JP5715492B2 - Injection mold - Google Patents

Injection mold Download PDF

Info

Publication number
JP5715492B2
JP5715492B2 JP2011115347A JP2011115347A JP5715492B2 JP 5715492 B2 JP5715492 B2 JP 5715492B2 JP 2011115347 A JP2011115347 A JP 2011115347A JP 2011115347 A JP2011115347 A JP 2011115347A JP 5715492 B2 JP5715492 B2 JP 5715492B2
Authority
JP
Japan
Prior art keywords
runner
molten resin
sprue
cavities
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011115347A
Other languages
Japanese (ja)
Other versions
JP2012240385A (en
Inventor
義之 渋田
義之 渋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011115347A priority Critical patent/JP5715492B2/en
Publication of JP2012240385A publication Critical patent/JP2012240385A/en
Application granted granted Critical
Publication of JP5715492B2 publication Critical patent/JP5715492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、多数個取り製品を製造する射出成形金型に関する。   The present invention relates to an injection mold for producing a multi-cavity product.

従来より、射出成形により、多数個取りで製品を製造する場合には、射出成形金型の各キャビティへバランス良く均等に溶融樹脂を充填することが重視されている。図2は従来の8個取り射出成形金型の概略構成図である。図2は、金型内の空洞部のみを表示したものであり、他の金型の図面も同様である。図2に示されるように、8個取り射出成形金型のランナーは、スプルー1、第1ランナー2、第2ランナー3、第3ランナー4、ゲート部5、キャビティ8、9、10、11、12、13、14、15により構成されているが、スプルー1を中心に各キャビティへ溶融樹脂が均等に流れるように、その間のランナー、すなわち2個の第1ランナー2、4個の第2ランナー3、8個の第3ランナー4は等長、等断面積としている。   Conventionally, when a product is manufactured by injection molding with a large number of pieces, emphasis has been placed on filling the cavities of the injection mold uniformly with a good balance of the molten resin. FIG. 2 is a schematic configuration diagram of a conventional eight-piece injection mold. FIG. 2 shows only the cavity in the mold, and the drawings of other molds are the same. As shown in FIG. 2, the runner of the eight-piece injection mold is sprue 1, first runner 2, second runner 3, third runner 4, gate portion 5, cavities 8, 9, 10, 11, 12, 13, 14, and 15, and runners between them, that is, two first runners 2, four second runners, so that the molten resin flows evenly to each cavity around the sprue 1. Three or eight third runners 4 have the same length and the same cross-sectional area.

ところが、図2のような射出成形金型では、各ランナーを等長、等断面積とした場合は、内側のキャビティ、すなわちキャビティ9、10、13、14の方が外側のキャビティ、すなわちキャビティ8、11、12、15よりも充填され易いことが、従来から知られている。多数個取りの場合、溶融樹脂の充填のバランスが崩れると、過充填や充填不足により製品不良に繋がるため、各種の対策が取られている。   However, in the injection mold as shown in FIG. 2, when the runners have the same length and the same cross-sectional area, the inner cavities, that is, the cavities 9, 10, 13, and 14 are the outer cavities, that is, the cavities 8. , 11, 12 and 15 are known to be easier to fill. In the case of taking a large number of pieces, if the balance of filling with molten resin is lost, overfilling or insufficient filling leads to product failure, so various measures are taken.

例えば、特許文献1には、各キャビティに流入する充填バランスが崩れる場合があり、これは、主ランナーから副ランナーへ分岐する際に、中央部を流れる樹脂は主として樹脂の流れ方向側の副ランナーに流れ、一方、表層側の樹脂は樹脂の流れ方向と反対側の副ランナーに流れるが、各ランナーを流れる溶融樹脂は、表層部を流れる樹脂と中央部を流れる樹脂との間にせん断速度及び温度差を生ずるため両樹脂の粘度が異なることによると考えられることが記載されている。   For example, in Patent Document 1, there is a case where the filling balance flowing into each cavity is lost, and this is because the resin flowing in the center portion is mainly the secondary runner on the resin flow direction side when branching from the primary runner to the secondary runner. On the other hand, the resin on the surface layer side flows to the sub-runner on the opposite side of the resin flow direction, but the molten resin flowing through each runner has a shear rate between the resin flowing in the surface layer portion and the resin flowing in the center portion. It is described that it is considered that the two resins have different viscosities in order to cause a temperature difference.

特許文献1では、溶融樹脂の充填バランスを主ランナー(第1ランナー)から副ランナー(第2ランナー)への分岐部に樹脂の流れを変えるための突起状段差を設けることが記載されている。詳細には、第1ランナーから第2ランナーへ溶融樹脂の流れが分岐し、溶融樹脂の流れ方向が90度変換される前に、分岐部に突起状段差を設けて、第1ランナーと第2ランナーにより形成される平面に対して、一旦、垂直の方向に溶融樹脂の流れ方向を変換している。   In Patent Document 1, it is described that a protruding step for changing the flow of the resin is provided at the branch portion from the main runner (first runner) to the sub runner (second runner) in the molten resin filling balance. In detail, before the flow of the molten resin branches from the first runner to the second runner, and the flow direction of the molten resin is changed by 90 degrees, a protruding step is provided at the branch portion, and the first runner and the second runner The flow direction of the molten resin is once converted to a direction perpendicular to the plane formed by the runner.

また、特許文献2に開示されている技術では、先に充填される内向き側のキャビティのゲート前のランナーに溶融樹脂の成形条件を調整する成形条件調整入れ子を設けている。   In the technique disclosed in Patent Document 2, a molding condition adjusting nest that adjusts the molding condition of the molten resin is provided in the runner before the gate of the inward cavity that is filled first.

特開平5−185470号公報JP-A-5-185470 特開2001−353755号公報JP 2001-353755 A

多数個取りの射出成形を行う場合は、溶融樹脂の充填バランスを調整することは必須条件である。また、射出成形金型内では、ノズルから充填されたスプルー部から先の溶融樹脂のせん断発熱による温度分布では、各ランナーの中心部より外周部が温度が高くなると考えられる。そこで、射出成形金型内の溶融樹脂の温度分布の検討を行った。   When performing multi-cavity injection molding, it is essential to adjust the filling balance of the molten resin. In addition, in the injection mold, it is considered that the temperature at the outer peripheral portion is higher than the center portion of each runner in the temperature distribution due to the shear heat generation of the molten resin from the sprue portion filled from the nozzle. Therefore, the temperature distribution of the molten resin in the injection mold was examined.

図7は従来の射出成形金型内の溶融樹脂の温度分布を示す模式図で、図7(a)は図2のA−A断面図、図7(b)は図2のB−B断面図、図7(c)は図2のC−C断面図である。ノズルから充填されたスプルー1の断面の温度分布は図7(a)のように、中心部がせん断発熱温度小17であり、外周部がせん段発熱温度大16の対称形の分布となっていると考えられる。次にスプルー1から第1ランナー2へは90度方向が変換されており、分岐部で、スプルー1の中心の部分(温度の低い部分)が第1ランナー2の下部に、スプルー1の外周の半分の部分(温度の高い部分)が第1ランナー2の上部に流れると共に、第1ランナー2を流動することによる中心部と外周部のせん断発熱温度の分布が加わり、分岐後の第1ランナー2の断面の温度分布は図7(b)に示されるように、第1ランナー2の外周の上側(スプルー1の外周側に沿った側)はせん断発熱温度大16で外周の下側と中心部は、せん断発熱温度小17となると考えられる。   7A and 7B are schematic diagrams showing the temperature distribution of the molten resin in a conventional injection mold. FIG. 7A is a cross-sectional view taken along line AA in FIG. 2, and FIG. 7B is a cross-sectional view taken along line BB in FIG. FIG. 7 and FIG. 7C are CC cross-sectional views of FIG. As shown in FIG. 7A, the temperature distribution of the cross section of the sprue 1 filled from the nozzle is a symmetric distribution with a central portion having a low heat generation temperature 17 and a peripheral portion having a high heat generation temperature 16. It is thought that there is. Next, the direction of 90 degrees is changed from the sprue 1 to the first runner 2, and at the bifurcation, the central portion (low temperature portion) of the sprue 1 is placed below the first runner 2 and the outer periphery of the sprue 1 A half portion (high temperature portion) flows to the upper part of the first runner 2, and the distribution of the shear heat generation temperature at the center and the outer periphery due to the flow of the first runner 2 is added, so that the first runner 2 after branching As shown in FIG. 7B, the temperature distribution of the cross section of the first runner 2 is on the upper side of the outer circumference of the first runner 2 (the side along the outer circumference side of the sprue 1) with a large shear heating temperature 16 and the lower and outer sides of the outer circumference. Is considered to have a low shear heating temperature of 17.

さらに、第1ランナー2から第2ランナー3への分岐後は、図7(c)のように、第1ランナー2から第2ランナー3へとは90度方向が変換されており、第1ランナーの外周に沿った第2ランナーの外周側はせん断発熱温度大16の樹脂が流れ、その反対側は第1ランナー2の中心の部分(温度の低い部分)が流れるため、せん断発熱温度小17となり、せん断発熱分布の左右の対称性が崩れる。その結果、第2ランナー3から第3ランナー4へ分岐する際に樹脂の流動が不均一となる。従って、温度が高く粘性が低い第1ランナーの外周に沿って流れる内側のキャビティ、すなわちキャビティ9、10、13、14が先に充填されると考えられる。この現象は、高流動性の液晶ポリマー等を使用した小型電子部品の薄肉製品で特に顕著となる。   Furthermore, after branching from the first runner 2 to the second runner 3, as shown in FIG. 7C, the direction from the first runner 2 to the second runner 3 is changed by 90 degrees, and the first runner The outer side of the second runner along the outer circumference of the second runner is a resin having a high shear heating temperature 16 and the opposite side is the central part (low temperature part) of the first runner 2. The left-right symmetry of the shear heating distribution is broken. As a result, the flow of the resin becomes uneven when branching from the second runner 3 to the third runner 4. Therefore, it is considered that the inner cavities flowing along the outer periphery of the first runner having high temperature and low viscosity, that is, cavities 9, 10, 13, and 14 are filled first. This phenomenon is particularly noticeable in thin-walled products of small electronic parts using high-fluidity liquid crystal polymers.

図8は、参考例の8個取りの射出成形金型の概略構成図である。特許文献1では、主ランナーから副ランナーに分岐する前に、一旦垂直方向に溶融樹脂の流れを変換しているので、図8に示す参考例の8個取りの射出成形金型でも、第1ランナー2から第2ランナー3へ溶融樹脂の流れが分岐し、溶融樹脂の流れ方向が90度変換される前に、分岐部6に第2ランナー3の高さ以上の段差を持たせた階段形状7を設けている。この階段形状7により、第1ランナー2と第2ランナー3により形成される平面に対して、一旦、垂直の方向に溶融樹脂の流れ方向を変換し、垂直の方向から第2ランナーに溶融樹脂が流入し、左右に分岐して流れるように設定している。   FIG. 8 is a schematic configuration diagram of an eight-piece injection mold according to a reference example. In Patent Document 1, since the flow of the molten resin is once converted in the vertical direction before branching from the main runner to the sub runner, the first example of the eight-piece injection mold shown in FIG. A stepped shape in which the flow of the molten resin branches from the runner 2 to the second runner 3 and the flow direction of the molten resin is changed by 90 degrees before the branch portion 6 has a step higher than the height of the second runner 3. 7 is provided. With this staircase shape 7, the flow direction of the molten resin is once changed in the vertical direction with respect to the plane formed by the first runner 2 and the second runner 3, and the molten resin is transferred to the second runner from the vertical direction. It is set to flow in and branch to the left and right.

図9は図8に示す射出成形金型内の溶融樹脂の温度分布を示す模式図で、図9(a)は図8のD−D断面図、図9(b)は図8のE−E断面図、図9(c)は図8のF−F断面図である。この場合、ノズルから充填されたスプルー1の断面の温度分布は図9(a)のように、中心部がせん断発熱温度小17であり、外周部がせん断発熱温度大16の対称形の分布となっていると考えられる。次に、スプルー1から第1ランナー2へは90度方向が変換されており、分岐部で、スプルー1の温度が低い中心部が第1ランナー2の下部に、スプルー1の温度が高い外周の半分が第1ランナー2の上部に流れると共に、第1ランナー2を流動することによる中心部と外周部のせん断発熱温度の分布が加わり、分岐後の第1ランナー2の断面の温度分布は図9(b)に示されるように、第1ランナー2の外周の上側はせん断発熱温度大16で外周の下側と中心部はせん断発熱温度小17となると考えられる。   9 is a schematic diagram showing the temperature distribution of the molten resin in the injection mold shown in FIG. 8, FIG. 9A is a sectional view taken along the line DD in FIG. 8, and FIG. E sectional drawing and FIG.9 (c) are FF sectional drawings of FIG. In this case, as shown in FIG. 9A, the temperature distribution of the cross section of the sprue 1 filled from the nozzle is a symmetrical distribution in which the central portion has a low shear heating temperature 17 and the outer peripheral portion has a large shear heating temperature 16. It is thought that it has become. Next, the direction of 90 degrees is converted from the sprue 1 to the first runner 2, and at the branch portion, the central portion where the temperature of the sprue 1 is low is located below the first runner 2, and the outer periphery where the temperature of the sprue 1 is high. Half of the current flows to the top of the first runner 2, and the distribution of the shear heat generation temperature at the center and the outer periphery due to the flow of the first runner 2 is added. The temperature distribution of the cross section of the first runner 2 after branching is shown in FIG. As shown in (b), it is considered that the upper side of the outer periphery of the first runner 2 has a large shear heating temperature 16 and the lower side and the center of the outer periphery have a lower shear heating temperature 17.

さらに、第1ランナー2から第2ランナー3への分岐後は、図9(c)のように、第1ランナーは、第2ランナーの上部から流れることによって第1ランナーの外周の上部に沿った第2ランナーの外周側はせん断発熱温度大16の樹脂が流れ、その反対の第1ランナーの下部に沿った第2ランナーの外周側はせん断発熱温度小17となり、せん断発熱分布の左右の対称性が崩れる。その結果、第2ランナー3から第3ランナー4へ分岐後、外側のキャビティ、すなわちキャビティ8、11、12、15が先に充填されると考えられる。   Further, after branching from the first runner 2 to the second runner 3, as shown in FIG. 9C, the first runner flows along the upper part of the outer periphery of the first runner by flowing from the upper part of the second runner. Resin with a large shear heat generation temperature 16 flows on the outer peripheral side of the second runner, and the outer peripheral side of the second runner along the lower portion of the first runner has a lower shear heat generation temperature 17, and left and right symmetry of the shear heat generation distribution. Collapses. As a result, after branching from the second runner 3 to the third runner 4, the outer cavities, that is, the cavities 8, 11, 12, and 15 are considered to be filled first.

よって、特許文献1の発明を適用しても、溶融樹脂の充填バランスが充分に確保されるとは限らないことが分かる。さらに、特許文献1の突起状段差を設ける場合は、射出成形金型の突起状段差部の金型パーティングラインが、一般的な平面とはならず、3次元的な合わせ面の形状となるため、高度な加工精度が必要であり、金型の加工費が高くなるという面がある。   Therefore, it can be seen that even if the invention of Patent Document 1 is applied, a sufficient filling balance of the molten resin is not always ensured. Furthermore, when providing the protruding step of Patent Document 1, the mold parting line of the protruding step portion of the injection mold is not a general plane but a three-dimensional mating surface shape. For this reason, high machining accuracy is required, and the machining cost of the mold is increased.

また、特許文献2の発明のゲートに調整用の入れ子を設け、各キャビティへの溶融樹脂の充填量を直接調整する方法は、各キャビティへの溶融樹脂の流れのバランスの均一化がなされるはずなので、充填バランスを調整する面では効果が大きいと考えられる。ただし、この場合は、成形樹脂、成形条件毎に専用の入れ子を準備しなければならず、効率が悪い面がある。さらに、調整入れ子をねじ等で固定するため、ねじ等のスペース増による金型の大型化、成形樹脂量の増大といった金型コスト、資材費が高くなるという面もある。   Moreover, the method of providing the adjustment nest | insert in the gate of invention of patent document 2, and adjusting the filling amount of the molten resin to each cavity directly should make the balance of the flow of the molten resin to each cavity uniform. Therefore, it is considered that the effect is great in terms of adjusting the filling balance. In this case, however, a dedicated insert must be prepared for each molding resin and molding condition, which is inefficient. Furthermore, since the adjustment insert is fixed with a screw or the like, there is an aspect that the mold cost and material cost such as an increase in the size of the mold due to an increase in the space of the screw or the like and an increase in the amount of molding resin are increased.

従って、本願の解決すべき課題は、多数個取りの射出成形を行う場合に、各キャビティへの溶融樹脂の充填バランスを確保できると共に、作業性が良好で、且つ、金型等のコストを抑えられるような射出成形金型を提供することである。   Therefore, the problems to be solved by the present application are that, when performing multi-cavity injection molding, it is possible to ensure the balance of filling of the molten resin into each cavity, the workability is good, and the cost of the mold is suppressed. It is to provide such an injection mold.

本発明は、スプルーから導入された溶融樹脂を8個以上の複数のキャビティへ充填する多数個取りの射出成形金型のランナーの形状を調整して、第1ランナーから第2ランナーへの分岐部における溶融樹脂の流れを調整し、分岐後の第2ランナー内を流れる溶融樹脂のせん断発熱分布を左右均等にすることにより、第2ランナーから第3ランナーへ分岐して流れる溶融樹脂の流れを均等となるように調整し、その先の各キャビティへの充填バランスを均一にしたものである。   The present invention adjusts the shape of a runner of a multi-piece injection mold that fills a plurality of eight or more cavities with molten resin introduced from a sprue, and branches from the first runner to the second runner. The flow of molten resin flowing in the second runner after branching is adjusted by adjusting the flow of the molten resin in the left and right, so that the flow of molten resin flowing branched from the second runner to the third runner is equalized. And the balance of filling into the respective cavities beyond that is made uniform.

即ち、本発明は、溶融樹脂を導入するスプルーから分岐する第1のランナーと前記第1のランナーから分岐する第2のランナーと前記第2のランナーから分岐する第3のランナーと前記第3のランナーの各々に接続され、前記溶融樹脂が充填されるキャビティを備え、前記スプルーと前記第1のランナー、前記第1のランナーと前記第2のランナー及び前記第2のランナーと前記第3のランナーとの各々の分岐部にて前記溶融樹脂の流動方向を垂直な方向に変換するよう構成された8個以上の多数個取りの射出成形金型であって、前記第1ランナーから前記第2ランナーへの分岐部に前記第1ランナーにおける前記流動方向に垂直な断面の高さの25%以上、75%以下の段差で、前記第1ランナーと同断面積の階段形状を設けたことを特徴とする射出成形金型である。 That is, the present invention includes a first runner branching from sprue for introducing molten resin, and a second runner which branches from the first runner, a third runner which branches from the second runner, the connected to each of the third runner, said a cavity which molten resin Ru is filled, the said sprue said first runner, said first runner and said second runner and the second runner first a each said 8 or more injection molds multi several up configured to convert the flow direction perpendicular to the direction of the molten resin at the bifurcation of the third runner, said first runner the first of the 25% of the height of the cross section perpendicular to the flow direction or in the runner, at 75% or less of the step, the stepped shape of the first runner and ditto area bifurcation into the second runner from Set up An injection molding die, characterized in that the.

また、本発明は、溶融樹脂を導入するスプルーと、前記スプルーの前記溶融樹脂流動方向を垂直な方向に変換するよう前記スプルーに接続されたランナーと、前記流動方向を垂直な方向に変換するよう順次接続された一つ以上のランナーとが順次接続され、末端の前記ランナーが接続され、前記溶融樹脂が充填されるキャビティを備え、前記ランナーの各々の分岐部に、前記ランナーにおける前記流動方向に垂直な断面の高さの25%以上、75%以下の段差が設けられ、前記段差の前後での前記ランナーの断面積が等しいことを特徴とする射出成形金型である。 The present invention also provides a sprue for introducing a molten resin , a runner connected to the sprue to convert the flow direction of the molten resin in the sprue to a vertical direction, and converting the flow direction to a vertical direction. One or more runners that are sequentially connected to each other , a cavity that is connected to the end runner and is filled with the molten resin , and the flow direction in the runner is provided in each branch portion of the runner . The injection mold is characterized in that a step of 25% or more and 75% or less of the height of the cross section perpendicular to the step is provided, and the cross-sectional area of the runner before and after the step is equal.

本発明によれば、第1ランナーから第2ランナーへの分岐部に階段形状を設けることによって、分岐後の第2ランナー内の溶融樹脂のせん断発熱分布の左右のバランスが保たれ、各キャビティへの充填バランスを保つことが可能となる。本発明の射出成形金型を用いることにより、各キャビティへの均一充填が容易に達成され、製品の成形バリやショートショットといった不良が改善され、品質が安定し、生産性が向上する。   According to the present invention, by providing a stepped shape at the branch from the first runner to the second runner, the left and right balance of the shear heat distribution of the molten resin in the second runner after branching is maintained, and each cavity is transferred to each cavity. It is possible to maintain the filling balance. By using the injection mold of the present invention, uniform filling into each cavity is easily achieved, defects such as molding burrs and short shots of products are improved, quality is stabilized, and productivity is improved.

また、本発明の射出成形金型の場合は、分岐部の階段形状の金型パーティングラインをほぼ、一般的な平面形状に近いものとすることが出来るので、合わせ面にも、高度な加工精度が必ずしも必要ではないため、金型の加工費も抑えることが可能となる。   In addition, in the case of the injection mold of the present invention, the step part-shaped mold parting line of the branching portion can be made almost similar to a general plane shape, so that the mating surface is also highly processed. Since accuracy is not always necessary, the machining cost of the mold can be reduced.

本発明の8個取り射出成形金型の概略構成図。The schematic block diagram of the 8 piece injection mold of this invention. 従来の8個取り射出成形金型の概略構成図。The schematic block diagram of the conventional 8 piece injection mold. 本発明の射出成形金型内の溶融樹脂の温度分布を示す模式図、図3(a)は図1のG−G断面図、図3(b)は図1のH−H断面図、図3(c)は図1のI−I断面図。FIG. 3A is a schematic view showing the temperature distribution of the molten resin in the injection mold of the present invention, FIG. 3A is a GG cross-sectional view of FIG. 1, and FIG. 3B is a HH cross-sectional view of FIG. 3 (c) is a cross-sectional view taken along the line II of FIG. 第1ランナーから第2ランナーへの分岐部拡大図、図4(a)は従来例、図4(b)は本発明の階段形状、図4(c)は参考例の階段形状。FIG. 4A is a conventional example, FIG. 4B is a staircase shape of the present invention, and FIG. 4C is a staircase shape of a reference example. 本発明に係る、第1ランナーから第2ランナーへの分岐部側面の説明図。Explanatory drawing of the branch part side surface from a 1st runner to a 2nd runner based on this invention. 樹脂充填時のキャビティ間の平均重量のずれ量を示す図、図6(a)はポリカーボネートの場合、図6(b)は液晶ポリマーの場合。The figure which shows the deviation | shift amount of the average weight between the cavities at the time of resin filling, Fig.6 (a) is the case of a polycarbonate, FIG.6 (b) is the case of a liquid crystal polymer. 従来の射出成形金型内の溶融樹脂の温度分布を示す模式図、図7(a)は図2のA−A断面図、図7(b)は図2のB−B断面図、図7(c)は図2のC−C断面図。FIG. 7A is a cross-sectional view taken along the line AA in FIG. 2, FIG. 7B is a cross-sectional view taken along the line BB in FIG. 2, and FIG. (C) is CC sectional drawing of FIG. 参考例の8個取りの射出成形金型の射出成形金型の概略構成図。The schematic block diagram of the injection mold of the injection mold of 8 pieces of a reference example. 図8に示す射出成形金型内の溶融樹脂の温度分布を示す模式図、図9(a)は図8のD−D断面図、図9(b)は図8のE−E断面図、図9(c)は図8のF−F断面図。FIG. 9A is a schematic diagram showing the temperature distribution of the molten resin in the injection mold shown in FIG. 8, FIG. 9A is a DD cross-sectional view of FIG. 8, and FIG. 9B is an EE cross-sectional view of FIG. FIG.9 (c) is FF sectional drawing of FIG.

以下、本発明の実施の形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の8個取り射出成形金型の概略構成図を示したものである。さらに、図4は、第1ランナーから第2ランナーの分岐部拡大図で、図4(a)は従来例、図4(b)は本発明の階段形状、図4(c)は参考例の階段形状である。   FIG. 1 is a schematic configuration diagram of an eight-cavity injection mold according to the present invention. Further, FIG. 4 is an enlarged view of a branch portion from the first runner to the second runner, FIG. 4 (a) is a conventional example, FIG. 4 (b) is a step shape of the present invention, and FIG. 4 (c) is a reference example. It is a staircase shape.

本発明の射出成形金型は、図1に示すように、スプルー1、第1ランナー2、第2ランナー3、第3ランナー4、ゲート部5、キャビティ8、9、10、11、12、13、14、15により構成されている。   As shown in FIG. 1, the injection mold of the present invention includes a sprue 1, a first runner 2, a second runner 3, a third runner 4, a gate portion 5, cavities 8, 9, 10, 11, 12, 13. , 14 and 15.

さらに、第1のランナーから第2のランナーへの分岐部に階段形状7を設けている。階段形状7は、図4(a)に示す従来形状の分岐部に図4(b)の本発明の階段形状のような段差を設けたものである。階段形状の段差の垂直方向の高さは第1ランナーの高さの25%以上から75%以下とすることが望ましく、この範囲内の段差の寸法で、各キャビティ間の樹脂の充填バランスを均一にできる。段差の垂直方向の高さが第1ランナーの高さの25%よりも小さい場合は、各キャビティ間の樹脂の充填バランスを均一にする効果が殆んどなく、段差の垂直方向の高さを第1ランナーの高さの75%よりも大きくすると、かえって各キャビティ間の樹脂の充填バランスが悪化する。図4(c)の参考例の階段形状は、段差の垂直方向の高さを第1ランナーの高さと同じ(100%)にしたもので、特許文献1の突起状段差を設ける技術に類似してくるが、このような階段形状の場合は、各キャビティ間の樹脂の充填バランスはあまり均一でない。   Furthermore, a staircase shape 7 is provided at a branch portion from the first runner to the second runner. The staircase shape 7 is such that a step like the staircase shape of the present invention of FIG. 4B is provided at the branch portion of the conventional shape shown in FIG. The vertical height of the stepped step is preferably 25% to 75% of the height of the first runner, and the resin filling balance between each cavity is uniform with the step size within this range. Can be. When the vertical height of the step is smaller than 25% of the height of the first runner, there is almost no effect of uniforming the resin filling balance between the cavities, and the vertical height of the step is If it is larger than 75% of the height of the first runner, the resin filling balance between the cavities is rather deteriorated. The stepped shape of the reference example in FIG. 4C is similar to the technique of providing a protruding step in Patent Document 1 in which the vertical height of the step is the same (100%) as the height of the first runner. However, in the case of such a staircase shape, the resin filling balance between the cavities is not very uniform.

さらに、図5は、本発明に係る、第1ランナーから第2ランナーへの分岐部側面の説明図である。図5の実施の形態の場合は、第1ランナー2と第2ランナー3の断面の寸法形状が等しく、階段形状の段差の長さ(L)をランナーの幅寸法(W、図示せず)と等しく設定している。図5に示すような段差形状が、金型作製上は望ましいが、寸法形状は、この実施の形態に限定されるものではない。流れる溶融樹脂の断面積が、実質的に第1のランナー2の断面積と同じで、段差の垂直方向の寸法が第1ランナー2の高さの25%以上、75%以下であれば、他の形状、例えば、段差の長さ(L)が異なっても、段差が上方でなく下方であっても、垂直でなく斜めでもかまわない。   Furthermore, FIG. 5 is explanatory drawing of the branch part side surface from a 1st runner to a 2nd runner based on this invention. In the case of the embodiment of FIG. 5, the cross-sectional dimensions of the first runner 2 and the second runner 3 are equal, and the step length (L) of the step shape is the width dimension of the runner (W, not shown). Set equal. Although the step shape as shown in FIG. 5 is desirable in terms of mold fabrication, the dimensional shape is not limited to this embodiment. If the cross-sectional area of the flowing molten resin is substantially the same as the cross-sectional area of the first runner 2 and the vertical dimension of the step is 25% or more and 75% or less of the height of the first runner 2, The height of the step, for example, the length (L) of the step may be different, the step may be lower or lower, or may be vertical or oblique.

図5に示すように、本発明の実施の形態である分岐部に設ける階段形状7は、所定の高さ寸法(Ha)と幅寸法(W)の断面(S=Ha×W)を持つストレート状の第1ランナー2に、幅寸法(W)が同じで、高さ寸法を図の上方で所定寸法(Hc)増加させた断面(S=(Ha+Hc)×W)で、長さ(L)が第2ランナー3の幅寸法(W)と同じ寸法(L=W)のランナーが接続され、さらに、幅寸法(W)を変えずに、高さ寸法を図の下方で所定寸法(Hc)減少させた断面(S=Ha×W)で、長さ(L)が第2ランナー3の幅寸法(W)と同じ寸法(L=W)のランナーが接続され、さらに、このランナーが第2ランナー3上部まで延長されて、第2ランナー3に接続されている。   As shown in FIG. 5, the staircase shape 7 provided at the branch portion according to the embodiment of the present invention is a straight having a predetermined height dimension (Ha) and a cross section (S = Ha × W) having a width dimension (W). The cross section (S = (Ha + Hc) × W) having the same width dimension (W) and a height dimension increased by a predetermined dimension (Hc) in the upper part of the figure, the length (L) Is connected to a runner having the same dimension (L = W) as the width dimension (W) of the second runner 3, and without changing the width dimension (W), the height dimension is set to a predetermined dimension (Hc) below the figure. A runner having a reduced cross section (S = Ha × W) and a length (L) that is the same as the width (W) of the second runner 3 (L = W) is connected. It extends to the top of the runner 3 and is connected to the second runner 3.

この上方への増加と下方への減少を行った所定寸法(Hc)が本発明で規定している階段形状7の段差の寸法である。この段差の垂直方向の寸法(Hc)は第1ランナー2の高さ寸法(Ha)の25〜75%(25%≦Hc/Ha≦75%)であることが望ましい。   The predetermined dimension (Hc) obtained by increasing upward and decreasing downward is the dimension of the step of the staircase shape 7 defined in the present invention. The vertical dimension (Hc) of the step is preferably 25 to 75% (25% ≦ Hc / Ha ≦ 75%) of the height dimension (Ha) of the first runner 2.

なお、この階段形状の断面積は、第1ランナー2から第2ランナー3の分岐部へ流れる溶融樹脂の断面積が実質的に等しくなるように設定すれば良く、図5の上下方向の断面のみで考えれば、途中で断面積が増加しているように見えるが、流れる溶融樹脂の階段形状7への入出の断面積と考えれば、ほぼ一定の断面積となっており、第1ランナーの断面積と実質的に同じと見なすことができる。   Note that the cross-sectional area of the staircase shape may be set so that the cross-sectional areas of the molten resin flowing from the first runner 2 to the branch portion of the second runner 3 are substantially equal. The cross-sectional area seems to increase on the way, but the cross-sectional area of the molten resin flowing into and out of the staircase shape 7 is almost constant, and the first runner breaks off. It can be considered substantially the same as the area.

図3は本発明の射出成形金型内の溶融樹脂の温度分布を示す模式図で、図3(a)は図1のG−G断面図、図3(b)は図1のH−H断面図、図3(c)は図1のI−I断面図である。ノズルから充填されたスプルー1の断面の温度分布は図3(a)のように、中心部がせん断発熱温度小17であり、外周部がせん断発熱温度大16の対称形の分布となっていると考えられる。次にスプルー1から第1ランナー2へは90度方向が変換されており、分岐部で、スプルー1の中心の部分(温度の低い部分)が第1ランナー2の下部に、スプルー1の外周の半分の部分(温度の高い部分)が第1ランナー2の上部に流れると共に、第1ランナー2を流動することによる中心部と外周部のせん断発熱温度の分布が加わり、分岐後の第1ランナー2の断面の温度分布は図3(b)に示されるように、第1ランナー2の外周の上側(スプルー1の外周側の沿った側)はせん断発熱温度大16で外周の下側と中心部は、せん断発熱温度小17となると考えられる。   3A and 3B are schematic views showing the temperature distribution of the molten resin in the injection mold according to the present invention. FIG. 3A is a cross-sectional view taken along the line GG in FIG. 1, and FIG. FIG. 3C is a cross-sectional view taken along the line II of FIG. As shown in FIG. 3A, the temperature distribution of the cross section of the sprue 1 filled from the nozzle is a symmetric distribution with the center portion having a low shear heating temperature 17 and the outer circumference portion having a large shear heating temperature 16. it is conceivable that. Next, the direction of 90 degrees is changed from the sprue 1 to the first runner 2, and at the bifurcation, the central portion (low temperature portion) of the sprue 1 is placed below the first runner 2 and the outer periphery of the sprue 1 A half portion (high temperature portion) flows to the upper part of the first runner 2, and the distribution of the shear heat generation temperature at the center and the outer periphery due to the flow of the first runner 2 is added, so that the first runner 2 after branching As shown in FIG. 3B, the temperature distribution of the cross section of the first runner 2 is on the upper side of the outer periphery of the first runner 2 (the side along the outer peripheral side of the sprue 1). Is considered to have a low shear heating temperature of 17.

さらに、第1ランナー2から第2ランナー3への分岐後は、図3(c)のように、第1ランナー2から第2ランナー3へとは、従来の90度方向変換とは異なり、第2ランナー3の外周のみならず、中央、外周部までせん断発熱温度大16の樹脂が流れるため、その反対側の第1ランナー2の中心より下のせん断発熱温度小17の樹脂が第2ランナー3の内周側へ流れても、その影響は小さくなりせん断発熱分布の対称性が良好となると考えられる。   Further, after branching from the first runner 2 to the second runner 3, as shown in FIG. 3C, the first runner 2 to the second runner 3 is different from the conventional 90 degree direction change, Since the resin having a large shear heat generation temperature 16 flows not only to the outer periphery of the two runners 3 but also to the center and the outer periphery, the resin having a lower shear heat generation temperature 17 below the center of the first runner 2 on the opposite side is the second runner 3. Even if it flows to the inner peripheral side of the slab, the effect is reduced and the symmetry of the shear heat distribution is considered to be good.

その結果、第2ランナー3から第3ランナー4へ分岐する際に樹脂の流動が均一となる。従って、第1ランナーの外周に沿って流れるキャビティ9、10、13、14とその反対側のキャビティ8、11、12、15が、均一に充填されると考えられる。   As a result, the flow of the resin becomes uniform when branching from the second runner 3 to the third runner 4. Therefore, it is considered that the cavities 9, 10, 13, and 14 flowing along the outer periphery of the first runner and the cavities 8, 11, 12, and 15 on the opposite side are uniformly filled.

なお、本願の目的は、第1ランナーから第3ランナーまでの分岐で8分割された先での樹脂の流れのバランスを均一にすることを主眼とするものである。従って、本願発明の射出成形金型は、第3ランナーの先にキャビティが連なるものではあるが、図1の例で示したような、第3ランナー4にゲート部5を介してキャビティ8、9、10、11、12、13、14、15が接続されるものに限定されるものではなく、第3ランナーとキャビティ間に、さらにランナーやゲート、分岐部等を有するものであってもよく、キャビティの個数も8個以外、設けても良い。   The purpose of the present application is to make the resin flow balance evenly divided into eight parts by branching from the first runner to the third runner. Therefore, in the injection mold of the present invention, the cavity is continuous with the tip of the third runner, but the cavities 8 and 9 are connected to the third runner 4 via the gate portion 5 as shown in the example of FIG. 10, 11, 12, 13, 14, 15 are not limited to those to which the third runner and the cavity are connected, and may have a runner, a gate, a branching portion, etc. The number of cavities may be other than eight.

8個取り射出成形用金型を用い、第1ランナーから第2ランナーへの分岐部として、各種の階段形状の分岐部を作製して、樹脂の充填状態の比較検討を行った。   Using eight-piece injection molds, various step-shaped branch portions were produced as branch portions from the first runner to the second runner, and the resin filling states were compared.

製品は、リレー用ケースであり、肉厚約0.4mm、高さ約10mm、幅約10mm、長さ約15mmである。尚、製品図は省略する。射出成形用の樹脂として、汎用樹脂の三菱樹脂(株)ポリカーボネートと、ケース等に適用される非常に高流動性の住友化学(株)液晶ポリマーE−7000シリーズとの、互いに粘度が大きく異なる2種類の樹脂を使用した。   The product is a case for a relay, and has a thickness of about 0.4 mm, a height of about 10 mm, a width of about 10 mm, and a length of about 15 mm. The product drawing is omitted. As resins for injection molding, the viscosity of the general-purpose resin Mitsubishi Plastics Co., Ltd. and the extremely high fluidity Sumitomo Chemical Co., Ltd. liquid crystal polymer E-7000 series applied to cases and the like are greatly different. Different types of resin were used.

段差形状として、段差のない従来形状(段差0%)、および段差が第1ランナーの高さ(Ha)の25%、40%、50%、75%、100%の6種類の射出成形金型を製作し評価した。   As the step shape, there are six types of injection molds with a conventional shape with no step (0% step) and 25%, 40%, 50%, 75% and 100% of the height (Ha) of the first runner. Was made and evaluated.

階段形状の寸法は、階段部長さ(L)、幅(W)、高さ(Ha)を第1ランナーの断面の寸法に合わせて約2mmとした。ランナーの寸法は、第1ランナーの長さは約60mm、第2ランナーの長さは約40mm、第3ランナーの長さは約15mmとした。第1、2ランナーの高さ(Ha)及び幅(W)の寸法は、共に約2mm、第3ランナーの高さ(Ha)及び幅(W)の寸法は約1.5mmとした。   The dimension of the staircase shape was set to about 2 mm according to the cross-sectional dimension of the first runner with the length (L), width (W), and height (Ha) of the staircase. As for the dimensions of the runner, the length of the first runner was about 60 mm, the length of the second runner was about 40 mm, and the length of the third runner was about 15 mm. The height (Ha) and width (W) of the first and second runners were both about 2 mm, and the height (Ha) and width (W) of the third runner were about 1.5 mm.

射出条件は、ポリカーボネートの場合、ノズル温度を290℃とし、射出速度は200mm/secとした。液晶ポリマーの場合、ノズル温度を320℃とし、射出速度は200mm/secとした。さらに、これらの樹脂を用いて、射出速度のみを100mm/secと変えた実験も行った。   The injection conditions in the case of polycarbonate were a nozzle temperature of 290 ° C. and an injection speed of 200 mm / sec. In the case of liquid crystal polymer, the nozzle temperature was 320 ° C. and the injection speed was 200 mm / sec. Furthermore, using these resins, an experiment was performed in which only the injection speed was changed to 100 mm / sec.

本実施例の8個取りのリレー用ケースの製品重量が完全充填時の50%及び75%となった時点での図1に示される配置の、第1ランナーの外周に沿って流れる4個の内側のキャビティ、すなわちキャビティ9、10、13、14の平均重量とその反対側の4個の外側のキャビティ、すなわちキャビティ8、11、12、15の平均重量を測定し、その2つの平均重量の差をずれ量とした。   Four pieces flowing along the outer circumference of the first runner in the arrangement shown in FIG. 1 when the product weight of the 8-clad relay case of this embodiment becomes 50% and 75% of the full filling. The average weight of the inner cavities, i.e. cavities 9, 10, 13, 14 and the four outer cavities on the opposite side, i.e. the cavities 8, 11, 12, 15 are measured and The difference was defined as the amount of deviation.

図6は樹脂充填時のキャビティ間の平均重量のずれ量を示す図で、図6(a)はポリカーボネートの場合、図6(b)は液晶ポリマーの場合である。ずれ量は、内側のキャビティ、すなわちキャビティ9、10、13、14の平均重量が重い場合をプラス側とし、外側のキャビティ、すなわちキャビティ8、11、12、15の平均重量が重い場合をマイナス側としている。   FIGS. 6A and 6B are diagrams showing a deviation amount of the average weight between the cavities at the time of resin filling. FIG. 6A shows the case of polycarbonate and FIG. 6B shows the case of liquid crystal polymer. The amount of deviation is positive when the average weight of the inner cavities, ie, cavities 9, 10, 13, 14 is heavy, and negative when the average weight of the outer cavities, ie, cavities 8, 11, 12, 15 is heavy. It is said.

ポリカーボネートの場合は、図6(a)に示すように、樹脂の充填重量が75%では、どの場合もずれ量が5%以内であり良好であるが、特に、段差が第1ランナーの高さの40%の場合は、ずれ量がほとんど無いことが分かる。また、2水準の射出速度で実験を行っているが、樹脂が同じポリカーボネートの場合は、射出速度を変えても、ずれ量に殆んど差が認められなかった。図6のずれ量のグラフ上ではデータが重なるため、射出速度による区別はしていない。   In the case of polycarbonate, as shown in FIG. 6 (a), when the filling weight of the resin is 75%, the deviation amount is within 5% in all cases, which is good. In particular, the step is the height of the first runner. It can be seen that there is almost no deviation amount in the case of 40%. The experiment was conducted at two levels of injection speed. When the resin was the same polycarbonate, even if the injection speed was changed, almost no difference was observed in the amount of deviation. Since the data overlap on the deviation amount graph of FIG. 6, no distinction is made according to the injection speed.

但し、段差が0%(従来例)の場合は、従来技術で説明したとおり、充填バランスは内側のキャビティ、すなわちキャビティ9、10、13、14が先に充填されている。また、段差が100%の場合は、参考例として検討したように、外側のキャビティ、すなわちキャビティ8、11、12、15が先に充填されている。   However, when the level difference is 0% (conventional example), as explained in the prior art, the inner cavities, that is, cavities 9, 10, 13, and 14 are filled first. When the level difference is 100%, the outer cavities, that is, the cavities 8, 11, 12, and 15 are filled first as discussed in the reference example.

液晶ポリマーの場合は、図6(b)に示すように、段差が第1ランナーの高さの25%〜75%の場合、樹脂の充填率が75%では、ずれ量約5%以下となり、内側のキャビティ、すなわちキャビティ9、10、13、14の平均重量と外側のキャビティ、すなわちキャビティ8、11、12、15の平均重量の差が小さく、充填のバランスが取れていることが分かる。また、2水準の射出速度で実験を行っているが、樹脂が同じ液晶ポリマーの場合も、射出速度を変えても、ずれ量に殆んど差が認められなかった。   In the case of the liquid crystal polymer, as shown in FIG. 6B, when the step is 25% to 75% of the height of the first runner, when the resin filling rate is 75%, the deviation amount is about 5% or less, It can be seen that the difference between the average weight of the inner cavities, i.e. cavities 9, 10, 13, 14 and the average weight of the outer cavities, i.e. cavities 8, 11, 12, 15 is small and the filling is balanced. In addition, although experiments were conducted at two levels of injection speed, even when the resin was the same liquid crystal polymer, there was almost no difference in the amount of deviation even when the injection speed was changed.

特に、段差が第1ランナーの高さの40%の場合は、樹脂の充填率が50%、75%の両方共に、ずれ量が非常に小さく、内外の各キャビティ間の充填のバランスが非常に良好であることが分かった。故に段差が第1ランナーの高さの35%〜45%の範囲にすることが、より望ましいことが解る。   In particular, when the step is 40% of the height of the first runner, both the resin filling rate is 50% and 75%, the deviation amount is very small, and the filling balance between the inner and outer cavities is very small. It was found to be good. Therefore, it turns out that it is more desirable to make a level | step difference into the range of 35%-45% of the height of a 1st runner.

段差を設けない従来例の場合は、従来技術で説明した通りの結果が示されている。即ち、ずれ量がプラスで非常に大きな値を示しており、内側のキャビティ、すなわちキャビティ9、10、13、14が先に充填され、各キャビティ間の充填バランスは悪いことが分かる。   In the case of the conventional example in which no step is provided, the result as described in the prior art is shown. That is, the deviation amount is plus and shows a very large value, and it can be seen that the inner cavities, that is, the cavities 9, 10, 13, and 14 are filled first, and the filling balance between the cavities is poor.

また、段差が第1ランナーの高さの100%の場合は、段差0%の場合に対して、ずれ量がマイナス側へと逆転しており、しかもずれ量も大きな値を示し、各キャビティ間の充填バランスは悪い。よって、本願発明の射出成形金型は第1ランナーから第2ランナーへの分岐部に第1ランナーの高さの25%〜75%内の段差で階段形状を設けることで、せん断発熱分布の対称性が良くなり充填バランスが良好となるということになる。   In addition, when the step is 100% of the height of the first runner, the amount of deviation is reversed to the minus side compared to the case of the step of 0%, and the amount of deviation is also large, indicating that there is a gap between the cavities. The filling balance is bad. Therefore, the injection mold according to the present invention provides a stepwise shape within 25% to 75% of the height of the first runner at the branch from the first runner to the second runner so that the shear heat distribution is symmetric. This means that the property is improved and the filling balance is improved.

以上の結果では、樹脂と射出速度の組合せにより、ずれ量の程度には差があるが、段差に対する、ずれ量の傾向は同一と考えられる。従って、成形条件、成形樹脂を変えても本発明の第1ランナーの高さの25%〜75%内の段差とすることで充填バランスを良好に出来るとの効果は変わらないことが分かる。   In the above results, although there is a difference in the amount of deviation depending on the combination of the resin and the injection speed, the tendency of the deviation amount with respect to the step is considered to be the same. Therefore, it can be seen that even if the molding conditions and the molding resin are changed, the effect that the filling balance can be improved by setting the level difference within 25% to 75% of the height of the first runner of the present invention does not change.

特許文献1では、突起状段差を設けることにより、充填バランスが改善されるとの記載があるが、本願の階段形状を設ける場合には、段差を所定以上に大きくしないと、溶融樹脂の流れを第1ランナーと第2ランナーがなす平面に垂直な方向に変更出来ないが、所定以上の段差を設けると、各キャビティ間の充填バランスが悪くなる。特に液晶ポリマーのような樹脂の場合は有効な効果を奏しない。従って、本願発明は、特許文献1の突起状段差を設ける発明とは、全く異なる発明である。   In Patent Document 1, there is a description that the filling balance is improved by providing a protruding step, but in the case of providing the staircase shape of the present application, if the step is not made larger than a predetermined level, the flow of the molten resin is reduced. Although it cannot be changed in a direction perpendicular to the plane formed by the first runner and the second runner, if a level difference of a predetermined level or more is provided, the filling balance between the cavities is deteriorated. In particular, in the case of a resin such as a liquid crystal polymer, there is no effective effect. Therefore, the invention of the present application is completely different from the invention of providing the protruding step in Patent Document 1.

以上本発明の一実施例について説明したが、本発明は上記実施例に限定されることなく、多数個取り射出成形金型にも適用可能である。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and can be applied to a multi-cavity injection mold.

例えば、16個取りであれば、第1ランナーから第2ランナーへの分岐部の他に、第2ランナーから第3ランナーへの分岐部に、32個取りであれば、さらに第4ランナーから第5ランナーへの分岐部にと上記と同様の階段形状を設けることで各キャビティ間での樹脂の充填バランスを均一にできる。   For example, in the case of 16 picks, in addition to the branch part from the first runner to the second runner, the branch part from the second runner to the third runner, and in the case of 32 picks, further from the fourth runner to the second runner By providing a step shape similar to the above at the branching portion to the 5 runners, the filling balance of the resin between the cavities can be made uniform.

1 スプルー
2 第1ランナー
3 第2ランナー
4 第3ランナー
5 ゲート部
6 分岐部
7 階段形状
8、9、10、11、12、13、14、15 キャビティ
16 せん断発熱温度大
17 せん断発熱温度小
DESCRIPTION OF SYMBOLS 1 Sprue 2 1st runner 3 2nd runner 4 3rd runner 5 Gate part 6 Branch part 7 Stair shape
8, 9, 10, 11, 12, 13, 14, 15 Cavity 16 Large shear heating temperature 17 Small shear heating temperature

Claims (2)

溶融樹脂を導入するスプルーから分岐する第1のランナーと前記第1のランナーから分岐する第2のランナーと前記第2のランナーから分岐する第3のランナーと前記第3のランナーの各々に接続され、前記溶融樹脂が充填されるキャビティを備え、前記スプルーと前記第1のランナー、前記第1のランナーと前記第2のランナー及び前記第2のランナーと前記第3のランナーとの各々の分岐部にて前記溶融樹脂の流動方向を垂直な方向に変換するよう構成された8個以上の多数個取りの射出成形金型であって、前記第1ランナーから前記第2ランナーへの分岐部に前記第1ランナーにおける前記流動方向に垂直な断面の高さの25%以上、75%以下の段差で、前記第1ランナーと同断面積の階段形状を設けたことを特徴とする射出成形金型。 A first runner branching from sprue for introducing molten resin, the second runner which branches from the first runner, a third runner which branches from the second runner, each of said third runner is connected to each of said a cavity which molten resin Ru is filled, the sprue and the first runner, said first runner and said second runner and the second runner and the third runner a the 8 or more injection molds multi several up configured to convert the flow direction perpendicular to the direction of the molten resin at the bifurcation of the second runner from the first runner wherein 25% of the height of the cross section perpendicular to the flow direction more than in the first runner to bifurcation to, less than 75% of the step, characterized in that a first runner and ditto area staircase shape When Injection mold that. 溶融樹脂を導入するスプルーと、前記スプルーの前記溶融樹脂流動方向を垂直な方向に変換するよう前記スプルーに接続されたランナーと、前記流動方向を垂直な方向に変換するよう順次接続された一つ以上のランナーとが順次接続され、末端の前記ランナーが接続され、前記溶融樹脂が充填されるキャビティを備え、前記ランナーの各々の分岐部に、前記ランナーにおける前記流動方向に垂直な断面の高さの25%以上、75%以下の段差が設けられ、前記段差の前後での前記ランナーの断面積が等しいことを特徴とする射出成形金型。 A sprue for introducing a molten resin , a runner connected to the sprue to convert the flow direction of the molten resin in the sprue into a vertical direction, and a serial connection connected to convert the flow direction into a vertical direction. Two or more runners are sequentially connected, the end runner is connected , and a cavity filled with the molten resin is provided, and each branch part of the runner has a height of a cross section perpendicular to the flow direction in the runner . An injection mold, wherein a step of 25% or more and 75% or less is provided, and the cross-sectional area of the runner before and after the step is equal.
JP2011115347A 2011-05-24 2011-05-24 Injection mold Active JP5715492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115347A JP5715492B2 (en) 2011-05-24 2011-05-24 Injection mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115347A JP5715492B2 (en) 2011-05-24 2011-05-24 Injection mold

Publications (2)

Publication Number Publication Date
JP2012240385A JP2012240385A (en) 2012-12-10
JP5715492B2 true JP5715492B2 (en) 2015-05-07

Family

ID=47462577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115347A Active JP5715492B2 (en) 2011-05-24 2011-05-24 Injection mold

Country Status (1)

Country Link
JP (1) JP5715492B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963229B (en) * 2013-02-01 2016-05-04 深圳市兆威机电有限公司 A kind of cold runner structure of cavity flow equilibrium
CN103753771A (en) * 2013-12-27 2014-04-30 中山市利群精密实业有限公司 Runner system capable of feeding glue uniformly
CN104690906A (en) * 2015-04-02 2015-06-10 韩立艳 Injection mold cold runner casting system structure
JP6717511B1 (en) * 2019-06-11 2020-07-01 株式会社青木固研究所 Method for branching molten resin in hot runner device and injection stretch blow molding machine
CN111186095A (en) * 2020-03-04 2020-05-22 金发科技股份有限公司 Mould gating system for super multi-mould-cavity product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225974B2 (en) * 1992-01-09 2001-11-05 株式会社デンソー Mold for injection molding
JP3164660B2 (en) * 1992-09-17 2001-05-08 積水化学工業株式会社 Method for evaluating runner diameter of injection mold
JP3295922B2 (en) * 1994-09-29 2002-06-24 三菱マテリアル株式会社 Multi-cavity mold device
JP2008213179A (en) * 2007-02-28 2008-09-18 Mitsuboshi Belting Ltd Runner structure of injection mold

Also Published As

Publication number Publication date
JP2012240385A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5715492B2 (en) Injection mold
JP4730307B2 (en) Plastic lens manufacturing equipment
JP5774891B2 (en) Steering wheel, steering wheel manufacturing apparatus and manufacturing method thereof
CN102189639A (en) Multi-cavity mold
CN111730818A (en) Sprue structure for injection mold and injection mold
JP2013075504A (en) Sprue bush, pinpoint gate bush and molding die
KR101927482B1 (en) Die casting mold having central injection structure
JP5315370B2 (en) Mold for casting
JPH1058491A (en) Mold
JP6189371B2 (en) Molding method for hollow molded products
KR102048571B1 (en) Molding device for manufacturing tetragonal product
JP2009298084A (en) Method for producing injection molded product
JP5731831B2 (en) Mold for casting
JP6653013B2 (en) Injection mold, injection molding method, and molded product
WO2015045677A1 (en) Injection molding method and injection molding device for transparent resin molded article
TW202216404A (en) Injection molding method wherein overflow is less likely to occur through staggering the positions of a forming space and a parting surface from each other
JP2012106391A (en) Resin molding method and resin product
KR20090093042A (en) Injection mold having helical or screw type runner
CN218488980U (en) Injection mould
KR101655335B1 (en) Injection molded lens
KR100798373B1 (en) Apparatus for balancing the filling of injection molds
JP5928122B2 (en) Manufacturing method of injection mold and resin cage
CN113400592B (en) Mould with turnover runner
JP5885559B2 (en) Injection molding equipment
JP2017124592A (en) Forming block and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5715492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250