JP5704414B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP5704414B2
JP5704414B2 JP2013136727A JP2013136727A JP5704414B2 JP 5704414 B2 JP5704414 B2 JP 5704414B2 JP 2013136727 A JP2013136727 A JP 2013136727A JP 2013136727 A JP2013136727 A JP 2013136727A JP 5704414 B2 JP5704414 B2 JP 5704414B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mixture layer
sheet
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013136727A
Other languages
Japanese (ja)
Other versions
JP2013232425A (en
Inventor
平 齋藤
平 齋藤
黒田 明
明 黒田
聡美 川瀬
聡美 川瀬
松浦 智浩
智浩 松浦
鈴木 覚
覚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013136727A priority Critical patent/JP5704414B2/en
Publication of JP2013232425A publication Critical patent/JP2013232425A/en
Application granted granted Critical
Publication of JP5704414B2 publication Critical patent/JP5704414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、捲回型の電極体を備えた非水系二次電池に関する。   The present invention relates to a non-aqueous secondary battery including a wound electrode body.

リチウムイオン二次電池その他の非水系二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。   Lithium ion secondary batteries and other non-aqueous secondary batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.

リチウムイオン二次電池の代表的な構成として、リチウムイオンを吸蔵および放出可能な電極活物質を備える正負の電極と、それらの間に配置されたセパレータと、非水電解液とを備えた構成が挙げられる。例えば、電極活物質を主成分とする層(電極合材層)が長尺帯状の集電体に保持された正負の電極シートを、両電極シートの間にセパレータを挟んで重ね合わせ、これらを長手方向に捲回してなる電極体(捲回電極体)を、非水電解液とともにケース(電池容器)に収容した構成のリチウムイオン二次電池が知られている。この種の電池に関する技術文献として特許文献1が挙げられる。   As a typical configuration of the lithium ion secondary battery, a configuration including positive and negative electrodes including an electrode active material capable of occluding and releasing lithium ions, a separator disposed between them, and a non-aqueous electrolyte is used. Can be mentioned. For example, a positive and negative electrode sheet in which a layer mainly composed of an electrode active material (electrode mixture layer) is held by a long strip-shaped current collector is stacked with a separator between both electrode sheets, A lithium ion secondary battery having a configuration in which an electrode body (rolled electrode body) wound in the longitudinal direction is housed in a case (battery container) together with a non-aqueous electrolyte is known. Patent document 1 is mentioned as technical literature regarding this kind of battery.

特開2005−190913号公報JP 2005-190913 A

上述のような捲回電極体のなかには、上記電極合材層が集電体の長手方向に沿った一方の縁を帯状に残して設けられた電極シートを用い、その帯状部分(合材層非形成部)が対極のシートからはみ出すように両電極シートが重ね合わされた形態のものがある。
本発明は、かかる形態の電極体を備えた非水系二次電池であって、より信頼性に優れた非水系二次電池(典型的にはリチウムイオン二次電池)を提供することを目的とする。
In the wound electrode body as described above, an electrode sheet in which the electrode mixture layer is provided while leaving one edge along the longitudinal direction of the current collector in a strip shape is used. There is a form in which both electrode sheets are overlapped so that the forming portion) protrudes from the counter electrode sheet.
An object of the present invention is to provide a non-aqueous secondary battery (typically a lithium-ion secondary battery) that is a non-aqueous secondary battery having such an electrode body and is more reliable. To do.

捲回型の電極体では、捲回回数が多くなるにつれて最外周の合材層非形成部から最内周までの距離が長くなるため、上記寄せ集めた部分に電極端子を溶接するために必要な合材層非形成部の幅が次第に大きくなる。また、電極端子の溶接品質および溶接強度の観点からは、上記合材層非形成部の幅は、ある程度の余裕をもって設定されているほうが有利である。合材層非形成部の幅に余裕がない、あるいは余裕が少ないと、合材層非形成部を急角度で捲回中心側に寄せ集めることとなるため、該合材層非形成部(集電体)に強い応力が加わって集電体が破損しやすくなったり、あるいは合材層非形成部を集め切れないことにより溶接歩留りが低下したりしがちである。また、このように急角度で寄せ集めた合材層非形成部に電極端子が溶接された構成の電極体では、電池の製造時、流通時、使用時等に加わり得る衝撃や振動等によって、集電体や電極端子溶接部に損傷が生じることが懸念される。しかしながら、上記合材層非形成部は電池容量には寄与しないため、電池の高エネルギー密度化、軽量化、材料コスト低減等の観点から、上記合材層非形成部の幅をなるべく小さくしたいとの要請がある。   In the wound type electrode body, the distance from the outermost composite layer non-formation part to the innermost circumference becomes longer as the number of windings increases, so it is necessary to weld the electrode terminal to the gathered part The width of the non-mixed material layer non-forming portion is gradually increased. Further, from the viewpoint of the welding quality and welding strength of the electrode terminals, it is advantageous that the width of the above-mentioned composite material layer non-forming portion is set with a certain margin. If there is no margin in the width of the composite material layer non-formation part or the margin is small, the composite material layer non-formation part will be gathered near the winding center at a steep angle. The current collector tends to break due to a strong stress applied to the electric body), or the welding yield tends to be lowered due to the failure to collect the composite layer non-formed part. In addition, in the electrode body in which the electrode terminal is welded to the mixture layer non-formed part gathered together at a steep angle in this way, due to impact, vibration, etc. that can be applied during battery production, distribution, use, etc. There is a concern that the current collector and the electrode terminal weld may be damaged. However, since the non-mixed material layer non-forming portion does not contribute to the battery capacity, it is desirable to make the width of the non-mixed material layer non-formed portion as small as possible from the viewpoint of increasing the energy density, reducing the weight, and reducing the material cost of the battery. There is a request.

かかる事情に鑑みて、ここに開示される一つの非水系二次電池は、長手方向に捲回された捲回電極体が非水電解液とともにケースに収容された形態であって、前記捲回電極体は、長尺帯状の正極集電体に正極合材層が保持された正極シートと、長尺帯状の負極集電体に負極合材層が保持された負極シートとが、長尺帯状のセパレータシートを介して捲回された構成を有する。前記正極シートには、前記正極集電体の長手方向に沿う第一の縁に、前記正極合材層を有しない帯状の正極合材層非形成部が設けられている。前記負極シートには、前記負極集電体の長手方向に沿う第一の縁に、前記負極合材層を有しない帯状の負極合材層非形成部が設けられている。前記正極シートと前記負極シートとは、前記正極合材層非形成部が前記負極シートの第二の縁からはみ出し、且つ前記負極合材層非形成部が前記正極シートの第二の縁からはみ出すように重ね合わされている。前記セパレータシートは、該セパレータシートの長手方向に沿う第一の縁から前記正極合材層非形成部がはみ出し、且つ前記第一の縁に対向する第二の縁から前記負極合材層非形成部がはみ出すように前記正極シートおよび前記負極シートと重ね合わされている。前記捲回電極体の軸方向における一方の端部(正極側端部)では、前記正極シートの正極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた正極合材層非形成部に正極端子が溶接されている。前記捲回電極体の軸方向における他方の端部(負極側端部)では、前記負極シートの負極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた負極合材層非形成部に負極端子が溶接されている。ここで、前記正極集電体の引張強度は、前記負極集電体の引張強度よりも低い。そして、前記正極シートおよび前記負極シートは、
前記正極合材層の正極合材層非形成部側端から正極端子溶接部までの距離Aと、
前記負極合材層の負極合材層非形成部側端から負極端子溶接部までの距離Bと、
の関係がA>Bとなるように構成されている。
In view of such circumstances, one non-aqueous secondary battery disclosed herein is a form in which a wound electrode body wound in a longitudinal direction is housed in a case together with a non-aqueous electrolyte, and the wound The electrode body includes a positive electrode sheet in which a positive electrode mixture layer is held on a long band positive electrode current collector, and a negative electrode sheet in which a negative electrode mixture layer is held on a long band negative electrode current collector. It has the structure wound through the separator sheet. The positive electrode sheet is provided with a strip-shaped positive electrode mixture layer non-forming portion that does not have the positive electrode mixture layer at the first edge along the longitudinal direction of the positive electrode current collector. The negative electrode sheet is provided with a strip-shaped negative electrode mixture layer non-forming portion that does not have the negative electrode mixture layer at the first edge along the longitudinal direction of the negative electrode current collector. In the positive electrode sheet and the negative electrode sheet, the positive electrode mixture layer non-forming portion protrudes from the second edge of the negative electrode sheet, and the negative electrode mixture layer non-forming portion protrudes from the second edge of the positive electrode sheet. Are overlaid. In the separator sheet, the positive electrode mixture layer non-forming portion protrudes from the first edge along the longitudinal direction of the separator sheet, and the negative electrode mixture layer is not formed from the second edge facing the first edge. The positive electrode sheet and the negative electrode sheet are overlapped so that the portion protrudes. In one end portion (positive electrode side end portion) in the axial direction of the wound electrode body, the positive electrode mixture layer non-forming portion of the positive electrode sheet is gathered to the winding center side, and the gathered positive electrode mixture The positive electrode terminal is welded to the layer non-forming part. At the other end portion (negative electrode side end portion) in the axial direction of the wound electrode body, the negative electrode mixture layer non-forming portion of the negative electrode sheet is gathered to the winding center side, and the gathered negative electrode mixture A negative electrode terminal is welded to the layer non-forming portion. Here, the tensile strength of the positive electrode current collector is lower than the tensile strength of the negative electrode current collector. The positive electrode sheet and the negative electrode sheet are
A distance A from the positive electrode mixture layer non-forming part side end of the positive electrode mixture layer to the positive electrode terminal weld,
The distance B from the negative electrode composite material layer non-formation part side end of the negative electrode composite material layer to the negative electrode terminal weld,
Is configured such that A> B.

なお、本明細書において「二次電池」とは、リチウムイオン二次電池、金属リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する概念である。   In this specification, “secondary battery” includes a so-called storage battery such as a lithium ion secondary battery, a metal lithium secondary battery, a nickel metal hydride battery, and a nickel cadmium battery, and a storage element such as an electric double layer capacitor. It is.

上記構成の電池では、各電極シートにおける合材層の端から電極端子溶接部までの距離(以下、「寄せ集め距離」ということもある。)を、正極集電体に比べて引張強度の高い負極集電体(例えば、厚み10μm〜20μm程度の銅箔)を用いてなる負極シートに比べて、より引張強度の低い正極集電体(例えば、厚みが上記銅箔の0.7倍〜2倍程度の範囲にあるアルミニウム箔)を用いてなる正極シートでは、より大きく確保している。このことによって、電池全体としての材料コスト、質量、サイズ等の上昇を抑制しつつ、溶接不良の低減(歩留りの向上)および溶接強度の向上を効果的に実現することができる。したがって、上記構成の電池は生産性および信頼性に優れる。   In the battery having the above-described configuration, the distance from the end of the composite layer in each electrode sheet to the electrode terminal welded portion (hereinafter, sometimes referred to as “collecting distance”) is higher in tensile strength than the positive electrode current collector. Compared with a negative electrode sheet using a negative electrode current collector (for example, a copper foil having a thickness of about 10 μm to 20 μm), a positive electrode current collector having a lower tensile strength (for example, 0.7 to 2 times the thickness of the copper foil) In the positive electrode sheet using the aluminum foil in the range of about twice, the larger is ensured. As a result, it is possible to effectively reduce welding defects (improve yield) and improve welding strength while suppressing an increase in material cost, mass, size, and the like of the entire battery. Therefore, the battery having the above configuration is excellent in productivity and reliability.

なお、正極集電体の引張強度が負極集電体の引張強度よりも高い電池では、上記構成とは逆に、負極シートの寄せ集め距離を正極シートの寄せ集め距離よりも大きく(より長く)確保することにより、同様の効果が発揮され得る。したがって、この明細書により開示される事項には以下のものが含まれる。   In addition, in a battery in which the tensile strength of the positive electrode current collector is higher than the tensile strength of the negative electrode current collector, contrary to the above configuration, the gathering distance of the negative electrode sheet is larger (longer) than the gathering distance of the positive electrode sheet. By ensuring, the same effect can be exhibited. Accordingly, the matters disclosed by this specification include the following.

長手方向に捲回された捲回電極体が非水電解液とともにケースに収容された非水系二次電池である。前記捲回電極体は、長尺帯状の正極集電体に正極合材層が保持された正極シートと、長尺帯状の負極集電体に負極合材層が保持された負極シートとが、長尺帯状のセパレータシートを介して捲回された構成を有する。前記正極シートには、前記正極集電体の長手方向に沿う第一の縁に、前記正極合材層を有しない帯状の正極合材層非形成部が設けられている。前記負極シートには、前記負極集電体の長手方向に沿う第一の縁に、前記負極合材層を有しない帯状の負極合材層非形成部が設けられている。前記正極シートと前記負極シートとは、前記正極合材層非形成部が前記負極シートの第二の縁からはみ出し、且つ前記負極合材層非形成部が前記正極シートの第二の縁からはみ出すように重ね合わされている。前記セパレータシートは、該セパレータシートの長手方向に沿う第一の縁から前記正極合材層非形成部がはみ出し、且つ前記第一の縁に対向する第二の縁から前記負極合材層非形成部がはみ出すように前記正極シートおよび前記負極シートと重ね合わされている。前記捲回電極体の軸方向の第一端では、前記正極シートの正極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた正極合材層非形成部に正極端子が溶接されている。前記捲回電極体の軸方向の第二端では、前記負極シートの負極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた負極合材層非形成部に負極端子が溶接されている。ここで、前記正負の電極シートは、
前記正極集電体および前記負極集電体のうち、より引張強度の低い電極集電体を備える電極シートにおける寄せ集め距離A’と、
より引張強度の高い電極集電体を備える電極シートにおける寄せ集め距離B’と、
の関係がA’>B’となるように構成されている。
A non-aqueous secondary battery in which a wound electrode body wound in a longitudinal direction is housed in a case together with a non-aqueous electrolyte. The wound electrode body includes a positive electrode sheet in which a positive electrode mixture layer is held in a long band-like positive electrode current collector, and a negative electrode sheet in which a negative electrode mixture layer is held in a long band-like negative electrode current collector, It has a configuration wound around a long strip-shaped separator sheet. The positive electrode sheet is provided with a strip-shaped positive electrode mixture layer non-forming portion that does not have the positive electrode mixture layer at the first edge along the longitudinal direction of the positive electrode current collector. The negative electrode sheet is provided with a strip-shaped negative electrode mixture layer non-forming portion that does not have the negative electrode mixture layer at the first edge along the longitudinal direction of the negative electrode current collector. In the positive electrode sheet and the negative electrode sheet, the positive electrode mixture layer non-forming portion protrudes from the second edge of the negative electrode sheet, and the negative electrode mixture layer non-forming portion protrudes from the second edge of the positive electrode sheet. Are overlaid. In the separator sheet, the positive electrode mixture layer non-forming portion protrudes from the first edge along the longitudinal direction of the separator sheet, and the negative electrode mixture layer is not formed from the second edge facing the first edge. The positive electrode sheet and the negative electrode sheet are overlapped so that the portion protrudes. At the first end in the axial direction of the wound electrode body, the positive electrode mixture layer non-forming portion of the positive electrode sheet is gathered to the winding center side, and the collected positive electrode mixture layer non-forming portion is a positive electrode terminal. Are welded. At the second end in the axial direction of the wound electrode body, the negative electrode mixture layer non-formed portion of the negative electrode sheet is gathered to the winding center side, and the gathered negative electrode mixture layer non-formed portion is connected to the negative electrode terminal. Are welded. Here, the positive and negative electrode sheets are:
Among the positive electrode current collector and the negative electrode current collector, the gathering distance A ′ in the electrode sheet including an electrode current collector having a lower tensile strength,
The gathering distance B ′ in the electrode sheet comprising an electrode current collector with higher tensile strength, and
The relationship is such that A ′> B ′.

ここに開示される他の一つの非水系二次電池は、長手方向に捲回された捲回電極体が非水電解液とともにケースに収容された形態であって、前記捲回電極体は、長尺帯状の正極集電体に正極合材層が保持された正極シートと、長尺帯状の負極集電体に負極合材層が保持された負極シートとが、長尺帯状のセパレータシートを介して捲回された構成を有する。前記正極シートには、前記正極集電体の長手方向に沿う第一の縁に、前記正極合材層を有しない帯状の正極合材層非形成部が設けられている。前記負極シートには、前記負極集電体の長手方向に沿う第一の縁に、前記負極合材層を有しない帯状の負極合材層非形成部が設けられている。前記正極シートと前記負極シートとは、前記正極合材層非形成部が前記負極シートの第二の縁からはみ出し、且つ前記負極合材層非形成部が前記正極シートの第二の縁からはみ出すように重ね合わされている。前記セパレータシートは、該セパレータシートの長手方向に沿う第一の縁から前記正極合材層非形成部がはみ出し、且つ前記第一の縁に対向する第二の縁から前記負極合材層非形成部がはみ出すように前記正極シートおよび前記負極シートと重ね合わされている。前記捲回電極体の軸方向における第一の端部(正極側端部)では、前記正極シートの正極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた正極合材層非形成部に正極端子が溶接されている。前記捲回電極体の軸方向における第二の端部(負極側端部)では、前記負極シートの負極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた負極合材層非形成部に負極端子が溶接されている。ここで、前記負極集電体は、前記正極集電体よりも熱伝導率の大きな材質により構成されている。例えば、前記負極集電体が銅製であり、前記正極集電体がアルミニウム製である。
かかる非水系二次電池の好ましい一態様では、前記電極体は、前記ケース内において、
前記正極合材層の正極合材層非形成部側端から前記電極体の前記一方の端部側の端面(正極側端面)に対向するケース内面(正極端対向面)までの距離Eと、
前記正極合材層の正極合材層非形成部側端とは反対の端から前記電極体の他方の端部側の端面(負極側端面)に対向するケース内面(負極端対向面)までの距離Fと、
の関係がE<Fとなるように配置されている。
Another non-aqueous secondary battery disclosed herein is a form in which a wound electrode body wound in a longitudinal direction is housed in a case together with a non-aqueous electrolyte, and the wound electrode body includes: A positive electrode sheet in which a positive electrode mixture layer is held on a long band-shaped positive electrode current collector, and a negative electrode sheet in which a negative electrode mixture layer is held on a long band-shaped negative electrode current collector are formed into a long band-shaped separator sheet. It has the structure wound through. The positive electrode sheet is provided with a strip-shaped positive electrode mixture layer non-forming portion that does not have the positive electrode mixture layer at the first edge along the longitudinal direction of the positive electrode current collector. The negative electrode sheet is provided with a strip-shaped negative electrode mixture layer non-forming portion that does not have the negative electrode mixture layer at the first edge along the longitudinal direction of the negative electrode current collector. In the positive electrode sheet and the negative electrode sheet, the positive electrode mixture layer non-forming portion protrudes from the second edge of the negative electrode sheet, and the negative electrode mixture layer non-forming portion protrudes from the second edge of the positive electrode sheet. Are overlaid. In the separator sheet, the positive electrode mixture layer non-forming portion protrudes from the first edge along the longitudinal direction of the separator sheet, and the negative electrode mixture layer is not formed from the second edge facing the first edge. The positive electrode sheet and the negative electrode sheet are overlapped so that the portion protrudes. At the first end portion (positive electrode side end portion) in the axial direction of the wound electrode body, the positive electrode mixture layer non-formation portion of the positive electrode sheet is gathered to the winding center side, and the gathered positive electrode composite is collected. The positive electrode terminal is welded to the material layer non-formed part. At the second end portion (negative electrode side end portion) in the axial direction of the wound electrode body, the negative electrode mixture layer non-formation portion of the negative electrode sheet is gathered to the winding center side, and the gathered negative electrode composite is gathered. The negative electrode terminal is welded to the material layer non-formed part. Here, the negative electrode current collector is made of a material having a higher thermal conductivity than the positive electrode current collector. For example, the negative electrode current collector is made of copper, and the positive electrode current collector is made of aluminum.
In a preferred embodiment of such a non-aqueous secondary battery, the electrode body is in the case,
A distance E from a positive electrode mixture layer non-formation portion side end of the positive electrode mixture layer to a case inner surface (positive electrode end facing surface) facing an end surface (positive electrode side end surface) on the one end portion side of the electrode body;
From the end of the positive electrode mixture layer opposite to the positive electrode mixture layer non-forming portion side end to the case inner surface (negative electrode end facing surface) facing the other end surface (negative electrode side end surface) of the electrode body Distance F;
Are arranged such that E <F.

非水系二次電池では、過充電等の不適切な使用や不測の事態等に起因して、ケースの内部においてガスが発生する場合がある。かかるガスは電極体の内部でも発生し得る。捲回電極体の場合には、該電極体の内部で発生したガスの外部への排出位置が、実質的に捲回端面(上記第一端および第二端)に限定される。また、捲回電極体の内部で多量のガスが発生するような事態においては、電極体の捲回コア部分(すなわち正極合材層と負極合材層とが対向する部分)から多量の熱が発生し、その熱が正極および負極の合材層非形成部にも伝わってその温度を上昇させる。このため、電極体内で発生したガスは、高温の正極端および負極端を経て電極体から排出され、対向するケース壁面に集中して当たることとなる。このように高温のガスがケース壁面に当たると、該ケース壁面に損傷(例えば、ケース構成材料の軟化、溶融、腐食等によるケースの変形や孔あき)が生じることがあり得る。   In a non-aqueous secondary battery, gas may be generated inside the case due to improper use such as overcharging or unforeseen circumstances. Such gas can also be generated inside the electrode body. In the case of a wound electrode body, the discharge position of the gas generated inside the electrode body is substantially limited to the wound end face (the first end and the second end). In a situation where a large amount of gas is generated inside the wound electrode body, a large amount of heat is generated from the wound core portion of the electrode body (that is, the portion where the positive electrode mixture layer and the negative electrode mixture layer face each other). The heat is transferred to the positive electrode and negative electrode mixture layer non-forming portion, and the temperature is increased. For this reason, the gas generated in the electrode body is discharged from the electrode body through the high-temperature positive electrode end and the negative electrode end, and is concentrated on the opposing case wall surface. When such a high-temperature gas hits the case wall surface, the case wall surface may be damaged (for example, deformation or perforation of the case due to softening, melting, corrosion, etc. of the case constituent material).

本発明者は、上記のように電極体の内部で多量のガスが発生するような事態において、該電極体の負極側端部は正極側端部よりも高温になりやすいという点に着目した。これは、より熱伝導率の高い集電体からなる合材層非形成部が捲回された部分(ここでは負極側端部)は、より熱伝導率の低い集電体からなる合材層非形成部が捲回された部分(ここでは正極側端部)に比べて、捲回コア部からの伝熱量が多くなるためと考えられる。そこで、上記の非水系二次電池では、過充電等の異常時に高温となり得る正極合材層が、ケースの中央位置(正極端対向面と負極端対向面との中央面)を基準として、該中央位置よりも正極端対向面側に偏らせて配置されている。このことによって、限られたケース内スペース(特に、正極端対向面と負極端対向面との距離)のなかで、ケース表面の最高到達温度を効果的に低下させることができる。したがって、上記構成の非水系二次電池は、過充電等に起因する異常時にも(特に、電極内で多量のガスが発生するような事態に至った場合にも)、より優れた信頼性を示すものとなり得る。また、ケース表面の最高到達温度を低下させ得るという上記の効果が達成されることは、上記非水系二次電池を複数配列して構成される組電池において、隣接する単電池への伝熱を抑えるという観点からも有意義である。上述のように寄せ集め距離をA>Bとする構成との組み合わせにより、さらに優れた信頼性が実現され得る。   The inventor paid attention to the fact that the negative electrode side end of the electrode body is likely to be hotter than the positive electrode side end in a situation where a large amount of gas is generated inside the electrode body as described above. This is because the portion where the composite material layer non-forming portion made of the current collector with higher thermal conductivity is wound (here, the negative electrode side end portion) is the composite material layer made of the current collector with lower thermal conductivity. This is probably because the amount of heat transferred from the wound core portion is larger than the portion where the non-formed portion is wound (here, the positive electrode side end portion). Therefore, in the non-aqueous secondary battery described above, the positive electrode mixture layer that can be at a high temperature in the event of an overcharge or the like is based on the center position of the case (the central surface between the positive electrode end facing surface and the negative electrode end facing surface). It is arranged so as to be biased toward the positive electrode end facing surface side from the center position. This makes it possible to effectively reduce the maximum temperature reached on the case surface within a limited space within the case (particularly, the distance between the positive electrode end facing surface and the negative electrode end facing surface). Therefore, the non-aqueous secondary battery having the above-described configuration has a higher reliability even in the case of an abnormality caused by overcharging or the like (especially when a large amount of gas is generated in the electrode). Can be an indication. In addition, the above-described effect that the maximum temperature on the case surface can be reduced is achieved by the fact that in the assembled battery configured by arranging a plurality of the non-aqueous secondary batteries, heat transfer to adjacent single cells is achieved. It is also meaningful from the viewpoint of restraining. As described above, further excellent reliability can be realized by the combination with the configuration in which the gathering distance is A> B.

距離Fと距離Eとの比(F/E)は、1.1以上とすることが好ましく、1.2以上とすることがより好ましい。このことによって、ケース表面の最高到達温度がよりよく低下され得る。F/Eの上限は特に限定されないが、通常は5以下(例えば3以下)とすることが適当である。F/Eが大きすぎると電池の体格が大型化しやすくなる場合がある。   The ratio (F / E) between the distance F and the distance E is preferably 1.1 or more, and more preferably 1.2 or more. This can better reduce the maximum temperature reached on the case surface. The upper limit of F / E is not particularly limited, but it is usually appropriate to set it to 5 or less (for example, 3 or less). If F / E is too large, the size of the battery may be easily increased.

ここに開示される非水系二次電池の好ましい一態様では、上記構成において、電極体の第一の端部(正極側端部)から正極端対向面までの距離Gと、該電極体の第二の端部(負極側端部)から負極端対向面までの距離Hとが、G<Hの関係を有するように電極体が配置されている。かかる態様によると、ケース表面の最高到達温度を効果的に低下させるという上述の効果がよりよく発揮され得る。   In a preferred aspect of the non-aqueous secondary battery disclosed herein, in the above configuration, the distance G from the first end (positive end) of the electrode body to the positive end facing surface, The electrode body is disposed so that the distance H from the second end (negative electrode side end) to the negative electrode end facing surface has a relationship of G <H. According to this aspect, the above-described effect of effectively reducing the maximum temperature reached on the surface of the case can be exhibited better.

なお、正極集電体の熱伝導率が負極集電体の熱伝導率よりも高い電池では、上記構成とは各部の寸法関係が正極側と負極側とで逆転することは、上述した正負の電極シートの寄せ集め距離の場合と同様である。   Note that in a battery in which the thermal conductivity of the positive electrode current collector is higher than that of the negative electrode current collector, the dimensional relationship of each part is reversed between the positive electrode side and the negative electrode side. This is the same as the gathering distance of the electrode sheets.

ここに開示される他の一つの非水系二次電池は、長手方向に捲回された捲回電極体が非水電解液とともにケースに収容された形態であって、前記捲回電極体は、長尺帯状の正極集電体に正極合材層が保持された正極シートと、長尺帯状の負極集電体に負極合材層が保持された負極シートとが、長尺帯状のセパレータシートを介して捲回された構成を有する。前記正極シートには、前記正極集電体の長手方向に沿う第一の縁に、前記正極合材層を有しない帯状の正極合材層非形成部が設けられている。前記負極シートには、前記負極集電体の長手方向に沿う第一の縁に、前記負極合材層を有しない帯状の負極合材層非形成部が設けられている。前記正極シートと前記負極シートとは、前記正極合材層非形成部が前記負極シートの第二の縁からはみ出し、且つ前記負極合材層非形成部が前記正極シートの第二の縁からはみ出すように重ね合わされている。前記セパレータシートは、該セパレータシートの長手方向に沿う第一の縁から前記正極合材層非形成部がはみ出し、且つ前記第一の縁に対向する第二の縁から前記負極合材層非形成部がはみ出すように前記正極シートおよび前記負極シートと重ね合わされている。前記捲回電極体の軸方向における第一の端部(正極側端部)では、前記正極シートの正極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた正極合材層非形成部に正極端子が溶接されている。前記捲回電極体の軸方向における第二の端部(負極側端部)では、前記負極シートの負極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた負極合材層非形成部に負極端子が溶接されている。ここで、前記負極集電体は前記正極集電体よりも熱伝導率の大きな材質からなる。そして、前記電極体は、
前記負極シートの第二の縁から前記セパレータシートの第一の縁までの距離Pと、
前記正極シートの第二の縁から前記セパレータシートの第二の縁までの距離Qと、
の関係がP<Qとなるように構成されている。より好ましい一態様では、前記距離Pと、前記負極合材層の負極合材層非形成部側端から前記セパレータシートの第二の縁までの距離Rと、の関係がP<Rとなるように構成されている。
Another non-aqueous secondary battery disclosed herein is a form in which a wound electrode body wound in a longitudinal direction is housed in a case together with a non-aqueous electrolyte, and the wound electrode body includes: A positive electrode sheet in which a positive electrode mixture layer is held on a long band-shaped positive electrode current collector, and a negative electrode sheet in which a negative electrode mixture layer is held on a long band-shaped negative electrode current collector are formed into a long band-shaped separator sheet. It has the structure wound through. The positive electrode sheet is provided with a strip-shaped positive electrode mixture layer non-forming portion that does not have the positive electrode mixture layer at the first edge along the longitudinal direction of the positive electrode current collector. The negative electrode sheet is provided with a strip-shaped negative electrode mixture layer non-forming portion that does not have the negative electrode mixture layer at the first edge along the longitudinal direction of the negative electrode current collector. In the positive electrode sheet and the negative electrode sheet, the positive electrode mixture layer non-forming portion protrudes from the second edge of the negative electrode sheet, and the negative electrode mixture layer non-forming portion protrudes from the second edge of the positive electrode sheet. Are overlaid. In the separator sheet, the positive electrode mixture layer non-forming portion protrudes from the first edge along the longitudinal direction of the separator sheet, and the negative electrode mixture layer is not formed from the second edge facing the first edge. The positive electrode sheet and the negative electrode sheet are overlapped so that the portion protrudes. At the first end portion (positive electrode side end portion) in the axial direction of the wound electrode body, the positive electrode mixture layer non-formation portion of the positive electrode sheet is gathered to the winding center side, and the gathered positive electrode composite is collected. The positive electrode terminal is welded to the material layer non-formed part. At the second end portion (negative electrode side end portion) in the axial direction of the wound electrode body, the negative electrode mixture layer non-formation portion of the negative electrode sheet is gathered to the winding center side, and the gathered negative electrode composite is gathered. The negative electrode terminal is welded to the material layer non-formed part. Here, the negative electrode current collector is made of a material having a higher thermal conductivity than the positive electrode current collector. And the electrode body is
A distance P from the second edge of the negative electrode sheet to the first edge of the separator sheet;
A distance Q from the second edge of the positive electrode sheet to the second edge of the separator sheet;
Is configured such that P <Q. In a more preferred aspect, the relationship between the distance P and the distance R from the negative electrode composite material layer non-forming portion side end of the negative electrode composite material layer to the second edge of the separator sheet is P <R. It is configured.

過充電等の異常時に捲回電極体の内部で多量のガスが発生するような事態を引き起こす一因として、電極体の温度が通常の使用温度域を大きく超えて上昇することによりセパレータシートが熱収縮し、これにより正極シートと負極シートとが直接接触(すなわち短絡)することが挙げられる。本発明者は、上記のように電極体の温度が上昇する際、負極側端部は正極側端部よりも高温になりやすい点に着目した。そこで、上記の非水系二次電池では、負極合材層の端から正極側端部に向けてセパレータシートをはみ出させる幅(距離P)よりも、正極合材層の端から負極側端部に向けてセパレータシートをはみ出させる幅(距離Q)のほうが大きくなるようにしている。すなわち、より高温となりやすい負極端部側では、セパレータシートの熱収縮代をより幅広く確保している。このことによって、セパレータシートの熱収縮に起因する短絡を防止する性能を効果的に高めることができる。したがって、上記構成の非水系二次電池は、過充電等に起因する異常時にも、より優れた信頼性を示すものとなり得る。ポリオレフィン等の熱可塑性樹脂(典型的にはポリエチレン)を含む材料を用いて形成されたセパレータシート(典型的には、熱可塑性樹脂が連続相となっている少なくとも一つの樹脂層を含む単層または多層のセパレータシート)を備える態様の電池では、上記構成を採用することが特に有意義である。また、上述のように寄せ集め距離をA>Bとする構成、電極体がE<Fとなるように配置された構成、の一方または両方との組み合わせにより、さらに優れた信頼性が実現され得る。   One factor that may cause a situation where a large amount of gas is generated inside the wound electrode body in the event of an overcharge or other abnormal condition is that the separator sheet heats up when the electrode body temperature rises far beyond the normal operating temperature range. It contracts, and it is mentioned that a positive electrode sheet and a negative electrode sheet contact directly (namely, short circuit) by this. The inventor paid attention to the fact that when the temperature of the electrode body rises as described above, the negative electrode side end tends to be hotter than the positive electrode side end. Therefore, in the above non-aqueous secondary battery, the end of the positive electrode mixture layer extends from the end of the positive electrode mixture layer to the end of the negative electrode side rather than the width (distance P) from which the separator sheet protrudes from the end of the negative electrode mixture layer toward the positive electrode side end. The width (distance Q) at which the separator sheet protrudes is made larger. That is, the heat shrinkage allowance of the separator sheet is more widely secured on the negative electrode end portion side where the temperature tends to be higher. By this, the performance which prevents the short circuit resulting from the thermal contraction of a separator sheet can be improved effectively. Therefore, the non-aqueous secondary battery having the above-described configuration can exhibit better reliability even in an abnormality caused by overcharge or the like. Separator sheet formed using a material containing a thermoplastic resin (typically polyethylene) such as polyolefin (typically a single layer containing at least one resin layer in which the thermoplastic resin is a continuous phase) In a battery having an aspect including a multilayer separator sheet, it is particularly meaningful to adopt the above configuration. Further, by combining with one or both of the configuration in which the gathering distance is A> B as described above and the configuration in which the electrode body is arranged so that E <F, further excellent reliability can be realized. .

なお、正極集電体の熱伝導率が負極集電体の熱伝導率よりも高い電池では、上記構成とは各部の寸法関係が正極側と負極側とで逆転することは、上述した正負の電極シートの寄せ集め距離の場合と同様である。   Note that in a battery in which the thermal conductivity of the positive electrode current collector is higher than that of the negative electrode current collector, the dimensional relationship of each part is reversed between the positive electrode side and the negative electrode side. This is the same as the gathering distance of the electrode sheets.

ここに開示されるいずれかの非水系二次電池の好ましい一態様では、前記正極合材層と前記セパレータシートとの間および前記負極合材層と前記セパレータシートとの間のうちの少なくとも一方に、絶縁性無機粒子と該粒子を結着させるバインダとを含む多孔質絶縁層が介在されている。また、前記正極集電体と前記正極合材層との間および前記負極集電体と前記負極合材層との間のうちの少なくとも一方に、導電性粒子と熱可塑性ポリマーとを含む中間層が介在されている。前記中間層は、前記電池の通常の使用温度域では前記集電体と前記合材層との間に導電パスを形成し、該電池の異常時における温度上昇により前記導電パスが遮断されるように構成されている。   In a preferred embodiment of any of the non-aqueous secondary batteries disclosed herein, at least one of the gap between the positive electrode mixture layer and the separator sheet and the gap between the negative electrode mixture layer and the separator sheet. A porous insulating layer containing insulating inorganic particles and a binder for binding the particles is interposed. Further, an intermediate layer containing conductive particles and a thermoplastic polymer in at least one of the space between the positive electrode current collector and the positive electrode composite material layer and between the negative electrode current collector and the negative electrode composite material layer. Is intervened. The intermediate layer forms a conductive path between the current collector and the composite layer in a normal operating temperature range of the battery, and the conductive path is cut off due to a temperature rise when the battery is abnormal. It is configured.

かかる構成の電池によると、正極合材層と負極合材層との間にあるセパレータシートの少なくとも一部が熱収縮や溶融により消失したとしても、上記多孔質絶縁層を利用して両合材層が短絡する事態を回避することができる。さらに、上記中間層の機能により、電池の異常時に集電体と電極合材層との間の抵抗を大きく上昇させることができる。これらの対策の一方または両方(好ましくは両方)が施されていることによって、過充電等の異常時においても、電池の温度上昇をより確実に抑制することができる。すなわち、より信頼性に優れた非水系二次電池が実現され得る。上記距離AとB、距離EとF、距離PとRおよび距離PとQとの関係のうち、一または二以上の関係を満たす構成との組み合わせによると、さらに優れた信頼性が実現され得る。   According to the battery having such a configuration, even if at least a part of the separator sheet between the positive electrode mixture layer and the negative electrode mixture layer disappears due to heat shrinkage or melting, both the composite materials are utilized using the porous insulating layer. A situation where the layers are short-circuited can be avoided. Further, the function of the intermediate layer can greatly increase the resistance between the current collector and the electrode mixture layer when the battery is abnormal. By taking one or both of these measures (preferably both), it is possible to more reliably suppress an increase in battery temperature even during an abnormality such as overcharging. That is, a non-aqueous secondary battery with higher reliability can be realized. According to the combination of the above-described distances A and B, distances E and F, distances P and R, and distances P and Q, and a configuration that satisfies one or more of the relations, further excellent reliability can be realized. .

ここに開示されるいずれかの非水系二次電池(例えばリチウムイオン二次電池)は、車両に搭載される電池(ここに開示されるいずれかの非水系二次電池を単電池とし、該単電池を複数備えてなる組電池の形態であり得る。)として好適に利用され得る。したがって、本発明によると、ここに開示されるいずれかの非水系二次電池を備えた車両(例えば自動車)が提供される。   Any non-aqueous secondary battery (for example, a lithium ion secondary battery) disclosed herein is a battery mounted on a vehicle (any non-aqueous secondary battery disclosed herein is a single battery). It can be in the form of an assembled battery comprising a plurality of batteries. Therefore, according to this invention, the vehicle (for example, motor vehicle) provided with one of the non-aqueous secondary batteries disclosed here is provided.

一実施形態に係る非水系二次電池の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the non-aqueous secondary battery which concerns on one Embodiment. 一実施形態に係る非水系二次電池を構成する正負極シートおよびセパレータシートの配置ならびに電極端子の溶接位置を示す模式図である。It is a schematic diagram which shows the arrangement | positioning of the positive / negative electrode sheet | seat and separator sheet which comprise the non-aqueous secondary battery which concerns on one Embodiment, and the welding position of an electrode terminal. 図1のIII−III線断面における電極体の形状を模式的に示す断面図である。It is sectional drawing which shows typically the shape of the electrode body in the III-III line cross section of FIG. 他の一実施形態に係る非水系二次電池を構成する正負極シートおよびセパレータシートの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the positive / negative electrode sheet | seat and separator sheet which comprise the non-aqueous secondary battery which concerns on other one Embodiment. 他の一実施形態に係る非水系二次電池を構成する正負極シートおよびセパレータシートとケースとの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the positive / negative electrode sheet | seat and separator sheet which comprise the non-aqueous secondary battery which concerns on other one Embodiment, and a case. 他の一実施形態に係る非水系二次電池を構成する正負極シートおよびセパレータシートの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the positive / negative electrode sheet | seat and separator sheet which comprise the non-aqueous secondary battery which concerns on other one Embodiment. 図6のVII−VII線断面図である。It is the VII-VII sectional view taken on the line of FIG. 一実施形態に係る非水系二次電池を備えた車両(自動車)を示す模式的側面図である。1 is a schematic side view showing a vehicle (automobile) provided with a nonaqueous secondary battery according to an embodiment.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

特に限定することを意図したものではないが、以下では主として本発明をリチウムイオン二次電池に適用する場合を例として、本発明をより詳細に説明する。なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。   Although not intended to be particularly limited, the present invention will be described in more detail below by taking as an example the case where the present invention is mainly applied to a lithium ion secondary battery. In addition, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted. Moreover, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.

<実施形態1>
図1〜3に示すように、本実施形態に係るリチウムイオン二次電池10は、扁平な直方体形状(すなわち角型)の電池ケース20に、所定の電池構成材料(正負極それぞれの集電体に正負極それぞれの活物質が保持されたシート状の電極、セパレータ等)を具備する捲回電極体30が、適当な電解液(図示せず)とともに収容された構成を有する。
<Embodiment 1>
As shown in FIGS. 1 to 3, a lithium ion secondary battery 10 according to the present embodiment includes a battery case 20 having a flat rectangular parallelepiped shape (that is, a square shape) and a predetermined battery constituent material (a current collector for each positive and negative electrode). And a wound electrode body 30 including a sheet-like electrode, a separator, and the like each holding an active material for each of the positive and negative electrodes is housed together with an appropriate electrolytic solution (not shown).

ケース20は、上記扁平直方体形状における幅狭面の一つが開口部となっている箱形(すなわち有底四角筒状)のケース本体21と、その開口部に取り付けられて(例えば溶接されて)該開口部を塞ぐ蓋体22とを備える。ケース20を構成する材質としては、一般的なリチウムイオン二次電池で使用されるものと同様のもの等を適宜使用することができ、特に制限はない。放熱性等の観点から、金属製(例えばアルミニウム製、スチール製等)のケース20を好ましく使用し得る。本実施形態のケース20(本体21および蓋体22)はアルミニウム製である。   The case 20 is attached to (for example, welded) a box-shaped (that is, a bottomed rectangular tube) case body 21 in which one of the narrow surfaces of the flat rectangular parallelepiped shape is an opening, and the opening. And a lid 22 that closes the opening. As a material constituting the case 20, the same materials as those used in a general lithium ion secondary battery can be appropriately used, and there is no particular limitation. From the viewpoint of heat dissipation and the like, a metal case 20 (for example, aluminum, steel, etc.) can be preferably used. The case 20 (the main body 21 and the lid body 22) of the present embodiment is made of aluminum.

蓋体22は、ケース本体21の開口形状に適合する長方形状に形成されている。捲回電極体30は、扁平形状(典型的には、軸に垂直な断面における形状が略長円状)の捲回体であって、その捲回軸が横倒しとなる姿勢(すなわち、ケース本体21の開口部が捲回軸に対して横方向に位置する向き)で本体21に収容されている。電極体30の捲回軸両端には、正極端子40および負極端子80がそれぞれ溶接されている。これらの電極端子40,80は、蓋体22の長手方向の一端および他端に設けられた端子引出孔(図示せず)をそれぞれ貫通して、ケース20の内部から外部に引き出されている。なお、蓋体22の中央部には、ケース20の内圧が上昇した場合に該ケースの内外を連通させて内圧を開放するための安全弁(図示せず)が設けられている。   The lid 22 is formed in a rectangular shape that matches the opening shape of the case body 21. The wound electrode body 30 is a wound body having a flat shape (typically a substantially oval shape in a cross section perpendicular to the axis), and a posture in which the wound axis is laid down (that is, the case body) The opening portion 21 is accommodated in the main body 21 in such a direction that the opening portion is located in a direction transverse to the winding axis. A positive electrode terminal 40 and a negative electrode terminal 80 are respectively welded to both ends of the winding shaft of the electrode body 30. These electrode terminals 40 and 80 are respectively led out from the inside of the case 20 through terminal lead holes (not shown) provided at one end and the other end in the longitudinal direction of the lid body 22. In addition, a safety valve (not shown) is provided at the center portion of the lid body 22 to allow the inside and outside of the case to communicate with each other to release the internal pressure when the internal pressure of the case 20 rises.

捲回電極体30は、長尺帯状の正極集電体322に正極合材層324が保持された正極シート320と、長尺帯状の負極集電体342に負極合材層344が保持された負極シート340と、長尺帯状の二枚のセパレータシート36とを含む。正極合材層324および負極合材層344は、それぞれ、リチウムを可逆的に吸蔵および放出可能な活物質を主成分(典型的には、合材層の50質量%以上を占める成分)とする層である。これらの4枚のシート320,36,340,36を重ね合わせ、そのシート積層体を長手方向に円筒状に捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって、扁平形状の捲回電極体30が得られる。   The wound electrode body 30 includes a positive electrode sheet 320 in which a positive electrode current collector layer 324 is held on a long band-like positive electrode current collector 322 and a negative electrode mixture layer 344 held on a long band-like negative electrode current collector 342. A negative electrode sheet 340 and two long strip-shaped separator sheets 36 are included. Each of the positive electrode mixture layer 324 and the negative electrode mixture layer 344 includes an active material capable of reversibly occluding and releasing lithium as a main component (typically a component that occupies 50% by mass or more of the mixture layer). Is a layer. By laminating these four sheets 320, 36, 340, 36, winding the sheet laminate in a cylindrical shape in the longitudinal direction, and then crushing the resulting wound body from the side direction and abducting it, A flat wound electrode body 30 is obtained.

正極シート320、負極シート340およびセパレータシート36を構成する材料自体は、従来のリチウムイオン二次電池に備えられる電極体と同様でよく、特に制限はない。例えば、正極シート320を構成する正極集電体322には、アルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用され得る。正極合材層324の形成に用いる正極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、LiNiO(本実施形態)、LiCoO、LiMn等のリチウム遷移金属酸化物が挙げられる。また、負極シート340を構成する負極集電体342には、銅箔(本実施形態)その他の負極に適する金属箔が好適に使用され得る。負極合材層344の形成に用いる負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、天然黒鉛(本実施形態)、人造黒鉛等の、アモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物等が挙げられる。セパレータシート36の好適例としては、多孔質ポリオレフィン系樹脂で構成された単層または積層構造のものが挙げられる。 The materials constituting the positive electrode sheet 320, the negative electrode sheet 340, and the separator sheet 36 may be the same as the electrode body provided in the conventional lithium ion secondary battery, and are not particularly limited. For example, for the positive electrode current collector 322 constituting the positive electrode sheet 320, an aluminum foil (this embodiment) or other metal foil suitable for the positive electrode can be suitably used. As the positive electrode active material used for forming the positive electrode mixture layer 324, one or more of materials conventionally used in lithium ion secondary batteries can be used without particular limitation. Preferable examples include lithium transition metal oxides such as LiNiO 2 (this embodiment), LiCoO 2 , LiMn 2 O 4 . Further, as the negative electrode current collector 342 constituting the negative electrode sheet 340, a metal foil suitable for copper foil (this embodiment) and other negative electrodes can be suitably used. As the negative electrode active material used for forming the negative electrode mixture layer 344, one or more of materials conventionally used in lithium ion secondary batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as amorphous carbon such as natural graphite (this embodiment) and artificial graphite, lithium transition metal oxides, and lithium transition metal nitrides. Preferable examples of the separator sheet 36 include those having a single layer or a laminated structure made of a porous polyolefin resin.

本実施形態では、正極集電体として厚さ15μmのアルミニウム箔を、負極集電体として厚さ10μmの銅箔を使用している。したがって、本実施形態に係る負極集電体の引張強度は、正極集電体の引張強度よりも明らかに高い。また、本実施形態に係る負極集電体は、正極集電体よりも明らかに熱伝導率の大きな材質からなる。   In the present embodiment, an aluminum foil having a thickness of 15 μm is used as the positive electrode current collector, and a copper foil having a thickness of 10 μm is used as the negative electrode current collector. Therefore, the tensile strength of the negative electrode current collector according to this embodiment is clearly higher than the tensile strength of the positive electrode current collector. In addition, the negative electrode current collector according to the present embodiment is made of a material that clearly has a higher thermal conductivity than the positive electrode current collector.

正極シート320には、正極集電体322の長手方向に沿う第一の縁3201に、帯状の正極合材層非形成部320Aが設けられている。この正極合材層非形成部320Aは、正極集電体322の両サイドの略同じ位置に設けられている。正極合材層324は、正極集電体322の両サイドの表面に、正極合材層非形成部320Aを除く全範囲に亘って形成されている。   The positive electrode sheet 320 is provided with a strip-shaped positive electrode mixture layer non-forming portion 320 </ b> A at a first edge 3201 along the longitudinal direction of the positive electrode current collector 322. The positive electrode mixture layer non-forming part 320 </ b> A is provided at substantially the same position on both sides of the positive electrode current collector 322. The positive electrode mixture layer 324 is formed on the surfaces of both sides of the positive electrode current collector 322 over the entire range excluding the positive electrode mixture layer non-forming portion 320A.

負極シート340には、負極集電体342の長手方向に沿う第一の縁3401に、帯状の負極合材層非形成部340Aが設けられている。この負極合材層非形成部340Aは、負極集電体342の両サイドの略同じ位置に設けられている。負極合材層344は、負極集電体342の両サイドの表面に、負極合材層非形成部340Aを除く全範囲に亘って形成されている。   The negative electrode sheet 340 is provided with a strip-shaped negative electrode mixture layer non-forming portion 340 </ b> A at a first edge 3401 along the longitudinal direction of the negative electrode current collector 342. The negative electrode mixture layer non-forming portion 340 </ b> A is provided at substantially the same position on both sides of the negative electrode current collector 342. The negative electrode mixture layer 344 is formed on the surfaces of both sides of the negative electrode current collector 342 over the entire range excluding the negative electrode mixture layer non-forming portion 340A.

正極シート320と負極シート340は、図2に示すように、セパレータシート36の長手方向に沿う第一の縁3601から正極シートの正極合材層非形成部320Aがはみ出し、セパレータシート36の長手方向に沿う第二の縁3602から負極シートの負極合材層非形成部340Aがはみ出すように、幅方向(捲回軸方向、すなわち図2の左右方向)に位置をややずらしてセパレータシート36と重ね合わせた状態で捲回されている。その結果として、図1に示すように、捲回電極体30の捲回軸方向の一方の端部(正極側端部)301には、正極シートの正極合材層非形成部320Aが捲回コア部分31(すなわち正極シート320と負極シート340とセパレータシート36とが密に捲回された部分)から外方にはみ出した部分が形成されている。また、捲回電極体30の捲回軸方向の他方の端部(負極側端部)302には、負極シートの負極合材層非形成部340Aが捲回コア部分31から外方にはみ出した部分が形成されている。   As shown in FIG. 2, the positive electrode sheet 320 and the negative electrode sheet 340 protrude from the first edge 3601 along the longitudinal direction of the separator sheet 36 so that the positive electrode mixture layer non-forming portion 320 </ b> A of the positive electrode sheet protrudes. The position is slightly shifted in the width direction (winding axis direction, that is, the left-right direction in FIG. 2) so that the negative electrode mixture layer non-forming part 340A of the negative electrode sheet protrudes from the second edge 3602 along the line. It is wound together. As a result, as shown in FIG. 1, the positive electrode mixture layer non-forming part 320 </ b> A of the positive electrode sheet is wound on one end (positive electrode side end) 301 in the winding axis direction of the wound electrode body 30. A portion that protrudes outward from the core portion 31 (that is, a portion where the positive electrode sheet 320, the negative electrode sheet 340, and the separator sheet 36 are closely wound) is formed. Further, the negative electrode mixture layer non-forming portion 340A of the negative electrode sheet protrudes outward from the wound core portion 31 at the other end portion (negative electrode side end portion) 302 in the winding axis direction of the wound electrode body 30. A part is formed.

図3によく示されるように、捲回電極体30の正極側端部301では、正極合材層非形成部320Aが電極体の厚みの両側から捲回中心側(すなわち、電極体の厚み中心側)に寄せ集められている。その寄せ集められた部分のうち電極体の捲回中心からやや上方(端子引出側)に偏った箇所(正極端子溶接部42)に、電極体30の一方の扁平面側(図1,2の手前側、図3の上側)から、正極端子40が溶接されている。また、捲回電極体30の負極側端部302では、負極合材層非形成部340Aが該電極体の厚みの両側から捲回中心側に寄せ集められている。その寄せ集められた部分のうち電極体の捲回中心からやや上方に偏った箇所(負極端子溶接部82)に、電極体30の一方の扁平面側から、負極端子80が溶接されている。ケース20内のスペースを有効に活用して電池のエネルギー密度を高めるために、正極端子溶接部42および負極端子溶接部82は、それぞれ、合材層非形成部320A,340Aのうち第一の縁3201,3401寄りの箇所(好ましくは、最も第一の縁3201,3401寄りの箇所)に設定されることが好ましい。   As well shown in FIG. 3, in the positive electrode side end portion 301 of the wound electrode body 30, the positive electrode mixture layer non-formed portion 320 </ b> A is wound from the both sides of the thickness of the electrode body (that is, the thickness center of the electrode body). Side). One flat surface side (FIGS. 1 and 2 in FIGS. 1 and 2) of the gathered portion is located slightly upward (terminal lead side) from the winding center of the electrode body (positive terminal welding portion 42). The positive electrode terminal 40 is welded from the front side (upper side in FIG. 3). Further, in the negative electrode side end portion 302 of the wound electrode body 30, the negative electrode mixture layer non-formed portion 340A is gathered from both sides of the thickness of the electrode body toward the winding center side. The negative electrode terminal 80 is welded from one flat surface side of the electrode body 30 to a portion (negative electrode terminal welded portion 82) that is slightly upward from the winding center of the electrode body in the collected portion. In order to effectively utilize the space in the case 20 and increase the energy density of the battery, the positive electrode terminal welded portion 42 and the negative electrode terminal welded portion 82 are each of the first edge of the mixture layer non-formed portions 320A and 340A. It is preferably set at a location near 3201, 3401 (preferably, a location closest to the first edge 3201, 3401).

ここで、図2,3に示すように、正極シート320および負極シート340は、正極合材層の正極合材層非形成部側端324Aから正極端子溶接部42までの距離A(最も近い箇所を測るものとする。)が、負極合材層の負極合材層非形成部側端344Aから負極端子溶接部82までの距離B(同上)よりも大きくなるように構成されている(すなわちA>B)。このように正極シートの寄せ集め距離Aを負極シートの寄せ集め距離Bよりも長くすることにより、図3に示すように、正極側では負極側よりも集電体の寄せ集め角度を緩やかにすることができる。その結果、引張強度の強い負極シートについては寄せ集め距離Bを必要以上に長くすることなく、より引張強度の弱い正極シートについては寄せ集め距離Aを十分に確保することができる。したがって、電池全体としての材料コスト、質量、サイズ等の上昇を抑制しつつ、溶接不良の低減および溶接強度の向上を効果的に実現することができる。これにより、電池の製造時、流通時、使用時等に加わり得る衝撃や振動等に強い電池、すなわち、より信頼性の高い(例えば、集電体や電極端子溶接部に損傷が生じ難い)電池を実現することができる。   Here, as shown in FIGS. 2 and 3, the positive electrode sheet 320 and the negative electrode sheet 340 have a distance A (closest point) from the positive electrode mixture layer non-forming portion side end 324 </ b> A of the positive electrode mixture layer to the positive electrode terminal weld portion 42. ) Is configured to be larger than the distance B (same as above) from the negative electrode mixture layer non-forming portion side end 344A of the negative electrode mixture layer to the negative electrode terminal weld portion 82 (that is, A). > B). Thus, by making the gathering distance A of the positive electrode sheet longer than the gathering distance B of the negative electrode sheet, the gathering angle of the current collector is made gentler on the positive electrode side than on the negative electrode side, as shown in FIG. be able to. As a result, the gathering distance A can be sufficiently secured for the positive electrode sheet having a weaker tensile strength without making the gathering distance B longer than necessary for the negative electrode sheet having a high tensile strength. Therefore, it is possible to effectively realize a reduction in welding failure and an improvement in welding strength while suppressing an increase in material cost, mass, size and the like of the entire battery. As a result, a battery that is resistant to shock and vibration that can be applied during manufacture, distribution, and use of the battery, that is, a battery with higher reliability (for example, a current collector or electrode terminal weld is less likely to be damaged). Can be realized.

距離Aと距離Bとの比(A/B)は、1.1以上とすることが好ましく、1.3以上とすることがより好ましい。これにより、電池の大型化等を抑えつつ信頼性を向上させるという上記の効果がよりよく発揮され得る。A/Bの上限は特に限定されないが、通常は5以下(例えば3以下)とすることが適当である。A/Bが大きすぎると電池の体格が大型化しやすくなる場合がある。また、負極側の寄せ集め距離Bを二倍した値が、捲回コア部分における電極体の厚みTに対して1.1倍以上であることが好ましい。かかる態様によると、負極側の溶接品質および溶接強度がより良好なものとなり得る。したがって、正極側および負極側のいずれにおいても、電極端子の溶接不良や振動等による電極体の破損がよりよく防止され得る。   The ratio (A / B) between the distance A and the distance B is preferably 1.1 or more, and more preferably 1.3 or more. Thereby, said effect of improving reliability, suppressing the enlargement of a battery, etc. can be exhibited better. The upper limit of A / B is not particularly limited, but it is usually suitably 5 or less (eg 3 or less). If A / B is too large, the size of the battery may be easily increased. Moreover, it is preferable that the value obtained by doubling the gathering distance B on the negative electrode side is 1.1 times or more with respect to the thickness T of the electrode body in the wound core portion. According to this aspect, the welding quality and welding strength on the negative electrode side can be improved. Therefore, on either the positive electrode side or the negative electrode side, the electrode body can be better prevented from being damaged due to poor welding or vibration of the electrode terminals.

かかる構成のリチウムイオン二次電池10は、例えば概ね以下の手順で好適に製造(構築)することができる。すなわち、蓋体22の端子引出孔に正極端子40および負極端子80を取り付けて蓋体−電極アセンブリを作製する。次いで、上記構成の捲回電極体30の正極端子溶接部42および負極端子溶接部82に、正極端子40および負極端子80をそれぞれ溶接する。これにより上記蓋体−電極アセンブリと電極体30とが一体化される。なお、正極端子40の溶接方法としては例えば超音波溶接を、負極端子の溶接方法としては例えば抵抗溶接を好ましく採用し得る。そして、電極体30をケース本体21の開口部から内部に収めるようにして該開口部に蓋体22を装着して、蓋体22とケース本体21との合わせ目を例えばレーザ溶接により封止する。   The lithium ion secondary battery 10 having such a configuration can be suitably manufactured (constructed) generally by the following procedure, for example. That is, the positive electrode terminal 40 and the negative electrode terminal 80 are attached to the terminal lead hole of the lid body 22 to produce a lid body-electrode assembly. Next, the positive electrode terminal 40 and the negative electrode terminal 80 are welded to the positive electrode terminal weld portion 42 and the negative electrode terminal weld portion 82 of the wound electrode body 30 having the above-described configuration, respectively. Thereby, the lid body-electrode assembly and the electrode body 30 are integrated. In addition, as a welding method of the positive electrode terminal 40, for example, ultrasonic welding can be preferably employed, and as a welding method of the negative electrode terminal, for example, resistance welding can be preferably employed. Then, the electrode body 30 is fitted into the opening from the opening of the case body 21 so that the lid 22 is attached to the opening, and the joint between the lid 22 and the case body 21 is sealed by, for example, laser welding. .

その後、蓋体22に設けられた注液孔からケース20内に電解液を注入する。電解液としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。本実施形態では、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPFを約1mol/リットルの濃度で含有させた電解液を用いる。その後、注液孔に金属製の封止キャップを取り付けて(例えば溶接して)ケース20を封止する。このようにしてリチウムイオン二次電池10を製造(構築)することができる。 Thereafter, an electrolytic solution is injected into the case 20 from a liquid injection hole provided in the lid body 22. As the electrolytic solution, the same non-aqueous electrolytic solution conventionally used for lithium ion secondary batteries can be used without any particular limitation. In this embodiment, an electrolytic solution in which LiPF 6 is contained in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) at a concentration of about 1 mol / liter is used. Thereafter, a metal sealing cap is attached to the liquid injection hole (for example, by welding) to seal the case 20. In this way, the lithium ion secondary battery 10 can be manufactured (constructed).

<実施形態2>
本実施形態に係るリチウムイオン二次電池を構成する捲回電極体30につき、該電極体を構成する電極シート320,340とセパレータシート36との重ね合わせ配置を図4に模式的に示す。図示するように、この電極体30は、負極シート340の第二の縁3402からセパレータシート36の第一の縁(正極側端)3601までの距離Pよりも、正極シート320の第二の縁3202からセパレータシート36の第二の縁(負極側端)3602までの距離Qのほうが大きくなるように構成されている(すなわちP<Q)。また、本実施形態にかかる電極体30は、上記距離Pよりも、負極合材層344の負極合材層非形成部側端344Aからセパレータシート36の第二の縁3602までの距離Rのほうが大きくなるように構成されている(すなわちP<R)。このように、より高温となりやすい負極端部側では正極端部側に比べてセパレータシートの熱収縮代がより大きく確保された構成によると、セパレータシートの熱収縮に起因する短絡を防止する性能を効果的に高めることができる。したがって、上記構成のリチウムイオン二次電池は、過充電等に起因する異常時にも、より優れた信頼性を示すものとなり得る。
<Embodiment 2>
FIG. 4 schematically shows an overlapping arrangement of the electrode sheets 320 and 340 and the separator sheet 36 constituting the electrode body of the wound electrode body 30 constituting the lithium ion secondary battery according to the present embodiment. As shown in the drawing, the electrode body 30 has a second edge of the positive electrode sheet 320 that is longer than a distance P from the second edge 3402 of the negative electrode sheet 340 to the first edge (positive electrode side end) 3601 of the separator sheet 36. The distance Q from 3202 to the second edge (negative electrode side end) 3602 of the separator sheet 36 is configured to be larger (that is, P <Q). Further, in the electrode body 30 according to this embodiment, the distance R from the negative electrode mixture layer non-formation portion side end 344A of the negative electrode mixture layer 344 to the second edge 3602 of the separator sheet 36 is more than the distance P. It is configured to be large (that is, P <R). Thus, according to the configuration in which the heat shrinkage allowance of the separator sheet is larger than that on the positive electrode end side, which is likely to be higher, the performance of preventing the short circuit due to the heat shrinkage of the separator sheet can be achieved. Can be effectively increased. Therefore, the lithium ion secondary battery having the above-described configuration can exhibit better reliability even in an abnormality caused by overcharge or the like.

なお、多孔質セパレータシートのなかには、電池の異常等により温度が上昇するとシート構成材料(典型的には熱可塑性樹脂)が溶融して孔が塞がり、これにより該シートを通過しての物質移動を阻止して電池反応を停止する、いわゆるシャットダウン機能を発揮するように構成されたものがある。しかし、車両搭載用電源として適用され得る大型の非水系二次電池では、電極体のなかでも場所によって温度が大きく異なり得るため、シャットダウン機能が電極体の全体に亘って発揮される前に、一部の箇所では電極体の温度がさらに上昇し、これによりセパレータシートが熱収縮して電極シート間が短絡してしまう場合があり得る。距離P,Q,Rの関係をP<QまたはP<Rとする上記構成は、このように大型の電池(例えば、車両電源用の電池)にも好ましく適用されて、上述の効果を発揮することができる。   In addition, in the porous separator sheet, when the temperature rises due to abnormality of the battery or the like, the sheet constituent material (typically thermoplastic resin) is melted and the pores are blocked, thereby causing mass transfer through the sheet. Some are configured to exhibit a so-called shutdown function that stops and stops the battery reaction. However, in a large non-aqueous secondary battery that can be applied as a power source for mounting on a vehicle, the temperature can vary greatly depending on the location of the electrode body. Therefore, before the shutdown function is exerted over the entire electrode body, At the portion, the temperature of the electrode body further increases, which may cause the separator sheet to thermally contract and cause a short circuit between the electrode sheets. The above-described configuration in which the relationship between the distances P, Q, and R is P <Q or P <R is preferably applied to a large battery (for example, a battery for a vehicle power supply) and exhibits the above-described effects. be able to.

<実施形態3>
本実施形態にかかるリチウムイオン二次電池10では、図5に示すように、ケース20内において電極体30が、正極合材層324の正極合材層非形成部側端324Aからケース20の正極端対向面20Aまでの距離Eよりも、正極合材層の正極合材層非形成部側端とは反対の端(本実施形態では、電極体30の正極側端と一致する。)324Bからケース20の負極端対向面20Bまでの距離Fとのほうが大きくなるように配置されている(すなわちE<F)。このように、正極合材層をケースの正極端対向面側(より熱伝導率の低い材質からなる集電体により構成される正極端部側)に偏らせて配置することにより、限られたケース内スペースを有効に利用して、ケース表面の最高到達温度を効果的に低下させることができる。したがって、上記構成のリチウムイオン二次電池は、過充電等に起因する異常時にも(特に、電極内で多量のガスが発生するような事態に至った場合にも)、より優れた信頼性を示すものとなり得る。
<Embodiment 3>
In the lithium ion secondary battery 10 according to the present embodiment, as shown in FIG. 5, the electrode body 30 is connected to the positive electrode mixture layer non-forming portion side end 324 </ b> A of the positive electrode mixture layer 324 in the case 20. From the end 324B opposite to the positive electrode mixture layer non-formation portion side end of the positive electrode mixture layer than the distance E to the extreme facing surface 20A (in this embodiment, coincides with the positive electrode side end of the electrode body 30). It arrange | positions so that the distance F to the negative electrode end opposing surface 20B of case 20 may become large (namely, E <F). In this way, the positive electrode mixture layer is limited by being disposed so as to be biased toward the positive electrode end facing surface side of the case (positive electrode end side constituted by a current collector made of a material having lower thermal conductivity). By effectively using the space in the case, the maximum temperature reached on the case surface can be effectively reduced. Therefore, the lithium-ion secondary battery having the above-described configuration has a higher reliability even in the case of an abnormality caused by overcharging or the like (especially when a large amount of gas is generated in the electrode). Can be an indication.

以下、本発明に関連するいくつかの実験例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, some experimental examples related to the present invention will be described, but the present invention is not intended to be limited to those shown in the specific examples.

<実験例1>
上記構成を採用することによる効果を確認するため、以下の実験を行った。すなわち、図2に示す距離A,Bが表1に示す値となる計6種のリチウムイオン二次電池(サンプル1A〜6A)をそれぞれ複数個作製し、溶接品質の評価および振動試験を行った。
<Experimental example 1>
In order to confirm the effect of adopting the above configuration, the following experiment was conducted. That is, a total of six types of lithium ion secondary batteries (samples 1A to 6A) having the distances A and B shown in FIG. 2 having the values shown in Table 1 were prepared, and the welding quality was evaluated and the vibration test was performed. .

正極シートとしては以下のものを使用した。すなわち、平均粒径48nmのアセチレンブラック(導電材)とPVDF(ポリマー材料)とを、導電材/ポリマー材料の質量比が凡そ30/70となり且つ固形分が約10質量%となるようにNMP(N−メチルピロリドン)と混合して、溶剤系の中間層形成用組成物を調製した。   The following was used as the positive electrode sheet. That is, acetylene black (conductive material) having an average particle diameter of 48 nm and PVDF (polymer material) are mixed with NMP (polymer material) so that the mass ratio of the conductive material / polymer material is about 30/70 and the solid content is about 10% by mass. N-methylpyrrolidone) to prepare a solvent-based intermediate layer forming composition.

また、LiNiO粉末(正極活物質)とアセチレンブラックとCMC(カルボキシメチルセルロース)とを、これら材料の質量比が87:10:3となり且つ固形分が約45質量%となるようにイオン交換水と混合して、水系の正極合材層形成用組成物を調製した。 Further, LiNiO 2 powder (positive electrode active material), acetylene black and CMC (carboxymethylcellulose) are mixed with ion-exchanged water so that the mass ratio of these materials is 87: 10: 3 and the solid content is about 45% by mass. By mixing, a water-based composition for forming a positive electrode mixture layer was prepared.

図6,7に示す模式図のように、厚さ15μmのアルミニウム箔(正極集電体)322の両サイドの表面に上記中間層形成用組成物を塗布して乾燥させることにより、該集電体322の両面に中間層323を形成した。中間層形成用組成物の塗布量は、固形分基準(すなわち乾燥後の質量基準)で、集電体322の片面当たり約2g/mとなるように調整した。中間層形成用組成物の塗布範囲は、後述する正極合材層形成用組成物の塗布範囲よりも約4mm幅広の範囲とした。 As shown in the schematic diagrams of FIGS. 6 and 7, the intermediate layer forming composition is applied to the surfaces of both sides of an aluminum foil (positive electrode current collector) 322 having a thickness of 15 μm and dried, whereby the current collector is collected. An intermediate layer 323 was formed on both sides of the body 322. The coating amount of the intermediate layer forming composition was adjusted so as to be about 2 g / m 2 per one side of the current collector 322 on a solid basis (that is, a mass basis after drying). The application range of the intermediate layer forming composition was set to a range approximately 4 mm wider than the application range of the positive electrode mixture layer forming composition described later.

上記中間層323が形成された正極集電体322に、該集電体の長手方向に沿う第一の縁3201から所定幅の帯状部分(表1に示す距離Aよりも5mm幅広の正極合材層非形成部320A)を除いた残りの範囲に上記正極合材層形成用組成物を塗布して乾燥させることにより、各中間層323上にそれぞれ正極合材層324を形成した。正極合材層形成用組成物の塗布量(固形分基準)は、正極集電体322の片面当たり50g/mとなるように調整した。その後、全体の厚みが70μmとなるようにプレスして正極シート320を得た。 On the positive electrode current collector 322 having the intermediate layer 323 formed thereon, a strip-shaped portion having a predetermined width from the first edge 3201 along the longitudinal direction of the current collector (a positive electrode mixture having a width 5 mm wider than the distance A shown in Table 1) A positive electrode mixture layer 324 was formed on each intermediate layer 323 by applying the composition for forming a positive electrode mixture layer to the remaining range excluding the layer non-forming part 320A) and drying it. The coating amount (solid content basis) of the composition for forming the positive electrode mixture layer was adjusted to 50 g / m 2 per one side of the positive electrode current collector 322. Then, it pressed so that the whole thickness might be set to 70 micrometers, and the positive electrode sheet 320 was obtained.

負極シートとしては以下のものを使用した。すなわち、天然黒鉛(粉末)とSBR(スチレンブタジエンゴム)とCMCとを、これら材料の質量比が98:1:1であり且つ固形分が45質量%となるようにイオン交換水と混合して、水系の負極合材層形成用組成物を調製した。この組成物を、厚み約10μmの銅箔(負極集電体)342の両サイドの表面に、該集電体の長手方向に沿う第一の縁3401から所定幅の帯状部分(表1に示す距離Aよりも5mm幅広の負極合材層非形成部340A)を除いた残りの範囲に塗布して乾燥させることにより、集電体342の両面に負極合材層344を形成した。負極合材層形成用組成物の塗布量(固形分基準)は、負極集電体342の片面当たり40g/mとなるように調整した。 The following was used as the negative electrode sheet. That is, natural graphite (powder), SBR (styrene butadiene rubber), and CMC are mixed with ion-exchanged water so that the mass ratio of these materials is 98: 1: 1 and the solid content is 45 mass%. A water-based composition for forming a negative electrode mixture layer was prepared. This composition is applied to the surface of both sides of a copper foil (negative electrode current collector) 342 having a thickness of about 10 μm from a first edge 3401 along the longitudinal direction of the current collector (shown in Table 1). The negative electrode mixture layer 344 was formed on both surfaces of the current collector 342 by applying and drying the remaining area excluding the negative electrode mixture layer non-forming portion 340A) 5 mm wider than the distance A). The coating amount (solid content basis) of the negative electrode composite layer forming composition was adjusted to 40 g / m 2 per one side of the negative electrode current collector 342.

平均粒径0.8μmのα−アルミナ粉末とアクリル系バインダとを、これら材料の質量比が90:10であり且つ固形分が50質量%となるようにNMPと混合して、スラリー状の溶剤系コート剤を調製した。このコート剤を、負極合材層344が形成された負極集電体342に塗布して乾燥させることにより、各負極合材層344上にそれぞれ多孔質絶縁層346を形成した。コート剤の塗布量(固形分基準)は、負極集電体342の片面当たり8g/mとなるように調整した。コート剤の塗布範囲は、負極合材層形成用組成物の塗布範囲から約4mm幅広の範囲とした。その後、全体の厚みが75μmとなるようにプレスして負極シート340を得た。 An α-alumina powder having an average particle size of 0.8 μm and an acrylic binder are mixed with NMP so that the mass ratio of these materials is 90:10 and the solid content is 50% by mass, to obtain a slurry solvent A system coating agent was prepared. The coating agent was applied to the negative electrode current collector 342 on which the negative electrode mixture layer 344 was formed and dried to form a porous insulating layer 346 on each negative electrode mixture layer 344. The coating amount (based on solid content) of the coating agent was adjusted to 8 g / m 2 per side of the negative electrode current collector 342. The coating range of the coating agent was about 4 mm wide from the coating range of the composition for forming a negative electrode mixture layer. Then, it pressed so that the whole thickness might be set to 75 micrometers, and the negative electrode sheet 340 was obtained.

上記で作製した正極シート320および負極シート340を、厚さ20μm、幅85mm、長さ5000mmの二枚のセパレータシート36(PP樹脂からなる表層および裏層の間にPE樹脂からなる中間層が配置された三層構造を有するセパレータシートを使用した。以下、これを「PP/PE/PPシート」と表記することもある。)とともに積層した。このとき、負極シート340の第二の縁3402からセパレータシート36の第一の縁3601までの距離Pが2mm、正極シート320の第二の縁3202からセパレータシート36の第二の縁3602までの距離Qが7mm、負極合材層344の負極合材層非形成部側端344Aからセパレータシート36の第二の縁3602までの距離Rが4mmとなるように位置合わせした(後述する実験例2のサンプル1Bと同じ条件。)。このように重ね合わせた積層シートを長手方向に捲回し(捲回の回数:約30回)、その捲回体を側方から押しつぶして扁平形状の捲回電極体を得た。この電極体の捲回コア部分の厚みは11mmであった。   The positive electrode sheet 320 and the negative electrode sheet 340 produced as described above were separated into two separator sheets 36 (thickness 20 μm, width 85 mm, length 5000 mm, an intermediate layer made of PE resin between the front layer and the back layer made of PP resin) The separator sheet having a three-layer structure was used, and this was also referred to as “PP / PE / PP sheet”. At this time, the distance P from the second edge 3402 of the negative electrode sheet 340 to the first edge 3601 of the separator sheet 36 is 2 mm, and from the second edge 3202 of the positive electrode sheet 320 to the second edge 3602 of the separator sheet 36. The alignment was performed such that the distance Q was 7 mm, and the distance R from the negative electrode mixture layer non-forming portion side end 344A of the negative electrode mixture layer 344 to the second edge 3602 of the separator sheet 36 was 4 mm (Experimental Example 2 described later) The same conditions as Sample 1B in FIG. The laminated sheet thus laminated was wound in the longitudinal direction (number of windings: about 30 times), and the wound body was crushed from the side to obtain a flat wound electrode body. The thickness of the wound core portion of this electrode body was 11 mm.

上記で得られた捲回電極体の正極側端部において、正極合材層非形成部を該電極体の厚み方向に寄せ集め、その寄せ集めた正極集電体の端から5mmの幅で、アルミニウム製の正極端子を超音波溶接により接合した。また、該電極体の負極側端部において、負極合材層非形成部を該電極体の厚み方向に寄せ集め、その寄せ集めた負極集電体の端から5mmの幅で、銅製の負極端子を抵抗溶接により接合した。このとき、溶接部またはその近傍において、集電体(金属箔)の破れ、切断のいずれかの不具合が観察されたものは溶接不良と判断した。サンプル1A〜6Aの各々につき20個の電極体を作製して端子を溶接し、溶接不良の発生率(不良数/製造数)を評価した。その結果を表1に示す。   In the positive electrode side end portion of the wound electrode body obtained above, the positive electrode mixture layer non-formed part is gathered in the thickness direction of the electrode body, with a width of 5 mm from the end of the gathered positive electrode current collector, Aluminum positive terminals were joined by ultrasonic welding. Further, at the negative electrode side end portion of the electrode body, the negative electrode mixture layer non-formed portion is gathered in the thickness direction of the electrode body, and a copper negative electrode terminal having a width of 5 mm from the end of the gathered negative electrode current collector Were joined by resistance welding. At this time, if the current collector (metal foil) was observed to be broken or cut at the welded part or in the vicinity thereof, it was determined that the weld was defective. Twenty electrode bodies were prepared for each of Samples 1A to 6A, terminals were welded, and the occurrence rate of defective welding (number of defects / number of products) was evaluated. The results are shown in Table 1.

サンプル1A〜5Aに係る各20個の電極体のうち、端子の溶接不良が認められなかったものを10個づつ用意(選別)し、それらの電極体を用いてリチウムイオン二次電池を作製した。電池ケースとしては、高さ9cm、幅11cm、奥行き1.2cmの扁平な箱型の外形を有する容器を使用した。このケースは、有底四角筒状のケース本体と、その開口部に取り付けられて該開口部を塞ぐ蓋体とを備える。ケース本体および蓋体はいずれもアルミニウム製であり、ケース本体を構成するアルミニウムの厚さは0.5mmである。このケースの内部に上記捲回電極体を収容した。このとき、正極合材層の正極合材層非形成部側端からケースの正極端対向面までの距離Eが16mmとなり、正極シートの第二の縁からケースの負極端対向面までの距離Fが20mmとなるように、捲回電極体の収容位置を調整した(図5参照)。   Of the 20 electrode bodies according to Samples 1A to 5A, 10 were prepared (selected) for which no terminal welding failure was observed, and lithium ion secondary batteries were produced using these electrode bodies. . As the battery case, a container having a flat box-shaped outer shape having a height of 9 cm, a width of 11 cm, and a depth of 1.2 cm was used. The case includes a bottomed square cylindrical case main body and a lid that is attached to the opening and closes the opening. Both the case main body and the lid are made of aluminum, and the thickness of the aluminum constituting the case main body is 0.5 mm. The wound electrode body was accommodated in the case. At this time, the distance E from the positive electrode mixture layer non-forming portion side end of the positive electrode mixture layer to the positive electrode end facing surface of the case is 16 mm, and the distance F from the second edge of the positive electrode sheet to the negative electrode end facing surface of the case The accommodation position of the wound electrode body was adjusted so as to be 20 mm (see FIG. 5).

そして、ケース本体と蓋体との合わせ目を溶接した後、蓋体に設けられた注液孔から電解液を注入し、次いで上記注液孔を封止した。電解液としては、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とEMC(エチルメチルカーボネート)とを1:1:1の体積比で含む混合溶媒に支持塩としてのヘキサフルオロリン酸リチウム(LiPF)を約1mol/リットルの濃度で含有させたものを使用した。その後、常法により初期充放電処理(コンディショニング)を行って、本例に係るリチウムイオン二次電池を得た。なお、このリチウムイオン二次電池の理論容量は5Ahである。 And after welding the joint of a case main body and a cover body, electrolyte solution was inject | poured from the liquid injection hole provided in the cover body, and the said liquid injection hole was then sealed. As an electrolytic solution, lithium hexafluorophosphate (LiPF 6 as a supporting salt) in a mixed solvent containing EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) in a volume ratio of 1: 1: 1. ) Was used at a concentration of about 1 mol / liter. Thereafter, an initial charge / discharge treatment (conditioning) was performed by a conventional method to obtain a lithium ion secondary battery according to this example. The theoretical capacity of this lithium ion secondary battery is 5 Ah.

これらの電池に対し、国際連合の危険物輸送勧告に基づくT3振動試験を実施した。この振動試験により集電体に破損が生じた電池の個数割合を表1に示す。なお、サンプル6Aについては上記溶接において溶接不良率が高かったため、振動試験は行わなかった。   These batteries were subjected to a T3 vibration test based on the United Nations Recommendation on the Transport of Dangerous Goods. Table 1 shows the ratio of the number of batteries in which the current collector was damaged by this vibration test. Note that the vibration test was not performed on sample 6A because the welding defect rate was high in the above welding.

Figure 0005704414
Figure 0005704414

表1に示されるように、距離AとBとの関係がA>B(すなわち、A/B>1)であるサンプル1A〜4Aは、A≦Bであるサンプル5A,6Aに比べて、溶接不良率および振動試験による破損率において明らかな低減効果がみられた。また、正極側および負極側の寄せ集め距離の合計値(A+B)が同じサンプル3Aと5A、サンプル4Aと6Aの比較から明らかなように、A>Bの関係を適用することにより、両電極シートの電極合材層非形成部の幅を増やすことなく溶接不良率および振動試験による破損率を大きく低減し得ることが確認された。   As shown in Table 1, samples 1A to 4A in which the relationship between distances A and B is A> B (that is, A / B> 1) are welded compared to samples 5A and 6A in which A ≦ B. A clear reduction effect was observed in the defect rate and the failure rate by the vibration test. Further, as apparent from the comparison between the samples 3A and 5A and the samples 4A and 6A in which the total value (A + B) of the gathering distances on the positive electrode side and the negative electrode side is the same, both electrode sheets can be obtained by applying the relationship of A> B. It was confirmed that the welding failure rate and the failure rate by the vibration test can be greatly reduced without increasing the width of the electrode composite material layer non-forming portion.

<実験例2>
距離Aおよび距離Bをそれぞれ9mmおよび8mmに固定し(実験例1のサンプル2Aと同じ条件。)、距離P,Q,Rをそれぞれ表2に示す値となるように調整した点以外は実験例1と同様にして、計8種のリチウムイオン二次電池(サンプル1B〜8B)を20個づつ作製した。それらの電池を、上記コンディショニング後に、5A(1Cに相当する。),4.1Vの定電流定電圧充電(カット電流 0.1A)でSOC(state of charge)100%に調整し、25℃の環境下で各電池の端子間電圧を測定した後、130℃および150℃の温度環境下に10個づつ搬入し、該温度下に1時間放置した。その後、再び25℃の環境下で各電池の端子間電圧を測定し、0.1V以上の電圧変化がみられた電池の割合を調べた。その結果を表2に示す。
<Experimental example 2>
Experimental example except that distance A and distance B were fixed to 9 mm and 8 mm, respectively (same conditions as in sample 2A of experimental example 1), and distances P, Q, and R were adjusted to the values shown in Table 2, respectively. In the same manner as in Example 1, 20 lithium ion secondary batteries (samples 1B to 8B) in total of 20 were produced. After conditioning, the batteries were adjusted to 100% SOC (state of charge) with constant current and constant voltage charge (cut current 0.1 A) of 5 A (corresponding to 1 C) and 4.1 V, and 25 ° C. After measuring the voltage between terminals of each battery in an environment, 10 pieces were carried in a temperature environment of 130 ° C. and 150 ° C., and left at that temperature for 1 hour. Then, the voltage between terminals of each battery was measured again under an environment of 25 ° C., and the ratio of batteries in which a voltage change of 0.1 V or more was observed. The results are shown in Table 2.

Figure 0005704414
Figure 0005704414

表2に示されるように、距離Pと距離QとがP<Qの関係を満たすサンプル1B〜4Bは、かかる関係を満たさない(すなわちP≧Qの)サンプル5B〜8Bに比べて、放置試験における電圧安定性が明らかに良好であった。距離Pと距離RとがP<Rの関係を満たすサンプル1B〜3Bによると、高温(150℃)での放置試験において、さらに良好な結果が実現された。   As shown in Table 2, the samples 1B to 4B in which the distance P and the distance Q satisfy the relationship P <Q are compared to the samples 5B to 8B that do not satisfy the relationship (that is, P ≧ Q). The voltage stability at was clearly good. According to the samples 1B to 3B in which the distance P and the distance R satisfy the relationship of P <R, a better result was realized in the standing test at a high temperature (150 ° C.).

<実験例3>
距離Aおよび距離Bをそれぞれ9mmおよび8mmに固定し(実験例1のサンプル2Aと同じ条件。)、距離E,Fがそれぞれ表2に示す値となるように電極体の位置を調整した点以外は実験例1と同様にして、計6種のリチウムイオン二次電池(サンプル1C〜6C)を作製した。それらの電池を、上記コンディショニング後に実験例2と同様の充電条件でSOC60%に調整し、60℃の温度条件下において、150A(30Cに相当)で5秒間の充電と150Aで3秒間の放電とを、上限電圧100Vに至るまで繰り返して行った。その間、熱電対を用いてケース側面(正極端対向面および負極端対向面の外面)の各部の温度推移を追跡することにより、各サンプルのケース側面の最高到達温度を測定した。その結果を表3に示す。
<Experimental example 3>
Except that the distance A and the distance B are fixed to 9 mm and 8 mm, respectively (the same conditions as the sample 2A of Experimental Example 1), and the positions of the electrode bodies are adjusted so that the distances E and F have the values shown in Table 2, respectively. Produced a total of six types of lithium ion secondary batteries (Samples 1C to 6C) in the same manner as in Experimental Example 1. The batteries were adjusted to SOC 60% under the same charging conditions as in Experimental Example 2 after conditioning, and charged at 150 A (corresponding to 30 C) for 5 seconds and discharged at 150 A for 3 seconds under a temperature condition of 60 ° C. Was repeated until the upper limit voltage reached 100V. Meanwhile, the maximum temperature reached on the case side surface of each sample was measured by tracking the temperature transition of each part of the case side surface (the outer surface of the positive electrode end facing surface and the negative electrode end facing surface) using a thermocouple. The results are shown in Table 3.

Figure 0005704414
Figure 0005704414

表3に示されるように、距離Eと距離FとがE<Fの関係を満たすサンプル1C〜3Cによると、かかる関係を満たさない(すなわちE≧Fの)サンプル4C〜6Cに比べて、ケース表面(ここでは側面)の最高到達温度を著しく低下させることができた。また、E+Fの値が等しいサンプル1Cおよび3C(E<Fの例)とサンプル4Cおよび5C(E≧Fの例)との比較、ならびにサンプル1C(E<Fの例)とサンプル6C(E>Fの鄭)との比較からわかるように、E<Fの関係を適用することにより、電池の体格(特に、正極端対向面と負極端対向面との距離)を大きくすることなく、ケース表面の最高到達温度を大幅に低下させ得ることが確認された。   As shown in Table 3, according to the samples 1C to 3C in which the distance E and the distance F satisfy the relationship of E <F, compared to the samples 4C to 6C that do not satisfy the relationship (that is, E ≧ F), The maximum temperature reached on the surface (here, the side surface) could be significantly reduced. In addition, comparison between samples 1C and 3C (example of E <F) and samples 4C and 5C (example of E ≧ F) having the same value of E + F, and sample 1C (example of E <F) and sample 6C (E>) As can be seen from the comparison with F 鄭), the case surface can be obtained without increasing the physique of the battery (particularly, the distance between the positive electrode end facing surface and the negative electrode end facing surface) by applying the relationship of E <F. It was confirmed that the maximum temperature reached could be greatly reduced.

なお、サンプル1Cに係る電池を上記コンディショニング後に実験例2と同様の充電条件でSOC30%に調整し、4C−60V(4Cの定電流で60Vまで充電するという意味。)および20C−60Vの過充電試験を行った。その結果、最高到達温度はそれぞれ115℃および98℃であった。また、負極合材層表面に多孔質絶縁層を形成しなかった点を除いては同様に構築した電池について、同様に4C−60Vおよび20C−60Vの過充電試験を行ったところ、ケース表面の最高到達温度はそれぞれ115℃および105℃であった。この結果は、多孔質絶縁層を設けることにより、上記最高到達温度をさらに低下させ得ること(換言すれば、最高到達温度を低下させるためには多孔質絶縁層の設置が有効であること)を支持するものである。   The battery according to sample 1C was adjusted to SOC 30% under the same charging conditions as in Experimental Example 2 after conditioning, and overcharged at 4C-60V (with a constant current of 4C up to 60V) and 20C-60V. A test was conducted. As a result, the maximum reached temperatures were 115 ° C. and 98 ° C., respectively. Moreover, about the battery similarly constructed except the point which did not form the porous insulating layer in the negative electrode compound-material layer surface, when the overcharge test of 4C-60V and 20C-60V was done similarly, The highest temperatures reached were 115 ° C and 105 ° C, respectively. This result shows that the maximum temperature reached can be further reduced by providing a porous insulating layer (in other words, the installation of the porous insulating layer is effective to reduce the maximum temperature). It is something to support.

以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment is only an illustration and what changed and modified the above-mentioned specific example is included in the invention disclosed here.

ここに開示される技術により提供される非水系二次電池(例えばリチウムイオン二次電池)は、上記のとおり信頼性に優れることから、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。したがって本発明は、図8に模式的に示すように、ここに開示されるいずれかのリチウムイオン二次電池10(当該電池10を複数個直列に接続して形成される組電池100の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。   A non-aqueous secondary battery (for example, a lithium ion secondary battery) provided by the technology disclosed herein is excellent in reliability as described above, and therefore, a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Can be suitably used. Therefore, as schematically shown in FIG. 8, the present invention is one of the lithium ion secondary batteries 10 disclosed herein (in the form of an assembled battery 100 formed by connecting a plurality of the batteries 10 in series. 1 is provided as a power source (typically, an automobile, in particular, an automobile including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle).

1 自動車(車両)
10 非水系二次電池(リチウムイオン二次電池)
20 電池ケース
20A 正極端対向面
20B 負極端対向面
30 捲回電極体(電極体)
301 一方の端部(正極側端部)
302 他方の端部(負極側端部)
30A 一方の端部側の端面(正極側端面)
30B 他方の端部側の端面(負極側端面)
31 捲回コア部分
320 正極シート
320A 正極合材層非形成部
3201 第一の縁
3202 第二の縁
322 正極集電体
323 中間層
324 正極合材層
340 負極シート
340A 負極合材層非形成部
3401 第一の縁
3402 第二の縁
342 負極集電体
344 負極合材層
346 多孔質絶縁層
36 セパレータシート
3601 第一の縁(正極側端)
3602 第二の縁(負極側端)
40 正極端子(電極端子)
42 正極端子溶接部
80 負極端子
82 負極端子溶接部
1 Automobile (vehicle)
10 Non-aqueous secondary battery (lithium ion secondary battery)
20 battery case 20A positive electrode end facing surface 20B negative electrode end facing surface 30 wound electrode body (electrode body)
301 One end (positive electrode side end)
302 The other end (negative electrode side end)
30A One end side end face (positive side end face)
30B End surface on the other end side (negative electrode side end surface)
31 wound core portion 320 positive electrode sheet 320A positive electrode mixture layer non-forming part 3201 first edge 3202 second edge 322 positive electrode current collector 323 intermediate layer 324 positive electrode mixture layer 340 negative electrode sheet 340A negative electrode mixture layer non-forming part 3401 First edge 3402 Second edge 342 Negative electrode current collector 344 Negative electrode mixture layer 346 Porous insulating layer 36 Separator sheet 3601 First edge (positive electrode side end)
3602 Second edge (negative electrode side end)
40 Positive terminal (electrode terminal)
42 Positive terminal welded portion 80 Negative terminal 82 Negative terminal welded portion

Claims (4)

長尺帯状の正極集電体に正極合材層が保持された正極シートおよび長尺帯状の負極集電体に負極合材層が保持された負極シートが長尺帯状のセパレータシートを介して長手方向に捲回された捲回電極体を、非水電解液とともに金属製の扁平な直方体形状のケースに収容してなる非水系二次電池であって、
前記正極シートには、前記正極集電体の長手方向に沿う第一の縁に、前記正極合材層を有しない帯状の正極合材層非形成部が設けられており、
前記負極シートには、前記負極集電体の長手方向に沿う第一の縁に、前記負極合材層を有しない帯状の負極合材層非形成部が設けられており、
前記正極シートと前記負極シートとは、前記正極合材層非形成部が前記負極シートの第二の縁からはみ出し、且つ前記負極合材層非形成部が前記正極シートの第二の縁からはみ出すように重ね合わされており、
前記セパレータシートは、該セパレータシートの長手方向に沿う第一の縁から前記正極合材層非形成部がはみ出し、且つ前記第一の縁に対向する第二の縁から前記負極合材層非形成部がはみ出すように前記正極シートおよび前記負極シートと重ね合わされており、
前記捲回電極体の軸方向における一方の端部では、前記正極シートの正極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた正極合材層非形成部に正極端子が溶接されており、
前記捲回電極体の軸方向における他方の端部では、前記負極シートの負極合材層非形成部が捲回中心側に寄せ集められ、その寄せ集められた負極合材層非形成部に負極端子が溶接されており、
前記ケースは、有底四角筒状のケース本体と、該ケース本体の開口部を塞ぐ蓋体とを備え、
前記捲回電極体は、前記ケース本体の開口部が前記捲回電極体の捲回軸に対して横方向に位置する向きで該ケース本体に収容されており、
前記正極端子および前記負極端子は、前記蓋体を貫通して前記ケースの内部から外部に引き出されており、
前記正極集電体の引張強度は前記負極集電体の引張強度よりも低く、
前記正極シートおよび前記負極シートは、
前記正極合材層の正極合材層非形成部側端から正極端子溶接部までの距離Aと、
前記負極合材層の負極合材層非形成部側端から負極端子溶接部までの距離Bと、
の関係がA>Bとなるように構成されている、非水系二次電池。
A positive electrode sheet in which a positive electrode mixture layer is held on a long belt-like positive electrode current collector and a negative electrode sheet in which a negative electrode mixture layer is held on a long belt-like negative electrode current collector are elongated through a long belt-like separator sheet. A non-aqueous secondary battery in which a wound electrode body wound in a direction is housed in a metal flat rectangular parallelepiped case together with a non-aqueous electrolyte,
The positive electrode sheet is provided with a strip-shaped positive electrode mixture layer non-forming portion not having the positive electrode mixture layer on the first edge along the longitudinal direction of the positive electrode current collector,
The negative electrode sheet is provided with a strip-shaped negative electrode mixture layer non-forming portion not having the negative electrode mixture layer on the first edge along the longitudinal direction of the negative electrode current collector,
In the positive electrode sheet and the negative electrode sheet, the positive electrode mixture layer non-forming portion protrudes from the second edge of the negative electrode sheet, and the negative electrode mixture layer non-forming portion protrudes from the second edge of the positive electrode sheet. Are superimposed so that
In the separator sheet, the positive electrode mixture layer non-forming portion protrudes from the first edge along the longitudinal direction of the separator sheet, and the negative electrode mixture layer is not formed from the second edge facing the first edge. Is overlapped with the positive electrode sheet and the negative electrode sheet so that the part protrudes,
At one end portion in the axial direction of the wound electrode body, the positive electrode mixture layer non-forming portion of the positive electrode sheet is gathered to the winding center side, and the collected positive electrode mixture layer non-forming portion is positive. The terminals are welded,
At the other end in the axial direction of the wound electrode body, the negative electrode mixture layer non-formed portion of the negative electrode sheet is gathered together toward the winding center side, and the gathered negative electrode mixture layer non-formed portion is negative The terminals are welded,
The case includes a bottomed square cylindrical case body, and a lid for closing the opening of the case body,
The wound electrode body is accommodated in the case body in an orientation in which the opening of the case body is positioned in a direction transverse to the winding axis of the wound electrode body,
The positive electrode terminal and the negative electrode terminal are drawn out from the inside of the case through the lid,
The tensile strength of the positive electrode current collector is lower than the tensile strength of the negative electrode current collector,
The positive electrode sheet and the negative electrode sheet are:
A distance A from the positive electrode mixture layer non-forming part side end of the positive electrode mixture layer to the positive electrode terminal weld,
The distance B from the negative electrode composite material layer non-formation part side end of the negative electrode composite material layer to the negative electrode terminal weld,
The non-aqueous secondary battery is configured so that the relationship of A> B.
前記正極合材層と前記セパレータシートとの間および前記負極合材層と前記セパレータシートとの間のうちの少なくとも一方には、絶縁性無機粒子と該粒子を結着させるバインダとを含む多孔質絶縁層が介在されており、且つ、
前記正極集電体と前記正極合材層との間および前記負極集電体と前記負極合材層との間のうちの少なくとも一方には、導電性粒子と熱可塑性ポリマーとを含む中間層が介在されており、
前記中間層は、前記電池の通常の使用温度域では前記集電体と前記合材層との間に導電パスを形成し、該電池の異常時における温度上昇により前記導電パスが遮断されるように構成されている、請求項1に記載の非水系二次電池。
At least one of between the positive electrode mixture layer and the separator sheet and between the negative electrode mixture layer and the separator sheet includes a porous material including insulating inorganic particles and a binder that binds the particles. An insulating layer is interposed, and
At least one of between the positive electrode current collector and the positive electrode composite material layer and between the negative electrode current collector and the negative electrode composite material layer has an intermediate layer containing conductive particles and a thermoplastic polymer. Intervened,
The intermediate layer forms a conductive path between the current collector and the composite layer in a normal operating temperature range of the battery, and the conductive path is cut off due to a temperature rise when the battery is abnormal. is configured, a non-aqueous secondary battery according to claim 1.
請求項1または2に記載の非水系二次電池を単電池とし、該単電池を複数備えてなる、組電池。 An assembled battery comprising the non-aqueous secondary battery according to claim 1 or 2 as a single battery and a plurality of the single batteries. 請求項1からのいずれか一項に記載の非水系二次電池を備える、車両。 A vehicle comprising the nonaqueous secondary battery according to any one of claims 1 to 3 .
JP2013136727A 2013-06-28 2013-06-28 Non-aqueous secondary battery Active JP5704414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136727A JP5704414B2 (en) 2013-06-28 2013-06-28 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136727A JP5704414B2 (en) 2013-06-28 2013-06-28 Non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009135596A Division JP5344235B2 (en) 2009-06-04 2009-06-04 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2013232425A JP2013232425A (en) 2013-11-14
JP5704414B2 true JP5704414B2 (en) 2015-04-22

Family

ID=49678657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136727A Active JP5704414B2 (en) 2013-06-28 2013-06-28 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5704414B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6542031B2 (en) * 2014-09-29 2019-07-10 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7048836B2 (en) * 2014-10-16 2022-04-06 エルジー エナジー ソリューション リミテッド Electrode tabs coated with an electrically insulating layer and secondary batteries containing them
WO2017061123A1 (en) * 2015-10-09 2017-04-13 株式会社Gsユアサ Power storage element
JP6880576B2 (en) * 2016-06-17 2021-06-02 東洋インキScホールディングス株式会社 Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP6978500B2 (en) * 2017-06-14 2021-12-08 ビークルエナジージャパン株式会社 Secondary battery
JP7085147B2 (en) * 2019-04-09 2022-06-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759577B2 (en) * 1999-08-10 2006-03-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2003187781A (en) * 2001-12-21 2003-07-04 Sony Corp Battery and its manufacturing method, and battery module and its manufacturing method
JP4687006B2 (en) * 2004-05-26 2011-05-25 トヨタ自動車株式会社 Power storage device
JP4859399B2 (en) * 2004-09-03 2012-01-25 パナソニック株式会社 Lithium ion secondary battery
US20070259265A1 (en) * 2006-05-02 2007-11-08 Saidi M Yazid Secondary electrochemical cell having a novel electrode active material
JP2009037816A (en) * 2007-08-01 2009-02-19 Toyota Motor Corp Secondary battery and vehicle
JP2008108742A (en) * 2007-12-10 2008-05-08 Ube Ind Ltd Lithium ion battery and its manufacturing method

Also Published As

Publication number Publication date
JP2013232425A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP5344235B2 (en) Non-aqueous secondary battery
JP5693982B2 (en) Non-aqueous secondary battery
JP5699559B2 (en) Non-aqueous electrolyte battery
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US9614194B2 (en) Battery
JP5704414B2 (en) Non-aqueous secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
EP2249416A1 (en) Lithium-ion secondary battery and manufacturing method thereof
JP5445872B2 (en) Secondary battery
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
CN107808975B (en) Sealed secondary battery
JP5614574B2 (en) Secondary battery
JP2013016265A (en) Nonaqueous secondary battery
JP2010055887A (en) Secondary battery
CN107026281B (en) Lithium ion secondary battery
JP5232751B2 (en) Lithium ion secondary battery
US10158107B2 (en) Battery comprising insulative films
JP2011210549A (en) Nonaqueous electrolyte secondary battery, vehicle, and device using the battery
KR20140009047A (en) Pouch for secondary battery and secondary battery using the same
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP2017174662A (en) Secondary battery
JP2012004141A (en) Nonaqueous electrolyte battery
JP6681017B2 (en) Secondary battery having electrode body
KR101458259B1 (en) Pouch type secondary battery and method for manufacturing the same
JP6540476B2 (en) Secondary battery having an electrode body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150211

R151 Written notification of patent or utility model registration

Ref document number: 5704414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151