JP5709254B2 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
JP5709254B2
JP5709254B2 JP2011032460A JP2011032460A JP5709254B2 JP 5709254 B2 JP5709254 B2 JP 5709254B2 JP 2011032460 A JP2011032460 A JP 2011032460A JP 2011032460 A JP2011032460 A JP 2011032460A JP 5709254 B2 JP5709254 B2 JP 5709254B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
propagation characteristic
substrate
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011032460A
Other languages
Japanese (ja)
Other versions
JP2012173012A (en
Inventor
新荻 正隆
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011032460A priority Critical patent/JP5709254B2/en
Publication of JP2012173012A publication Critical patent/JP2012173012A/en
Application granted granted Critical
Publication of JP5709254B2 publication Critical patent/JP5709254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明は、センサに関する。   The present invention relates to a sensor.

従来、例えば圧電基板上に対向配置された櫛形電極と反射器との間で弾性表面波を往復伝搬させ、雰囲気の湿度や温度に応じた弾性表面波の伝搬特性の変化に基づき、雰囲気の湿度や温度を検出するセンサが知られている。(例えば、特許文献1および特許文献2参照)。   Conventionally, for example, a surface acoustic wave is reciprocally propagated between a comb electrode and a reflector disposed on a piezoelectric substrate, and the humidity of the atmosphere is determined based on changes in the propagation characteristics of the surface acoustic wave according to the humidity and temperature of the atmosphere. Sensors for detecting temperature and temperature are known. (For example, refer to Patent Document 1 and Patent Document 2).

特開2010−96558号公報JP 2010-96558 A 特開2005−121498号公報JP 2005-121498 A

ところで、上記従来技術に係るセンサにおいては、雰囲気の湿度や温度に対する感度および検出精度を向上させるとともに、小型化することが望まれている。   By the way, in the sensor according to the above prior art, it is desired to improve the sensitivity and detection accuracy with respect to the humidity and temperature of the atmosphere and to reduce the size.

本発明は上記事情に鑑みてなされたもので、感度および検出精度を向上させるとともに、小型化することが可能なセンサを提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a sensor that can improve sensitivity and detection accuracy and can be miniaturized.

上記課題を解決して係る目的を達成するために、本発明の第1態様に係るセンサは、板状の基体(例えば、実施の形態での基体21)と、片持ち梁状に前記基体の端部を支持する支持部(例えば、実施の形態での支持部22)と、該基体の表面を伝搬する弾性表面波を励起するとともに、前記表面を伝搬した前記弾性表面波を受信して、受信結果の信号を出力する弾性表面波励起受信部(例えば、実施の形態での櫛形電極23)とを備える弾性表面波素子(例えば、実施の形態での弾性表面波素子11)と、前記弾性表面波励起受信部から出力された信号に基づいて前記弾性表面波の伝搬特性を検出する伝搬特性検出部(例えば、実施の形態での伝搬特性検出部15)と、前記伝搬特性検出部により検出された前記伝搬特性に応じて温度を検出する状態量検出部(例えば、実施の形態での状態量検出部16)とを備え、前記基体の裏面は、前記基体とは異なる熱膨張係数の被覆層(例えば、実施の形態での被覆層25)により被覆されている。 In order to solve the above problems and achieve the object, a sensor according to a first aspect of the present invention includes a plate-like base (for example, the base 21 in the embodiment) and a cantilever-like form of the base. Exciting the surface acoustic wave propagating through the surface while exciting the surface acoustic wave propagating through the surface of the base and the supporting portion (for example, the supporting portion 22 in the embodiment) supporting the end, A surface acoustic wave element (for example, the surface acoustic wave element 11 in the embodiment) including a surface acoustic wave excitation receiving unit (for example, the comb-shaped electrode 23 in the embodiment) that outputs a signal of the reception result, and the elasticity Propagation characteristic detection unit (for example, propagation characteristic detection unit 15 in the embodiment) that detects the propagation characteristic of the surface acoustic wave based on the signal output from the surface wave excitation receiver, and detected by the propagation characteristic detection unit The temperature is detected according to the propagation characteristics measured. State quantity detection unit (for example, the state amount detecting section 16 in the embodiment) and a rear surface of the substrate, the coating layer of the different thermal expansion coefficients from that of the substrate (e.g., the coating layer in the embodiment 25).

また、本発明の第2態様に係るセンサは、板状の基体(例えば、実施の形態での基体21)と、片持ち梁状に前記基体の端部を支持する支持部(例えば、実施の形態での支持部22)と、該基体の表面を伝搬する弾性表面波を励起するとともに、前記表面を伝搬した前記弾性表面波を受信して、受信結果の信号を出力する弾性表面波励起受信部(例えば、実施の形態での櫛形電極23)とを備える弾性表面波素子(例えば、実施の形態での弾性表面波素子11)と、前記弾性表面波励起受信部から出力された信号に基づいて前記弾性表面波の伝搬特性を検出する伝搬特性検出部(例えば、実施の形態での伝搬特性検出部15)と、前記伝搬特性検出部により検出された前記伝搬特性に応じて湿度または温度を検出する状態量検出部(例えば、実施の形態での状態量検出部16)とを備え、前記基体の裏面は、外部に開口した気孔(例えば、実施の形態での気孔31a)が分散配置されている多孔質材(例えば、実施の形態での多孔質材31)により被覆されている。 Further, the sensor according to the second aspect of the present invention includes a plate-like base (for example, the base 21 in the embodiment) and a support portion (for example, an implementation) that supports the end of the base in a cantilever shape. The surface acoustic wave excitation reception which excites the surface acoustic wave propagating on the surface of the support 22) and the base body and receives the surface acoustic wave propagated on the surface and outputs a signal of the reception result. A surface acoustic wave device (for example, the surface acoustic wave device 11 in the embodiment) including a portion (for example, the comb-shaped electrode 23 in the embodiment), and a signal output from the surface acoustic wave excitation receiver A propagation characteristic detection unit (for example, a propagation characteristic detection unit 15 in the embodiment) for detecting the propagation characteristic of the surface acoustic wave, and a humidity or temperature according to the propagation characteristic detected by the propagation characteristic detection unit. State quantity detection unit to detect (for example, A state quantity detecting unit 16) in the facilities of the form, the back surface of the substrate is porous material pores open to the outside (e.g., pores 31a in the embodiment) are distributed (e.g., implemented It is covered with a porous material 31) in the form of

さらに、本発明の第3態様に係るセンサでは、前記状態量検出部は、前記弾性表面波の伝搬特性と前記弾性表面波素子の前記表面周辺の雰囲気の状態との対応関係を示すデータを記憶しており、前記伝搬特性検出部により検出された前記伝搬特性に対応する前記雰囲気の状態を前記データから取得する。   Furthermore, in the sensor according to the third aspect of the present invention, the state quantity detection unit stores data indicating a correspondence relationship between the propagation characteristics of the surface acoustic wave and the state of the atmosphere around the surface of the surface acoustic wave element. The atmosphere state corresponding to the propagation characteristic detected by the propagation characteristic detection unit is acquired from the data.

さらに、本発明の第4態様に係るセンサでは、前記弾性表面波励起受信部および前記伝搬特性検出部は互いに無線通信可能である。   Furthermore, in the sensor according to the fourth aspect of the present invention, the surface acoustic wave excitation receiver and the propagation characteristic detector can communicate with each other wirelessly.

本発明の第1態様に係るセンサによれば、弾性表面波が励起される基体の裏面は、基体とは異なる熱膨張係数の被覆層を有することから、例えば被覆層を備えていない場合に比べて、温度変化に応じた基体の表面形状の変化が大きくなり、温度に対する感度および検出精度を向上させることができる。
これにより、温度に対する所望の感度および検出精度を確保しつつ、小型化することができる。
According to the sensor of the first aspect of the present invention, the back surface of the base body on which the surface acoustic wave is excited has a coating layer having a thermal expansion coefficient different from that of the base body. Thus, the change in the surface shape of the substrate in accordance with the temperature change becomes large, and the sensitivity to temperature and the detection accuracy can be improved.
Thereby, it is possible to reduce the size while ensuring desired sensitivity and detection accuracy with respect to temperature.

また、本発明の第2態様に係るセンサによれば、弾性表面波が励起される基体の裏面は、多孔質材の被覆層を有することから、例えば被覆層を備えていない場合に比べて、温度変化または湿度変化に応じた基体の表面形状の変化が大きくなり、温度または湿度に対する感度および検出精度を向上させることができる。
これにより、温度または湿度に対する所望の感度および検出精度を確保しつつ、小型化することができる。
Further, according to the sensor according to the second aspect of the present invention, the back surface of the base body on which the surface acoustic wave is excited has a porous material coating layer, and therefore, for example, compared with a case where no coating layer is provided, The change in the surface shape of the substrate in response to the temperature change or humidity change becomes large, and the sensitivity and detection accuracy with respect to temperature or humidity can be improved.
Thereby, it is possible to reduce the size while ensuring desired sensitivity and detection accuracy with respect to temperature or humidity.

さらに、本発明の第3態様に係るセンサによれば、予め作成されたデータを参照して、伝搬特性検出部により検出された伝搬特性に対応した雰囲気の状態(例えば、温度や湿度)を容易に取得することができる。   Furthermore, according to the sensor according to the third aspect of the present invention, it is easy to refer to pre-created data to determine the atmospheric state (for example, temperature and humidity) corresponding to the propagation characteristic detected by the propagation characteristic detection unit. Can be obtained.

さらに、本発明の第4態様に係るセンサによれば、利便性を向上させることができる。   Furthermore, according to the sensor of the fourth aspect of the present invention, convenience can be improved.

本発明の実施の形態に係るセンサの構成図である。It is a block diagram of the sensor which concerns on embodiment of this invention. 本発明の実施の形態に係るセンサの弾性表面波素子の構成図である。It is a block diagram of the surface acoustic wave element of the sensor which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係るセンサの弾性表面波素子の構成図である。It is a block diagram of the surface acoustic wave element of the sensor which concerns on the modification of embodiment of this invention.

以下、本発明の一実施形態に係るセンサについて添付図面を参照しながら説明する。
本実施の形態によるセンサ10は、例えば図1に示すように、弾性表面波素子11と、送受信部12と、サーキュレータ13と、発振器14と、伝搬特性検出部15と、状態量検出部16とを備えて構成されている。
Hereinafter, a sensor according to an embodiment of the present invention will be described with reference to the accompanying drawings.
For example, as shown in FIG. 1, the sensor 10 according to the present embodiment includes a surface acoustic wave element 11, a transmission / reception unit 12, a circulator 13, an oscillator 14, a propagation characteristic detection unit 15, and a state quantity detection unit 16. It is configured with.

弾性表面波素子11は、例えば、板状の基体21と、片持ち梁状に基体21の端部を支持する支持部22と、櫛形電極23と、反射器24と、被覆層25とを備えて構成されている。   The surface acoustic wave element 11 includes, for example, a plate-like base 21, a support 22 that supports the end of the base 21 in a cantilever shape, a comb-shaped electrode 23, a reflector 24, and a coating layer 25. Configured.

板状の基体21は、例えばニオブ酸リチウム(LiNbO3)やタンタル酸リチウム(LiTaO3)や水晶などの圧電性材料の単結晶からなり、表面に励起される弾性表面波が櫛形電極23と反射器24との間で伝搬する伝搬経路21aを有している。   The plate-like substrate 21 is made of a single crystal of a piezoelectric material such as lithium niobate (LiNbO 3), lithium tantalate (LiTaO 3), or quartz, and surface acoustic waves excited on the surface are comb-shaped electrodes 23 and reflectors 24. And a propagation path 21a that propagates between the two.

櫛形電極23は、基体21の表面21A上に形成されたAu、Al、Cu、Crなどの金属層から成り、例えば櫛歯が向き合い、かつ、互い違いになるように形成された一対の電極である。
櫛形電極23は、例えば真空蒸着やスパッタリングなどによって基体21上に金属層が形成された後に、フォトリソグラフィーによるパターニングによって形成される。
The comb-shaped electrode 23 is a pair of electrodes made of a metal layer such as Au, Al, Cu, and Cr formed on the surface 21A of the base 21 and formed so that, for example, the comb teeth face each other and are staggered. .
The comb electrode 23 is formed by patterning by photolithography after a metal layer is formed on the base 21 by, for example, vacuum deposition or sputtering.

櫛形電極23は、発振器14から高周波の電気信号(高周波信号)が入力されると弾性表面波を励起する。
また、櫛形電極23は、反射器24によって反射されつつ基体21の表面21A上を伝搬した弾性表面波を受信し、受信結果の信号をアンテナ23aを介して出力する。
The comb electrode 23 excites a surface acoustic wave when a high-frequency electric signal (high-frequency signal) is input from the oscillator 14.
The comb electrode 23 receives the surface acoustic wave that has been reflected on the surface 21A of the base 21 while being reflected by the reflector 24, and outputs a signal as a reception result via the antenna 23a.

反射器24は、例えば基体21の表面21A上において櫛形電極23から出力される弾性表面波の伝搬方向に櫛形電極23から所定距離だけ離間した位置で伝搬方向に対して垂直な方向に延在するように設けられ、例えば金属膜の蒸着により形成されている。   The reflector 24 extends, for example, on the surface 21A of the base 21 in a direction perpendicular to the propagation direction at a position separated from the comb electrode 23 by a predetermined distance in the propagation direction of the surface acoustic wave output from the comb electrode 23. For example, it is formed by vapor deposition of a metal film.

被覆層25は、基体21とは異なる熱膨張係数を有する材料(例えば、基体21よりも熱膨張係数が大きいAlなどの金属など)から成り、例えば基体21の裏面21Bを被覆している。
この被覆層25は、例えば基体21の裏面21Bの全面に無電解めっきが行なわれて形成されている。
The covering layer 25 is made of a material having a thermal expansion coefficient different from that of the base body 21 (for example, a metal such as Al having a larger thermal expansion coefficient than the base body 21), and covers the back surface 21B of the base body 21, for example.
The coating layer 25 is formed, for example, by electroless plating on the entire back surface 21B of the base 21.

送受信部12はアンテナ12aを備え、弾性表面波素子11の櫛形電極23と無線通信可能とされている。   The transmission / reception unit 12 includes an antenna 12 a and is capable of wireless communication with the comb-shaped electrode 23 of the surface acoustic wave element 11.

サーキュレータ13は、送受信部12と発振器14と伝搬特性検出部15とに接続され、発振器14から出力される高周波信号を送受信部12に入力し、送受信部12から出力される信号を伝搬特性検出部15に入力する。   The circulator 13 is connected to the transmission / reception unit 12, the oscillator 14, and the propagation characteristic detection unit 15. The circulator 13 inputs a high-frequency signal output from the oscillator 14 to the transmission / reception unit 12, and the signal output from the transmission / reception unit 12 to the propagation characteristic detection unit. 15

発振器14は、高周波信号を出力する。
伝搬特性検出部15は、例えば櫛形電極23から出力されて送受信部12により受信された信号に対するフーリエ変換などを行ない、弾性表面波素子11の表面(つまり、基体21の表面21A)を伝搬する弾性表面波の伝搬速度や位相や強度などの伝搬特性を検出する。
The oscillator 14 outputs a high frequency signal.
The propagation characteristic detection unit 15 performs, for example, Fourier transform on a signal output from the comb-shaped electrode 23 and received by the transmission / reception unit 12 and the like, and propagates on the surface of the surface acoustic wave element 11 (that is, the surface 21A of the base 21). Propagation characteristics such as propagation speed, phase and intensity of surface waves are detected.

状態量検出部16は、伝搬特性検出部15により検出された伝搬特性の検出結果に基づき、弾性表面波素子11の表面周辺の雰囲気の状態量、例えば温度を検出する。   The state quantity detection unit 16 detects the state quantity of the atmosphere around the surface of the surface acoustic wave element 11, for example, the temperature, based on the detection result of the propagation characteristic detected by the propagation characteristic detection unit 15.

すなわち、例えば図2(A),(B)に示すように、弾性表面波素子11の表面周辺の雰囲気の温度に応じて弾性表面波素子11の形状変化、例えば被覆層25の膨張または収縮に起因する基体21の裏面21Bの膨張または収縮により伝搬経路21aの経路長や形状などの変化が生じると、伝搬経路21aを伝搬する弾性表面波の伝搬特性が変化する。   That is, for example, as shown in FIGS. 2A and 2B, the shape of the surface acoustic wave element 11 changes according to the temperature of the atmosphere around the surface of the surface acoustic wave element 11, for example, the expansion or contraction of the coating layer 25. When a change in the path length or shape of the propagation path 21a occurs due to expansion or contraction of the back surface 21B of the base body 21 due to this, the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a change.

状態量検出部16は、伝搬経路21aを伝搬する弾性表面波の伝搬特性の変化の検出結果に基づいて、例えば予め記憶している所定マップなどを参照して、弾性表面波素子11の表面周辺の雰囲気の温度を検出する。
なお、所定マップは、例えば、弾性表面波素子11の表面周辺の雰囲気の状態(例えば、温度)と、伝搬経路21aを伝搬する弾性表面波の伝搬特性との対応関係を示すデータである。
The state quantity detection unit 16 refers to, for example, a predetermined map stored in advance based on the detection result of the change in the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a. Detect the atmosphere temperature.
The predetermined map is, for example, data indicating a correspondence relationship between the state of the atmosphere around the surface of the surface acoustic wave element 11 (for example, temperature) and the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a.

上述したように、本実施の形態によるセンサ10によれば、弾性表面波が励起される基体21の裏面21Bは基体21とは異なる熱膨張係数の被覆層25を有することから、例えば被覆層25を備えていない場合に比べて、温度変化に応じた基体21の表面形状の変化が大きくなり、温度に対する感度および検出精度を向上させることができる。
しかも、板状の基体21に被覆層25を容易かつ安定に形成することができ、形成に煩雑な手間がかかることを防止することができる。
As described above, according to the sensor 10 according to the present embodiment, the back surface 21B of the base body 21 to which the surface acoustic wave is excited has the coating layer 25 having a thermal expansion coefficient different from that of the base body 21, and thus, for example, the coating layer 25 As compared with the case where the temperature sensor is not provided, the change in the surface shape of the substrate 21 in accordance with the temperature change is increased, and the sensitivity to temperature and the detection accuracy can be improved.
In addition, the coating layer 25 can be easily and stably formed on the plate-like substrate 21, and it can be prevented that complicated formation is required.

しかも、予め作成されたデータを参照して、伝搬経路21aを伝搬する弾性表面波の伝搬特性の変化の検出結果に対応した雰囲気の状態(例えば、温度)を容易に取得することができる。   In addition, referring to previously created data, it is possible to easily obtain the atmosphere state (for example, temperature) corresponding to the detection result of the change in the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a.

なお、上述した実施の形態において、被覆層25は、基体21の裏面21Bの全面に限定されず、基体21の裏面21Bの少なくとも一部を被覆していてもよい。
また、被覆層25は、基体21の側面の少なくとも一部を被覆してもよい。
In the above-described embodiment, the covering layer 25 is not limited to the entire back surface 21B of the base body 21 and may cover at least a part of the back surface 21B of the base body 21.
The covering layer 25 may cover at least a part of the side surface of the substrate 21.

なお、上述した実施の形態においては、例えば図3に示す上述した実施の形態の変形例に係るセンサ10のように、基体21の裏面21Bを被覆する被覆層25の代わりに、外部に開口した気孔31aが分散配置されている多孔質材31が基体21の裏面21Bを被覆していてもよい。   In the above-described embodiment, for example, the sensor 10 according to the modification of the above-described embodiment illustrated in FIG. 3 is opened to the outside instead of the covering layer 25 that covers the back surface 21B of the base body 21. The porous material 31 in which the pores 31 a are dispersedly arranged may cover the back surface 21 </ b> B of the base 21.

この多孔質材31は、無機または有機の多孔質材料から成り、例えば多孔質ガラスから成る多孔質材31は、複数のガラス材料を混合して熱処理することで得られる分相ガラスを、酸溶液に浸漬して特定相のみを溶出して形成される。   The porous material 31 is made of an inorganic or organic porous material. For example, the porous material 31 made of porous glass is obtained by mixing a plurality of glass materials and heat-treating a phase separation glass obtained by heat treatment. It is formed by leaching only a specific phase.

この変形例において、状態量検出部16は、伝搬特性検出部15により検出された伝搬特性の検出結果に基づき、弾性表面波素子11の表面周辺の雰囲気の状態量、例えば湿度および温度を検出する。   In this modification, the state quantity detection unit 16 detects the state quantity of the atmosphere around the surface of the surface acoustic wave element 11, for example, humidity and temperature, based on the detection result of the propagation characteristic detected by the propagation characteristic detection unit 15. .

すなわち、弾性表面波素子11の表面周辺の雰囲気の湿度または温度に応じて弾性表面波素子11の形状変化、例えば多孔質材31の水分吸着による膨潤または水分離脱による収縮に起因する基体21の裏面21Bの膨張または収縮により伝搬経路21aの経路長や形状などの変化が生じると、伝搬経路21aを伝搬する弾性表面波の伝搬特性が変化する。   That is, the back surface of the base 21 caused by the shape change of the surface acoustic wave element 11 according to the humidity or temperature of the atmosphere around the surface of the surface acoustic wave element 11, for example, swelling due to moisture adsorption or shrinkage due to moisture detachment of the porous material 31. When the path length or shape of the propagation path 21a changes due to the expansion or contraction of 21B, the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a change.

状態量検出部16は、伝搬経路21aを伝搬する弾性表面波の伝搬特性の変化の検出結果に基づいて、例えば予め記憶している所定マップなどを参照して、弾性表面波素子11の表面周辺の雰囲気の湿度または温度を検出する。
なお、所定マップは、例えば、弾性表面波素子11の表面周辺の雰囲気の状態(例えば、湿度または温度)と、伝搬経路21aを伝搬する弾性表面波の伝搬特性との対応関係を示すデータである。
The state quantity detection unit 16 refers to, for example, a predetermined map stored in advance based on the detection result of the change in the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a. Detect the humidity or temperature of the atmosphere.
The predetermined map is, for example, data indicating the correspondence between the state of the atmosphere around the surface of the surface acoustic wave element 11 (for example, humidity or temperature) and the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a. .

この変形例によれば、弾性表面波が励起される基体21の裏面21Bは多孔質材31により被覆されていることから、例えば多孔質材31を備えていない場合に比べて、湿度変化あるいは温度変化に応じた基体21の表面形状の変化が大きくなり、湿度あるいは温度に対する感度および検出精度を向上させることができる。
しかも、多孔質材31を容易かつ安定に形成することができ、形成に煩雑な手間がかかることを防止することができる。
According to this modification, the back surface 21B of the base body 21 to which the surface acoustic wave is excited is covered with the porous material 31, so that the humidity change or the temperature is compared with the case where the porous material 31 is not provided, for example. A change in the surface shape of the substrate 21 corresponding to the change becomes large, and the sensitivity and detection accuracy with respect to humidity or temperature can be improved.
In addition, the porous material 31 can be formed easily and stably, and it is possible to prevent the formation of a complicated work.

しかも、予め作成されたデータを参照して、伝搬経路21aを伝搬する弾性表面波の伝搬特性の変化の検出結果に対応した雰囲気の状態(例えば、湿度または温度)を容易に取得することができる。   In addition, referring to previously created data, it is possible to easily acquire the atmosphere state (for example, humidity or temperature) corresponding to the detection result of the change in the propagation characteristics of the surface acoustic wave propagating through the propagation path 21a. .

なお、この変形例において、多孔質材31は、基体21の裏面21Bの全面に限定されず、基体21の裏面21Bの少なくとも一部を被覆していてもよい。
また、この変形例において、多孔質材31は、基体21の側面の少なくとも一部を被覆してもよい。
In this modification, the porous material 31 is not limited to the entire back surface 21B of the base body 21 and may cover at least a part of the back surface 21B of the base body 21.
In this modification, the porous material 31 may cover at least a part of the side surface of the base 21.

なお、上述した実施の形態および変形例において、センサ10は、複数の異なる弾性表面波素子11,…,11を備えて構成されてもよい。   In the above-described embodiment and modification, the sensor 10 may be configured to include a plurality of different surface acoustic wave elements 11,.

複数の異なる弾性表面波素子11,…,11は、例えば被覆層25または多孔質材31の厚さ(積層方向の厚さ)を同一として、弾性表面波の伝搬方向における基体21の長さ(つまり、櫛形電極23と反射器24との間の長さ)が異なるように形成されてもよい。
また、複数の異なる弾性表面波素子11,…,11は、例えば弾性表面波の伝搬方向における基体21の長さ(つまり、櫛形電極23と反射器24との間の長さ)を同一として、被覆層25または多孔質材31の厚さ(積層方向の厚さ)が異なるように形成されてもよい。
In the plurality of different surface acoustic wave elements 11,..., 11, for example, the thickness of the covering layer 25 or the porous material 31 (thickness in the stacking direction) is the same, and the length of the substrate 21 in the surface acoustic wave propagation direction ( In other words, the length between the comb electrode 23 and the reflector 24) may be different.
The plurality of different surface acoustic wave elements 11,..., 11 have the same length of the base 21 in the propagation direction of the surface acoustic wave (that is, the length between the comb electrode 23 and the reflector 24), for example. The covering layer 25 or the porous material 31 may be formed to have different thicknesses (thicknesses in the stacking direction).

なお、上述した実施の形態および変形例においては、例えば各アンテナ12a,23aおよび送受信部12は省略されて、櫛形電極23とサーキュレータ13とは直接に接続されていてもよい。   In the embodiment and the modification described above, for example, the antennas 12a and 23a and the transmission / reception unit 12 may be omitted, and the comb electrode 23 and the circulator 13 may be directly connected.

10 センサ
11 弾性表面波素子
15 伝搬特性検出部
16 状態量検出部
21 基体
21a 伝搬経路
22 支持部
23 櫛形電極(弾性表面波励起受信部)
25 被覆層
31 多孔質材
31a 気孔
DESCRIPTION OF SYMBOLS 10 Sensor 11 Surface acoustic wave element 15 Propagation characteristic detection part 16 State quantity detection part 21 Base | substrate 21a Propagation path 22 Support part 23 Comb-shaped electrode (surface acoustic wave excitation receiving part)
25 coating layer 31 porous material 31a pores

Claims (4)

板状の基体と、片持ち梁状に前記基体の端部を支持する支持部と、該基体の表面を伝搬する弾性表面波を励起するとともに、前記表面を伝搬した前記弾性表面波を受信して、受信結果の信号を出力する弾性表面波励起受信部とを備える弾性表面波素子と、
前記弾性表面波励起受信部から出力された信号に基づいて前記弾性表面波の伝搬特性を検出する伝搬特性検出部と、
前記伝搬特性検出部により検出された前記伝搬特性に応じて温度を検出する状態量検出部とを備え、
前記基体の裏面は、前記基体とは異なる熱膨張係数の被覆層により被覆されていることを特徴とするセンサ。
A plate-shaped substrate, a support that supports the end of the substrate in a cantilever shape, and a surface acoustic wave that propagates through the surface of the substrate is excited, and the surface acoustic wave that propagates through the surface is received. A surface acoustic wave element including a surface acoustic wave excitation receiving unit that outputs a reception result signal;
A propagation characteristic detector for detecting the propagation characteristic of the surface acoustic wave based on the signal output from the surface acoustic wave excitation receiver;
A state quantity detection unit that detects a temperature according to the propagation characteristic detected by the propagation characteristic detection unit;
The back surface of the said base | substrate is coat | covered with the coating layer of the thermal expansion coefficient different from the said base | substrate.
板状の基体と、片持ち梁状に前記基体の端部を支持する支持部と、該基体の表面を伝搬する弾性表面波を励起するとともに、前記表面を伝搬した前記弾性表面波を受信して、受信結果の信号を出力する弾性表面波励起受信部とを備える弾性表面波素子と、
前記弾性表面波励起受信部から出力された信号に基づいて前記弾性表面波の伝搬特性を検出する伝搬特性検出部と、
前記伝搬特性検出部により検出された前記伝搬特性に応じて湿度または温度を検出する状態量検出部とを備え、
前記基体の裏面は、外部に開口した気孔が分散配置されている多孔質材により被覆されていることを特徴とするセンサ。
A plate-shaped substrate, a support that supports the end of the substrate in a cantilever shape, and a surface acoustic wave that propagates through the surface of the substrate is excited, and the surface acoustic wave that propagates through the surface is received. A surface acoustic wave element including a surface acoustic wave excitation receiving unit that outputs a reception result signal;
A propagation characteristic detector for detecting the propagation characteristic of the surface acoustic wave based on the signal output from the surface acoustic wave excitation receiver;
A state quantity detection unit that detects humidity or temperature according to the propagation characteristic detected by the propagation characteristic detection unit;
The sensor is characterized in that the back surface of the base is covered with a porous material in which pores opened to the outside are dispersedly arranged.
前記状態量検出部は、前記弾性表面波の伝搬特性と前記弾性表面波素子の前記表面周辺の雰囲気の状態との対応関係を示すデータを記憶しており、
前記伝搬特性検出部により検出された前記伝搬特性に対応する前記雰囲気の状態を前記データから取得することを特徴とする請求項1または請求項2に記載のセンサ。
The state quantity detection unit stores data indicating a correspondence relationship between the propagation characteristics of the surface acoustic wave and the state of the atmosphere around the surface of the surface acoustic wave element,
The sensor according to claim 1 or 2, wherein the state of the atmosphere corresponding to the propagation characteristic detected by the propagation characteristic detection unit is acquired from the data.
前記弾性表面波励起受信部および前記伝搬特性検出部は互いに無線通信可能であることを特徴とする請求項1から請求項3の何れか1つに記載のセンサ。   The sensor according to any one of claims 1 to 3, wherein the surface acoustic wave excitation receiver and the propagation characteristic detector are capable of wireless communication with each other.
JP2011032460A 2011-02-17 2011-02-17 Sensor Active JP5709254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032460A JP5709254B2 (en) 2011-02-17 2011-02-17 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032460A JP5709254B2 (en) 2011-02-17 2011-02-17 Sensor

Publications (2)

Publication Number Publication Date
JP2012173012A JP2012173012A (en) 2012-09-10
JP5709254B2 true JP5709254B2 (en) 2015-04-30

Family

ID=46976071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032460A Active JP5709254B2 (en) 2011-02-17 2011-02-17 Sensor

Country Status (1)

Country Link
JP (1) JP5709254B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010014A1 (en) * 2013-06-14 2014-12-18 Volkswagen Aktiengesellschaft Temperature sensor for a fluid medium
JP7345117B2 (en) * 2021-06-02 2023-09-15 パナソニックIpマネジメント株式会社 Temperature sensor and temperature measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259026A (en) * 1986-05-06 1987-11-11 Yasushi Ishii Vibration type temperature sensor
JPH0669818U (en) * 1993-03-01 1994-09-30 株式会社ウイジン Humidity sensor
US5571944A (en) * 1994-12-20 1996-11-05 Sandia Corporation Acoustic wave (AW) based moisture sensor for use with corrosive gases
JP2004203165A (en) * 2002-12-25 2004-07-22 Sony Corp Tire information detection device
JP2006220508A (en) * 2005-02-09 2006-08-24 Shimadzu Corp Gas sensor
JP2009243981A (en) * 2008-03-29 2009-10-22 Epson Toyocom Corp Surface acoustic wave sensor

Also Published As

Publication number Publication date
JP2012173012A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
Voiculescu et al. Acoustic wave based MEMS devices for biosensing applications
US10261078B2 (en) Shear horizontal surface acoustic wave (SH-SAW) resonators and arrays thereof
US7219536B2 (en) System and method to determine oil quality utilizing a single multi-function surface acoustic wave sensor
US7267009B2 (en) Multiple-mode acoustic wave sensor
US6378370B1 (en) Temperature compensated surface-launched acoustic wave sensor
García-Gancedo et al. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading
US20060283247A1 (en) Passive and wireless acoustic wave accelerometer
JP2008122105A (en) Elastic wave sensor and detection method
JP5101356B2 (en) Pressure sensor and pressure measuring device having the same
JP6604238B2 (en) Elastic wave sensor
García-Gancedo et al. Direct comparison of the gravimetric responsivities of ZnO-based FBARs and SMRs
US8207650B2 (en) Surface acoustic wave sensor
JP5709254B2 (en) Sensor
JP2015230244A (en) Surface acoustic wave sensor
US20140305221A1 (en) Surface Acoustic Wave Sensor
CN109506808B (en) SAW temperature sensor with monotone and linear output characteristics and design method thereof
JP4714885B2 (en) Elastic wave sensor
JP2010261840A (en) Surface acoustic wave element, sensor, sensing system, and state detection method
JP2008180668A (en) Lamb wave type high-frequency sensor device
JP6314793B2 (en) Sensing system
JPH09178714A (en) Ultrasonic odor sensor
Kustanovich et al. Design and characterization of surface acoustic wave resonance (SAR) system for in-liquid sensing
JP2010048696A (en) Surface elastic wave type gas sensor
JP6740587B2 (en) Sensing system
JP2006038584A (en) Chemical sensor and measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

R150 Certificate of patent or registration of utility model

Ref document number: 5709254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250