JP5711873B2 - Simultaneous saccharification and fermentation of cellulosic materials - Google Patents

Simultaneous saccharification and fermentation of cellulosic materials Download PDF

Info

Publication number
JP5711873B2
JP5711873B2 JP2009096867A JP2009096867A JP5711873B2 JP 5711873 B2 JP5711873 B2 JP 5711873B2 JP 2009096867 A JP2009096867 A JP 2009096867A JP 2009096867 A JP2009096867 A JP 2009096867A JP 5711873 B2 JP5711873 B2 JP 5711873B2
Authority
JP
Japan
Prior art keywords
fermentation
ethanol
temperature
genus
saccharification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009096867A
Other languages
Japanese (ja)
Other versions
JP2010246422A5 (en
JP2010246422A (en
Inventor
豊 世良
豊 世良
典子 吉良
典子 吉良
茂男 冨山
茂男 冨山
研一 中森
研一 中森
林 俊介
俊介 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009096867A priority Critical patent/JP5711873B2/en
Publication of JP2010246422A publication Critical patent/JP2010246422A/en
Publication of JP2010246422A5 publication Critical patent/JP2010246422A5/ja
Application granted granted Critical
Publication of JP5711873B2 publication Critical patent/JP5711873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、セルロース系原料を酵素によって構成糖であるグルコースまで加水分解(糖化)し、得られた糖を酵母などの発酵微生物によってエタノールに変換する技術に関する。特に本発明は、糖化と発酵を一つの反応槽内で同時に並行して行うことにより原料や酵素のそれぞれの欠点を改善し、セルロース系原料からエタノールを効率的に製造できる同時糖化発酵法に関する。   The present invention relates to a technique for hydrolyzing (saccharifying) a cellulosic raw material to glucose, which is a constituent sugar, by an enzyme, and converting the obtained sugar into ethanol by a fermentation microorganism such as yeast. In particular, the present invention relates to a simultaneous saccharification and fermentation method in which saccharification and fermentation are simultaneously performed in parallel in one reaction tank to improve the respective disadvantages of the raw materials and enzymes, and ethanol can be efficiently produced from cellulosic raw materials.

酵母等によって生物的にエタノールを製造する場合、エタノール発酵が終了した発酵液から残渣や菌などの固形分を除去後、あるいはそれらが懸濁したままで発酵液中のエタノールを蒸留し、エタノール濃度90vol%以上になったものを脱水膜等で処理することで残りの水分を除去し、いわゆる無水エタノールにする方法が一般的である。なお、蒸留に要するエネルギーは、エタノール製造に要する総エネルギー量の大半を占めるうえ、発酵液中のエタノール濃度が5vol%を境に急激に増大する(非特許文献1)。このため、発酵終了時のエタノール濃度が少なくとも5vol%に達することが事業性あるエタノール製造において最も重要な点である。   When ethanol is biologically produced by yeast, etc., ethanol content in the fermentation liquor is distilled after removing solids such as residues and bacteria from the fermented liquor after ethanol fermentation has been completed, A method of removing the remaining water by treating a product having a volume of 90 vol% or more with a dehydration membrane or the like to obtain so-called anhydrous ethanol is generally used. In addition, the energy required for distillation occupies most of the total energy required for ethanol production, and the ethanol concentration in the fermentation broth rapidly increases at 5 vol% (Non-patent Document 1). For this reason, it is the most important point in ethanol production with business property that the ethanol concentration at the end of fermentation reaches at least 5 vol%.

サトウキビの搾汁やそれ由来の廃糖蜜、あるいは熱で糊化されたトウモロコシデンプンスラリーを酵素(α−アミラーゼおよびグルコアミラーゼ)で酵素糖化して得られる糖液中のショ糖やグルコースを糖源として供給するバッチ式あるいは連続式発酵によって、エタノール濃度8vol%以上、条件の選択によっては15vol%前後の発酵液を得ることが出来る(非特許文献2)が、これはひとえに上記の原料からは高濃度のショ糖、あるいはグルコース溶液を容易に調製でき、糖源として安定的に供給できるからである。例えばサトウキビ搾汁(ケーンジュース)中の糖濃度は11〜17%、これ由来の廃糖蜜中の糖濃度は45〜50%にも達するため、20〜24%に薄めて発酵させる場合が多い。   Sugar cane and glucose in sugar solution obtained by enzymatic saccharification of sugar cane juice, molasses derived from it, or corn starch slurry that has been gelatinized by heat with enzymes (α-amylase and glucoamylase) Fermented liquor with ethanol concentration of 8 vol% or more can be obtained by batch or continuous fermentation to be fed, and depending on the choice of conditions (Non-Patent Document 2), this is a high concentration from the above raw materials. This is because a sucrose or glucose solution can be easily prepared and can be stably supplied as a sugar source. For example, the sugar concentration in sugarcane juice (cane juice) is 11 to 17%, and the sugar concentration in the waste molasses derived therefrom is as high as 45 to 50%, so it is often fermented by diluting to 20 to 24%.

一方、セルロースを構成糖であるグルコースまで糖化(加水分解)する手段として、酵素(セルラーゼ)を用いる方法があり、この方法は、硫酸、あるいは超〜亜臨界水による加水分解のように生成糖の過分解が起こらないため、有望な糖化手段として期待されているが、セルラーゼの場合、それ自体の働きによって生成されたグルコースが蓄積すると酵素活性が阻害されて糖化率も低下する「競争阻害」が顕著という欠点がある(デンプンを糖化するアミラーゼの場合は競争阻害がほとんどなく、高濃度の糊化デンプンスラリーを高濃度のグルコース溶液に糖化できる)。また、セルロースは冷水、熱水のいずれにも不溶のうえ、水分を吸収して膨張するため、冷水には不溶だが熱水で糊化することで50dry−wt%以上のスラリーにできるデンプンのように高濃度の原料スラリーにはできないうえ、前述の競争阻害という欠点も加わって、セルロース系原料から濃いグルコース溶液を得ることは極めて困難である。   On the other hand, as a means of saccharifying (hydrolyzing) cellulose to its constituent sugar, there is a method using an enzyme (cellulase), and this method uses a sulfuric acid or super-subcritical water to hydrolyze the produced sugar. Cellulase is expected to be a promising means of saccharification because it does not decompose excessively, but in the case of cellulase, the accumulation of glucose produced by its own action inhibits enzyme activity and reduces saccharification rate. There is a noticeable disadvantage (amylase that saccharifies starch has little competitive inhibition, and a high concentration gelatinized starch slurry can be saccharified into a high concentration glucose solution). Cellulose is insoluble in both cold water and hot water and absorbs moisture to expand, so that it is insoluble in cold water, but gelatinized with hot water can make a slurry of 50 dry-wt% or more. In addition, it is extremely difficult to obtain a concentrated glucose solution from the cellulosic raw materials because it cannot be made into a high concentration raw material slurry and has the above-mentioned disadvantage of competitive inhibition.

この対策として同時糖化発酵(Simultaneous Saccharification and Fermentation:以降SSFと表記)という方法がある。この方法によると、酵素によるセルロースの糖化と酵母などの発酵菌による糖化物のエタノール発酵が同時進行することで、生成された糖が蓄積して酵素活性が阻害される前に発酵菌が糖をエタノールに変換してしまうため、酵素活性を維持することができる。しかし、前述した通り、セルロース原料の処理濃度はデンプンの処理濃度よりも大幅に低いことに変わりはないため、SSFを駆使しても、最終的に得られる発酵液中のエタノール濃度は糖蜜あるいはデンプン原料のエタノール濃度には及ばない。また、SSFは糖をエタノールに変換するだけの単反応ではなく、セルロースの糖化も伴う、より複雑な反応であるため、バッチ式であることが望ましい。したがって酵素法をベースとしたセルロース系原料からのエタノール製造の場合、あくまでもバッチ式でエタノール濃度5vol%以上を達成することが現実的、かつ妥当な目標値となる。   As a countermeasure, there is a method called simultaneous saccharification and fermentation (hereinafter referred to as SSF). According to this method, the saccharification of cellulose by the enzyme and the ethanol fermentation of the saccharification product by the yeast or other fermenting bacteria proceed simultaneously, so that the fermenting bacteria can absorb the sugar before the produced sugar accumulates and the enzyme activity is inhibited. Since it is converted into ethanol, the enzyme activity can be maintained. However, as described above, since the treatment concentration of the cellulose raw material is still much lower than the treatment concentration of starch, even if SSF is used, the ethanol concentration in the finally obtained fermentation broth is molasses or starch. It does not reach the ethanol concentration of the raw material. In addition, SSF is not only a simple reaction that simply converts sugar to ethanol, but also a more complex reaction that involves saccharification of cellulose. Therefore, in the case of ethanol production from cellulosic raw materials based on the enzymatic method, it is a realistic and reasonable target value to achieve an ethanol concentration of 5 vol% or more in a batch system.

酵素糖化とエタノール発酵を同時進行させるSSFの場合、例えば酵素糖化の適温が50℃前後、酵母発酵の適温が30℃前後とすると、それらの中間温度付近で反応させることとなる。つまり、酵母が耐えられる限りは高温の方が反応効率は良く、適用する酵母の耐熱性が重要な鍵となる。反応によってエタノールが生成され、反応槽内のエタノール濃度は目標値である5vol%に近づいていくが、酵母は適温よりも高い温度に絶えず曝されるのみならず、それ自体が生成するエタノール濃度も高まることで2つのストレスが加わり、活性が低下していく。酵母の場合、適温下であれば前述の通り最大15vol%のエタノール濃度にも耐えられるケースもあるが、耐熱温度付近になるとその影響も加わって、エタノール濃度5vol%程度でもストレスとなり得る。   In the case of SSF in which enzymatic saccharification and ethanol fermentation are simultaneously progressed, for example, if the appropriate temperature for enzyme saccharification is around 50 ° C. and the appropriate temperature for yeast fermentation is around 30 ° C., the reaction is carried out in the vicinity of the intermediate temperature. That is, as long as the yeast can withstand, the reaction efficiency is higher at higher temperatures, and the heat resistance of the applied yeast is an important key. Ethanol is produced by the reaction, and the ethanol concentration in the reaction tank approaches the target value of 5 vol%, but not only the yeast is constantly exposed to a temperature higher than the optimum temperature, but also the ethanol concentration itself is generated. Increasing it adds two stresses and decreases activity. In the case of yeast, as long as it is at an appropriate temperature, there are cases where it can withstand ethanol concentrations of up to 15 vol% as described above. However, when the temperature is near the heat-resistant temperature, the influence is added, and even ethanol concentrations of about 5 vol% can cause stress.

この対策として、発酵槽からもろみ(菌や基質も含む発酵液)を減圧に保持したフラッシュタンクに送り、エタノールを除去した後、もろみを発酵槽に返送し、発酵槽内のエタノール濃度を低く保つフラッシュ連続発酵法が、あるいは連続発酵槽ともろみ塔を組み合わせた装置で発酵と蒸留を並行して行い、連続発酵槽内のエタノール濃度を約5%に保つことでエタノールによる発酵阻害が起こらないBiostilプロセスがあり、後者は実用化されてオーストラリアやインドネシアなどで採用されている(非特許文献2)。同法を適用すればエタノールによるストレスを軽減することは容易に考えられるが、前述の通り、SSFにおけるエタノール濃度は最大で5vol%程度、かつバッチ式反応が前提のため、SSF反応槽にBiostillプロセスを適用するのは非効率、かつ非現実的であり、もうひとつのストレスである温度への対策が妥当、かつ効率的であるのは言うまでもない。   As a countermeasure, the mash (fermented liquid containing bacteria and substrate) is sent from the fermenter to a flash tank that is kept under reduced pressure. After removing the ethanol, the mash is returned to the fermenter to keep the ethanol concentration in the fermenter low. Biostil which does not cause fermentation inhibition by ethanol by flash continuous fermentation method, or by performing fermentation and distillation in parallel in an apparatus that combines continuous fermenter and mash tower, and maintaining ethanol concentration in continuous fermenter at about 5% There is a process, and the latter is put into practical use and adopted in Australia, Indonesia, and the like (Non-patent Document 2). If this method is applied, it is easy to reduce the stress caused by ethanol. However, as described above, the ethanol concentration in SSF is about 5 vol% at the maximum, and since the batch type reaction is premised, the Biostill process is installed in the SSF reactor. It is needless to say that the application of is inefficient and unrealistic, and that countermeasures against temperature, another stress, are reasonable and efficient.

Philip W.Madson and David B.Lococo著,「Recovery of Volatile Products from Dilute High-Fouling Process Streams」、Applied Biochemistry and Biotechnology、2000年、第84−86巻、p.1049−1061Philip W. Madson and David B. Lococo, “Recovery of Volatile Products from Dilute High-Fouling Process Streams”, Applied Biochemistry and Biotechnology, 2000, 84-86, p. 1049-1061 栃倉辰六朗ら著、「発酵ハンドブック」、共立出版株式会社Author Torokura Torokura et al., “Fermentation Handbook”, Kyoritsu Publishing Co., Ltd.

以上において説明したように、セルロースからエタノールを製造する方法における課題をまとめると以下のようになる。   As described above, the problems in the method for producing ethanol from cellulose are summarized as follows.

(1)事業性あるエタノール製造においては、発酵終了時のエタノール濃度が少なくとも5vol%に達することが重要である。   (1) In commercial ethanol production, it is important that the ethanol concentration at the end of fermentation reaches at least 5 vol%.

(2)セルロースは冷水、熱水のいずれにも不溶のうえ、水分を吸収して膨張する。これを構成糖まで加水分解できる酵素がかかえる競争阻害という欠点も加わり、セルロース系原料から濃いグルコース溶液を得ることは極めて困難である。   (2) Cellulose is insoluble in both cold and hot water and absorbs moisture to expand. In addition to the disadvantage of competitive inhibition involving an enzyme that can hydrolyze this to a constituent sugar, it is extremely difficult to obtain a concentrated glucose solution from cellulosic materials.

(3)酵素の競争阻害対策としてSSFが有効だが、(2)で述べたセルロースの物性のため、SSFを駆使しても、最終的に得られる発酵液中のエタノール濃度は糖蜜あるいはデンプン原料のように10vol%以上には達しない。あくまでもバッチ式SSFで5vol%以上を達成することが現実的、かつ妥当な目標値である。   (3) Although SSF is effective as an enzyme competitive inhibition measure, due to the physical properties of cellulose described in (2), even if SSF is used, the ethanol concentration in the finally obtained fermentation broth is the molasses or starch raw material. Thus, it does not reach 10 vol% or more. It is a realistic and reasonable target value to achieve 5 vol% or more with batch SSF.

(4)SSFの場合、酵母などの発酵菌は適温よりも高い温度に絶えず曝されるほか、それ自体が生成するエタノール濃度も高まるため2つのストレスが加わり、活性が低下する。   (4) In the case of SSF, fermenting bacteria such as yeast are constantly exposed to a temperature higher than the appropriate temperature, and the ethanol concentration generated by itself increases, so two stresses are applied and the activity is reduced.

(5)ストレスの一つであるエタノールをSSF槽から連続的に留去するのが対策として有効だが、バッチ式、かつエタノール濃度が最大5vol%程度に同法を適用するのは非効率、かつ非現実的である。   (5) Although it is effective as a countermeasure to continuously distill off ethanol, which is one of the stresses, from the SSF tank, it is inefficient to apply the same method to a batch type and an ethanol concentration of up to about 5 vol%. Unrealistic.

セルロースを構成糖であるグルコースまで糖化(加水分解)する手段として、酵素を用いることが一般的であるが、この手段では酵素の働きでグルコースが生成され、それが蓄積することによって酵素活性が阻害され、ひいては糖化率が低下する「競争阻害」という問題がある。この対策としてSSFという方法があり、この方法によれば、酵素による糖化と酵母などの発酵菌による糖化物のエタノール発酵が同時進行することで、生成された糖が蓄積して酵素活性が阻害される前に酵母などの発酵菌が糖をエタノールに変換してしまうため、酵素活性を維持することができる。   As a means to saccharify (hydrolyze) cellulose to its constituent sugar, it is common to use an enzyme, but this means that glucose is generated by the action of the enzyme, and it accumulates to inhibit enzyme activity. As a result, there is a problem of “competitive inhibition” in which the saccharification rate decreases. As a countermeasure, there is a method called SSF. According to this method, saccharification by an enzyme and ethanol fermentation of a saccharification product by a fermentation bacterium such as yeast proceed simultaneously, so that the produced sugar accumulates and the enzyme activity is inhibited. Since the fermenting bacteria such as yeast convert sugars to ethanol before the reaction, the enzyme activity can be maintained.

SSFの採用は、競争阻害対策のみならず、糖化および発酵を一つの反応槽内で同時に行うことができるため、工程がシンプルかつコンパクトになり、設備に要するイニシャルコストを低減することにも繋がる。なお、糖をエタノールに変換するだけの単発酵よりは複雑な反応となるため、連続式よりもバッチ式、セミバッチ式により行う方が好ましい。   Adoption of SSF is not only a measure to inhibit competition, but also allows saccharification and fermentation to be performed simultaneously in one reaction tank, so that the process is simple and compact, and the initial cost required for the equipment is reduced. In addition, since it becomes a more complicated reaction than single fermentation which only converts saccharide | sugar into ethanol, it is more preferable to carry out by a batch type and a semibatch type rather than a continuous type.

反応槽に投入するセルロース系原料としては、例えば針葉樹、広葉樹などの木材、ヤシ類を中心とした南洋材(幹および実の外殻)、稲藁、麦藁、バガス、コーンストーバー、コーンコブなどの農業残渣、大型藻類や微細藻類等の他、建築廃材、街路樹の剪定枝、紙類など、都市部の廃棄物も含まれる。ただし、これらを効率よく酵素糖化するためには、適切な前処理によって脱リグニンされていることが必須であり、その点において製紙工程において既に脱リグニンされている紙類は、SSFに最適なセルロース系原料である。上記の原料は水に懸濁させて15dry−wt%前後のスラリーに調製したうえでSSFに適用する。   Cellulosic raw materials to be fed into the reaction tank include, for example, timber such as conifers and hardwoods, southern timber (trunks and husks) centered on palms, rice straw, wheat straw, bagasse, corn stover, corn cob and other agriculture In addition to residues, macroalgae and microalgae, it also includes urban waste such as construction waste, pruned branches of street trees, and paper. However, in order to efficiently enzymatically saccharify these, it is essential that delignification is performed by an appropriate pretreatment, and in this respect, papers that have already been delignified in the papermaking process are cellulose that is optimal for SSF. It is a system raw material. The above raw materials are suspended in water to prepare a slurry of about 15 dry-wt%, and then applied to SSF.

上記の脱リグニンされたセルロース系原料を加水分解する酵素には、トリコデルマ属、および/またはアスペルギルス属、リゾプス属、アクレモニウム属、あるいはこれらの遺伝子組換体由来の市販のセルラーゼ製剤、これらを培養して得られる培養液(菌体を含む)、菌体を除いた培養液上澄を用いてもよい。   Examples of the enzymes that hydrolyze the delignified cellulosic materials include commercially available cellulase preparations derived from Trichoderma, and / or Aspergillus, Rhizopus, Acremonium, or genetically modified organisms thereof. The culture broth (including the bacterial cells) obtained in this manner and the culture supernatant obtained by removing the bacterial cells may be used.

酵素の働きによってセルロースから生成される糖をエタノールに変換するため、酵素と同時にサッカロマイセス属、シゾサッカロマイセス属、クルイベロマイセス属、ピキア属、キャンジダ属の酵母、ザイモモナス属、クロストリディウム属の細菌、あるいはそれらの遺伝子組換体をセルロース系原料に接種する。   Saccharomyces genus, Schizosaccharomyces genus, Kluyveromyces genus, Pichia genus, Candida genus yeast, Zymomonas genus, Clostridium genus in order to convert sugars produced from cellulose by the action of enzymes into ethanol Cellulosic raw materials are inoculated with these bacteria or their genetically modified organisms.

SSF終了時の発酵液中エタノール濃度が5vol%以上に達するようにするには、植物の種類や前処理法によっても異なってくるが、熱水、酸、アルカリなどによる適切な前処理によって脱リグニンされ、セルロースおよびヘミセルロースが中心となった原料が、後述するエタノール発酵菌やセルラーゼも含んだ状態で10〜30dry−wt%、好ましくは15〜20dry−wt%のスラリーになるように調製して反応槽に充填する。このスラリーを調製する段階で酵素糖化およびエタノール発酵に適したpHに調整しておく。   The ethanol concentration in the fermented liquid at the end of SSF reaches 5 vol% or more, depending on the type of plant and the pretreatment method, but delignification is carried out by appropriate pretreatment with hot water, acid, alkali, etc. The raw material mainly composed of cellulose and hemicellulose is prepared and reacted so as to become a slurry of 10 to 30 dry-wt%, preferably 15 to 20 dry-wt% in a state containing ethanol fermentation bacteria and cellulase described later. Fill the tank. At the stage of preparing this slurry, the pH is adjusted to a value suitable for enzymatic saccharification and ethanol fermentation.

セルラーゼは、原料の乾燥重量あたり6〜15FPU/g、好ましくは8〜12FPU/g添加する(FPU/gは60分間にろ紙からグルコースを10.8mg生成するセルラーゼ酵素活性の単位)。   Cellulase is added in an amount of 6 to 15 FPU / g, preferably 8 to 12 FPU / g, based on the dry weight of the raw material (FPU / g is a unit of cellulase enzyme activity that produces 10.8 mg of glucose from filter paper in 60 minutes).

セルラーゼと並行して接種するエタノール発酵菌は、例えば酵母サッカロマイセス セレビジエの場合、原料スラリー容積あたり1〜4g wet−wt/L、好ましくは2〜3g wet−wt/L接種する。   For example, in the case of yeast Saccharomyces cerevisiae, the ethanol-fermenting bacteria inoculated in parallel with the cellulase is inoculated at 1 to 4 g wet-wt / L, preferably 2 to 3 g wet-wt / L per raw slurry volume.

原料、セルラーゼおよび酵母を反応槽に投入した後は、物理的動力により、これらが均一に混合するよう、攪拌や混練を施す。15dry−wt%以上の原料スラリーは、実際には流動性が全くない含水率85%の固形分の様相であるが、セルラーゼの働きによるセルロースの低分子化に伴って液化が促進され、流動性の増加と粘度の低下が起こる。そして、最終的には構成糖である単糖、すなわちグルコースが生成される。   After the raw material, cellulase and yeast are introduced into the reaction vessel, stirring and kneading are performed by physical power so that they are uniformly mixed. Raw material slurry of 15 dry-wt% or more is actually a solid state with a water content of 85%, which has no fluidity, but liquefaction is promoted as the molecular weight of cellulose is reduced by the action of cellulase. Increases and viscosity decreases. Finally, a monosaccharide that is a constituent sugar, that is, glucose is generated.

並行して接種した発酵菌は、このグルコースを基質として増殖しながら、エタノールを生成する。このときにグルコース以外に必要な栄養塩類を最適量加えることにより、増殖、発酵が促進され、エタノール発酵に好適な条件が整う。具体的な栄養塩類としては、アミノ酸源、窒素源、リン源が挙げられるが、これらの安価な代替品としては、廃糖蜜、コーンスティープリカー、肥料として知られる硫安、過リン酸石灰が挙げられる。   Fermentative bacteria inoculated in parallel produce ethanol while growing using this glucose as a substrate. At this time, by adding an optimal amount of necessary nutrients in addition to glucose, growth and fermentation are promoted, and conditions suitable for ethanol fermentation are established. Specific nutrients include amino acid sources, nitrogen sources, and phosphorus sources, but inexpensive alternatives include molasses, corn steep liquor, ammonium sulfate known as fertilizer, and superphosphate lime. .

前述した通り、現在市販されている酵素の糖化に適した温度は50℃前後である。これに対し最も一般的な発酵菌である酵母サッカロマイセス セレビジエの生育に適した温度は30℃程度である。このため、発酵菌が耐えられる限り、できるだけ50℃に近い温度でSSFを実施することになるが、その温度に耐えられるだけで決して増殖や発酵に適した条件とはいえないため、発酵菌には絶えず高温というストレスがかかることになる。更には発酵に伴い反応槽内のエタノール濃度は上昇するため、SSF中期から後期になると、それ自体が生成したエタノールおよび高温という2つのストレスが加わり、発酵菌の活性は低下する。この対策として、SSF中期から後期にかけて温度を低下させることが効果的である。具体的には、例えば適用する発酵菌の耐熱温度が40℃、SSF初期から中期の反応温度を38℃と設定している場合、これから3〜10℃、好ましくは5〜8℃の範囲で温度を下げることにより、少なくともストレスの一つを軽減できる。これにより発酵菌の活性が回復し、SSFを終始38℃で反応させた場合よりも、エタノール収率は向上する。なお、SSFに適用する発酵菌の耐熱性の違いによってSSF初期から中期の反応温度ならびに中期から後期にかけての降温幅が変動することは言うまでもないが、発酵菌の耐熱性に基づいて、SSF時の温度を制御する本発明は、適用する発酵菌が代わっても普遍的に有効である。そして、適用する発酵菌の耐熱性が高いほど、酵素糖化に最適な50℃前後により近い温度付近でSSFが実施できるため、より製造効率が高くなる、あるいはSSF中期から後期に降温しなくてもエタノール生成能が低下しない発酵菌の場合は、終始同じ反応温度を維持しても良いことは言うまでもない。なお、温度を下げる時期の目安としては、発酵液中のエタノール濃度が2.0〜4.0vol%、好ましくは2.5〜3.5vol%に達した時期が望ましい。   As described above, the temperature suitable for saccharification of enzymes currently on the market is around 50 ° C. On the other hand, the temperature suitable for the growth of yeast Saccharomyces cerevisiae, which is the most common fermentative bacterium, is about 30 ° C. For this reason, as long as the fermenting bacteria can withstand, SSF will be carried out at a temperature as close to 50 ° C as possible. However, since it can only withstand that temperature, it is not a suitable condition for growth and fermentation. Will be constantly stressed by high temperatures. Furthermore, since the ethanol concentration in the reaction vessel increases with fermentation, two stresses, ethanol generated by itself and high temperature, are applied from the middle stage to the later stage of SSF, and the activity of the fermenting bacteria decreases. As a countermeasure, it is effective to lower the temperature from the middle stage to the later stage of SSF. Specifically, for example, when the heat resistant temperature of the fermenting bacterium to be applied is set to 40 ° C. and the reaction temperature from the initial stage of SSF to 38 ° C. is set to 38 ° C., the temperature ranges from 3 to 10 ° C., preferably 5 to 8 ° C. By lowering, at least one of the stresses can be reduced. Thereby, the activity of the fermenting bacteria is recovered, and the ethanol yield is improved as compared with the case where SSF is reacted at 38 ° C. throughout. In addition, it goes without saying that the reaction temperature from the initial stage to the middle stage of the SSF and the temperature drop range from the middle stage to the late stage vary depending on the difference in the heat resistance of the fermentation bacteria applied to the SSF, but based on the heat resistance of the fermentation bacteria, The present invention for controlling the temperature is universally effective even if the fermenting bacteria to be applied are changed. And, the higher the heat resistance of the fermenting bacterium to be applied, the more SSF can be carried out at a temperature nearer to around 50 ° C, which is optimal for enzymatic saccharification. Needless to say, in the case of a fermenting bacterium in which ethanol-producing ability does not decrease, the same reaction temperature may be maintained throughout. In addition, as a standard of the time to lower the temperature, the time when the ethanol concentration in the fermentation liquid reaches 2.0 to 4.0 vol%, preferably 2.5 to 3.5 vol% is desirable.

一方、セルロースの糖化と、発酵菌によるエタノール発酵を一つの反応槽内で行う方法において、先ずセルロース原料と酵素を反応槽に充填して酵素糖化に最適な温度下で攪拌し、次いで、この反応槽に発酵菌を投入する方法では、最初から発酵菌を酵素と共にセルロース原料に投入する前述の方法よりも原料を迅速に液化でき、かつ初期の攪拌動力が大幅に節減できる。そして、液化後にエタノール発酵菌の耐熱温度以下まで下げたうえで発酵菌を接種することにより、同じく前述の方法よりも発酵菌を耐熱温度付近に曝す時間が短くなりストレスが低減できる。なお、本発明の方法では発酵菌の耐熱温度以下に下げた後はSSF終了までその温度を維持することもできるが、前述の方法通り、SSF中期から後期にかけて更に温度を低下させることが、エタノール生成の点で効果的なのは言うまでもない。   On the other hand, in a method in which saccharification of cellulose and ethanol fermentation with a fermenting bacterium are carried out in one reaction tank, the cellulose raw material and the enzyme are first charged in the reaction tank and stirred at a temperature optimal for enzymatic saccharification, and then this reaction is performed. In the method in which the fermenting bacterium is introduced into the tank, the raw material can be liquefied more rapidly than the above-described method in which the fermenting bacterium is introduced into the cellulose raw material together with the enzyme, and the initial stirring power can be greatly reduced. And by inoculating a fermenting microbe after lowering | hanging to the heat resistant temperature or less of ethanol fermenting bacteria after liquefaction, the time which exposes a fermenting microbe to heat-resistant vicinity is shortened similarly to the above-mentioned method, and stress can be reduced. In the method of the present invention, the temperature can be maintained until the end of the SSF after the temperature is lowered below the heat resistant temperature of the fermenting bacteria. However, as described above, it is possible to further reduce the temperature from the middle stage to the later stage of the SSF. Needless to say, it is effective in terms of generation.

バッチ式SSFが前提の場合、初回バッチの発酵菌を次回バッチの種菌として返送することが考えられるが、終始、発酵菌がその耐熱限界付近に絶えず曝されるSSFでは、発酵菌にストレスがかかっており、種菌としては相応しくない。また、雑菌汚染された場合には次回バッチの種菌として使用できなくなるため、常にリスクがつきまとう。この対策として、バッチ毎に少量の種菌をSSF反応槽に接種して増殖されれば、これらのリスクを軽減できる。具体的には、例えばSSF反応槽容量1mの場合、グルコース濃度5〜10%になるように、水、廃糖蜜およびその他の安価な培地成分から成る培養液0.5mを充填する。ここに酵母サッカロマイセス セレビジエの場合、2〜3g wet−wt/L密度になるよう接種して適度に攪拌しながら6〜10時間培養することで、酵母密度は30〜70g wet−wt/Lに達する。ここに原料および酵素を加え、最終的に15wt%の原料スラリー1mに調製した後、SSFを開始する。これにより、種菌培養に必要な前培養槽や、別槽で培養した場合に必要な菌の移送も不要となる。 If batch-type SSF is a premise, it is possible to return the first batch of fermented bacteria as the next batch of inoculum. It is not suitable as an inoculum. In addition, when contaminated with bacteria, it cannot be used as a seed for the next batch, so there is always a risk. As a countermeasure, these risks can be reduced if a small amount of inoculum is inoculated into the SSF reaction tank for each batch and grown. Specifically, for example, in the case of an SSF reaction tank capacity of 1 m 3 , 0.5 m 3 of a culture solution composed of water, molasses and other inexpensive medium components is filled so that the glucose concentration is 5 to 10%. In the case of yeast Saccharomyces cerevisiae, the yeast density reaches 30-70 g wet-wt / L by inoculating to a density of 2-3 g wet-wt / L and culturing for 6-10 hours with moderate stirring . The raw material and enzyme are added here, and finally it is prepared to 15 wt% of raw material slurry 1 m 3 , and then SSF is started. Thereby, the transfer of bacteria required when cultivating in a pre-culture tank required for inoculum culture or a separate tank is also unnecessary.

最後に、セルラーゼにはヘミセルロースを構成糖であるキシロースやアラビノースなどの五炭糖に加水分解できるヘミセルラーゼも含まれているため、セルロース以外にヘミセルロースを含有する原料の場合はこれらの糖も生成されるが、通常の酵母やザイモモナスでは五単糖をエタノールに変換できない。このため、これらの糖を利用できる遺伝子組換体を適用すれば、エタノール収率が更に向上するのは言うまでもない。   Finally, cellulase contains hemicellulase that can hydrolyze hemicellulose into pentose sugars such as xylose and arabinose, which are sugars, so these sugars are also produced in the case of raw materials containing hemicellulose in addition to cellulose. However, normal yeast and Zymomonas cannot convert pentose to ethanol. For this reason, it goes without saying that the ethanol yield can be further improved by applying a genetic recombinant that can utilize these sugars.

本発明は、SSF法において同時糖化反応中に初期反応温度から段階的にまたは連続的に反応温度を低下させるので、少なくとも5vol%以上のエタノール溶液を得ることができる。   Since the present invention lowers the reaction temperature stepwise or continuously from the initial reaction temperature during the simultaneous saccharification reaction in the SSF method, an ethanol solution of at least 5 vol% or more can be obtained.

酵素添加量毎の実験区および対象区のエタノール濃度の推移を示すグラフである。It is a graph which shows transition of the ethanol density | concentration of the experimental group and object group for every enzyme addition amount. 50℃で原料を液化後に38℃まで降温して酵母を接種した場合のエタノール濃度の推移(終始38℃のSSFと比較)を示すグラフである。It is a graph which shows transition (compared with SSF of 38 degreeC from beginning to end) of ethanol concentration when temperature is lowered to 38 degreeC after liquefaction at 50 ° C and yeast is inoculated.

(実施例)
次に、本発明を実施例および比較例により更に詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。また、今回はセルロース原料にはコクヨ工業製のOA紙(コピー用紙)、発酵菌には酵母サッカロマイセス セレビジエ、セルラーゼにはGenencor製のAccelleraseを用いているが、これら以外であっても構わない。セルロース原料からバッチ式SSFによって、少なくとも5vol%以上のエタノール溶液を得る方法に関するのが本発明である。
(Example)
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples. In addition, OA paper (copy paper) manufactured by KOKUYO INDUSTRIAL CO., LTD., Yeast Saccharomyces cerevisiae is used as the fermenting bacteria, and Accellerase manufactured by Genencor is used as the cellulase. The present invention relates to a method for obtaining an ethanol solution of at least 5 vol% or more from a cellulose raw material by batch-type SSF.

(実施例1:SSFにおける温度制御効果)
材料および方法:市販の化学パルプ由来の上質OA紙(コクヨ工業製)の同ロットをまとめて購入し、シュレッダーで細断した後、乾燥機中で絶乾させたものを供試した。これに適量の蒸留水を加えてミキサーで離解させた後に脱水し、ここに酵母サッカロマイセス セレビジエの菌体を原料スラリー容量あたり3g wet−wt/L、トリコデルマ リーゼイ由来のセルラーゼ製剤(商品名:Accellerase、Genencor製)を原料の乾燥重量あたり、それぞれ4、8、12FPU/gになるように加え、最終的にセルロース原料濃度が15dry−wt%になるように調製して200mL容量のサンプル瓶に100mL充填した。なお、pHはミキサーで原料を離解させて脱水する前の段階で6.0に調整した。これらを振とう機にセットして38℃で反応させ、経過時間毎に反応液1mLをサンプリングしてエタノール濃度の推移を計測した。そして、エタノール濃度が3.0vol%に達した後に反応温度を38℃から33℃に下げた実験区と、そのまま38℃を維持した対象区のそれらを比較した。
(Example 1: Temperature control effect in SSF)
Materials and methods: The same lot of high-quality OA paper (manufactured by Kokuyo Kogyo) derived from commercially available chemical pulp was purchased together, shredded with a shredder, and then completely dried in a dryer. An appropriate amount of distilled water was added to the mixture, and the mixture was disintegrated with a mixer and then dehydrated. Here, 3 g wet-wt / L of yeast Saccharomyces cerevisiae per cell slurry volume, a cellulase preparation derived from Trichoderma reesei (trade name: Accellerase, Genencor) is added so that the dry weight of the raw material is 4, 8, and 12 FPU / g, respectively, and the final concentration of the cellulose raw material is 15 dry-wt%. did. The pH was adjusted to 6.0 at a stage before dehydrating the raw material with a mixer. These were set on a shaker and reacted at 38 ° C., and 1 mL of the reaction solution was sampled at each elapsed time to measure the change in ethanol concentration. Then, the experimental group in which the reaction temperature was lowered from 38 ° C. to 33 ° C. after the ethanol concentration reached 3.0 vol% was compared with those in the target group that maintained 38 ° C. as it was.

結果:図1に実験区および対象区のエタノール濃度の推移を示す。発酵によって生成されたエタノール濃度が3.0vol%以上になったのを目安に反応温度を33℃に下げた場合の方が最終的なエタノール濃度は高くなる傾向を示したほか、酵素添加量が多いほど、エタノールの生成速度および濃度は大きい傾向だった。なお、酵素添加量が4FPU/gの場合、エタノール濃度が低かったため温度を下げるには至らず、同等の結果となった。 Results: FIG. 1 shows changes in ethanol concentration in the experimental group and the target group. The final ethanol concentration tended to be higher when the reaction temperature was lowered to 33 ° C. with the ethanol concentration produced by fermentation becoming 3.0 vol% or more. The higher the ethanol production rate and concentration, the greater the tendency. When the amount of enzyme added was 4 FPU / g, the ethanol concentration was low, so the temperature could not be lowered and the same result was obtained.

(実施例2:原料の液化促進)
材料および方法:請求項7の実施例として、実施例1と同様に原料を調製し、ここに酵素Accelleraseを原料の乾燥重量あたり、それぞれ4および8FPU/gになるように加え、最終的にセルロース原料濃度が15dry−wt%になるように調製して200mL容量のサンプル瓶に100mL充填した。なお、この場合もpHはミキサーで原料を離解させて脱水する前の段階で6.0に調整した。これらを振とう機にセットして50℃下で反応させ、原料が液化して流動性が充分になった時点で温度を38℃まで下げた後、酵母サッカロマイセス セレビジエの菌体を原料スラリー容量あたり3g wet−wt/Lになるように接種し、実施例1と同様にエタノール濃度の推移を計測した。そして、同じ量の酵素と酵母を同時期に原料に添加して終始38℃でSSF反応させた対象区のそれと比較した。
(Example 2: Promotion of liquefaction of raw materials)
Materials and methods: As an example of claim 7, a raw material was prepared in the same manner as in Example 1, and enzyme Accellerase was added to 4 and 8 FPU / g per dry weight of the raw material, respectively, and finally cellulose The raw material concentration was adjusted to 15 dry-wt%, and 100 mL was filled in a 200 mL capacity sample bottle. In this case as well, the pH was adjusted to 6.0 at the stage before the material was disaggregated with a mixer and dehydrated. These were set in a shaker and reacted at 50 ° C. When the raw material was liquefied and fluidity was sufficient, the temperature was lowered to 38 ° C, and then the yeast Saccharomyces cerevisiae cells were added to the raw slurry volume. Inoculation was performed so as to be 3 g wet-wt / L, and the change in ethanol concentration was measured in the same manner as in Example 1. Then, the same amount of enzyme and yeast were added to the raw materials at the same time and compared with those of the target section which was subjected to SSF reaction at 38 ° C. throughout.

結果:図2に50℃で原料を充分に液化した後に38℃まで温度を下げ、酵母を添加して発酵を開始した場合と、対象区として、酵素と酵母を同時期に原料に添加して終始38℃でSSF反応させた場合のエタノール濃度の推移を示す。前者については、液化が進んで温度を38℃に下げた後、酵母を接種するため、後者よりも早く酵母を接種する前者よりも酵母の増殖が遅いはずであるが、エタノールの生成自体に大きな違いはなかった。この結果を受けて酵素添加量8FPU/gのまま酵母接種量を5g wet−wt/Lに増やしたところ、エタノール濃度が5vol%に達する時間が早まるという効果が認められた。 Result: In Fig. 2, when the raw material is fully liquefied at 50 ° C, the temperature is lowered to 38 ° C, and yeast is added to start fermentation. As a target section, enzyme and yeast are added to the raw material at the same time. The transition of the ethanol concentration when the SSF reaction is performed at 38 ° C. throughout is shown. As for the former, since the liquefaction progresses and the temperature is lowered to 38 ° C., the yeast is inoculated, so the growth of the yeast should be slower than the former inoculated with the yeast earlier than the latter. There was no difference. In response to this result, when the yeast inoculation amount was increased to 5 g wet-wt / L with the enzyme addition amount of 8 FPU / g, the effect that the time required for the ethanol concentration to reach 5 vol% was accelerated.

一方、原料の液化・流動化は、酵素添加量8FPU/gで38℃の場合が6時間を要したのに対し、8FPU/gで50℃の場合は2時間程度で同等の液化流動化が認められた。なお、酵素添加量が5FPU/gになると、液化・流動化は遅くなった。流動性の全くない濃度15dry−wt%の原料を混練、あるいは攪拌する動力に要す電力は多大である。充分な酵素添加量の場合、酵素の働きによって38℃、50℃のいずれにおいても、液化は促進されるが、それに要する時間が大幅に短縮、つまり処理電力を大幅に節減できる点において、50℃下で短時間に液化させることは、経済性の点で非常に利点がある。
On the other hand, the liquefaction / fluidization of the raw material required 6 hours when the enzyme addition amount was 8 FPU / g at 38 ° C., whereas the equivalent liquefaction / fluidization took about 2 hours at 8 FPU / g at 50 ° C. Was recognized. When the enzyme addition amount was 5 FPU / g, liquefaction / fluidization slowed down. The power required for kneading or stirring the raw material having a concentration of 15 dry-wt% having no fluidity is great. In the case of a sufficient enzyme addition amount, liquefaction is promoted at 38 ° C. and 50 ° C. by the action of the enzyme, but the time required for it is greatly shortened, that is, the processing power can be greatly reduced. It is very advantageous in terms of economical efficiency to liquefy under a short time.

(実施例3:種菌の前培養)
材料および方法:酵母培地として一般的なYPD培地(酵母エキス1.0%、ポリペプトン2.0%、グルコース2.0%)をベースに、グルコース濃度は10.0%の培養液40Lを調製し、100L容量のSSF槽に充填した。ここに酵母サッカロマイセス セレビジエの菌体を3g wet−wt/Lの密度で接種し、30℃、pH4.0、攪拌速度50rpmの条件で8時間培養した。
(Example 3: Preculture of inoculum)
Materials and methods: Based on YPD medium (yeast extract 1.0%, polypeptone 2.0%, glucose 2.0%), which is a general yeast medium, 40L of a culture solution having a glucose concentration of 10.0% is prepared. In a 100 L SSF tank. The yeast Saccharomyces cerevisiae was inoculated at a density of 3 g wet-wt / L, and cultured for 8 hours under the conditions of 30 ° C., pH 4.0, and stirring speed of 50 rpm.

結果:8時間後に培養液中の菌密度は培養開始時の約13倍の40g wet−wt/Lに達した。ほぼ同条件で実施した100mL規模のラボテストのそれが最大70g wet−wt/L、平均50g wet−wt/L前後であるのと比べると劣っていたが、これはラボテスト時には実施した曝気がなく、培養液の攪拌が不十分だったことに起因すると思われる。8時間後の培養液中のグルコース濃度が約2.0%と全て消費されていなかったことから、もっと攪拌する、あるいは培養時間を8時間以上にすれば、この規模でもラボテストと同程度の菌密度が得られると思われる。以上の方法により、攪拌と温度制御のみの簡易的な方法でも酵母サッカロマイセス セレビジエを大量培養でき、そのまま種菌としてその容器ごとSSFに適用できる。 Result: After 8 hours, the bacterial density in the culture reached 40 g wet-wt / L, which was about 13 times that at the start of the culture. Although it was inferior to that of a 100 mL scale lab test conducted under almost the same conditions, the maximum was 70 g wet-wt / L, and the average was around 50 g wet-wt / L, but this was not aerated during the lab test, This may be due to insufficient stirring of the culture. Since the glucose concentration in the culture medium after 8 hours was not consumed at about 2.0%, if the agitation was continued or the culture time was increased to 8 hours or more, this scale would be the same as in the laboratory test. It seems that density is obtained. By the above method, yeast Saccharomyces cerevisiae can be cultured in a large amount even by a simple method only with stirring and temperature control, and can be directly applied to the SSF as the inoculum.

Claims (5)

セルロース原料を酵素によって加水分解する糖化工程と、発酵菌によるエタノール発酵工程を一つの反応槽内で同時に行う同時糖化発酵方法において、酵素糖化に適した温度である50℃以下かつ発酵菌の耐熱温度以下の条件を満たす温度を初期反応温度とし、同時糖化反応中に、発酵液中のエタノール濃度が2.0〜4.0vol%に達した時に、該初期反応温度から、3〜10℃の範囲で反応温度を低下させことを特徴とする同時糖化発酵方法。 In a simultaneous saccharification and fermentation method in which a cellulose raw material is hydrolyzed with an enzyme and an ethanol fermentation process with a fermenting bacterium simultaneously in one reaction tank, the temperature is suitable for enzymatic saccharification at 50 ° C. or lower and the heat resistant temperature of the fermenting bacterium satisfying the following conditions temperature and initial reaction temperature, during simultaneous saccharification reaction, when the ethanol concentration in the fermentation liquor has reached 2.0~4.0Vol%, from the initial reaction temperature in the range of 3 to 10 ° C. simultaneous saccharification and fermentation process, characterized in that the reaction temperature Ru was low Do in. 酵素が、トリコデルマ属、および/またはアルペルギルス属、リゾプス属、アクレモニウム属、あるいはそれらの遺伝子組換体の単一種由来のセルラーゼおよび/または複数種混合由来のセルラーゼである、請求項1に記載の同時糖化発酵法。 Enzymes, Trichoderma, and / or Aspergillus spp., Rhizopus spp, cellulases and / or more mixed cellulase derived from derived from a single species of Acremonium, or their genetic recombinants, simultaneous claim 1 Saccharification and fermentation. 発酵菌がサッカロマイセス属、シゾサッカロマイセス属、クルイベロマイセス属、ピキア属、キャンジダ属の酵母、ザイモモナス属、クロストリディウム属の細菌、あるいはそれらの遺伝子組換体の単一種および/または複数種の混合である、請求項1または2に記載の同時糖化発酵法。 Fermentative bacteria are Saccharomyces genus, Schizosaccharomyces genus, Kluyveromyces genus, Pichia genus, Candida genus yeast, Zymomonas genus, Clostridium genus bacteria, or single species and / or multiple species thereof. The simultaneous saccharification and fermentation method according to claim 1 or 2 , wherein 発酵菌の増殖時に、糖以外の栄養塩類も加える、請求項1〜のいずれか1つに記載の同時糖化発酵法。 The simultaneous saccharification and fermentation method according to any one of claims 1 to 3 , wherein nutrient salts other than sugar are added during the growth of the fermentative bacteria. バッチ毎に、発酵菌をSSF反応槽に接種して増殖させた後、SSFを開始する、請求項1〜のいずれか1つに記載の同時糖化発酵法。 The simultaneous saccharification and fermentation method according to any one of claims 1 to 4 , wherein SSF is started after inoculating a fermentative bacterium into an SSF reaction vessel and growing for each batch.
JP2009096867A 2009-04-13 2009-04-13 Simultaneous saccharification and fermentation of cellulosic materials Expired - Fee Related JP5711873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096867A JP5711873B2 (en) 2009-04-13 2009-04-13 Simultaneous saccharification and fermentation of cellulosic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096867A JP5711873B2 (en) 2009-04-13 2009-04-13 Simultaneous saccharification and fermentation of cellulosic materials

Publications (3)

Publication Number Publication Date
JP2010246422A JP2010246422A (en) 2010-11-04
JP2010246422A5 JP2010246422A5 (en) 2012-03-15
JP5711873B2 true JP5711873B2 (en) 2015-05-07

Family

ID=43309548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096867A Expired - Fee Related JP5711873B2 (en) 2009-04-13 2009-04-13 Simultaneous saccharification and fermentation of cellulosic materials

Country Status (1)

Country Link
JP (1) JP5711873B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647850B2 (en) 2009-12-23 2014-02-11 E I Du Pont De Nemours And Company Process for simultaneous saccharification and fermentation for production of ethanol
JP2012055302A (en) * 2010-08-11 2012-03-22 Tsukishima Kikai Co Ltd Method for producing ethanol
JP5711566B2 (en) * 2011-02-24 2015-05-07 月島機械株式会社 Ethanol production method
JP5581244B2 (en) * 2011-02-24 2014-08-27 月島機械株式会社 Ethanol production method
JP5813369B2 (en) * 2011-05-11 2015-11-17 新日鉄住金エンジニアリング株式会社 Alcohol-fermenting yeast and ethanol production method using the same
JP5981259B2 (en) * 2012-08-01 2016-08-31 本田技研工業株式会社 Storage method of residual distillation slurry
JP5747424B2 (en) * 2013-10-09 2015-07-15 新日鉄住金エンジニアリング株式会社 Ethanol production facility, ethanol production method, and ethanol and biopellet production facility
JP7460108B2 (en) 2018-10-23 2024-04-02 学校法人福岡大学 Methods for producing fermented products, methods for producing ethanol, methods for producing lactic acid fermented products, and fermentation promoters
WO2022119335A1 (en) * 2020-12-02 2022-06-09 한양대학교에리카산학협력단 Method for producing liquor having functional sugar and polyphenol using non-isothermal saccharification process, and apparatus for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022165A (en) * 2007-07-17 2009-02-05 Akita Prefecture Method for producing ethanol

Also Published As

Publication number Publication date
JP2010246422A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5711873B2 (en) Simultaneous saccharification and fermentation of cellulosic materials
Öhgren et al. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover
Hernández et al. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production
He et al. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation
Pensupa et al. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw
Hsu et al. Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production
ES2823455T3 (en) Process for the preparation of a fermentation product of material containing lignocellulose
BRPI0612207A2 (en) method for ethanol production
KR20110033246A (en) Method of producing yeast biomass
JP2010510800A5 (en)
Chang et al. Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production
CN101608192B (en) Method for producing succinic acid employing corn cob
AU2016272326B2 (en) Yeast propagation simultaneous with saccharification
Ray et al. Sweet sorghum for bioethanol production: scope, technology, and economics
WO2010077170A2 (en) Process and system for production of organic solvents
US7960153B2 (en) Glucose conversion to ethanol via yeast cultures and bicarbonate ions
CN102071224A (en) Method for producing sorbitol and gluconate
CN111118071B (en) Fermentation method for producing xylitol and ethanol by using non-detoxified cellulose raw material
Tang et al. Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production
Ravinder et al. Fermentative production of acetic acid from various pure and natural cellulosic materials by Clostridium lentocellum SG6
TW202000917A (en) Method for producing lactic acid
CN114891774A (en) Xylose isomerase expressed in yeast cell with high activity and application thereof
JP2014176351A (en) Method for producing ethanol
CN110373434B (en) Method for improving yield of cellulose lactic acid by using water-soluble sugar in fermentation raw material
BR112020009540A2 (en) methods for propagating microorganisms for fermentation and related methods and systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5711873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees