JP5710345B2 - Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same - Google Patents

Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same Download PDF

Info

Publication number
JP5710345B2
JP5710345B2 JP2011080762A JP2011080762A JP5710345B2 JP 5710345 B2 JP5710345 B2 JP 5710345B2 JP 2011080762 A JP2011080762 A JP 2011080762A JP 2011080762 A JP2011080762 A JP 2011080762A JP 5710345 B2 JP5710345 B2 JP 5710345B2
Authority
JP
Japan
Prior art keywords
concentration
electrolysis
cathode
total concentration
oxidizing substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011080762A
Other languages
Japanese (ja)
Other versions
JP2012215462A (en
Inventor
小坂 純子
純子 小坂
加藤 昌明
昌明 加藤
宏紀 土門
宏紀 土門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2011080762A priority Critical patent/JP5710345B2/en
Publication of JP2012215462A publication Critical patent/JP2012215462A/en
Application granted granted Critical
Publication of JP5710345B2 publication Critical patent/JP5710345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、酸化性物質の総濃度測定方法、酸化性物質の総濃度測定用濃度計(以下、単に「測定方法」および「濃度計」とも称する)およびそれを用いた硫酸電解装置に関する。   The present invention relates to a method for measuring the total concentration of an oxidizing substance, a concentration meter for measuring the total concentration of an oxidizing substance (hereinafter also simply referred to as “measurement method” and “concentration meter”), and a sulfuric acid electrolysis apparatus using the same.

ペルオキソ二硫酸およびペルオキソ一硫酸を総称する過硫酸や過酸化水素は、優れた酸化力を有する。そのため、硫酸と過酸化水素水溶液との混合溶液や、硫酸を直接電気分解により酸化させ、その溶液中に過硫酸や過酸化水素を含有させた溶液は、金属の電解めっきの前処理剤やエッチング剤、半導体デバイス製造における化学的機械的研磨処理における酸化剤、湿式分析における有機物の酸化剤、シリコンウェハの洗浄剤等の、様々な製造プロセスや検査プロセスに用いる薬剤として、利用されている。   Persulfuric acid and hydrogen peroxide, which collectively refer to peroxodisulfuric acid and peroxomonosulfuric acid, have excellent oxidizing power. Therefore, a mixed solution of sulfuric acid and hydrogen peroxide aqueous solution or a solution in which sulfuric acid is oxidized by direct electrolysis and persulfuric acid or hydrogen peroxide is contained in the solution is a pretreatment agent or etching agent for metal electroplating. It is used as an agent used in various manufacturing processes and inspection processes, such as an agent, an oxidizing agent in chemical mechanical polishing processing in semiconductor device manufacturing, an organic oxidizing agent in wet analysis, and a silicon wafer cleaning agent.

ここで、本発明において「酸化性物質」とは、ペルオキソ二硫酸、ペルオキソ一硫酸を総称する過硫酸や、過酸化水素などを意味する。また、本発明において「SPM」とは、硫酸と過酸化水素水溶液との混合溶液を意味する。   Here, in the present invention, “oxidizing substance” means persulfuric acid, which is a general term for peroxodisulfuric acid and peroxomonosulfuric acid, and hydrogen peroxide. In the present invention, “SPM” means a mixed solution of sulfuric acid and an aqueous hydrogen peroxide solution.

さらに、本発明において「硫酸電解装置」とは、硫酸を直接電気分解により酸化させ、過硫酸や過酸化水素を含有させた溶液を製造する装置を意味する。さらにまた、本発明において「電解硫酸溶液」とは、硫酸を直接電気分解により酸化させて、その溶液中に過硫酸や過酸化水素を含有させた溶液を意味する。   Further, in the present invention, the “sulfuric acid electrolysis apparatus” means an apparatus for producing a solution containing persulfuric acid or hydrogen peroxide by oxidizing sulfuric acid directly by electrolysis. Furthermore, in the present invention, the “electrolytic sulfuric acid solution” means a solution obtained by oxidizing sulfuric acid directly by electrolysis and containing persulfuric acid or hydrogen peroxide in the solution.

さらにまた、本発明において「酸化性物質の総濃度測定用濃度計」とは、酸化性物質を少なくとも一つ含有する溶液の酸化性物質の総濃度を測定する濃度計を意味する。このとき、含有する酸化性物質が一成分であっても多成分であっても、その総濃度が測定結果として表される。   Furthermore, in the present invention, the “concentration meter for measuring the total concentration of oxidizing substances” means a concentration meter that measures the total concentration of oxidizing substances in a solution containing at least one oxidizing substance. At this time, the total concentration is expressed as a measurement result regardless of whether the oxidizing substance contained is one component or multiple components.

酸化性物質を部材の洗浄や表面処理等に使用する場合には、ペルオキソ二硫酸やペルオキソ一硫酸、過酸化水素などの濃度によって処理効果が異なるものとなるため、目的とする処理効果を得るためには、SPMや電解硫酸溶液中の各酸化性物質濃度を監視することが必要となる。一方で、多成分の濃度を個々に監視しようとすると、機器が複雑かつ高価となるため、全成分の総濃度を監視することで、代替することが考えられる。   When using an oxidizing substance for cleaning or surface treatment of parts, the treatment effect differs depending on the concentration of peroxodisulfuric acid, peroxomonosulfuric acid, hydrogen peroxide, etc. It is necessary to monitor the concentration of each oxidizing substance in the SPM and the electrolytic sulfuric acid solution. On the other hand, since it is complicated and expensive to monitor the concentration of multiple components individually, it is conceivable to replace the concentration by monitoring the total concentration of all components.

酸化性物質に関連する従来技術として、例えば、特許文献1には、排水に含まれる有機物を過硫酸で加熱分解するシステムが開示されており、排水中に残留した過硫酸イオン濃度を検出する過硫酸濃度センサーとして、導電性ダイヤモンド電極に銀を担持した電極と対電極とを用いて、このダイヤモンド電極上での過硫酸イオンの還元電流を検出することにより濃度を測定する方法が記載されている。   As a conventional technique related to an oxidizing substance, for example, Patent Document 1 discloses a system for thermally decomposing an organic substance contained in wastewater with persulfuric acid, and detects a persulfate ion concentration remaining in the wastewater. As a sulfuric acid concentration sensor, there is described a method for measuring a concentration by detecting a reduction current of persulfate ions on a diamond electrode using an electrode having silver supported on a conductive diamond electrode and a counter electrode. .

しかし、特許文献1に記載の過硫酸濃度センサーは、ペルオキソ二硫酸イオンを測定対象とするものであり、ペルオキソ一硫酸および過酸化水素に関する記載はなく、また、多成分を含有する評価液に関しては記載がない。また、この過硫酸濃度センサーでは、陰極に印加する電位を走査しつつ電流値を測定して、過硫酸のピーク電流値を検出しなくてはならず、この操作を行うためには関数発生器が一体化したポテンショスタットが必要となり、測定装置が複雑かつ高価となってしまうという難点もあった。   However, the persulfuric acid concentration sensor described in Patent Document 1 is intended to measure peroxodisulfate ions, and there is no description regarding peroxomonosulfuric acid and hydrogen peroxide, and regarding an evaluation solution containing multiple components. There is no description. In this persulfuric acid concentration sensor, the current value is measured while scanning the potential applied to the cathode, and the peak current value of persulfuric acid must be detected. To perform this operation, a function generator is used. However, there is a problem in that a potentiostat in which is integrated is required, and the measuring apparatus becomes complicated and expensive.

また、特許文献2には、金、銀またはカーボン基体に、ハロゲン化物イオン、イオウイオンおよびチオール化合物などの吸着種を単層吸着させた電極を用いて、過酸化水素の還元電流を検出することにより過酸化水素濃度を測定する過酸化水素用センサーが開示されている。しかし、特許文献2に記載の過酸化水素用センサーは、過酸化水素溶液のみを測定対象としており、ペルオキソ二硫酸やペルオキソ一硫酸など、多成分を含有する評価液に関しては記載がない。また、この過酸化水素用センサーについても、陰極に印加する電位を走査しつつ電流値を測定して、過酸化水素のピーク電流値を検出しなくてはならず、関数発生器が一体化したポテンショスタットが必要となって、特許文献1に記載されたセンサーの場合と同様に、測定装置が複雑かつ高価となってしまうという難点があった。   Patent Document 2 discloses that a hydrogen peroxide reduction current is detected by using an electrode in which adsorption species such as halide ions, sulfur ions and thiol compounds are adsorbed on a gold, silver or carbon substrate. Discloses a hydrogen peroxide sensor for measuring the hydrogen peroxide concentration. However, the hydrogen peroxide sensor described in Patent Document 2 uses only a hydrogen peroxide solution as a measurement target, and there is no description regarding an evaluation solution containing multiple components such as peroxodisulfuric acid and peroxomonosulfuric acid. Also for this hydrogen peroxide sensor, the current value must be measured while scanning the potential applied to the cathode to detect the peak current value of hydrogen peroxide, and the function generator is integrated. Since a potentiostat is required, there is a difficulty in that the measurement apparatus becomes complicated and expensive, as in the case of the sensor described in Patent Document 1.

さらに、特許文献3には、酸化性物質を含有する試料液にヨウ化カリウム水溶液を加えて、酸化性成分との反応によって遊離したヨウ素をチオ硫酸ナトリウム溶液にて滴定する、全酸化性物質濃度の算出方法が開示されている。しかし、特許文献3に記載された定量方法では、滴定を行う作業者が必要となる。また、作業者が不要となるよう全自動滴定装置を用いる場合、試料液の計量注入作業や、試料液に対する希釈液ないしヨウ化カリウム水溶液の添加作業、チオ硫酸ナトリウム溶液による滴定作業等が必要となり、測定・定量作業が複雑なものとなってしまう。さらに、構造が複雑であるため、設備が高価となるという難点もあった。さらにまた、測定後の廃液にはヨウ化カリウムおよびチオ硫酸ナトリウムが含まれるため、その廃液処理作業も別途行わなくてはならなかった。   Furthermore, Patent Document 3 discloses a total oxidizable substance concentration in which an aqueous potassium iodide solution is added to a sample solution containing an oxidizable substance, and iodine released by reaction with an oxidative component is titrated with a sodium thiosulfate solution. A method of calculating is disclosed. However, the quantitative method described in Patent Document 3 requires an operator who performs titration. In addition, when using a fully automatic titrator so that the operator is not required, it is necessary to perform sample injection, sample dilution, addition of dilute solution or potassium iodide aqueous solution, titration with sodium thiosulfate solution, etc. The measurement / quantification work becomes complicated. Furthermore, since the structure is complicated, there is a problem that the equipment is expensive. Furthermore, since the waste liquid after the measurement contains potassium iodide and sodium thiosulfate, the waste liquid treatment work must be performed separately.

また、非特許文献1には、レーザーラマンスペクトル法を用いた、硫酸溶液中のペルオキソ二硫酸、ペルオキソ一硫酸、過酸化水素の定性・定量方法が開示されている。しかし、非特許文献1に記載されたレーザーラマンスペクトル法を用いた定性・定量方法では、成分ごとに定性・定量されるため、各成分の波数毎に強度を測定して、各々の成分の検量線に基づいて濃度換算を行うことが必要となり、測定・定量作業が複雑なものとなってしまう。また、構造が複雑であるため、設備が高価となるという難点もあった。   Non-Patent Document 1 discloses a qualitative and quantitative method for peroxodisulfuric acid, peroxomonosulfuric acid, and hydrogen peroxide in a sulfuric acid solution using a laser Raman spectrum method. However, the qualitative / quantitative method using the laser Raman spectrum method described in Non-Patent Document 1 is qualitative / quantitative for each component. Therefore, the intensity is measured for each wave number of each component, and the calibration of each component is performed. It is necessary to perform concentration conversion based on the line, and the measurement / quantification work becomes complicated. Further, since the structure is complicated, there is a problem that the equipment is expensive.

特開2006‐150320号公報JP 2006-150320 A 特開2007‐71720号公報JP 2007-71720 A 特開2008‐164504号公報JP 2008-164504 A

田坂明政,電気化学,9,745(1998)Tasaka Akimasa, Electrochemistry, 9, 745 (1998)

上述のように、従来の技術においては、多成分の酸化性物質で構成された酸化性物質の総濃度を、簡便な操作で、一度に測定することができるものではなかった。また、従来の濃度計は、構成が複雑であって高価であり、より簡易かつ安価な濃度計が求められていた。   As described above, in the conventional technique, the total concentration of the oxidizing substance composed of the multi-component oxidizing substance cannot be measured at a time by a simple operation. Further, the conventional densitometer has a complicated structure and is expensive, and a simpler and cheaper densitometer has been demanded.

そこで本発明の目的は、上記従来技術における問題を解消して、過硫酸や過硫酸塩、過酸化水素などの多成分を含有する評価液であっても、簡便な操作で、一度の測定により総濃度を得ることができる酸化性物質の総濃度測定方法、簡易かつ安価な酸化性物質の総濃度測定用濃度計、および、それを用いた硫酸電解装置を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems in the prior art, and even with an evaluation liquid containing multiple components such as persulfuric acid, persulfate, and hydrogen peroxide, it is possible to carry out a single operation with a simple operation. An object of the present invention is to provide a method for measuring the total concentration of oxidizing substances capable of obtaining the total concentration, a simple and inexpensive concentration meter for measuring the total concentration of oxidizing substances, and a sulfuric acid electrolysis apparatus using the same.

本発明者らは、上記課題を解決するために鋭意検討した結果、酸化性物質を含有する評価液を電解して、酸化性物質を還元させた際における、電解開始から所定の電解停止時間までの還元電流値より算出できる総クーロン量と、酸化性物質の総濃度との間に密接な関係があることを見出して、上記課題を解決するに至った。   As a result of intensive studies to solve the above problems, the present inventors have electrolyzed an evaluation liquid containing an oxidizing substance and reduced the oxidizing substance, from the start of electrolysis to a predetermined electrolysis stop time. The present inventors have found that there is a close relationship between the total coulomb amount that can be calculated from the reduction current value and the total concentration of the oxidizing substance, and have solved the above problems.

すなわち、本発明の酸化性物質の総濃度測定方法は、少なくともペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素を含有する評価液中の酸化性物質の総濃度を測定する方法であって、
電解セルを用いて前記評価液中の前記酸化性物質を2電子還元する電解工程と、該電解工程における、定電位の下、電解開始時の電流値から所定電流値まで電流値が減衰するまでの還元電流値より総クーロン量を算出するクーロン量算出工程と、該クーロン量算出工程で算出された該総クーロン量より前記酸化性物質の総濃度を算出する濃度算出工程と、を少なくとも含むことを特徴とするものである。
That is, the method for measuring the total concentration of oxidizing substances of the present invention is a method for measuring the total concentration of oxidizing substances in an evaluation solution containing at least peroxodisulfate ions, peroxomonosulfate ions and hydrogen peroxide,
An electrolysis process that uses an electrolysis cell to reduce the oxidizing substance in the evaluation solution by two electrons, and the current value attenuates from a current value at the start of electrolysis to a predetermined current value at a constant potential in the electrolysis process. At least a coulomb amount calculating step for calculating the total coulomb amount from the reduction current value of the gas, and a concentration calculating step for calculating the total concentration of the oxidizing substance from the total coulomb amount calculated in the coulomb amount calculating step. It is characterized by.

また、前記電解工程においては、隔膜により陽極室と陰極室とに区画され、かつ、該陰極室内に陰極を、該陽極室内に陽極を、それぞれ備える電解セルを用いることが好ましい。さらに、前記電解工程においては、前記評価液を、下記式(1)、
0.5<X/Y ・・・(1)
(式中、Xは陰極表面積(dm)であり、Yは陰極液量(ml)である)を満足する条件で電解することが好ましい。
In the electrolysis step, it is preferable to use an electrolysis cell that is divided into an anode chamber and a cathode chamber by a diaphragm, and that includes a cathode in the cathode chamber and an anode in the anode chamber. Furthermore, in the electrolysis step, the evaluation solution is expressed by the following formula (1),
0.5 <X / Y (1)
It is preferable to perform electrolysis under conditions satisfying (wherein X is a cathode surface area (dm 2 ) and Y is a catholyte amount (ml)).

さらにまた、本発明の測定方法においては、前記電解セル内の陰極として、白金、金、炭素材料および銀からなる群より選択される少なくとも一種から構成されたものを用いることが好ましい。さらにまた、前記電解セルの電圧または陰極電位を、陰極において水素発生および過酸化水素酸化のいずれも生じない電圧または電位に保持することが好ましい。   Furthermore, in the measuring method of the present invention, it is preferable to use a cathode composed of at least one selected from the group consisting of platinum, gold, a carbon material and silver as the cathode in the electrolytic cell. Furthermore, it is preferable to maintain the voltage or cathode potential of the electrolytic cell at a voltage or potential at which neither hydrogen generation nor hydrogen peroxide oxidation occurs at the cathode.

また、本発明の酸化性物質の総濃度測定用濃度計は、少なくともペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素を含有する評価液中の酸化性物質の総濃度の測定に用いられる濃度計であって、
前記評価液中の前記酸化性物質の2電子還元を行う電解セルと、該電解セルに電圧または電位を印加する印加部と、該電解セルに印加される電圧または電位を制御する制御部と、該電解セルにおける、定電位の下、電解開始時の電流値から所定電流値まで電流値が減衰するまでの還元電流値より総クーロン量を算出するクーロン量算出部と、該クーロン量算出部で算出された該総クーロン量より前記酸化性物質の総濃度を算出する濃度算出部と、を備えたことを特徴とするものである。
Further, the concentration meter for measuring the total concentration of oxidizing substances according to the present invention is a concentration used for measuring the total concentration of oxidizing substances in an evaluation solution containing at least peroxodisulfate ions, peroxomonosulfate ions and hydrogen peroxide. A total of
An electrolysis cell that performs two-electron reduction of the oxidizing substance in the evaluation liquid, an application unit that applies a voltage or a potential to the electrolysis cell, a control unit that controls a voltage or a potential applied to the electrolysis cell, In the electrolysis cell, at a constant potential, a coulomb amount calculation unit that calculates a total coulomb amount from a reduction current value until the current value attenuates from a current value at the start of electrolysis to a predetermined current value, and a coulomb amount calculation unit And a concentration calculating unit that calculates a total concentration of the oxidizing substance from the calculated total coulomb amount.

本発明の濃度計においては、前記電解セルが、隔膜により陽極室と陰極室とに区画され、かつ、該陰極室内に陰極を、該陽極室内に陽極を、それぞれ備えることが好ましい。また、前記電解セルにおいて、前記評価液が、下記式(1)、
0.5<X/Y ・・・(1)
(式中、Xは陰極表面積(dm)であり、Yは陰極液量(ml)である)を満足する条件で電解されることが好ましい。
In the densitometer of the present invention, it is preferable that the electrolytic cell is divided into an anode chamber and a cathode chamber by a diaphragm, and includes a cathode in the cathode chamber and an anode in the anode chamber. Moreover, in the electrolytic cell, the evaluation liquid is represented by the following formula (1),
0.5 <X / Y (1)
It is preferable that the electrolysis is performed under the conditions satisfying (wherein X is a cathode surface area (dm 2 ) and Y is a catholyte amount (ml)).

さらに、本発明の濃度計においては、前記電解セル内の陰極が、白金、金、炭素材料および銀からなる群より選択される少なくとも一種から構成されることが好ましい。さらにまた、本発明の濃度計においては、前記電解セル内の電圧または陰極電位が、陰極において水素発生および過酸化水素酸化のいずれも生じない電圧または電位に保持されることも好ましい。   Furthermore, in the densitometer of the present invention, it is preferable that the cathode in the electrolytic cell is composed of at least one selected from the group consisting of platinum, gold, a carbon material, and silver. Furthermore, in the densitometer of the present invention, it is also preferable that the voltage or cathode potential in the electrolytic cell is maintained at a voltage or potential at which neither hydrogen generation nor hydrogen peroxide oxidation occurs at the cathode.

さらに、本発明の硫酸電解装置は、上記本発明の酸化性物質の総濃度測定用濃度計を搭載したことを特徴とするものである。   Furthermore, the sulfuric acid electrolysis apparatus of the present invention is equipped with a concentration meter for measuring the total concentration of the oxidizing substance of the present invention.

本発明によれば、ペルオキソ二硫酸イオンやペルオキソ一硫酸イオン、過酸化水素などの多成分の酸化性物質を含有する評価液であっても、簡便な操作で、一度の測定で総濃度を得ることができる酸化性物質の総濃度測定方法、簡易かつ安価な酸化性物質の総濃度測定用濃度計およびそれを用いた硫酸電解装置を実現することが可能となった。   According to the present invention, a total concentration can be obtained by a single operation even with an evaluation solution containing multi-component oxidizing substances such as peroxodisulfate ions, peroxomonosulfate ions, and hydrogen peroxide. It has become possible to realize a method for measuring the total concentration of oxidizing substances, a simple and inexpensive concentration meter for measuring the total concentration of oxidizing substances, and a sulfuric acid electrolysis apparatus using the same.

本発明の測定方法においては、酸化性物質が一成分の場合でも、多成分の場合でも、総濃度の測定が可能である。また、本発明の濃度計においては、多成分の総濃度を一度で測定することが可能であるので、測定に必要な構成機器を減らすことができ、小型で安価に作製することができるため、一般家庭用や業務用として適している。   In the measurement method of the present invention, the total concentration can be measured regardless of whether the oxidizing substance is a single component or multiple components. In the densitometer of the present invention, it is possible to measure the total concentration of multiple components at a time, so the number of components required for measurement can be reduced, and it can be made small and inexpensive, Suitable for general home use and business use.

本発明に係る電解セルの一例を示す概略図である。It is the schematic which shows an example of the electrolytic cell which concerns on this invention. 本発明の濃度計の一例を示す説明図である。It is explanatory drawing which shows an example of the concentration meter of this invention. 本発明に係る電解セルの他の例を示す概略図である。It is the schematic which shows the other example of the electrolytic cell which concerns on this invention. 白金電極を用いた酸化性物質硫酸溶液のリニアスイープボルタモグラムである。It is a linear sweep voltammogram of an oxidizing substance sulfuric acid solution using a platinum electrode. 実施例1〜3の酸化性物質総濃度と総クーロン量との相関関係を示すグラフである。It is a graph which shows the correlation with the oxidizing substance total concentration of Examples 1-3, and the total amount of coulombs.

以下、本発明の実施の形態について、詳細に説明する。
本発明は、酸化性物質を少なくとも一種含有する評価液中の酸化性物質の総濃度を測定する方法の改良に係るものである。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention relates to an improvement in a method for measuring the total concentration of oxidizing substances in an evaluation liquid containing at least one oxidizing substance.

本発明においては、かかる酸化性物質を含有する評価液を電解した際に、電解開始から所定の電解停止時間までの還元電流値より算出される総クーロン量と、酸化性物質の総濃度との間に密接な関係があることを見出したものである。すなわち、本発明者らによる多くの実験の結果、後述する実施例に示す通り、電解開始から所定の電解停止時間までの還元電流値から算出できる総クーロン量を用いることで、ペルオキソ二硫酸イオンやペルオキソ一硫酸イオン、過酸化水素などの多成分の酸化性物質を高濃度に含有する評価液であっても、酸化性物質の総濃度を一度で測定できることが明らかになった。   In the present invention, when the evaluation liquid containing such an oxidizing substance is electrolyzed, the total coulomb amount calculated from the reduction current value from the start of electrolysis to a predetermined electrolysis stop time and the total concentration of the oxidizing substance It has been found that there is a close relationship between them. That is, as a result of many experiments by the present inventors, by using the total coulomb amount that can be calculated from the reduction current value from the start of electrolysis to a predetermined electrolysis stop time, as shown in the examples described later, peroxodisulfate ions and It became clear that the total concentration of oxidizing substances can be measured at one time even with an evaluation solution containing a high concentration of multi-component oxidizing substances such as peroxomonosulfate ions and hydrogen peroxide.

具体的には、本発明の酸化性物質の総濃度測定方法においては、電解セルを用いて上記評価液中の酸化性物質を還元して(電解工程)、この電解工程における、電解開始から所定の電解停止時間までの還元電流値より総クーロン量を算出し(クーロン量算出工程)、算出された総クーロン量より酸化性物質の総濃度を算出する(濃度算出工程)。   Specifically, in the method for measuring the total concentration of the oxidizing substance of the present invention, the oxidizing substance in the evaluation solution is reduced using an electrolytic cell (electrolytic process), and a predetermined time from the start of electrolysis in the electrolysis process is determined. The total coulomb amount is calculated from the reduction current value until the electrolysis stop time (coulomb amount calculation step), and the total concentration of the oxidizing substance is calculated from the calculated total coulomb amount (concentration calculation step).

本発明において、酸化性物質としては、ペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素のうちの少なくとも一種を含有するものとすることができる。本発明におけるペルオキソ二硫酸、ペルオキソ一硫酸および過酸化水素は、各々の水溶液および塩などを溶解したものでもよく、硫酸と過酸化水素水溶液との混合によって得られるものであってもよく、硫酸の電解によって得られるものであってもよい。   In the present invention, the oxidizing substance may contain at least one of peroxodisulfate ions, peroxomonosulfate ions, and hydrogen peroxide. The peroxodisulfuric acid, peroxomonosulfuric acid and hydrogen peroxide in the present invention may be those obtained by dissolving each aqueous solution and salt, etc., or may be obtained by mixing sulfuric acid and an aqueous hydrogen peroxide solution. It may be obtained by electrolysis.

ここで、電解セルを用いた評価液中の酸化性物質の電解還元反応を以下に示す。
1)陰極反応
2−+2H+2e→2HSO ・・・(2)
HSO +2H+2e→HSO +HO ・・・(3)
+2H+2e→2HO ・・・(4)
陽極反応については、供給する電解液によるが、硫酸溶液を用いる場合、以下の反応が進行する。
2)陽極反応
2HO→O+4H+4e・・・(5)
Here, the electrolytic reduction reaction of the oxidizing substance in the evaluation liquid using the electrolytic cell is shown below.
1) Cathode reaction S 2 O 8 2− + 2H + + 2e → 2HSO 4 (2)
HSO 5 + 2H + + 2e → HSO 4 + H 2 O (3)
H 2 O 2 + 2H + + 2e → 2H 2 O (4)
The anodic reaction depends on the electrolyte supplied, but when a sulfuric acid solution is used, the following reaction proceeds.
2) Anodic reaction 2H 2 O → O 2 + 4H + + 4e (5)

上記のように、ペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素の還元反応は全て2電子還元であるので、評価液中の酸化性物質の電解還元に使用された総クーロン量が分かれば、元々の評価液中の酸化性物質の総濃度へと換算することが可能となる。   As described above, since the reduction reactions of peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide are all two-electron reduction, if the total coulomb amount used for the electrolytic reduction of the oxidizing substance in the evaluation solution is known, Thus, it can be converted into the total concentration of the oxidizing substance in the original evaluation solution.

本発明における、電解開始から電解停止までの所定の時間は、求められる測定精度に応じて任意に設定することができる。評価液中の酸化性物質が電解還元によって十分少なくなったときを電解停止と設定する場合、例えば、電解開始の電流値を検知して、電流値が電解開始時の1/100となった時点を、電解停止時として設定することができる。電解停止時を設定するための電流値は、電解開始時の1/100、1/10等、任意に設定できるが、小さいほど精度が高いものとなる。また、例えば、既に濃度がわかっている十分に濃度の薄い酸化性物質を含む評価液の電流値をあらかじめ測定しておき、その電流値となった時点を電解停止時と設定することもできる。この場合、電解停止時を設定するための酸化性物質を含む評価液の酸化性物質濃度、および、その電解測定から得られる電流値は、小さいほど精度の高いものとなる。さらに、評価液中の酸化性物質の電解還元電流値の減衰波形をあらかじめ測定しておき、電解初期の電流値から電解停止までに要する総クーロン量を、あらかじめ測定しておいた減衰波形と電解初期の電流値とから計算で算出する場合、例えば、電解開始の電流値を検知して、電流値が電解開始時の1/100となるまでに要する総クーロン量を、あらかじめ測定しておいた減衰波形と電解開始時の電流値とから算出することもできる。一般に、測定時間が長いほど測定精度は高くなるものと考えられるが、濃度計としては、測定時間が短いほど好ましい。   In the present invention, the predetermined time from the start of electrolysis to the stop of electrolysis can be arbitrarily set according to the required measurement accuracy. When setting the electrolysis stop when the oxidizing substance in the evaluation solution is sufficiently reduced by electrolytic reduction, for example, when the current value at the start of electrolysis is detected and the current value becomes 1/100 of the start of electrolysis Can be set as an electrolysis stop time. The current value for setting the time of electrolysis stop can be set arbitrarily such as 1/100, 1/10, etc. at the start of electrolysis, but the smaller the value, the higher the accuracy. In addition, for example, the current value of an evaluation liquid containing an oxidizing substance having a sufficiently low concentration whose concentration is already known can be measured in advance, and the time when the current value is reached can be set as the time when electrolysis is stopped. In this case, the smaller the oxidant substance concentration of the evaluation liquid containing the oxidant substance for setting the time of electrolysis stop and the current value obtained from the electrolysis measurement, the higher the accuracy. In addition, the decay waveform of the electrolytic reduction current value of the oxidizing substance in the evaluation solution is measured in advance, and the total coulomb amount required from the initial current value to the termination of electrolysis is measured in advance with the decay waveform and the electrolysis When calculating from the initial current value, for example, the current value at the start of electrolysis is detected, and the total coulomb amount required until the current value becomes 1/100 of the start of electrolysis has been measured in advance. It can also be calculated from the decay waveform and the current value at the start of electrolysis. In general, the longer the measurement time, the higher the measurement accuracy. However, as the densitometer, the shorter the measurement time, the better.

また、本発明の酸化性物質の総濃度測定方法に好適に用いられる本発明の酸化性物質の総濃度測定用濃度計は、評価液中の酸化性物質の還元を行う電解セルと、電解セルに電圧または電位を印加する印加部と、電解セルに印加される電圧または電位を制御する制御部と、電解セルにおける、電解開始から所定の電解停止時間までの還元電流値より総クーロン量を算出するクーロン量算出部と、クーロン量算出部で算出された総クーロン量より酸化性物質の総濃度を算出する濃度算出部と、を備えるものである。   The concentration meter for measuring the total concentration of the oxidizing substance of the present invention preferably used for the method for measuring the total concentration of the oxidizing substance of the present invention includes an electrolytic cell for reducing the oxidizing substance in the evaluation liquid, and an electrolytic cell. The total coulomb amount is calculated from the application unit that applies voltage or potential to the electrode, the control unit that controls the voltage or potential applied to the electrolysis cell, and the reduction current value from the start of electrolysis to the predetermined electrolysis stop time in the electrolysis cell And a concentration calculation unit that calculates the total concentration of the oxidizing substance from the total coulomb amount calculated by the coulomb amount calculation unit.

また、本発明の酸化性物質の総濃度測定方法で算出された値の出力方法や他の装置への伝達方法については、特に限定されず、任意の方法を用いることができる。   In addition, the output method of the value calculated by the method for measuring the total concentration of the oxidizing substance of the present invention and the transmission method to other devices are not particularly limited, and any method can be used.

以下、本発明の酸化性物質の総濃度測定方法および総濃度測定用濃度計の一実施形態について、図面を参照して詳細に説明する。   Hereinafter, an embodiment of a total concentration measuring method and a total concentration measuring densitometer according to the present invention will be described in detail with reference to the drawings.

本発明において、電解セルの形状は特に限定されず、筒状や枡状など、任意の形状を選択することができる。また、各電極の位置についても任意に設定できるが、陽極は、陰極近傍にあるほど液抵抗が小さいため好ましい。また、電解セルが参照電極を備える場合には、参照電極を陰極の中心近傍に設置すると、電位分布にばらつきが少なくなるので、好ましい。ここで、電解セルに電圧を印加して測定を行う場合には、電極として陰極および陽極の2極を用いる。陽極は参照電極であってもよく、その他の電極であってもよい。電解セルに電位を印加して測定を行う場合には、電極として陰極、陽極および参照電極の3極を同時に用いる。   In the present invention, the shape of the electrolytic cell is not particularly limited, and any shape such as a cylindrical shape or a bowl shape can be selected. The position of each electrode can also be set arbitrarily, but the anode is preferable because the liquid resistance is smaller as it is closer to the cathode. In addition, when the electrolytic cell includes a reference electrode, it is preferable to install the reference electrode in the vicinity of the center of the cathode because variation in potential distribution is reduced. Here, when measuring by applying a voltage to an electrolysis cell, two electrodes, a cathode and an anode, are used as electrodes. The anode may be a reference electrode or other electrode. When measurement is performed by applying a potential to the electrolytic cell, three electrodes of a cathode, an anode, and a reference electrode are used simultaneously as electrodes.

図1は、本発明の測定方法および濃度計に使用する電解セルの一例を示したものである。図示する電解セルは、隔膜16により陰極室3と陽極室4とに区画されている。このうち陰極室3には白金メッシュ陰極8が収容され、この白金メッシュ陰極8近傍には多孔質ガラス液絡部11を有するAg/AgCl(内部液:飽和KCl)参照電極10が収容され、かつ、酸化性物質を含む評価液が満たされており、陽極室4には白金メッシュ陽極9が収容され、かつ、陰極室3と同濃度の酸化性物質を含む評価液が満たされている。陰極室3には陰極液供給口14が接続され、この陰極液供給口14を通して、陰極液である酸化性物質を含む評価液が陰極室3に供給される。また、陽極室4には陽極液供給口15が接続され、この陽極液供給口15を通して、陽極液が陽極室4に供給される。陰極室3において電解された酸化性物質を含む評価液は、陰極室排出口1より排出される。また、陽極室4において生成した酸素および酸化性物質を含む評価液は、陽極室排出口2より排出される。ここで、陰極としては、白金メッシュ陰極8に代えて、金、炭素材料および銀を含む電極を使用してもよい。また、陽極としては、白金メッシュ陽極9に代えて、その他の陽極を使用してもよい。さらに、陽極液としては、酸化性物質を含む評価液に代えて、その他の溶液を使用してもよい。なお、図中の符号5は陰極給電端子、符号6は陽極給電端子、符号7は参照電極給電端子、符号12は陰極室エンドプレート、符号13は陽極室エンドプレート、符号17は電解セルのシール材を、それぞれ示す。   FIG. 1 shows an example of an electrolytic cell used in the measuring method and the densitometer of the present invention. The illustrated electrolytic cell is partitioned into a cathode chamber 3 and an anode chamber 4 by a diaphragm 16. Among these, a platinum mesh cathode 8 is accommodated in the cathode chamber 3, and an Ag / AgCl (internal liquid: saturated KCl) reference electrode 10 having a porous glass liquid junction portion 11 is accommodated in the vicinity of the platinum mesh cathode 8, and The anode chamber 4 is filled with an evaluation liquid containing an oxidizing substance, and the platinum mesh anode 9 is accommodated in the anode chamber 4 and is filled with an evaluation liquid containing an oxidizing substance having the same concentration as the cathode chamber 3. A catholyte supply port 14 is connected to the cathode chamber 3, and an evaluation liquid containing an oxidizable substance as a catholyte is supplied to the cathode chamber 3 through the catholyte supply port 14. The anolyte supply port 15 is connected to the anolyte chamber 4, and the anolyte is supplied to the anolyte chamber 4 through the anolyte supply port 15. The evaluation liquid containing the oxidizing substance electrolyzed in the cathode chamber 3 is discharged from the cathode chamber outlet 1. Moreover, the evaluation liquid containing oxygen and an oxidizing substance generated in the anode chamber 4 is discharged from the anode chamber discharge port 2. Here, instead of the platinum mesh cathode 8, an electrode containing gold, a carbon material and silver may be used as the cathode. As the anode, other anodes may be used instead of the platinum mesh anode 9. Furthermore, as an anolyte, it replaces with the evaluation liquid containing an oxidizing substance, and you may use another solution. In the figure, reference numeral 5 is a cathode power supply terminal, reference numeral 6 is an anode power supply terminal, reference numeral 7 is a reference electrode power supply terminal, reference numeral 12 is a cathode chamber end plate, reference numeral 13 is an anode chamber end plate, and reference numeral 17 is an electrolysis cell seal. Each material is shown.

図2は、本発明の濃度計の一例を示したものである。図示する濃度計において、酸化性物質を含む評価液は、酸化性物質溶液供給ライン21より、酸化性物質溶液供給ポンプ22および流量計23を用いて、電解セル24の陰極室3および陽極室4に供給される。供給された評価液中、酸化性物質が陰極室3において電解還元され、水が陽極室4において電解酸化されて、酸化性物質溶液排出ライン20により排出される。電解が終了すると、電解開始から電解終了まで、経時的に測定された電流値の変化と、その電流が流れた時間とを積算することで、総クーロン量が算出され、その総クーロン量より酸化性物質の総物質量が算出されて、総物質量とあらかじめ測定もしくは計算された陰極液量とより、酸化性物質の総濃度が算出される。ここで、図中、電解用直流電源が電解セルに電圧または電位を印加する印加部に相当し、電解用直流電源は制御部を介してクーロン量算出部および濃度算出部に接続されている。なお、制御部には、電解セルに印加される電圧または電位の制御と併せて、測定時間の制御も行わせることができる。   FIG. 2 shows an example of the densitometer of the present invention. In the concentration meter shown in the figure, an evaluation liquid containing an oxidizing substance is supplied from an oxidizing substance solution supply line 21 using an oxidizing substance solution supply pump 22 and a flow meter 23, and the cathode chamber 3 and the anode chamber 4 of the electrolytic cell 24. To be supplied. In the supplied evaluation liquid, the oxidizing substance is electrolytically reduced in the cathode chamber 3, and water is electrolytically oxidized in the anode chamber 4, and is discharged through the oxidizing substance solution discharge line 20. When the electrolysis is completed, the total coulomb amount is calculated by integrating the change in the current value measured over time from the start of electrolysis to the end of electrolysis and the time that the current flows, and oxidation is calculated from the total coulomb amount. The total substance amount of the oxidizing substance is calculated, and the total concentration of the oxidizing substance is calculated from the total substance quantity and the previously measured or calculated catholyte amount. Here, in the figure, the DC power source for electrolysis corresponds to an application unit that applies a voltage or a potential to the electrolysis cell, and the DC power source for electrolysis is connected to the coulomb amount calculation unit and the concentration calculation unit via the control unit. The control unit can also control the measurement time in addition to the control of the voltage or potential applied to the electrolysis cell.

ここで、本発明において、電解液の流量は制限されない。電解中、電解液は停止した状態であってもよいし(流量ゼロ)、ポンプを用いて一定の流量で排出されていてもよい。   Here, in the present invention, the flow rate of the electrolytic solution is not limited. During electrolysis, the electrolytic solution may be in a stopped state (zero flow rate) or may be discharged at a constant flow rate using a pump.

図3は、本発明の測定方法および濃度計に使用できる電解セルの他の例を示したものである。図示する電解セルは隔膜を有することなく電解を行うものであり、陰極液供給口および陽極液供給口の代わりに評価液供給口19を用い、陰極液排出口および陽極液排出口の代わりに評価液排出口18を用いた点以外は、図1と全く同一の構成を有し、符号も同一の符号を用いているので、工程の説明については省略する。   FIG. 3 shows another example of the electrolytic cell that can be used in the measuring method and the densitometer of the present invention. The illustrated electrolysis cell performs electrolysis without having a diaphragm, and uses an evaluation liquid supply port 19 instead of the catholyte supply port and the anolyte supply port, and evaluates instead of the catholyte discharge port and the anolyte discharge port. Except for the point using the liquid discharge port 18, the configuration is exactly the same as in FIG. 1, and the same reference numerals are used, and therefore the description of the steps is omitted.

本発明における隔膜16とは、陰極室3と陽極室4とを区画しつつ、イオン交換作用や、隔膜内の孔を通して電解液および/またはイオンが陰極室3と陽極室4との間を移動することによって、導電性を発現させるものである。構成材料については特に制限されないが、耐久性の面からは、フッ素樹脂系陽イオン交換膜、または、親水化処理を行った多孔質フッ素系樹脂膜若しくは多孔質ガラスよりなる隔膜を用いることが好ましい。   In the present invention, the diaphragm 16 divides the cathode chamber 3 and the anode chamber 4, while the ion exchange action and the electrolyte and / or ions move between the cathode chamber 3 and the anode chamber 4 through the holes in the diaphragm. By doing so, conductivity is expressed. The constituent material is not particularly limited, but from the viewpoint of durability, it is preferable to use a fluororesin-based cation exchange membrane, a porous fluororesin membrane subjected to hydrophilic treatment, or a diaphragm made of porous glass. .

本発明に係る電解セルにおける陽極反応は、上記式(5)に示す水の電解酸化による酸素発生であるが、陽極近傍に過酸化水素が存在する場合、下記式(6)に示す反応も進行する。
→O+2H+2e ・・・(6)
過酸化水素を含有する評価液中の酸化性物質の総濃度を測定する際には、隔膜がないと、上記式(6)によって過酸化水素が陽極で電解酸化されてしまう。また、ペルオキソ二硫酸およびペルオキソ一硫酸のみを含有する評価液中の酸化性物質の総濃度測定においても、ペルオキソ二硫酸およびペルオキソ一硫酸は以下の自己分解反応によって経時で過酸化水素を生成し、生成した過酸化水素は上記式(6)によって陽極で電解酸化されてしまう可能性があるため、本発明において、電解セルには隔膜を設けることが好ましい。
+HO→HSO+HSO ・・・(7)
SO+HO→H+HSO ・・・(8)
The anodic reaction in the electrolytic cell according to the present invention is the generation of oxygen by electrolytic oxidation of water shown in the above formula (5), but when hydrogen peroxide is present in the vicinity of the anode, the reaction shown in the following formula (6) also proceeds. To do.
H 2 O 2 → O 2 + 2H + + 2e (6)
When measuring the total concentration of the oxidizing substance in the evaluation liquid containing hydrogen peroxide, if there is no diaphragm, hydrogen peroxide is electrolytically oxidized at the anode according to the above formula (6). Also, in the total concentration measurement of oxidizing substances in the evaluation solution containing only peroxodisulfuric acid and peroxomonosulfuric acid, peroxodisulfuric acid and peroxomonosulfuric acid produce hydrogen peroxide over time by the following autolysis reaction, In the present invention, it is preferable to provide a diaphragm in the electrolytic cell because the generated hydrogen peroxide may be electrolytically oxidized at the anode by the above formula (6).
H 2 S 2 O 8 + H 2 O → H 2 SO 5 + H 2 SO 4 (7)
H 2 SO 5 + H 2 O → H 2 O 2 + H 2 SO 4 (8)

本発明において、電極材料については特に限定されないが、白金、金、炭素材料および銀からなる群より選択される少なくとも一種から構成されたものが好ましい。特に、酸化性物質の還元反応に利用される陰極については、水素発生電位よりも貴な電位で、ペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素イオンの還元反応が進行する電極材料を用いることが好ましい。また、測定時間を短縮できる観点からは、陰極材料として、酸化性物質の還元反応速度が速い白金を用いることが、より好ましい。   In the present invention, the electrode material is not particularly limited, but is preferably composed of at least one selected from the group consisting of platinum, gold, a carbon material and silver. In particular, for the cathode used for the reduction reaction of the oxidizing substance, an electrode material in which the reduction reaction of peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide ion proceeds at a potential nobler than the hydrogen generation potential is used. It is preferable. Further, from the viewpoint of shortening the measurement time, it is more preferable to use platinum, which has a fast reduction reaction rate of the oxidizing substance, as the cathode material.

また、本発明においては、電解セルにおいて、評価液を、下記式(1)、
0.5<X/Y ・・・(1)
(式中、Xは陰極表面積(dm)であり、Yは陰極液量(ml)である)を満足する条件で電解することが好ましい。X/Yが0.5以下では、陰極表面積に対する陰極液量が多すぎるため、電解還元が進行するとともに酸化性物質の拡散層が広がり、それによって酸化性物質の還元反応速度が遅いものとなってしまう。したがって、測定時間を短縮する観点から、X/Yは0.5より大きいことが好ましい。X/Yは大きいほど好ましいが、陰極表面積が大きくなりすぎると陰極の電位分布にばらつきが生じたり、電極材料コストが高くなるという問題が生ずる。一方、陰極液量が少なくなりすぎると電解セルが小さくなりすぎて、セルの内部容量の精度が低いものとなってしまい、酸化性物質の総濃度測定の精度低下につながってしまうので、X/Yの上限は15程度であると考えられる。
In the present invention, in the electrolytic cell, the evaluation liquid is expressed by the following formula (1),
0.5 <X / Y (1)
It is preferable to perform electrolysis under conditions satisfying (wherein X is a cathode surface area (dm 2 ) and Y is a catholyte amount (ml)). When X / Y is 0.5 or less, the amount of catholyte with respect to the surface area of the cathode is too large, so that the electrolytic reduction proceeds and the diffusion layer of the oxidizing substance spreads, thereby reducing the reducing reaction rate of the oxidizing substance. End up. Therefore, X / Y is preferably larger than 0.5 from the viewpoint of shortening the measurement time. X / Y is preferably as large as possible. However, if the surface area of the cathode is too large, there are problems in that the potential distribution of the cathode varies and the electrode material cost increases. On the other hand, if the amount of the catholyte becomes too small, the electrolytic cell becomes too small and the accuracy of the internal capacity of the cell becomes low, leading to a decrease in the accuracy of measuring the total concentration of the oxidizing substance. The upper limit of Y is considered to be about 15.

本発明において、電極表面積の測定は、白金であれば水素吸着法により行うことができ、炭素材料、金または銀であればBET法で行うことができる。   In the present invention, the electrode surface area can be measured by a hydrogen adsorption method for platinum, or by a BET method for a carbon material, gold or silver.

また、本発明における陰極液量とは、電解セル内に存在する陰極側の電解液量を意味する。隔膜を有しない電解セルの場合には、電解セル内に存在する電解液量の総量を意味する。   Moreover, the amount of catholyte in the present invention means the amount of electrolyte on the cathode side present in the electrolysis cell. In the case of an electrolytic cell having no diaphragm, it means the total amount of electrolytic solution present in the electrolytic cell.

図4に、硫酸濃度3.73mol/l、ペルオキソ二硫酸イオン濃度0.3mol/lのペルオキソ二硫酸アンモニウムを含む硫酸溶液、硫酸濃度3.73mol/l、ペルオキソ一硫酸イオン濃度0.3mol/lのペルオキソ一硫酸塩を含む硫酸溶液、および、硫酸濃度3.73mol/l、過酸化水素濃度0.3mol/lの過酸化水素を含む硫酸溶液の、白金電極上でのリニアスイープボルタモグラムを各々示す(電位走査速度:50mV/s)。図4から、水の還元反応による水素発生電位(−0.20Vvs.Ag/AgCl)よりも貴な電位で、上記式(2)〜(4)で表される、ペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素の還元反応が進行していることがわかる。このように、水素発生電位よりも貴な電位でペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素イオンの還元反応が進行する陰極を用いて、水素発生電位よりも貴な電位に電極電位を保持した場合、電解停止までの総クーロン量には、酸化性物質の還元反応に要したクーロン量のみが含まれ、水素発生に要したクーロン量が含まれないので、酸化性物質の総濃度を精度良く測定できる。一方で、ペルオキソ二硫酸を含む硫酸溶液、ペルオキソ一硫酸を含む硫酸溶液および過酸化水素を含む硫酸溶液の還元電位が水素発生電位とほぼ同程度の電位となる電極では、総クーロン量には、酸化性物質の還元反応に要したクーロン量のみならず、水素発生に要したクーロン量が同時に含まれるので、酸化性物質の総濃度を精度良く測定することはできない。   FIG. 4 shows a sulfuric acid solution containing ammonium peroxodisulfate having a sulfuric acid concentration of 3.73 mol / l and a peroxodisulfate ion concentration of 0.3 mol / l, a sulfuric acid concentration of 3.73 mol / l, and a peroxomonosulfate ion concentration of 0.3 mol / l. Linear sweep voltammograms on a platinum electrode of a sulfuric acid solution containing peroxomonosulfate and a sulfuric acid solution containing hydrogen peroxide having a sulfuric acid concentration of 3.73 mol / l and a hydrogen peroxide concentration of 0.3 mol / l are respectively shown ( Potential scanning speed: 50 mV / s). FIG. 4 shows that peroxodisulfate ions, peroxomonosulfates represented by the above formulas (2) to (4) at a potential nobler than the hydrogen generation potential (−0.20 Vvs. Ag / AgCl) due to the reduction reaction of water. It can be seen that the reduction reaction of sulfate ions and hydrogen peroxide proceeds. In this way, by using the cathode in which the reduction reaction of peroxodisulfate ions, peroxomonosulfate ions and hydrogen peroxide ions proceeds at a potential nobler than the hydrogen generation potential, the electrode potential is set to a potential nobler than the hydrogen generation potential. In this case, the total amount of coulomb until the termination of electrolysis includes only the amount of coulomb required for the reduction reaction of the oxidizing substance, and does not include the amount of coulomb required for hydrogen generation. It can measure with high accuracy. On the other hand, in an electrode in which the reduction potential of a sulfuric acid solution containing peroxodisulfuric acid, a sulfuric acid solution containing peroxomonosulfuric acid, and a sulfuric acid solution containing hydrogen peroxide is approximately the same as the hydrogen generation potential, Since not only the amount of coulomb required for the reduction reaction of the oxidizing substance but also the amount of coulomb required for hydrogen generation are included at the same time, the total concentration of the oxidizing substance cannot be accurately measured.

本発明においては、電解セルの電圧または陰極電位を、陰極において水素発生も過酸化水素酸化も生じない電圧または電位に保持することが好ましい。ここで、陰極電位を制御する場合には、電解セルとして、参照電極を有するものを用いる。なお、陰極電位は、水素発生電位よりも貴かつ過酸化水素酸化電位よりも卑な電位に保持することが好ましいが、より卑な電位に保持することで、酸化性物質の還元反応速度を速めることができるため、測定時間を短縮できる観点から、より好ましい。   In the present invention, the voltage or cathode potential of the electrolysis cell is preferably maintained at a voltage or potential at which no hydrogen generation or hydrogen peroxide oxidation occurs at the cathode. Here, in the case of controlling the cathode potential, an electrolytic cell having a reference electrode is used. The cathode potential is preferably maintained at a lower potential than the hydrogen generation potential and a lower potential than the hydrogen peroxide oxidation potential. However, by maintaining the lower potential, the reduction reaction rate of the oxidizing substance is increased. Therefore, it is more preferable from the viewpoint of shortening the measurement time.

本発明に用いる参照電極の種類および形状については特に限定されないが、取り扱いの容易さの点からは、Ag/AgCl参照電極、硫酸溶液を用いる点からは、水銀/硫酸水銀参照電極などが挙げられる。   The type and shape of the reference electrode used in the present invention are not particularly limited, but from the viewpoint of ease of handling, an Ag / AgCl reference electrode, from the point of using a sulfuric acid solution, a mercury / mercury sulfate reference electrode, etc. may be mentioned. .

本発明に用いる陽極の種類および形状については特に限定されないが、白金、金、炭素材料および銀などが挙げられ、また、Ag/AgCl(内部液:飽和KCl)、水銀/硫酸水銀電極などの参照電極として用いられる材料を陽極として使用することもできる。   The type and shape of the anode used in the present invention are not particularly limited, and examples thereof include platinum, gold, carbon material, silver, and the like, and reference to Ag / AgCl (internal liquid: saturated KCl), mercury / mercury sulfate electrode, etc. The material used as the electrode can also be used as the anode.

本発明の濃度計は、評価する溶液の流れ方向に対して、本濃度計の上流側では、評価液を流通させる工場配管や装置内配管等に接続し、また、下流側では、廃液する配管に接続することで、装置付属の濃度計として利用できる。配管への接続方法については任意に設定できるが、例えば、工場配管や装置配管等から分岐させた配管を濃度計に接続し、その後、廃液する配管に接続することができる。   The concentration meter of the present invention is connected to factory piping or equipment piping through which the evaluation liquid is circulated on the upstream side of the concentration meter with respect to the flow direction of the solution to be evaluated. By connecting to, it can be used as a concentration meter attached to the device. The connection method to the pipe can be arbitrarily set. For example, a pipe branched from a factory pipe or an apparatus pipe can be connected to the densitometer, and then connected to a pipe for waste liquid.

本発明の硫酸電解装置は、上記本発明の酸化性物質の総濃度測定用濃度計を搭載したものである。本発明において、濃度計を硫酸電解装置に搭載または接続して利用する場合には、例えば、評価液を連続的に濃度計に流通させて、濃度を連続的に監視することが可能であり、例えば、電解硫酸溶液を調製するバッチ工程における最終濃度確認のためなどに、必要に応じて非連続的に濃度測定を行ってもよい。   The sulfuric acid electrolysis apparatus of the present invention is equipped with the concentration meter for measuring the total concentration of the oxidizing substance of the present invention. In the present invention, when using the concentration meter mounted on or connected to a sulfuric acid electrolysis device, for example, it is possible to continuously monitor the concentration by circulating the evaluation solution continuously to the concentration meter, For example, the concentration measurement may be performed discontinuously as necessary for the purpose of confirming the final concentration in a batch process for preparing an electrolytic sulfuric acid solution.

本発明の硫酸電解装置においては、特に限定されないが、硫酸電解槽として、陽極および陰極に導電性ダイヤモンドを用い、隔膜として多孔質PTFEからなる隔膜を用いた電解槽を好適に用いることができる。かかる硫酸電解装置における電解工程では、まず、第1工程として、陽極液タンクに、濃硫酸供給ラインおよび超純水供給ラインを介して濃硫酸と超純水とをそれぞれ供給し、陽極液タンク内にて硫酸の濃度調整を行う。ここで、硫酸の濃度調整を陽極液タンク内で行うことは必須ではなく、あらかじめ濃度調整した硫酸を陽極液タンクに供給してもよい。このときの硫酸溶液の濃度は、任意に調整することができる。次に、第2工程では、陽極液タンク内の硫酸溶液を、陽極循環ポンプにて電解槽内の陽極室に圧送し、電解を行う。この工程によって陽極では酸化性物質を有する電解硫酸を作製する。さらに、第3工程では、電解液を、発生した陽極ガスとともに、陽極循環ポンプにて、陽極液供給ライン、陽極室、陽極液循環ラインおよび陽極液タンクを循環させて、十分に攪拌しながら、電解を続けて行う。ここで、電解液の循環を行わずに、電解液を電解セルに一度だけ流通させる、いわゆるワンパスの方法を用いてもよい。このとき陽極ガスは、陽極液タンクで気液分離し、装置外へ排出する。なお、陰極液タンク側においても、記載はしないが、同様の機構により、同様に循環、攪拌を行うことができる。   In the sulfuric acid electrolysis apparatus of the present invention, although not particularly limited, an electrolytic cell using conductive diamond for the anode and the cathode and a diaphragm made of porous PTFE as the diaphragm can be suitably used as the sulfuric acid electrolytic tank. In the electrolysis process in the sulfuric acid electrolysis apparatus, first, as a first process, concentrated sulfuric acid and ultrapure water are respectively supplied to the anolyte tank via the concentrated sulfuric acid supply line and the ultrapure water supply line. Adjust the sulfuric acid concentration with. Here, it is not essential to adjust the concentration of sulfuric acid in the anolyte tank, and sulfuric acid whose concentration has been adjusted in advance may be supplied to the anolyte tank. The concentration of the sulfuric acid solution at this time can be arbitrarily adjusted. Next, in a 2nd process, the sulfuric acid solution in an anolyte tank is pumped to the anode chamber in an electrolytic tank with an anode circulation pump, and electrolysis is performed. By this step, electrolytic sulfuric acid having an oxidizing substance is produced at the anode. Furthermore, in the third step, the electrolytic solution is circulated through the anolyte supply line, the anode chamber, the anolyte circulation line, and the anolyte tank together with the generated anode gas, with sufficient stirring, Continue electrolysis. Here, a so-called one-pass method in which the electrolytic solution is circulated only once in the electrolytic cell without circulating the electrolytic solution may be used. At this time, the anode gas is gas-liquid separated in the anolyte tank and discharged outside the apparatus. Although not described on the catholyte tank side, circulation and stirring can be similarly performed by the same mechanism.

本発明において、濃度計を硫酸電解装置に接続して利用する場合、濃度計の接続箇所は特に限定されず、任意の位置に設置できるが、陽極タンクもしくは電解セル直後の陽極液循環ラインに接続することが好ましい。このとき、評価液は、上記硫酸電解装置の陽極タンクや循環ライン等から酸化性物質の総濃度測定用濃度計に直接供給するよう設置してもよいし、上記循環ラインや陽極タンクから一度評価液用タンクに供給後、濃度計に供給してもよい。   In the present invention, when the concentration meter is connected to a sulfuric acid electrolysis device, the connection location of the concentration meter is not particularly limited and can be installed at any position, but connected to the anolyte circulation line immediately after the anode tank or the electrolysis cell. It is preferable to do. At this time, the evaluation solution may be installed so as to be supplied directly from the anode tank or circulation line of the sulfuric acid electrolysis apparatus to the concentration meter for measuring the total concentration of the oxidizing substance, or once evaluated from the circulation line or anode tank. You may supply to a concentration meter after supplying to the tank for liquids.

また、本発明において、濃度計を硫酸電解装置に接続して利用する場合には、濃度計で測定した結果に基づき、所定の酸化性物質の総濃度を目的値として、硫酸電解装置の電解時間や電流値、温度、液滞留時間などを制御しつつ、運転することができる。   In the present invention, when the concentration meter is connected to a sulfuric acid electrolysis device, the electrolysis time of the sulfuric acid electrolysis device is determined based on the result of measurement by the concentration meter, with the total concentration of a predetermined oxidizing substance as a target value. It is possible to operate while controlling the current value, temperature, liquid residence time and the like.

次に、本発明を実施例および比較例を挙げて、具体的に説明する。但し、本発明は、これらの実施例に限定されるものではない。   Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to these examples.

本発明における、電極表面積の算出、評価に使用した電解液の作製、作製した電解液中のペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素の濃度測定、酸化性物質の総濃度測定、総クーロン量の算出、並びに、総クーロン量と陰極液量とから算出した酸化性物質の総濃度の算出は、それぞれ以下に従い行った。また、下記の表1,3,5,7に、各実施例および比較例における電解セルおよび評価液(電解液)の条件、並びに、評価条件をまとめて示す。   In the present invention, calculation of electrode surface area, preparation of electrolyte used for evaluation, measurement of concentration of peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide in the prepared electrolyte, measurement of total concentration of oxidizing substances, total Calculation of the amount of coulomb and calculation of the total concentration of the oxidizing substance calculated from the total amount of coulomb and the amount of catholyte were performed as follows. Tables 1, 3, 5, and 7 below collectively show the conditions of the electrolytic cell and the evaluation solution (electrolytic solution) in each example and comparative example, and the evaluation conditions.

<白金の電極表面積算出>
白金の電極表面積を算出するため、電極のサイクリックボルタンメトリー測定を行った。具体的には、−0.15〜0.20V(vs.Ag/AgCl)に見られる水素吸着ピークについて、サンプリング周期と、観測された電流値から電極二重層充電のための電流値を差し引いた値の絶対値との積により、水素吸着の総クーロン量を算出した。この総クーロン量から、あらかじめ把握している係数(Pt表面積1cmあたり210μC(210μC/cm))の値で除することにより、電気化学反応に有効に使用されているPtの表面積を算出した。
・電解セル:蓋付ガラスセル
・作用極:濃度計に使用する白金メッシュ陰極・陽極
・対極:白金メッシュ
・参照極:Ag/AgCl(内部液:飽和KCl)
・電解液:3.73mol/l%硫酸(測定前にはセル内が陽圧となる条件で電解液中に30分Nバブリングを行った。)
・測定装置:北斗電工(株)製 HABF−5001
・サンプリング周期:50ms
・電位走査速度:50mV/s
・電位走査範囲:−0.15〜0.20V(vs.Ag/AgCl)
・電気二重層充電電流:0.20V(vs.Ag/AgCl)の電流値を用いた。
<Calculation of electrode surface area of platinum>
In order to calculate the electrode surface area of platinum, cyclic voltammetry measurement of the electrode was performed. Specifically, for the hydrogen adsorption peak observed at −0.15 to 0.20 V (vs. Ag / AgCl), the current value for charging the electrode double layer was subtracted from the sampling period and the observed current value. The total coulomb amount for hydrogen adsorption was calculated by the product of the absolute value and the value. The surface area of Pt that is effectively used in the electrochemical reaction was calculated by dividing this total coulomb amount by the value of a known factor (210 μC (210 μC / cm 2 ) per cm 2 of Pt surface area). .
Electrolysis cell: Glass cell with lid Working electrode: Platinum mesh cathode / anode used for densitometer Counter electrode: platinum mesh Reference electrode: Ag / AgCl (internal solution: saturated KCl)
Electrolyte solution: 3.73 mol / l% sulfuric acid (N 2 bubbling was performed in the electrolyte solution for 30 minutes under the condition that the cell had a positive pressure before measurement)
-Measuring device: HABF-5001 manufactured by Hokuto Denko Co., Ltd.
・ Sampling period: 50 ms
-Potential scanning speed: 50 mV / s
-Potential scanning range: -0.15 to 0.20 V (vs. Ag / AgCl)
Electric double layer charging current: A current value of 0.20 V (vs. Ag / AgCl) was used.

<カーボンフェルトの電極表面積算出>
窒素ガスの吸着等温測定から、BET法によるカーボンフェルトの表面積を、ユアサアイオニクス(株)製の全自動ガス吸着装置「AUTOSORB−1」を用いて求めた。測定対象に対して、窒素流通下、350℃で30分間、予備乾燥を行った後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET10点法によって測定した。
<Calculation of electrode surface area of carbon felt>
From the adsorption isothermal measurement of nitrogen gas, the surface area of the carbon felt by the BET method was determined using a fully automatic gas adsorption device “ATOSORB-1” manufactured by Yuasa Ionics Co., Ltd. Using a nitrogen-helium mixed gas that was precisely adjusted so that the relative pressure of nitrogen with respect to atmospheric pressure was 0.3 after preliminary drying at 350 ° C. for 30 minutes under nitrogen flow for the measurement target The nitrogen adsorption BET 10-point method by gas flow method was used.

<評価液の作製(硫酸溶液)>
1lの評価液を作製するために必要な98%硫酸の重量を下記式(9)に基づき算出し、1lメスフラスコに、98%硫酸(HSO:関東化学(株)製)を採取して、超純水を加えて全1lの評価液とした。

Figure 0005710345
(式中、A(g)は1lの評価液の作製に必要な98%硫酸の重量を示す) <Preparation of evaluation liquid (sulfuric acid solution)>
Based on the following formula (9), the weight of 98% sulfuric acid necessary for preparing 1 l of evaluation liquid is calculated, and 98% sulfuric acid (H 2 SO 4 : manufactured by Kanto Chemical Co., Inc.) is collected in a 1 l volumetric flask. Then, ultrapure water was added to make a total evaluation solution of 1 l.
Figure 0005710345
(In the formula, A (g) represents the weight of 98% sulfuric acid necessary for preparing 1 l of the evaluation solution)

<評価液の作製(電解硫酸溶液)>
電解面積1.000dmの導電性ダイヤモンド電極を陽極および陰極に用いた隔膜付き電解セルを用いて、陽極液および陰極液をそれぞれ循環しながら硫酸を電解し、以下の条件に従い電解硫酸溶液の製造を行った。評価液は、1lメスフラスコに、98%硫酸(関東化学(株)製)を上記式(9)に基づき372g採取して、超純水を加えて全1lに希釈し、硫酸イオンを3.72mol/l含む電解液とし、そのうち300mlを陽極液、残り300mlを陰極液として使用した。電解時間は、酸化性物質の総濃度に合わせて調整した。
・セル電流:100A
・電流密度:100A/dm
・陽極液量:300ml
・電解液温度:28℃
・陽極液流量:1l/min
・陰極液流量:1l/min
・陽極電解液:3.73mol/l硫酸
・陰極電解液:3.73mol/l硫酸
・隔膜:(住友電工ファインポリマー(株)製のポアフロン(登録商標))
<Preparation of evaluation solution (electrolytic sulfuric acid solution)>
Using an electrolytic cell with a diaphragm using a conductive diamond electrode with an electrolysis area of 1.000 dm 2 as the anode and cathode, sulfuric acid was electrolyzed while circulating the anolyte and catholyte respectively, and the production of the electrolytic sulfuric acid solution according to the following conditions Went. As an evaluation solution, 372 g of 98% sulfuric acid (manufactured by Kanto Chemical Co., Inc.) was collected in a 1 l volumetric flask based on the above formula (9), diluted with ultrapure water to a total of 1 l, and sulfate ions were added in 3 ml. An electrolytic solution containing 72 mol / l was used, 300 ml of which was used as the anolyte and the remaining 300 ml was used as the catholyte. The electrolysis time was adjusted according to the total concentration of the oxidizing substance.
-Cell current: 100A
Current density: 100 A / dm 2
・ Anolyte volume: 300ml
・ Electrolyte temperature: 28 ℃
・ Anolyte flow rate: 1 l / min
-Catholyte flow rate: 1 l / min
Anode electrolyte: 3.73 mol / l sulfuric acid Cathode electrolyte: 3.73 mol / l sulfuric acid Diaphragm: (Poreflon (registered trademark) manufactured by Sumitomo Electric Fine Polymer Co., Ltd.)

<評価液の作製(ペルオキソ二硫酸アンモニウムを含む硫酸溶液)>
1lの評価液を作製するために必要な98%硫酸の重量を上記式(9)に基づき算出し、ペルオキソ二硫酸アンモニウムの重量を下記式(10)に基づき算出して、1lメスフラスコに、98%硫酸(関東化学(株)製)、ペルオキソ二硫酸アンモニウム((NH:和光純薬工業(株)製)および超純水を加えて、全1lの評価液とした。評価液の作製は、評価液の温度が上昇しないように、メスフラスコの底を冷却水で冷やしながら行った。

Figure 0005710345
(式中、B(g)は1lの評価液の作製に必要なペルオキソ二硫酸アンモニウムの重量を示す) <Preparation of evaluation solution (sulfuric acid solution containing ammonium peroxodisulfate)>
The weight of 98% sulfuric acid necessary for preparing 1 l of evaluation liquid is calculated based on the above formula (9), and the weight of ammonium peroxodisulfate is calculated based on the following formula (10). % Sulfuric acid (manufactured by Kanto Chemical Co., Inc.), ammonium peroxodisulfate ((NH 4 ) 2 S 2 O 4 : manufactured by Wako Pure Chemical Industries, Ltd.) and ultrapure water were added to give a total evaluation solution of 1 l. The evaluation liquid was produced while cooling the bottom of the volumetric flask with cooling water so that the temperature of the evaluation liquid did not increase.
Figure 0005710345
(In the formula, B (g) represents the weight of ammonium peroxodisulfate necessary for preparing 1 l of the evaluation liquid)

<評価液の作製(ペルオキソ一硫酸塩を含む硫酸溶液)>
1lの評価液を作製するために必要な98%硫酸の重量を上記式(9)に基づき算出し、オキソン(登録商標)一過硫酸塩化合物の重量を下記式(11)に基づき算出して、1lメスフラスコに、98%硫酸(関東化学(株)製)、オキソン(登録商標)一過硫酸塩化合物(2KHSO・KHSO・KSO:和光純薬工業(株)製)および超純水を加えて、全1lの評価液とした。評価液の作製は、評価液の温度が上昇しないように、メスフラスコの底を冷却水で冷やしながら行った。

Figure 0005710345
(式中、C(g)は1lの評価液の作製に必要なオキソン(登録商標)一過硫酸塩の重量を示す) <Preparation of evaluation solution (sulfuric acid solution containing peroxomonosulfate)>
The weight of 98% sulfuric acid necessary for preparing 1 l of the evaluation liquid is calculated based on the above formula (9), and the weight of the oxone (registered trademark) monopersulfate compound is calculated based on the following formula (11). in 1l volumetric flask, (manufactured by Kanto chemical Co.) of 98% sulfuric acid, Oxone® monopersulfate compound (2KHSO 5 · KHSO 4 · K 2 SO 4: manufactured by Wako Pure chemical Industries, Ltd.) and Ultrapure water was added to make a total of 1 liter of evaluation solution. The evaluation liquid was produced while cooling the bottom of the volumetric flask with cooling water so that the temperature of the evaluation liquid did not increase.
Figure 0005710345
(Wherein, C (g) represents the weight of Oxone (registered trademark) monopersulfate necessary for preparing 1 l of evaluation liquid)

<評価液の作製(過酸化水素を含む硫酸溶液)>
1lの評価液を作製するために必要な98%硫酸の重量を上記式(9)に基づき算出し、35%過酸化水素の重量を下記式(12)に基づき算出して、1lメスフラスコに、98%硫酸(関東化学(株)製)、35%過酸化水素(H:和光純薬工業(株)製)および超純水を加えて、全1lの評価液とした。評価液の作製は、評価液の温度が上昇しないように、メスフラスコの底を冷却水で冷やしながら行った。

Figure 0005710345
(式中、D(g)は1lの評価液の作製に必要な過酸化水素の重量を示す) <Preparation of evaluation solution (sulfuric acid solution containing hydrogen peroxide)>
The weight of 98% sulfuric acid necessary for preparing 1 l of evaluation liquid is calculated based on the above formula (9), and the weight of 35% hydrogen peroxide is calculated based on the following formula (12). 98% sulfuric acid (manufactured by Kanto Chemical Co., Inc.), 35% hydrogen peroxide (H 2 O 2 : manufactured by Wako Pure Chemical Industries, Ltd.) and ultrapure water were added to make a total evaluation solution of 1 l. The evaluation liquid was produced while cooling the bottom of the volumetric flask with cooling water so that the temperature of the evaluation liquid did not increase.
Figure 0005710345
(In the formula, D (g) represents the weight of hydrogen peroxide necessary for preparing a 1-liter evaluation solution)

<ラマン分光法による評価液中のペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素の濃度測定>
作製した評価液中のペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素の濃度測定を、ラマン分光法を用いて行った。測定条件および測定方法は以下に示すとおりである。濃度が既知のペルオキソ二硫酸アンモニウムを含む硫酸溶液、ペルオキソ一硫酸塩を含む硫酸溶液、および、過酸化水素を含む硫酸溶液を、上記(10),(11),(12)式に基づき作製・測定し、仕込みの酸化性物質総濃度とラマン分光結果から検量線を作成して、濃度換算に利用した。なお、硫酸濃度は3.73mol/lとした。
・測定装置:サーモフィッシャーサイエンティフィック社製ラマン分光光度計
・型式:AlMEGA XR
・レーザー光:532nm
・露光時間:2.00秒
・露光回数:20
・バックグラウンド露光回数:20
・グレーティング:672lines/mm
・測定幅:700〜1500cm−1
・分光器アパーチャ:25μmスリット
・マクロ試験室にて低分解能測定
・スペクトル補正:全範囲の強度から、710cm−1と1140cm−1の強度を直線で結んだベースライン値を差し引いた。
・ペルオキソ二硫酸濃度測定には832cm−1のときの強度を利用した。
・ペルオキソ一硫酸濃度測定には770cm−1のときの強度を利用した。
・過酸化水素濃度測定には872cm−1のときの強度を利用した。
<Concentration measurement of peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide in the evaluation solution by Raman spectroscopy>
The concentration of peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide in the prepared evaluation liquid was measured using Raman spectroscopy. Measurement conditions and measurement methods are as follows. A sulfuric acid solution containing ammonium peroxodisulfate having a known concentration, a sulfuric acid solution containing peroxomonosulfate, and a sulfuric acid solution containing hydrogen peroxide were prepared and measured based on the above equations (10), (11), and (12). Then, a calibration curve was created from the total concentration of oxidizers charged and the Raman spectroscopic result, and used for concentration conversion. The sulfuric acid concentration was 3.73 mol / l.
・ Measuring device: Raman spectrophotometer manufactured by Thermo Fisher Scientific ・ Model: AlMEGA XR
・ Laser light: 532 nm
-Exposure time: 2.00 seconds-Number of exposures: 20
-Number of background exposures: 20
・ Grating: 672lines / mm
Measurement width: 700-1500 cm −1
Spectrometer aperture: 25 μm slit Low-resolution measurement in a macro laboratory Spectral correction: The baseline value obtained by connecting the intensity of 710 cm −1 and 1140 cm −1 with a straight line was subtracted from the intensity of the entire range.
-The intensity | strength at 832 cm < -1 > was utilized for the peroxodisulfuric acid density | concentration measurement.
The intensity at 770 cm −1 was used for the measurement of peroxomonosulfuric acid concentration.
-The intensity | strength at the time of 872 cm < -1 > was utilized for the hydrogen peroxide concentration measurement.

<総クーロン量算出>
電流値(A)の絶対値とそれを流した時間(s)との積分により、還元反応の総クーロン量を算出した。今回の電流値のサンプリング周期は50msとし、電解開始から電解停止までの総クーロン量を算出した。電解開始時の電流値が1/100まで小さくなったとき、電解を停止した。
<Calculation of total coulomb amount>
The total coulomb amount of the reduction reaction was calculated by integrating the absolute value of the current value (A) and the time (s) during which it was passed. The sampling period of the current value was 50 ms, and the total coulomb amount from the start of electrolysis to the stop of electrolysis was calculated. When the current value at the start of electrolysis was reduced to 1/100, electrolysis was stopped.

<総クーロン量を用いた酸化性物質の総濃度の算出>
総クーロン量と陰極液量とから、下記式(13)に基づき、酸化性物質の総濃度を算出した。

Figure 0005710345
(式中、E(mol/l)は酸化性物質の総濃度を示す) <Calculation of total concentration of oxidizing substances using total coulomb amount>
From the total amount of coulomb and the amount of catholyte, the total concentration of the oxidizing substance was calculated based on the following formula (13).
Figure 0005710345
(In the formula, E (mol / l) represents the total concentration of oxidizing substances)

<ラマン分光測定結果とのずれ>
全電解方式から算出した酸化性物質の総濃度と、ラマン分光法による酸化性物質の総濃度の値のずれを以下式から算出した。

Figure 0005710345
(式中、F(%)はラマン分光測定結果とのずれを示す) <Difference from Raman spectroscopic measurement results>
The difference between the total concentration of oxidizing substances calculated from the total electrolysis method and the total concentration of oxidizing substances by Raman spectroscopy was calculated from the following equation.
Figure 0005710345
(In the formula, F (%) indicates a deviation from the Raman spectroscopic measurement result)

<実施例1>
図2で示す濃度計に、図1に示すような、陰極に電極面積1.16dmの白金メッシュ電極を、陽極に電極面積2.32dmの白金メッシュ電極を、参照電極にAg/AgCl(内部液:飽和KCl)参照電極を、それぞれ用いた隔膜付き電解セル24を組み込んで、酸化性物質総濃度1.00mol/l、硫酸濃度3.73mol/lの電解硫酸溶液中の酸化性物質の総濃度測定を行った。なお、評価液の作製から測定開始までの時間は10分であった。以下、実施例1に係る酸化性物質の総濃度測定方法を全電解方式と称する。電解開始時の電流値の絶対値は0.8Aであったため、電解停止は、電解開始時の電流値の1/100である0.008Aまで電流値が減衰したときとした。その結果を、下記の表2および図5に示す。
<Example 1>
As shown in FIG. 1, the densitometer shown in FIG. 2 has a platinum mesh electrode with an electrode area of 1.16 dm 2 as the cathode, a platinum mesh electrode with an electrode area of 2.32 dm 2 as the anode, and Ag / AgCl ( Inner liquid: saturated KCl) Reference electrode and diaphragm-equipped electrolysis cell 24 were incorporated, and the oxidizing substance in the electrolytic sulfuric acid solution having a total oxidizing substance concentration of 1.00 mol / l and sulfuric acid concentration of 3.73 mol / l Total concentration measurements were made. The time from the preparation of the evaluation liquid to the start of measurement was 10 minutes. Hereinafter, the method for measuring the total concentration of the oxidizing substance according to Example 1 is referred to as a total electrolysis method. Since the absolute value of the current value at the start of electrolysis was 0.8 A, the electrolysis was stopped when the current value was attenuated to 0.008 A, which is 1/100 of the current value at the start of electrolysis. The results are shown in Table 2 below and FIG.

<実施例2〜4>
実施例2〜4として、電解硫酸溶液中の酸化性物質の総濃度、および、評価液作製から測定開始までの時間を変えることにより、評価液中の酸化性物質成分の割合を変えた評価液を用いた以外は実施例1と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表2および図5(実施例2,3のみ)に示す。
<Examples 2 to 4>
As Examples 2 to 4, an evaluation solution in which the total concentration of the oxidizing substance in the electrolytic sulfuric acid solution and the time from the preparation of the evaluation liquid to the start of measurement were changed to change the ratio of the oxidizing substance component in the evaluation liquid The total concentration of the oxidizing substance in the evaluation liquid was measured in the same manner as in Example 1 except that was used. The results are shown in Table 2 below and FIG. 5 (Examples 2 and 3 only).

<実施例5〜7>
評価液として、上記式(9)および(10)に基づき作製した硫酸濃度3.73mol/l、ペルオキソ二硫酸イオン濃度0.30mol/lのペルオキソ二硫酸アンモニウム硫酸を含む硫酸溶液、上記式(9)および(11)に基づき作製した硫酸濃度3.73mol/l、ペルオキソ一硫酸イオン濃度0.30mol/lのペルオキソ一硫酸塩を含む硫酸溶液、および、上記式(9)および(12)に基づき作製した硫酸濃度3.73mol/l、過酸化水素濃度0.30mol/lの過酸化水素を含む硫酸溶液を用いた以外は実施例1と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表2に示す。
<Examples 5-7>
As an evaluation solution, a sulfuric acid solution containing ammonium peroxodisulfate having a sulfuric acid concentration of 3.73 mol / l and a peroxodisulfate ion concentration of 0.30 mol / l prepared based on the above formulas (9) and (10), the above formula (9) And a sulfuric acid solution containing a peroxomonosulfate having a sulfuric acid concentration of 3.73 mol / l and a peroxomonosulfate ion concentration of 0.30 mol / l, prepared based on (11), and the above formulas (9) and (12) The total concentration of oxidizing substances in the evaluation solution was the same as in Example 1 except that a sulfuric acid solution containing hydrogen peroxide having a sulfuric acid concentration of 3.73 mol / l and a hydrogen peroxide concentration of 0.30 mol / l was used. Was measured. The results are shown in Table 2 below.

Figure 0005710345
Figure 0005710345

Figure 0005710345
Figure 0005710345

実施例1において、上記総クーロン量算出方法に従い総クーロン量を算出したところ、77Cであった。また、上記総クーロン量を用いた酸化性物質の総濃度算出方法に従い、評価液中の酸化性物質総濃度を算出したところ、1.00mol/lであった。この値は、ラマン分光法で得られた酸化性物質の総濃度の結果と一致したため、本発明に従う酸化性物質の総濃度測定方法を用いた濃度計により、酸化性物質の総濃度が精度良く測定されていることが確かめられた。   In Example 1, when the total coulomb amount was calculated according to the above total coulomb amount calculation method, it was 77 C. Moreover, when the total concentration of oxidizing substances in the evaluation liquid was calculated according to the above method for calculating the total concentration of oxidizing substances using the total amount of coulomb, it was 1.00 mol / l. Since this value coincided with the result of the total concentration of the oxidizing substance obtained by Raman spectroscopy, the total concentration of the oxidizing substance was accurately determined by a densitometer using the method for measuring the total concentration of the oxidizing substance according to the present invention. It was confirmed that it was measured.

また、実施例2〜7においても、ラマン分光法で得られた酸化性物質の総濃度の結果と近い数値が得られており、本発明に従う酸化性物質の総濃度測定方法を用いた濃度計により、酸化性物質の総濃度が精度良く測定されていることが確かめられた。   Also in Examples 2 to 7, a numerical value close to the result of the total concentration of the oxidizing substance obtained by Raman spectroscopy was obtained, and a densitometer using the method for measuring the total concentration of the oxidizing substance according to the present invention. Thus, it was confirmed that the total concentration of the oxidizing substance was accurately measured.

実施例1〜7の結果から、酸化性物質の成分および濃度が異なる評価液であっても、本発明に従う酸化性物質の総濃度測定方法を用いた濃度計により、酸化性物質の総濃度を精度良く評価できることが確かめられた。   From the results of Examples 1 to 7, even if the evaluation liquid has different components and concentrations of the oxidizing substance, the total concentration of the oxidizing substance is determined by a densitometer using the method for measuring the total concentration of the oxidizing substance according to the present invention. It was confirmed that it can be evaluated with high accuracy.

<実施例8>
陰極としてカーボンフェルトを用い、保持電位を下記表中に示すように変更した以外は実施例4と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表4に示す。
<Example 8>
The total concentration of the oxidizing substance in the evaluation solution was measured by the same method as in Example 4 except that carbon felt was used as the cathode and the holding potential was changed as shown in the following table. The results are shown in Table 4 below.

<実施例9>
実施例9として、電解セルに図3に示す無隔膜電解セルを用いた以外は実施例4と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表4に示す。
<Example 9>
As Example 9, the total concentration of the oxidizing substance in the evaluation solution was measured by the same method as in Example 4 except that the diaphragm cell shown in FIG. 3 was used as the electrolytic cell. The results are shown in Table 4 below.

<実施例10〜12>
陰極液量および陰極表面積/陰極液量の比を下記表中に示すように変更した以外は実施例4と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表4に示す。
<Examples 10 to 12>
The total concentration of the oxidizing substance in the evaluation liquid was measured in the same manner as in Example 4 except that the ratio of the amount of catholyte and the ratio of the cathode surface area / catholyte amount was changed as shown in the following table. The results are shown in Table 4 below.

Figure 0005710345
Figure 0005710345

Figure 0005710345
Figure 0005710345

実施例8において、カーボンフェルトを用いた場合にも、ラマン分光法で得られた酸化性物質の総濃度の結果と近い数値が得られており、本発明に従う酸化性物質の総濃度測定方法を用いた濃度計により、酸化性物質の総濃度が精度良く測定されていることが確かめられた。また、この結果より、白金およびカーボンフェルトに代表される、水素発生電位から過酸化水素酸化電位までの電位の間でペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素などの多成分を還元することが可能な電極であれば、本発明の濃度計の電解セルの陰極として利用できることがわかった。   In Example 8, even when carbon felt was used, a value close to the result of the total concentration of the oxidizing substance obtained by Raman spectroscopy was obtained, and the method for measuring the total concentration of the oxidizing substance according to the present invention was obtained. It was confirmed that the total concentration of oxidizing substances was accurately measured by the concentration meter used. Moreover, from this result, multi-components such as peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide are reduced between the hydrogen generation potential and the hydrogen peroxide oxidation potential, represented by platinum and carbon felt. It was found that any electrode capable of being used can be used as the cathode of the electrolysis cell of the densitometer of the present invention.

実施例9においては、ラマン分光法で得られた酸化性物質の総濃度の結果と若干ずれが生じることがわかった。これは、過酸化水素が陽極側で酸化されてしまったためと考えられる。この結果より、電解セルとしては、隔膜を有しているものを用いるほうが、精度良く測定できることがわかった。   In Example 9, it was found that there was a slight deviation from the result of the total concentration of oxidizing substances obtained by Raman spectroscopy. This is probably because hydrogen peroxide has been oxidized on the anode side. From this result, it was found that an electrolytic cell having a diaphragm can be measured with higher accuracy.

実施例10〜12においては、ラマン分光法で得られた酸化性物質の総濃度の結果と近い数値が得られており、本発明に従う酸化性物質の総濃度測定方法を用いた濃度計により、酸化性物質の総濃度が精度良く測定されていることが確かめられた。一方で、実施例10〜12と実施例4の結果とを比較することで、陰極液量が大きく、陰極表面積/陰極液量の比が小さいほど、電解開始から停止までの時間が長くなることがわかった。この結果より、陰極液量が少なく、陰極表面積/陰極液量の比が大きいほど、電解開始から停止までの時間を短縮することができるので、応答速度が速い濃度計を作製できることがわかった。   In Examples 10 to 12, a numerical value close to the result of the total concentration of the oxidizing substance obtained by Raman spectroscopy was obtained, and by a densitometer using the method for measuring the total concentration of the oxidizing substance according to the present invention, It was confirmed that the total concentration of oxidizing substances was accurately measured. On the other hand, by comparing the results of Examples 10-12 and Example 4, the larger the catholyte volume and the smaller the cathode surface area / catholyte volume ratio, the longer the time from electrolysis start to stop. I understood. From this result, it has been found that the smaller the amount of catholyte and the larger the ratio of the cathode surface area / catholyte amount, the shorter the time from the start to the end of electrolysis, so that a densitometer with a faster response speed can be produced.

<実施例13〜15>
陰極室の保持電位を下記表中に示すように変更した以外は実施例4と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表6に示す。
<Examples 13 to 15>
The total concentration of oxidizing substances in the evaluation liquid was measured in the same manner as in Example 4 except that the holding potential of the cathode chamber was changed as shown in the following table. The results are shown in Table 6 below.

<実施例16>
電解停止を電解開始時の電流値の1/10である0.08Aまで電流値が減衰したときとした以外は実施例4と同様の方法で、評価液中の酸化性物質の総濃度を測定した。その結果を、下記の表6に示す。
<Example 16>
The total concentration of the oxidizing substance in the evaluation solution was measured in the same manner as in Example 4 except that the electrolysis was stopped when the current value attenuated to 0.08 A, which was 1/10 of the current value at the start of electrolysis. did. The results are shown in Table 6 below.

Figure 0005710345
Figure 0005710345

Figure 0005710345
Figure 0005710345

実施例13〜15においては、実施例4の結果と比較して、保持電位が貴になるほど、電解停止までの時間が長くなることがわかった。これは、保持電位が貴になるほど酸化性物質の還元速度(=電流値)が小さくなるためであると考えられる。保持電位が0.4V(vs.Ag/AgCl)になると、ラマン分光法で得られた酸化性物質の総濃度の結果からずれが生じることがわかった。これは、図4からもわかるように、この電位ではペルオキソ二硫酸イオンの還元反応が起こりにくいためであると考えられる。この結果より、保持電位は、用いた陰極に合わせて水素発生電位から過酸化水素酸化電位の間に保持することが効果的であり、より卑な電位に保持すると、応答速度がより速い濃度計を作製できることがわかった。実施例15では、実施例4と比べて酸化性物質総濃度が高くなり、ラマン測定結果とずれが生じた。これは総クーロン量の一部に水素発生の電流値を含んでいることによるものと考えられる。   In Examples 13-15, compared with the result of Example 4, it turned out that time until electrolysis stop becomes longer, so that a holding potential becomes noble. This is presumably because the reduction rate (= current value) of the oxidizing substance decreases as the holding potential becomes noble. It was found that when the holding potential was 0.4 V (vs. Ag / AgCl), there was a deviation from the result of the total concentration of oxidizing substances obtained by Raman spectroscopy. As can be seen from FIG. 4, this is considered to be because the reduction reaction of peroxodisulfate ions hardly occurs at this potential. From this result, it is effective to hold the holding potential between the hydrogen generation potential and the hydrogen peroxide oxidation potential according to the cathode used, and if held at a lower potential, the densitometer has a faster response speed. It was found that can be produced. In Example 15, the total oxidizing substance concentration was higher than in Example 4, and a deviation from the Raman measurement result occurred. This is considered to be due to the fact that the current value of hydrogen generation is included in a part of the total coulomb amount.

実施例16の結果からは、実施例4の結果と比較して、電解停止を設定する電流値が大きくなると、電解開始から終了までに要した時間は短くなるものの、検出できる酸化性物質の総濃度が低いものとなり、その結果、ラマン測定結果とのずれが大きくなることがわかった。   From the results of Example 16, compared to the results of Example 4, when the current value for setting the electrolysis stop increases, the time required from the start to the end of electrolysis is shortened, but the total number of oxidizable substances that can be detected is reduced. It was found that the concentration was low, and as a result, the deviation from the Raman measurement result increased.

<比較例1〜5>
比較例1〜5として、電解硫酸溶液中の酸化性物質の総濃度、および、評価液作製から測定開始までの時間を変えることにより、評価液中の酸化性物質成分の割合を変えた評価液を用い、電解面積0.01cmの白金陰極を用いて、陰極電位を0.8Vから−0.2V(vs.Ag/AgCl)まで走査速度50mV/sにて電位走査し、還元電流値のピーク値を検出した。その結果を、下記の表8に示す。
<Comparative Examples 1-5>
As Comparative Examples 1 to 5, an evaluation liquid in which the total concentration of the oxidizing substance in the electrolytic sulfuric acid solution and the time from the preparation of the evaluation liquid to the start of measurement were changed to change the ratio of the oxidizing substance component in the evaluation liquid Using a platinum cathode with an electrolysis area of 0.01 cm 2 , the cathode potential was scanned from 0.8 V to −0.2 V (vs. Ag / AgCl) at a scanning speed of 50 mV / s, and the reduction current value was Peak value was detected. The results are shown in Table 8 below.

Figure 0005710345
Figure 0005710345

Figure 0005710345
Figure 0005710345

比較例1〜5においては、酸化性物質の総濃度と電流値とに相関関係が得られないことがわかった。これは、図4からも明らかなように、酸化性物質成分によって還元速度(=電流値)が異なるためであると考えられる。この結果から、還元電流検出方式の濃度計は、ペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素などの多成分を高濃度に含有する硫酸溶液の酸化性物質の濃度計としては、利用できないことが確かめられた。   In Comparative Examples 1 to 5, it was found that no correlation was obtained between the total concentration of the oxidizing substance and the current value. This is considered to be because the reduction rate (= current value) varies depending on the oxidizing substance component, as is apparent from FIG. From this result, the reduction current detection type concentration meter cannot be used as a concentration meter for oxidizing substances in sulfuric acid solutions containing a high concentration of multiple components such as peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide. It was confirmed.

本発明は、ペルオキソ二硫酸イオンやペルオキソ一硫酸イオン、過酸化水素などの多成分の酸化性物質を高濃度に含有する評価液中の酸化性物質の総濃度測定方法として、有用である。   The present invention is useful as a method for measuring the total concentration of oxidizing substances in an evaluation solution containing a high concentration of multi-component oxidizing substances such as peroxodisulfate ions, peroxomonosulfate ions, and hydrogen peroxide.

1 陰極室排出口
2 陽極室排出口
3 陰極室
4 陽極室
5 陰極給電端子
6 陽極給電端子
7 参照電極給電端子
8 白金メッシュ陰極
9 白金メッシュ陽極
10 Ag/AgCl参照電極
11 多孔質ガラス液絡部
12 陰極室エンドプレート
13 陽極室エンドプレート
14 陰極液供給口
15 陽極液供給口
16 隔膜
17 シール材
18 評価液排出口
19 評価液供給口
20 酸化性物質溶液排出ライン
21 酸化性物質溶液供給ライン
22 酸化性物質溶液供給ポンプ
23 流量計
24 電解セル
DESCRIPTION OF SYMBOLS 1 Cathode chamber discharge port 2 Anode chamber discharge port 3 Cathode chamber 4 Anode chamber 5 Cathode feed terminal 6 Anode feed terminal 7 Reference electrode feed terminal 8 Platinum mesh cathode 9 Platinum mesh anode 10 Ag / AgCl reference electrode 11 Porous glass liquid junction 12 Cathode chamber end plate 13 Anode chamber end plate 14 Catholyte supply port 15 Anolyte supply port 16 Diaphragm 17 Sealing material 18 Evaluation solution discharge port 19 Evaluation solution supply port 20 Oxidizing material solution discharge line 21 Oxidizing material solution supply line 22 Oxidizing substance solution supply pump 23 Flow meter 24 Electrolytic cell

Claims (11)

少なくともペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素を含有する評価液中の酸化性物質の総濃度を測定する方法であって、
電解セルを用いて前記評価液中の前記酸化性物質を2電子還元する電解工程と、該電解工程における、定電位の下、電解開始時の電流値から所定電流値まで電流値が減衰するまでの還元電流値より総クーロン量を算出するクーロン量算出工程と、該クーロン量算出工程で算出された該総クーロン量より前記酸化性物質の総濃度を算出する濃度算出工程と、を少なくとも含むことを特徴とする酸化性物質の総濃度測定方法。
A method for measuring the total concentration of oxidizing substances in an evaluation liquid containing at least peroxodisulfate ions, peroxomonosulfate ions and hydrogen peroxide ,
An electrolysis process that uses an electrolysis cell to reduce the oxidizing substance in the evaluation solution by two electrons, and the current value attenuates from a current value at the start of electrolysis to a predetermined current value at a constant potential in the electrolysis process. At least a coulomb amount calculating step for calculating the total coulomb amount from the reduction current value of the gas, and a concentration calculating step for calculating the total concentration of the oxidizing substance from the total coulomb amount calculated in the coulomb amount calculating step. A method for measuring the total concentration of oxidizing substances characterized by the following.
前記電解セルが、隔膜により陽極室と陰極室とに区画され、かつ、該陰極室内に陰極を、該陽極室内に陽極を、それぞれ備える請求項記載の酸化性物質の総濃度測定方法。 The electrolytic cell is partitioned into an anode chamber and a cathode chamber by a diaphragm and a cathode compartment the cathode, the anode chamber the anode, the total concentration measuring method of oxidizing substances according to claim 1, further comprising, respectively. 前記電解工程において、前記評価液を、下記式(1)、
0.5<X/Y ・・・(1)
(式中、Xは陰極表面積(dm)であり、Yは陰極液量(ml)である)を満足する条件で電解する請求項記載の酸化性物質の総濃度測定方法。
In the electrolysis step, the evaluation liquid is expressed by the following formula (1),
0.5 <X / Y (1)
The method for measuring the total concentration of an oxidizing substance according to claim 2 , wherein electrolysis is performed under conditions satisfying (wherein X is a cathode surface area (dm 2 ) and Y is a catholyte amount (ml)).
前記電解セル内の陰極として、白金、金、炭素材料および銀からなる群より選択される少なくとも一種から構成されたものを用いる請求項2または3記載の酸化性物質の総濃度測定方法。 4. The method for measuring the total concentration of an oxidizing substance according to claim 2, wherein the cathode in the electrolytic cell is composed of at least one selected from the group consisting of platinum, gold, a carbon material and silver. 前記電解セルの電圧または陰極電位を、陰極において水素発生および過酸化水素酸化のいずれも生じない電圧または電位に保持する請求項のうちいずれか一項記載の酸化性物質の総濃度測定方法。 The total concentration measurement of the oxidizing substance according to any one of claims 2 to 4 , wherein the voltage or cathode potential of the electrolytic cell is maintained at a voltage or potential at which neither hydrogen generation nor hydrogen peroxide oxidation occurs at the cathode. Method. 少なくともペルオキソ二硫酸イオン、ペルオキソ一硫酸イオンおよび過酸化水素を含有する評価液中の酸化性物質の総濃度の測定に用いられる濃度計であって、
前記評価液中の前記酸化性物質の2電子還元を行う電解セルと、該電解セルに電圧または電位を印加する印加部と、該電解セルに印加される電圧または電位を制御する制御部と、該電解セルにおける、定電位の下、電解開始時の電流値から所定電流値まで電流値が減衰するまでの還元電流値より総クーロン量を算出するクーロン量算出部と、該クーロン量算出部で算出された該総クーロン量より前記酸化性物質の総濃度を算出する濃度算出部と、を備えたことを特徴とする酸化性物質の総濃度測定用濃度計。
A densitometer used for measuring a total concentration of oxidizing substances in an evaluation liquid containing at least peroxodisulfate ion, peroxomonosulfate ion and hydrogen peroxide ,
An electrolysis cell that performs two-electron reduction of the oxidizing substance in the evaluation liquid, an application unit that applies a voltage or a potential to the electrolysis cell, a control unit that controls a voltage or a potential applied to the electrolysis cell, In the electrolysis cell, at a constant potential, a coulomb amount calculation unit that calculates a total coulomb amount from a reduction current value until the current value attenuates from a current value at the start of electrolysis to a predetermined current value , and a coulomb amount calculation unit A concentration meter for measuring the total concentration of the oxidizing substance, comprising: a concentration calculating unit that calculates the total concentration of the oxidizing substance from the calculated total coulomb amount.
前記電解セルが、隔膜により陽極室と陰極室とに区画され、かつ、該陰極室内に陰極を、該陽極室内に陽極を、それぞれ備える請求項記載の酸化性物質の総濃度測定用濃度計。 7. The concentration meter for measuring the total concentration of an oxidizing substance according to claim 6 , wherein the electrolytic cell is divided into an anode chamber and a cathode chamber by a diaphragm, and a cathode is provided in the cathode chamber and an anode is provided in the anode chamber. . 前記電解セルにおいて、前記評価液が、下記式(1)、
0.5<X/Y ・・・(1)
(式中、Xは陰極表面積(dm)であり、Yは陰極液量(ml)である)を満足する条件で電解される請求項記載の酸化性物質の総濃度測定用濃度計。
In the electrolytic cell, the evaluation liquid is represented by the following formula (1),
0.5 <X / Y (1)
8. The densitometer for measuring the total concentration of an oxidizing substance according to claim 7 , wherein the electrolysis is performed under conditions satisfying (wherein X is a cathode surface area (dm 2 ) and Y is an amount of catholyte (ml)).
前記電解セル内の陰極が、白金、金、炭素材料および銀からなる群より選択される少なくとも一種から構成される請求項7または8記載の酸化性物質の総濃度測定用濃度計。 9. The densitometer for measuring the total concentration of oxidizing substances according to claim 7 or 8, wherein the cathode in the electrolytic cell is composed of at least one selected from the group consisting of platinum, gold, a carbon material and silver. 前記電解セル内の電圧または陰極電位が、陰極において水素発生および過酸化水素酸化のいずれも生じない電圧または電位に保持される請求項のうちいずれか一項記載の酸化性物質の総濃度測定用濃度計。 The total of oxidizing substances according to any one of claims 7 to 9 , wherein the voltage or cathode potential in the electrolysis cell is maintained at a voltage or potential at which neither hydrogen generation nor hydrogen peroxide oxidation occurs at the cathode. Densitometer for concentration measurement. 請求項10のうちいずれか一項記載の酸化性物質の総濃度測定用濃度計を搭載したことを特徴とする硫酸電解装置。 A sulfuric acid electrolysis apparatus comprising the concentration meter for measuring the total concentration of the oxidizing substance according to any one of claims 7 to 10 .
JP2011080762A 2011-03-31 2011-03-31 Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same Active JP5710345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080762A JP5710345B2 (en) 2011-03-31 2011-03-31 Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080762A JP5710345B2 (en) 2011-03-31 2011-03-31 Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same

Publications (2)

Publication Number Publication Date
JP2012215462A JP2012215462A (en) 2012-11-08
JP5710345B2 true JP5710345B2 (en) 2015-04-30

Family

ID=47268354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080762A Active JP5710345B2 (en) 2011-03-31 2011-03-31 Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same

Country Status (1)

Country Link
JP (1) JP5710345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220527A1 (en) 2020-04-28 2021-11-04 栗田工業株式会社 Etching method for resin molded article and etching process system for resin molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477832B1 (en) * 2017-10-31 2019-03-06 栗田工業株式会社 Method for hydrophilic treatment of polypropylene resin
JP6477831B1 (en) * 2017-10-31 2019-03-06 栗田工業株式会社 Method for hydrophilizing polyphenylene sulfide resin
JP7484407B2 (en) * 2020-05-18 2024-05-16 栗田工業株式会社 Method for starting up an electrolytic sulfuric acid solution production system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633280B2 (en) * 1988-01-29 1997-07-23 三井造船株式会社 Electrical analysis method
JP4175002B2 (en) * 2002-03-08 2008-11-05 栗田工業株式会社 Oxidation / reducing agent injection rate control method
JP4561994B2 (en) * 2005-09-07 2010-10-13 ペルメレック電極株式会社 Hydrogen peroxide reduction electrode, sensor using the same, and method for measuring hydrogen peroxide concentration
JP4623307B2 (en) * 2006-03-29 2011-02-02 栗田工業株式会社 Electrolytic cell and sulfuric acid recycle type cleaning system using the electrolytic cell
JP2008241372A (en) * 2007-03-26 2008-10-09 Dkk Toa Corp Coulometric measuring method and coulometric measuring instrument
JP2008294020A (en) * 2007-05-22 2008-12-04 Kurita Water Ind Ltd Cleaning solution supplying system, and cleaning system
JP4859003B2 (en) * 2009-02-18 2012-01-18 学校法人同志社 Electrochemical determination of hydrogen peroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220527A1 (en) 2020-04-28 2021-11-04 栗田工業株式会社 Etching method for resin molded article and etching process system for resin molded article

Also Published As

Publication number Publication date
JP2012215462A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
Zigah et al. Quantification of photoelectrogenerated hydroxyl radical on TiO 2 by surface interrogation scanning electrochemical microscopy
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
Peljo et al. Oxygen reduction at a water-1, 2-dichlorobenzene interface catalyzed by cobalt tetraphenyl porphyrine–A fuel cell approach
JP5710345B2 (en) Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same
JP5686602B2 (en) Titration apparatus and method
WO2012118022A1 (en) Method for measuring total concentration of acidic substances, concentration meter for measuring total concentration of acidic substances, and sulfuric acid electrolysis device equipped with same
TWI512288B (en) A chemical oxygen demand determination apparatus
TWM496760U (en) Chemical oxygen demand inspection device
TWI516641B (en) A conductive diamond electrode, a sulfuric acid electrolysis method thereof, and a sulfuric acid electrolysis apparatus
JP7263458B2 (en) Fuel cell
JP2008164504A (en) Quantity determination method of oxidizing component in electrolysis sulfuric acid
JP2007212232A (en) Dissolved ozone concentration measuring device and method
CN110579524B (en) Method for cleaning, adjusting, calibrating and/or regulating a current sensor
JP6022040B2 (en) Method and apparatus for measuring and controlling the concentration of electroactive species in an aqueous solution
Lulu et al. Quantitative analysis of the cell voltage of SO2-depolarized electrolysis in hybrid sulfur process
JP6814990B2 (en) Residual chlorine measuring method and residual chlorine measuring device
JP2008256604A (en) Device for measuring dissolved ozone concentration, and method therefor
JP4458362B2 (en) Arsenic detection electrode, sensor using the same, and arsenic concentration measurement method
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
KR102042681B1 (en) In-situ monitoring system including flow sensor cells, and in-situ monitoring method using the same
Kodera et al. Kinetic parameters for anodic oxidation of hypochlorite ion on Pt and Pt oxide electrodes in alkaline solution
Łuczak et al. Quantitative determination of biogenic amine at gold in the presence of secondary amine during electrochemical oxidation in physiological solution containing ascorbic and uric acids
Ruggiero et al. Local reaction microenvironment impacts on H2O2 electrosynthesis in a dual membrane electrode assembly solid electrolyte electrolyzer
JP5649948B2 (en) Sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus
JP2023028397A (en) Electrochemical measurement instrument and electrochemical measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250