡板部1cは下に凸に湾曲している。   In the tower 1, an outer shell is constituted by a cylindrical portion 1 a whose vertical direction is the cylinder axis direction, a top end plate portion 1 b and a bottom end plate portion 1 c. The end plate portion 1b is convexly curved upward, and the end plate portion 1c is convexly curved downward.

この塔体1内が遮水性の仕切板2によって上室20と下室30との2室に区画されている。この実施の形態では、仕切板2は、水を全く通過させない金属又は合成樹脂製のものであり、鏡板部1cと同様に下に凸に湾曲している。仕切板2の周縁部は、円筒部1aの内周面に対し溶接等により水密的に結合されている。   The inside of the tower body 1 is divided into two chambers, an upper chamber 20 and a lower chamber 30, by a water shielding partition plate 2. In this embodiment, the partition plate 2 is made of metal or synthetic resin that does not allow water to pass through at all, and is curved downward and convex like the end plate portion 1c. The peripheral edge of the partition plate 2 is watertightly coupled to the inner peripheral surface of the cylindrical portion 1a by welding or the like.

上室20内の上部に第1の集配水部材4が配置され、この第1の集配水部材4に上部給排配管3が接続されている。上室20内の下部に第2の集配水部材6が設置され、この集配水部材6に第1の連通配管5が接続されている。下室30内の上部に第3の集配水部材9が設置され、この集配水部材9に第2の連通配管8が接続されている。連通配管5,8は、第3の連通配管11によって接続され、この連通配管11に弁12が設置されている。   The first water collection / distribution member 4 is disposed in the upper portion of the upper chamber 20, and the upper water supply / discharge pipe 3 is connected to the first water collection / distribution member 4. A second water collection / distribution member 6 is installed in the lower part of the upper chamber 20, and the first communication pipe 5 is connected to the water collection / distribution member 6. A third water collection / distribution member 9 is installed in the upper part of the lower chamber 30, and the second communication pipe 8 is connected to the water collection / distribution member 9. The communication pipes 5 and 8 are connected by a third communication pipe 11, and a valve 12 is installed in the communication pipe 11.

連通配管5,8の末端部には、再生液の給排手段としての弁7,10が設けられている。下室30の下部には、第4の集配水部材14が設置され、この集配水部材14に下部給排配管13が設置されている。   Valves 7 and 10 as regenerative liquid supply / discharge means are provided at the end portions of the communication pipes 5 and 8. A fourth water collection / distribution member 14 is installed in the lower part of the lower chamber 30, and a lower water supply / discharge pipe 13 is installed in the water collection / distribution member 14.

上室20内の下部及び下室30内の下部にそれぞれ高比重粒子としてガラスビーズ22,33が充填されている。第2の集配水部材6はガラスビーズ23の層内に埋設され、第4の集配水部材14はガラスビーズ33の層内に埋設されている。なお、ガラスビーズの代わりに、イオン交換樹脂よりも高比重の高密度ポリエチレン、高比重ポリプロピレン、フッ素系樹脂等の不活性樹脂の粒子を用いてもよい。ガラスビーズ及びこの不活性樹脂の粒径はイオン交換樹脂と同程度が好ましい。なお、高比重粒子は、LV150m/h以上でも流動しないことが望ましい。   Glass beads 22 and 33 are filled in the lower part of the upper chamber 20 and the lower part of the lower chamber 30 as high specific gravity particles, respectively. The second water collecting and distributing member 6 is embedded in the layer of glass beads 23, and the fourth water collecting and distributing member 14 is embedded in the layer of glass beads 33. Instead of glass beads, particles of inert resin such as high density polyethylene, high specific gravity polypropylene, and fluorine resin having a higher specific gravity than the ion exchange resin may be used. The particle size of the glass beads and the inert resin is preferably about the same as that of the ion exchange resin. It is desirable that the high specific gravity particles do not flow even at LV 150 m / h or more.

上室20内では、このガラスビーズ23の上側部分にアニオン交換樹脂21が充填され、このアニオン交換樹脂21の上側に粒状の不活性樹脂22が充填されている。第1の集配水部材4はこの不活性樹脂22内に埋設されている。   In the upper chamber 20, the upper part of the glass beads 23 is filled with an anion exchange resin 21, and a granular inert resin 22 is filled above the anion exchange resin 21. The first water collection / distribution member 4 is embedded in the inert resin 22.

下室30内では、ガラスビーズ33の上側部分にカチオン交換樹脂31が充填され、このカチオン交換樹脂31の上側に粒状の不活性樹脂32が充填されている。第3の集配水部材9はこの不活性樹脂32中に埋設されている。   In the lower chamber 30, the upper portion of the glass beads 33 is filled with a cation exchange resin 31, and a granular inert resin 32 is filled above the cation exchange resin 31. The third water collecting and distributing member 9 is embedded in the inert resin 32.

不活性樹脂22,32としては、イオン交換樹脂よりも比重の小さいポリアクリロニトリル系樹脂などが用いられる。不活性樹脂22,23の粒径は、イオン交換樹脂と同程度が好ましい。   As the inert resins 22 and 32, polyacrylonitrile resin having a specific gravity smaller than that of the ion exchange resin is used. The particle size of the inert resins 22 and 23 is preferably about the same as that of the ion exchange resin.

集配水部材4,6,9,14としては、従来のイオン交換装置で使用されている集水板や、放射状に延在させた配管に多数のスリットを設けたストレーナーなどを使用することができる。例えば、イオン交換樹脂の大きさが約0.4mm程度の場合、ストレーナーとしてスリットの幅が約0.2mmのものを使用するのが好ましい。集配水部材4,6,9,14は、鏡板部1b、仕切板2、鏡板部1cに沿う形状を有しており、鏡板部1b、仕切板2、鏡板部1cに沿うデッドスペースが小さいものとなっている。   As the water collecting and distributing members 4, 6, 9, and 14, a water collecting plate used in a conventional ion exchange device, a strainer provided with a large number of slits in a radially extending pipe, or the like can be used. . For example, when the size of the ion exchange resin is about 0.4 mm, it is preferable to use a strainer having a slit width of about 0.2 mm. The water collecting and distributing members 4, 6, 9, and 14 have shapes along the end plate portion 1b, the partition plate 2, and the end plate portion 1c, and have a small dead space along the end plate portion 1b, the partition plate 2, and the end plate portion 1c. It has become.

このイオン交換装置を用いた脱イオン水の生産(採水)時のフローを図1(a)に示す。この場合、弁12を開、弁7,10を閉とし、下部給排配管13から原水(被処理水)を供給する。この原水は集配水部材14、ガラスビーズ33、カチオン交換樹脂31、不活性樹脂32、集配水部材9、連通配管8,12,5、集配水部材6、ガラスビーズ23、アニオン交換樹脂21、不活性樹脂22、集配水部材4、上部給排配管3の順に流れ、処理水(脱イオン水)として取り出される。   FIG. 1 (a) shows a flow at the time of production (water sampling) of deionized water using this ion exchange device. In this case, the valve 12 is opened, the valves 7 and 10 are closed, and raw water (treated water) is supplied from the lower supply / discharge pipe 13. The raw water is collected and distributed 14, glass beads 33, cation exchange resin 31, inert resin 32, collection and distribution member 9, communication pipes 8, 12, 5, collection and distribution member 6, glass beads 23, anion exchange resin 21, inactive It flows in the order of the active resin 22, the water collection and distribution member 4, and the upper supply and discharge pipe 3, and is taken out as treated water (deionized water).

カチオン交換樹脂31及びアニオン交換樹脂21の再生時には、図1(b)のように弁12を閉、弁7,10を開とし、上部給排配管3からNaOHなどのアルカリ溶液を供給すると共に、第3の連通配管8からHCl、HSOなどの酸溶液を供給する。アルカリ溶液は、集配水部材4、不活性樹脂22、アニオン交換樹脂21、集配水部材6、ガラスビーズ23、連通配管5、弁7の順に流れ、再生廃水(アルカリ)として流出し、これによりアニオン交換樹脂21が再生される。酸溶液は、集配水部材9、不活性樹脂32、カチオン交換樹脂31、ガラスビーズ33、集配水部材14、下部給排配管13の順に流れ、再生廃水(酸)として流出し、これにより、カチオン交換樹脂31が再生される。 When the cation exchange resin 31 and the anion exchange resin 21 are regenerated, the valve 12 is closed and the valves 7 and 10 are opened as shown in FIG. 1B, and an alkaline solution such as NaOH is supplied from the upper supply / discharge pipe 3. An acid solution such as HCl or H 2 SO 4 is supplied from the third communication pipe 8. The alkaline solution flows in the order of the water collection / distribution member 4, the inert resin 22, the anion exchange resin 21, the water collection / distribution member 6, the glass beads 23, the communication pipe 5, and the valve 7, and flows out as recycled wastewater (alkali). The exchange resin 21 is regenerated. The acid solution flows in the order of the water collection / distribution member 9, the inert resin 32, the cation exchange resin 31, the glass beads 33, the water collection / distribution member 14, and the lower supply / discharge pipe 13, and flows out as recycled wastewater (acid). The exchange resin 31 is regenerated.

再生終了後は、図1(b)のHCl溶液、NaOH溶液の代わりに、それぞれ純水を通水し、各経路及び樹脂をリンスした後、必要に応じて純水で上室と下室を個別に下向流洗浄しながら洗浄排水を排出し、その後、純水を上室20と下室30との間で所定時間循環させ、次いで、採水工程に復帰する。この再生に際しては、アニオン交換樹脂21とカチオン交換樹脂31とが混ざり合うことは全くない。また、再生用のアルカリ溶液が下室30に流入したり、酸溶液が上室20に混入することが全くなく、逆再生が完全に防止される。加えて、アニオン交換樹脂21とカチオン交換樹脂31とを同時に並行して再生することができ、再生時間が著しく短いものとなる。   After completion of regeneration, instead of the HCl solution and NaOH solution in FIG. 1 (b), pure water is passed through, respectively, each path and resin are rinsed, and the upper and lower chambers are cleaned with pure water as necessary. Washing waste water is discharged while performing separate downward flow cleaning, and then pure water is circulated between the upper chamber 20 and the lower chamber 30 for a predetermined time, and then returns to the water sampling step. In this regeneration, the anion exchange resin 21 and the cation exchange resin 31 are not mixed at all. Further, the alkaline solution for regeneration does not flow into the lower chamber 30 and the acid solution is not mixed into the upper chamber 20, so that reverse regeneration is completely prevented. In addition, the anion exchange resin 21 and the cation exchange resin 31 can be regenerated at the same time, and the regenerating time is remarkably short.

このイオン交換装置は、1つの塔体1内を1枚の仕切板2によって上下2室に区画したものであり、塔体の高さが低く、設置スペースも小さい。また、上室20と下室30とを連通する配管5,11,8が短くてすむ。   In this ion exchange apparatus, one tower body 1 is partitioned into two upper and lower chambers by one partition plate 2, and the height of the tower body is low and the installation space is also small. Also, the pipes 5, 11, and 8 communicating the upper chamber 20 and the lower chamber 30 can be shortened.

このイオン交換装置では集配水部材4,6,9,14が鏡板部1b、仕切板2、鏡板部1cに沿って設けられており、水の局部的な滞留が防止される。   In this ion exchange apparatus, the water collecting and distributing members 4, 6, 9, and 14 are provided along the end plate portion 1b, the partition plate 2, and the end plate portion 1c, so that local retention of water is prevented.

このイオン交換装置では、上室20及び下室30の上部に不活性樹脂22,32を充填しており、アニオン交換樹脂21及びカチオン交換樹脂31の流動が防止される。また、上室20及び下室30の下部にガラスビーズ23,33が充填され、集配水部材6,14がガラスビーズ23,33の層内に埋設されている。そのため、採水時及び再生時に液が均等にアニオン交換樹脂21及びカチオン交換樹脂31と接触するようになっており、高水質の脱イオン水が得られると共に、十分に再生が行われるようになる。   In this ion exchange apparatus, the upper chamber 20 and the lower chamber 30 are filled with inert resins 22 and 32, and the anion exchange resin 21 and the cation exchange resin 31 are prevented from flowing. Further, glass beads 23 and 33 are filled in the lower part of the upper chamber 20 and the lower chamber 30, and the water collecting and distributing members 6 and 14 are embedded in the layer of the glass beads 23 and 33. Therefore, the liquid comes into contact with the anion exchange resin 21 and the cation exchange resin 31 evenly during sampling and regeneration, so that high-quality deionized water is obtained and sufficient regeneration is performed. .

上記実施の形態では、上室20にアニオン交換樹脂を収容し、下室30にカチオン交換樹脂を収容しているが、逆としてもよい。上記実施の形態では、上室20と下室30とが配管5,11,8を介して連通されているが、塔体1の外部を引き回されている限り、これに限定されない。また、この実施の形態では、3個の弁7,10,12を用いているが、2個の三方弁を用いて流路切り替えを行うようにしてもよい。   In the above embodiment, the anion exchange resin is accommodated in the upper chamber 20 and the cation exchange resin is accommodated in the lower chamber 30, but the reverse may be possible. In the said embodiment, although the upper chamber 20 and the lower chamber 30 are connected via the piping 5,11,8, as long as the exterior of the tower body 1 is drawn around, it is not limited to this. In this embodiment, the three valves 7, 10, 12 are used, but the flow path may be switched using two three-way valves.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

<実施例1>
図1に示すイオン交換装置を用いた。諸元は次の通りである。
塔体直径 : 1000mm
塔体の高さ : 3500mm
上室容積 : 1000L
下室容積 : 1000L
アニオン交換樹脂 :Dow 550A
カチオン交換樹脂 :Dow 650C
アニオン交換樹脂の充填量 : 500L
カチオン交換樹脂の充填量 : 500L
不活性樹脂22の充填量 : 200L
不活性樹脂32の充填量 : 200L
ガラスビーズ23,33(平均粒径3mm、比重2.5)の充填量:
それぞれ200L
<Example 1>
The ion exchange apparatus shown in FIG. 1 was used. The specifications are as follows.
Tower diameter: 1000 mm
Tower height: 3500 mm
Upper chamber volume: 1000L
Lower chamber volume: 1000L
Anion exchange resin: Dow 550A
Cation exchange resin: Dow 650C
Anion exchange resin filling amount: 500 L
Filling amount of cation exchange resin: 500L
Filling amount of inert resin 22: 200L
Filling amount of inert resin 32: 200L
Filling amount of glass beads 23 and 33 (average particle diameter 3 mm, specific gravity 2.5):
200L each

<比較例1>
比較例1では、ガラスビーズ23,33を充填せず、その分だけイオン交換樹脂量を多くし、次の通りとしたこと以外は実施例1と同一とした。
カチオン交換樹脂の充填量 : 700L
アニオン交換樹脂の充填量 : 700L
<Comparative Example 1>
In Comparative Example 1, glass beads 23 and 33 were not filled, and the amount of ion exchange resin was increased by that amount, and the same as Example 1 except that the following was performed.
Filling amount of cation exchange resin: 700L
Anion exchange resin filling amount: 700L

<通水試験>
各イオン交換装置にRO処理水(導電率:5μS/cm、金属Na:1ppm、塩化物イオン:1ppm、SiO:1ppm)を通水流量:20m/hにてイオン交換装置処理水の比抵抗値が18MΩ・cmを切るまで通水し、その後、下記の酸溶液及びアルカリ溶液を用いて同時に再生し、この採水・洗浄サイクルを5回繰り返した。
[再生条件]
HCl :5%(通水流量1m/h、30分)
NaOH :5%(通水流量1m/h、加温40℃、30分)
<Water flow test>
RO treatment water (conductivity: 5 μS / cm, metal Na: 1 ppm, chloride ion: 1 ppm, SiO 2 : 1 ppm) through each ion exchange device Flow rate: 20 m 3 / h Ratio of ion exchange device treated water Water was passed until the resistance value fell below 18 MΩ · cm, and then regenerated simultaneously using the following acid solution and alkali solution, and this sampling / washing cycle was repeated five times.
[Playback conditions]
HCl: 5% (water flow rate 1 m 3 / h, 30 minutes)
NaOH: 5% (water flow rate 1 m 3 / h, heating 40 ° C., 30 minutes)

各サイクルにおける採水量を表1に示す。   Table 1 shows the amount of water collected in each cycle.

Figure 0005720364
Figure 0005720364

表1から明らかな通り、実施例1によれば、比較例1よりも採水量が約20%増加した。これは、ガラスビーズにより塔内の流れが均一化されたためであると考えられる。   As is apparent from Table 1, according to Example 1, the amount of water collected was increased by about 20% compared to Comparative Example 1. This is considered to be because the flow in the tower was made uniform by the glass beads.

1 塔体
1b,1c 鏡板
2 仕切板
3 上部給排配管
4,6,9,14 集配水部材
5,8,11 連通配管
13 下部給排配管
20 上室
30 下室
23,33 ガラスビーズ
DESCRIPTION OF SYMBOLS 1 Tower body 1b, 1c End plate 2 Partition plate 3 Upper supply / discharge piping 4, 6, 9, 14 Water collection / distribution member 5, 8, 11 Communication piping 13 Lower supply / discharge piping 20 Upper chamber 30 Lower chamber 23, 33 Glass beads

Claims (2)

塔体の内部にイオン交換樹脂が充填されたイオン交換装置において、
該塔体内に遮水性の仕切板によって上室と下室とが区画形成されており、
該塔体外を引き回された連通手段によって該上室と下室とが連通されているイオン交換装置であって、
該塔体の上室及び下室のうち一方に収容されたカチオン交換樹脂と、
他方に収容されたアニオン交換樹脂と、
該上室の上部に液を供給又は排出するための上部給排配管と、
該下室の下部に液を供給又は排出するための下部給排配管と、
を備えており、前記連通手段は、
該上室の下部に液を給排するための第1の連通配管と、
該下室の上部に液を給排するための第2の連通配管と、
該第1の連通配管と第2の連通配管とを連通する第3の連通配管と、
該第3の連通配管の開閉手段と、
該第1の連通配管及び第2の連通配管にそれぞれ設けられた再生液の給排手段と、
前記上室の上部、上室の下部、下室の上部及び下室の下部にそれぞれ配置された、水は通すがイオン交換樹脂の通過を阻止する集配水部材と、
を備え、
前記上部給排配管、第1の連通配管、第2の連通配管及び下部給排配管の末端がそれぞれ該集配水部材に接続されており、
前記上室の上部及び下室の上部にそれぞれ粒状の不活性樹脂が充填されており、上室上部の集配水部材及び下室上部の集配水部材がそれぞれ該不活性樹脂中に埋設されており、
該上室の下部及び下室の下部にそれぞれ該室のイオン交換樹脂よりも高比重の粒子が充填されており、該上室下部の集配水部材及び下室下部の集配水部材がそれぞれ該高比重粒子中に埋設されていることを特徴とするイオン交換装置。
In the ion exchange apparatus in which the ion exchange resin is filled inside the tower body,
An upper chamber and a lower chamber are partitioned by a water-blocking partition plate in the tower body,
An ion exchange device in which the upper chamber and the lower chamber are communicated with each other by communication means routed outside the tower body,
A cation exchange resin accommodated in one of the upper chamber and the lower chamber of the tower;
An anion exchange resin contained in the other,
An upper supply / discharge pipe for supplying or discharging liquid to the upper part of the upper chamber;
A lower supply / discharge pipe for supplying or discharging liquid to the lower part of the lower chamber;
The communication means includes
A first communication pipe for supplying and discharging liquid to the lower part of the upper chamber;
A second communication pipe for supplying and discharging liquid to and from the upper part of the lower chamber;
A third communication pipe that communicates the first communication pipe and the second communication pipe;
Opening and closing means for the third communication pipe;
Regenerative liquid supply / discharge means respectively provided in the first communication pipe and the second communication pipe;
A water collecting / distributing member disposed at the upper part of the upper chamber, the lower part of the upper chamber, the upper part of the lower chamber and the lower part of the lower chamber, respectively, for passing water but preventing passage of the ion exchange resin;
With
Terminals of the upper supply / discharge pipe, the first communication pipe, the second communication pipe, and the lower supply / discharge pipe are respectively connected to the water collection / distribution member,
The upper part of the upper chamber and the upper part of the lower chamber are filled with granular inert resin, respectively, and the water collecting / distributing member at the upper part of the upper chamber and the water collecting / distributing member at the upper part of the lower chamber are respectively embedded in the inert resin. ,
The lower portion of the upper chamber and the lower portion of the lower chamber are filled with particles having a higher specific gravity than the ion exchange resin of the chamber, and the water collecting / distributing member at the lower portion of the upper chamber and the water collecting / distributing member at the lower portion of the lower chamber are respectively An ion exchange device characterized by being embedded in specific gravity particles.
請求項1において、該高比重粒子は不活性樹脂粒子又はガラスビーズであることを特徴とするイオン交換装置。   2. The ion exchange device according to claim 1, wherein the high specific gravity particles are inert resin particles or glass beads.
JP2011072519A 2011-03-29 2011-03-29 Ion exchanger Active JP5720364B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011072519A JP5720364B2 (en) 2011-03-29 2011-03-29 Ion exchanger
KR1020120030579A KR101918771B1 (en) 2011-03-29 2012-03-26 Ion-exchange device
TW101110381A TWI585045B (en) 2011-03-29 2012-03-26 Ion exchange device
CN201210094212.1A CN102730796B (en) 2011-03-29 2012-03-29 Ion exchange unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072519A JP5720364B2 (en) 2011-03-29 2011-03-29 Ion exchanger

Publications (2)

Publication Number Publication Date
JP2012205994A JP2012205994A (en) 2012-10-25
JP5720364B2 true JP5720364B2 (en) 2015-05-20

Family

ID=46987202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072519A Active JP5720364B2 (en) 2011-03-29 2011-03-29 Ion exchanger

Country Status (4)

Country Link
JP (1) JP5720364B2 (en)
KR (1) KR101918771B1 (en)
CN (1) CN102730796B (en)
TW (1) TWI585045B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304004A (en) * 2013-05-22 2013-09-18 陈龙 Mixed ion exchanger of flotation bed
KR102203041B1 (en) * 2014-06-10 2021-01-13 쿠리타 고교 가부시키가이샤 Operating method for regeneration type ion exchange device
CN105502576B (en) * 2015-10-15 2018-06-08 芬欧汇川(中国)有限公司 Change water ion exchanger
CN108855248A (en) * 2018-06-26 2018-11-23 辽宁莱特莱德环境工程有限公司 Ion-exchange reactions and regenerating unit
CN109052435B (en) * 2018-09-27 2020-07-07 中蓝长化工程科技有限公司 Adsorption tower group for extracting lithium from salt lake brine
US20220119295A1 (en) * 2019-02-05 2022-04-21 Arizona Board Of Regents On Behalfof Arizona State University System and method of water rejuvenation for the regeneration of sorbent filters
JP2022053969A (en) * 2020-09-25 2022-04-06 オルガノ株式会社 Pure water production device, and pure water production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3040616A1 (en) * 1980-10-29 1982-06-03 Bayer Ag, 5090 Leverkusen COUNTERFLOW ADSORPTION FILTER FOR TREATING LIQUIDS AND METHOD FOR OPERATING THE FILTER
US5868915A (en) * 1996-09-23 1999-02-09 United States Filter Corporation Electrodeionization apparatus and method
JP3632331B2 (en) * 1996-11-07 2005-03-23 オルガノ株式会社 Ion exchange method and ion exchange column used in this ion exchange method
CN2360392Y (en) 1999-02-25 2000-01-26 张行赫 Three-chamber bed water fine processor
JP2001205263A (en) * 2000-01-27 2001-07-31 Japan Organo Co Ltd Double bed type ion exchange apparatus
US7563351B2 (en) * 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
WO2011040278A1 (en) * 2009-09-30 2011-04-07 栗田工業株式会社 Ion-exchange device, column therefor, and water treatment device
JP5672687B2 (en) * 2009-09-30 2015-02-18 栗田工業株式会社 Ion exchanger
JP5609181B2 (en) * 2010-03-16 2014-10-22 栗田工業株式会社 Ion exchanger

Also Published As

Publication number Publication date
KR20120112090A (en) 2012-10-11
CN102730796B (en) 2015-12-16
TW201300326A (en) 2013-01-01
CN102730796A (en) 2012-10-17
TWI585045B (en) 2017-06-01
JP2012205994A (en) 2012-10-25
KR101918771B1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP5720364B2 (en) Ion exchanger
JP5672687B2 (en) Ion exchanger
US3382169A (en) Process for deionizing aqueous solutions
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP5849419B2 (en) Pure water production equipment
JP5862029B2 (en) Ion exchanger
JP4931178B2 (en) Condensate desalination method and apparatus
JP5609181B2 (en) Ion exchanger
JP6873972B2 (en) Regeneration of mixed floor resin
JP6015737B2 (en) Operation method of regenerative ion exchanger
WO2017159812A1 (en) Ion exchange device and method of using same
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP4984788B2 (en) Mixed bed type ion exchange resin tower
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP5672333B2 (en) Operation method of regenerative ion exchanger
JP7446155B2 (en) ion exchange equipment
JP2005296748A (en) Condensate demineralizer and its regeneration method
TWI814710B (en) Water quality management system and operation method of water quality management system
JP2017170419A (en) Ion exchange device and method of using the same
TWI648224B (en) Operation method of regenerative ion exchange device
JP2005296749A (en) Condensate demineralization method and device, and method for forming its packed bed
KR20020016142A (en) Regenerating method for mixed bed ion exchange resin
WO2015189908A1 (en) Operating method for regeneration type ion exchange device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150