JP5699727B2 - Sensor and its pressure resistance structure - Google Patents

Sensor and its pressure resistance structure Download PDF

Info

Publication number
JP5699727B2
JP5699727B2 JP2011065094A JP2011065094A JP5699727B2 JP 5699727 B2 JP5699727 B2 JP 5699727B2 JP 2011065094 A JP2011065094 A JP 2011065094A JP 2011065094 A JP2011065094 A JP 2011065094A JP 5699727 B2 JP5699727 B2 JP 5699727B2
Authority
JP
Japan
Prior art keywords
vibrator
pressure
support member
pressure vessel
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011065094A
Other languages
Japanese (ja)
Other versions
JP2012204886A (en
Inventor
宣史 菊地
宣史 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011065094A priority Critical patent/JP5699727B2/en
Publication of JP2012204886A publication Critical patent/JP2012204886A/en
Application granted granted Critical
Publication of JP5699727B2 publication Critical patent/JP5699727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

この発明は、水中で探査、測定等に使用する送波器・受波器等のセンサおよびその耐圧構造に関する。 The present invention relates to a sensor such as a transmitter / receiver used for exploration and measurement in water and a pressure-resistant structure thereof .

水中(海中を含む)で探査、測定等に使用する送波器・受波器等の音響センサがある。たとえば図7の横断面図に示すように、この種の音響センサ1は、耐圧容器2の内部に複数の振動子3を配列したものである。耐圧容器2は、バックプレート6、サイドプレート7a、7bから構成され、振動子3は、リアマス8、圧電材9、フロントマス10から構成される。振動子3を、オニオンスキンペーパー5を介してバックプレート6と音響ゴム4との間に挟み込むことで固定している。   There are acoustic sensors such as transmitters and receivers used for exploration and measurement underwater (including underwater). For example, as shown in the cross-sectional view of FIG. 7, this type of acoustic sensor 1 has a plurality of vibrators 3 arranged inside a pressure vessel 2. The pressure vessel 2 includes a back plate 6 and side plates 7 a and 7 b, and the vibrator 3 includes a rear mass 8, a piezoelectric material 9, and a front mass 10. The vibrator 3 is fixed by being sandwiched between the back plate 6 and the acoustic rubber 4 via the onion skin paper 5.

図8(a)に示すように、音響センサ1は、発音時における振動子自身の振動モードに影響を与えないようにするため、振動子3の一方の端部を放射面13とし、もう一方の端部を耐圧容器2の固定部とする構造が一般的である。
図8(a)は、音響センサ1を水中で使用した際に耐圧容器2の両側面に矢印方向の水圧11を受けた状態を示している。また、図8(b)は、耐圧容器2が水圧11で変形したときの変形イメージと、耐圧容器2が等分布荷重を受けたときのたわみの計算式を示している。Ymaxは耐圧容器(サイドプレート7a又は7b)の最大たわみ、ωは水圧(等分布荷重)、Lは耐圧容器(サイドプレート7a又は7b)の支点間の長さ、Eは縦弾性係数、Izは断面2次モーメントである。
As shown in FIG. 8A, in the acoustic sensor 1, in order not to affect the vibration mode of the vibrator itself at the time of sound generation, one end of the vibrator 3 is a radiation surface 13, and the other A structure in which the end portion of the pressure vessel 2 is a fixed portion of the pressure vessel 2 is generally used.
FIG. 8A shows a state in which the water pressure 11 in the direction of the arrow is applied to both side surfaces of the pressure vessel 2 when the acoustic sensor 1 is used in water. FIG. 8B shows a deformation image when the pressure vessel 2 is deformed by the water pressure 11 and a calculation formula of deflection when the pressure vessel 2 receives an evenly distributed load. Ymax is the maximum deflection of the pressure vessel (side plate 7a or 7b), ω is the water pressure (uniformly distributed load), L is the length between the fulcrums of the pressure vessel (side plate 7a or 7b), E is the longitudinal elastic modulus, and Iz is This is the moment of inertia of the cross section.

振動子3とバックプレート6の固定方法としては、上記した挟み込み以外にねじなどを介して固定する方法がある。振動子3の放射面13は、音響ゴム4とフロントマス10の接触面となる。音響ゴム4を形成する材料としては、振動子3で発生する振動を減衰しないように、弾性材料であるゴム材料あるいはモールド材料を使用する。   As a method of fixing the vibrator 3 and the back plate 6, there is a method of fixing via a screw or the like other than the above-described sandwiching. The radiation surface 13 of the vibrator 3 is a contact surface between the acoustic rubber 4 and the front mass 10. As a material for forming the acoustic rubber 4, a rubber material or a mold material which is an elastic material is used so as not to attenuate the vibration generated by the vibrator 3.

上記した音響センサの関連技術としては、特許文献1に記載の超音波水処理装置が知られている。この装置は、振動子、振動体としてのホーン、ホーンを保持する容器としてのケース、フランジ等を備え、振動子にて発生した超音波振動をホーンの各部を経由してホーン処理面へ伝播するものである。
また、別の関連技術としては、特許文献2に記載の水中超音波送受波器が知られている。この送受波器は、楕円シェルの内部に振動方向を一致させ、かつ間隙を設けて振動体としてのアクティブ柱状体を内包し、これにボルトを貫通させて楕円シェルの長軸端に固定したものである。
As a related technique of the above-described acoustic sensor, an ultrasonic water treatment apparatus described in Patent Document 1 is known. This device includes a vibrator, a horn as a vibrating body, a case as a container for holding the horn, a flange, and the like, and propagates ultrasonic vibration generated by the vibrator to the horn processing surface via each part of the horn. Is.
As another related technique, an underwater ultrasonic transducer described in Patent Document 2 is known. In this transducer, the vibration direction is made to coincide with the inside of the elliptical shell, and a gap is provided to enclose an active columnar body as a vibrating body, and a bolt is passed through it to be fixed to the major axis end of the elliptical shell. It is.

特開2006−043622号公報JP 2006-043622 A 特開平04−334199号公報JP 04-334199 A

しかしながら、角柱や円柱等の長い形状を有する振動子を耐圧容器の内部に複数配列して固定する構造の音響センサにおいて、振動子の従来の固定方法には以下のような問題がある。   However, in an acoustic sensor having a structure in which a plurality of vibrators having a long shape such as a prism or cylinder are arranged and fixed inside the pressure vessel, the conventional fixing method of the vibrator has the following problems.

第1の問題点として、図8(a)に示すように、音響センサの音響ゴム4は弾性材料から形成されているため強度部材とはならない。このため、強度部材であるバックプレート6、サイドプレート7a、7bから構成される耐圧容器2がコの字型の構造となり、振動子3を固定している。その結果、耐圧容器2が片持ち梁の構造となることである。
図8(a)に示すように、片持ち梁構造の耐圧容器2が水圧11を受けると、サイドプレート7a、7bとバックプレート6との接合箇所に相当する支点12を基点として、サイドプレート7a、7bが音響ゴム4の音響面13側に最大たわみを生じる。その結果、サイドプレート7a、7bが振動子3のフロントマス10に接触し、音響性能に悪影響を及ぼす。
従来の音響センサの構造で、サイドプレート7a、7bが振動子3に接触しないような耐圧容器2にするためには、バックプレート6、サイドプレート7a,7bの板厚の増加や、リブや補強部品などの追加により、耐圧容器2の剛性を確保することが必須となる。しかし、これに伴って、音響センサの小型・軽量化の妨げになるとともに、コスト面、製造性(補強部品の追加などによる構造の複雑化)などが問題となる。
As a first problem, as shown in FIG. 8A, the acoustic rubber 4 of the acoustic sensor is made of an elastic material and thus does not become a strength member. For this reason, the pressure-resistant container 2 including the back plate 6 and the side plates 7a and 7b, which are strength members, has a U-shaped structure, and the vibrator 3 is fixed. As a result, the pressure vessel 2 has a cantilever structure.
As shown in FIG. 8A, when the pressure vessel 2 having a cantilever structure receives the water pressure 11, the side plate 7a starts from the fulcrum 12 corresponding to the joint between the side plates 7a, 7b and the back plate 6. 7b causes the maximum deflection on the acoustic surface 13 side of the acoustic rubber 4. As a result, the side plates 7a and 7b come into contact with the front mass 10 of the vibrator 3 and adversely affect the acoustic performance.
In order to make the pressure vessel 2 such that the side plates 7a and 7b do not contact the vibrator 3 with the structure of the conventional acoustic sensor, the thickness of the back plate 6 and the side plates 7a and 7b is increased, ribs and reinforcements are used. It is essential to ensure the rigidity of the pressure vessel 2 by adding parts and the like. However, along with this, it becomes an obstacle to the reduction in size and weight of the acoustic sensor, and costs and manufacturability (complication of structure due to addition of reinforcing parts, etc.) become problems.

第2の問題点として、音響センサの発音時の振動を抑制しないようにするためには、図7に示すように耐圧容器2と振動子3の間にクリアランス16を設ける必要がある。
しかし、従来技術では、耐圧容器2と振動子3の間にクリアランスを設けた場合、耐圧容器2と振動子3が接触する部品を設けることができず、耐圧容器2の組立時にクリアランスの分だけバラツキが発生する。耐圧容器2の組立時に振動子3の配列や位置にバラツキが生じると、耐圧容器2に水圧が印加されたときに、振動子3や音響ゴム4が破損したり、音響センサの性能に影響を及ぼすなどの問題が生じる。
As a second problem, it is necessary to provide a clearance 16 between the pressure vessel 2 and the vibrator 3 as shown in FIG.
However, in the prior art, when a clearance is provided between the pressure vessel 2 and the vibrator 3, it is not possible to provide a part in contact with the pressure vessel 2 and the vibrator 3. Variations occur. If variations occur in the arrangement and position of the vibrators 3 when the pressure vessel 2 is assembled, the vibrator 3 and the acoustic rubber 4 may be damaged when the water pressure is applied to the pressure vessel 2, or the performance of the acoustic sensor may be affected. Problems such as effects occur.

第3の問題点として、耐圧容器2の変形を抑制するために、たとえば振動子3のノード部に支持部材を設けた場合、振動子3と支持部材との接触箇所の面積を決めることで、支持部材の形状を適切な構造にする必要がある。
その理由は、振動子3のノード部は振動モードの点であり、音響性能への影響を小さくするためには、支持部材は点または線で振動子に連結されることが理想である。しかし、その場合、耐圧容器2に水圧が印加されたときに、振動子3の材質強度が持たず破損するため、振動子3と支持部材とが適切な接触面積を持つような支持部材の構造にする必要がある。しかし、従来技術では、適切な接触面積を持つような支持部材を設けた耐圧容器は実現されていない。
As a third problem, in order to suppress deformation of the pressure vessel 2, for example, when a support member is provided at the node portion of the vibrator 3, by determining the area of the contact portion between the vibrator 3 and the support member, The shape of the support member needs to be an appropriate structure.
The reason is that the node portion of the vibrator 3 is a point of the vibration mode, and in order to reduce the influence on the acoustic performance, it is ideal that the support member is connected to the vibrator by a point or a line. However, in that case, when water pressure is applied to the pressure vessel 2, the structure of the support member is such that the vibrator 3 and the support member have an appropriate contact area because the vibrator 3 has no material strength and is damaged. It is necessary to. However, in the prior art, a pressure vessel provided with a support member having an appropriate contact area has not been realized.

この発明は、上述の事情に鑑みてなされたもので、小型・軽量化を図りながら、水圧下での耐圧容器の強度を確保するとともに、耐圧容器に振動子を組込む際の配列と位置決めを容易にし、生産性・信頼性の向上を実現できるセンサおよびその耐圧構造を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and while ensuring the size and weight reduction, the strength of the pressure vessel under water pressure is ensured, and the arrangement and positioning when incorporating the vibrator into the pressure vessel are easy. It is an object of the present invention to provide a sensor that can improve productivity and reliability and a pressure-resistant structure thereof .

上記課題を解決するために、この発明の構成は、複数の振動子が配列された状態で耐圧容器に収納されてなるセンサの耐圧構造に係り、前記複数の振動子の配列方向に沿って前記複数の振動子の両側に間隔をおいて配置されているサイドプレート部材、および、該サイドプレート部材の一方の端面に固定されているバックプレート部材を備えてなる前記耐圧容器と、前記サイドプレート部材の他方の端面に固定されている弾性部材と、前記複数の振動子のノード部と前記耐圧容器の前記サイドプレート部材の内壁部との間に固定されている支持部材とを備え、前記支持部材を介して、前記耐圧容器と前記複数の振動子と前記支持部材が一体化して連結される構造を有していることを特徴としている。 In order to solve the above problems, configuration of this inventions relates to a pressure-resistant structure of the ing the sensor is housed in a pressure vessel in a state in which a plurality of transducers are arranged, in the direction of arrangement of said plurality of transducers along spaced on opposite sides of the plurality of vibrators Tei Ru side plate member, and said pressure-resistant container made comprise one fixed to the end face Tei Ru backplate member of the side plate member, comprising an elastic member Ru Tei is fixed to the other end face of the side plate member, and Tei Ru supporting member is fixed between the inner wall portion of the side plate member of the pressure vessel and the node portion of the plurality of vibrators , via said support member, said pressure vessel and said plurality of transducers and the support member is characterized that you have to have a structure that is connected integrally.

この発明の構成によれば、センサの耐圧容器の内部に配列された複数の振動子がそのノード部に支持部材が固定されることで、耐圧容器、支持部材、振動子が一体化して連結されるため、耐圧容器の小型・軽量化を図りながら、耐圧容器の強度を確保することができる。   According to the configuration of the present invention, the support member is fixed to the node portion of the plurality of vibrators arranged inside the pressure vessel of the sensor, so that the pressure vessel, the support member, and the vibrator are integrally connected. Therefore, the strength of the pressure vessel can be ensured while reducing the size and weight of the pressure vessel.

この発明の実施形態である音響センサの基本構造を示す図であり、(a)は斜視図、(b)は(a)の矢視A−A線に沿う縦断面図である。It is a figure which shows the basic structure of the acoustic sensor which is embodiment of this invention, (a) is a perspective view, (b) is a longitudinal cross-sectional view which follows the arrow AA line of (a). 図1(a)の矢視B−B線に沿う、同音響センサの構成を示す横断面図である。It is a cross-sectional view which shows the structure of the same acoustic sensor along the arrow BB line of Fig.1 (a). 音響センサの耐圧容器に水圧が印加された場合を示す図であり、(a)は、耐圧容器の変形イメージを示す横断面図、(b)は、耐圧容器のたわみとたわみを示す模式図である。It is a figure which shows the case where a water pressure is applied to the pressure vessel of an acoustic sensor, (a) is a cross-sectional view which shows the deformation | transformation image of a pressure vessel, (b) is a schematic diagram which shows the bending and bending of a pressure vessel. is there. 音響センサの振動子の位置決め構造を示す図であり、(a)は、振動子の配列及び位置決め構造を示す模式図、(b)は、音響センサの組立時における振動子の位置決め構造を示す横断面図である。It is a figure which shows the positioning structure of the vibrator | oscillator of an acoustic sensor, (a) is a schematic diagram which shows the arrangement | positioning and positioning structure of a vibrator | oscillator, (b) is the crossing which shows the positioning structure of the vibrator | oscillator at the time of the assembly of an acoustic sensor. FIG. 音響センサの振動子と支持部材との接触箇所を示す模式図である。It is a schematic diagram which shows the contact location of the vibrator | oscillator of an acoustic sensor, and a supporting member. 支持部材の形状の例を示す斜視図である。It is a perspective view which shows the example of the shape of a supporting member. 従来の音響センサの構成を示す横断面図である。It is a cross-sectional view which shows the structure of the conventional acoustic sensor. 従来の音響センサの耐圧容器に水圧が印加された場合を示す図であり、(a)は、耐圧容器の変形イメージを示す横断面図、(b)は、耐圧容器のたわみとたわみを示す模式図である。It is a figure which shows the case where the water pressure is applied to the pressure-resistant container of the conventional acoustic sensor, (a) is a cross-sectional view which shows the deformation | transformation image of a pressure-resistant container, (b) is a model which shows the bending and bending of a pressure-resistant container. FIG.

この発明のセンサの耐圧構造は、前記複数の振動子の配列方向に沿って前記複数の振動子の両側に間隔をおいて配置されているサイドプレート部材、および、該サイドプレート部材の一方の端面に固定されているバックプレート部材を備えてなる前記耐圧容器と、前記サイドプレート部材の他方の端面に固定されている弾性部材と、前記複数の振動子のノード部と前記耐圧容器の前記サイドプレート部材の内壁部との間に固定されている支持部材とを備え、前記支持部材を介して、前記耐圧容器と前記複数の振動子と前記支持部材とを一体化して連結することで、達成される。 Breakdown voltage structure of the sensor of the invention, the plurality of the arrangement direction of the transducers are spaced on opposite sides of said plurality of transducers Tei Ru side plate member, and one of the said side plate members It said pressure vessel comprising comprise Tei Ru backplate member is fixed to the end surface, and the elastic member Ru Tei is fixed to the other end face of said side plate members, said side of the pressure vessel and the node portion of the plurality of vibrators a Tei Ru supporting member is fixed between the inner wall portion of the plate member via said support member, with consolidated to isosamples integrated with the support member and the pressure vessel and the plurality of vibrators Achieved.

実施形態Embodiment

以下、図面を参照して、この発明の実施形態について説明する。
図1は、この発明の実施形態である音響センサの基本構造を示す図であり、(a)は斜視図、(b)は(a)の矢視A−A線に沿う縦断面図である。また、図2は、音響センサの耐圧構造を示し、図1(a)の矢視B−B線に沿う横断面図である。
図1に示すように、この実施形態の音響センサ21は、耐圧容器22の内部に複数の振動子23が長手方向に等間隔で配列されるとともに、耐圧容器22の端面に音響ゴム24が接合されたものである。
Embodiments of the present invention will be described below with reference to the drawings.
1A and 1B are views showing a basic structure of an acoustic sensor according to an embodiment of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal sectional view taken along line AA in FIG. . FIG. 2 shows a pressure-resistant structure of the acoustic sensor , and is a cross-sectional view taken along the line B-B in FIG.
As shown in FIG. 1, in the acoustic sensor 21 of this embodiment, a plurality of vibrators 23 are arranged at equal intervals in the longitudinal direction inside a pressure resistant container 22, and an acoustic rubber 24 is joined to an end surface of the pressure resistant container 22. It has been done.

図2に示すように、耐圧容器22は、バックプレート26、サイドプレート27a、27bから構成されている。複数の振動子23は、それぞれ、細長い角柱状に形成されており、リアマス28、圧電材29、フロントマス30から構成されている。複数の振動子23は、音響ゴム24と、OSペーパ25を介したバックプレート24との間に挟み込まれている。   As shown in FIG. 2, the pressure resistant container 22 includes a back plate 26 and side plates 27a and 27b. Each of the plurality of vibrators 23 is formed in an elongated prismatic shape, and includes a rear mass 28, a piezoelectric material 29, and a front mass 30. The plurality of vibrators 23 are sandwiched between the acoustic rubber 24 and the back plate 24 via the OS paper 25.

耐圧容器22の内部に複数の振動子23が配列された状態では、サイドプレート27a、27bは、各振動子23の配列方向に沿って各振動子23の両側に所定の間隔をおいて位置する。バックプレート26は、サイドプレート27a、27bの一方の端面に固定されている。音響ゴム24は、サイドプレート27a、27bの他方の端面に固定されている。   In a state where a plurality of vibrators 23 are arranged inside the pressure vessel 22, the side plates 27 a and 27 b are positioned at predetermined intervals on both sides of the vibrators 23 along the arrangement direction of the vibrators 23. . The back plate 26 is fixed to one end face of the side plates 27a and 27b. The acoustic rubber 24 is fixed to the other end surfaces of the side plates 27a and 27b.

また、各振動子23のノード部には、各振動子23の長手方向の中心線に対して対称に支持部材34が固定されている。支持部材34は、各振動子23のノード部と耐圧容器22のサイドプレート27a、27bの内壁部との間に配置される。
各振動子23のノード部の両側に支持部材34が固定されているため、支持部材34を介して、耐圧容器22と各振動子23と支持部材34が一体化して連結される構造となる。耐圧容器22と各振動子23と支持部材34が一体化して連結されるため、音響センサ21を水中(海中を含む)で使用した際に耐圧容器22が水圧で変形した際に、高水圧下においても耐圧容器22の変形を抑制することが可能となる。この場合、各振動子23は強度部材としての機能を有する。
Further, a support member 34 is fixed to the node portion of each vibrator 23 symmetrically with respect to the center line in the longitudinal direction of each vibrator 23. The support member 34 is disposed between the node portion of each vibrator 23 and the inner wall portions of the side plates 27 a and 27 b of the pressure vessel 22.
Since the support members 34 are fixed on both sides of the node portion of each vibrator 23, the pressure vessel 22, each vibrator 23, and the support member 34 are integrally connected via the support member 34. Since the pressure vessel 22, each vibrator 23, and the support member 34 are integrally connected, when the pressure vessel 22 is deformed by water pressure when the acoustic sensor 21 is used in water (including underwater), the water pressure drops. In this case, deformation of the pressure vessel 22 can be suppressed. In this case, each vibrator 23 has a function as a strength member.

図3は、音響センサの耐圧容器に水圧が印加された場合を示す図であり、同図(a)は、耐圧容器の変形イメージを示す横断面図、また、同図(b)は、耐圧容器のたわみとたわみを示す模式図である。
図3(a)に示すように、音響センサの耐圧容器22の両側面に対して矢印方向に水圧31が印加された場合を例にとる。水圧31により耐圧容器22が変形したとき、上記したように各振動子23のノード部の両側に支持部材34が固定されているため、支持部材34を介して、耐圧容器22と支持部材34と各振動子23が一体化して連結される。これにより、各振動子23に圧縮応力がかかることで、耐圧容器22の変形を抑制することが可能となる。
FIG. 3 is a diagram showing a case where water pressure is applied to the pressure-resistant container of the acoustic sensor. FIG. 3A is a cross-sectional view showing a deformation image of the pressure-resistant container, and FIG. It is a schematic diagram which shows the deflection and deflection of a container.
As shown in FIG. 3A, a case where water pressure 31 is applied in the direction of the arrow with respect to both side surfaces of the pressure resistant container 22 of the acoustic sensor is taken as an example. When the pressure vessel 22 is deformed by the water pressure 31, since the support members 34 are fixed on both sides of the node portion of each vibrator 23 as described above, the pressure vessel 22 and the support member 34 are connected via the support member 34. Each vibrator 23 is integrally connected. Thereby, it becomes possible to suppress deformation of the pressure vessel 22 by applying a compressive stress to each vibrator 23.

また、図3(b)に示すように、耐圧容器2が等分布荷重(水圧)ωを受けたときの耐圧容器(サイドプレート27a又は27b)の最大たわみYmaxは、耐圧容器(サイドプレート27a又は27b)の支点間の長さL、縦弾性係数E、断面2次モーメントIz、耐圧容器(サイドプレート27a又は27b)の支点からのはねだし長さλを用いて、次の計算式で表すことができる。
Ymax=(5ω・L/384E・Iz)+(ω・λ・L・E・Iz)
L>>λ としたとき
Ymax=0.013X
X=ω・L/E・Iz
Further, as shown in FIG. 3B, the maximum deflection Ymax of the pressure vessel (side plate 27a or 27b) when the pressure vessel 2 receives an evenly distributed load (water pressure) ω is the pressure vessel (side plate 27a or 27b) is expressed by the following calculation formula using the length L between the fulcrums, the longitudinal elastic modulus E, the secondary moment of inertia Iz, and the protruding length λ from the fulcrum of the pressure vessel (side plate 27a or 27b). be able to.
Ymax = (5ω · L 4 / 384E · Iz) + (ω · λ 2 · L 2 · E · Iz)
When L >> λ, Ymax = 0.013X
X = ω · L 4 / E · Iz

ここで、耐圧容器22は水圧31を受けたとき、サイドプレート27aとバックプレート24の接合箇所に相当する支点32と、支持部材34とが支持となることで、両端支持梁での変形モードにより変形する。   Here, when the pressure vessel 22 receives the water pressure 31, the fulcrum 32 corresponding to the joint portion of the side plate 27a and the back plate 24 and the support member 34 are supported, so that depending on the deformation mode in the both end support beams. Deform.

図4は、音響センサの振動子の位置決め構造を示す図であり、(a)は、振動子の配列及び位置決め構造を示す模式図、(b)は、音響センサの組立時における振動子の位置決め構造を示す横断面図である。
各振動子23を耐圧容器22の内部に組み込む前に、図4(a)に示すように、あらかじめ1つの支持部材34に各振動子23を取り付けることで、各振動子23を位置決めしておく。その後、支持部材34に取り付けた各振動子23を耐圧容器22の内部に組み込む際に、支持部材34を耐圧容器22のサイドプレート27a、27bに突き当てる。これにより、耐圧容器22の内部に精度良く各振動子23をまとめて配列することができる。
4A and 4B are diagrams showing the positioning structure of the transducer of the acoustic sensor. FIG. 4A is a schematic diagram showing the arrangement and positioning structure of the transducer, and FIG. 4B is the positioning of the transducer when assembling the acoustic sensor. It is a cross-sectional view showing the structure.
Before incorporating each vibrator 23 into the pressure vessel 22, as shown in FIG. 4A, each vibrator 23 is positioned in advance by attaching each vibrator 23 to one support member 34. . Thereafter, the support member 34 is abutted against the side plates 27 a and 27 b of the pressure-resistant container 22 when the vibrators 23 attached to the support member 34 are incorporated into the pressure-resistant container 22. As a result, the vibrators 23 can be arranged together with high accuracy inside the pressure vessel 22.

また、支持部材34を用いることで、耐圧容器22の内部の任意の位置に振動子23を組み込むことができる。これにより、図4(b)に示すように、音響センサの組立時において振動子23は耐圧容器22の内部において位置決めされる。支持部材34は、耐圧容器22の内部に各振動子23を配列して位置決めするための配列・位置決め用部品としての機能を有する。   Further, by using the support member 34, the vibrator 23 can be incorporated at an arbitrary position inside the pressure vessel 22. As a result, as shown in FIG. 4B, the vibrator 23 is positioned inside the pressure resistant container 22 when the acoustic sensor is assembled. The support member 34 has a function as an arrangement / positioning part for arranging and positioning the vibrators 23 in the pressure vessel 22.

図5は、音響センサの振動子と支持部材との接触箇所を示す模式図である。
振動子23の位置決めに用いる支持部材34は、図5に示すように、振動子23のノード部に接触させて固定するため、振動子23のノード部に対する支持部材34の接触箇所35の接触面積は、できるだけ小さくし、かつ、音響センサを水中で使用する際の使用環境における最大水圧に耐える構造にする必要がある。
振動子23のノード部に対する支持部材34の接触箇所35の接触面積は、できるだけ小さい方が音響センサの音響性能に及ぼす影響が小さい。しかし、接触面積が小さすぎると、振動子23の材質の許容耐力(または疲労応力)を超え、振動子23が破損する可能性がある。
FIG. 5 is a schematic diagram illustrating a contact portion between the transducer of the acoustic sensor and the support member.
As shown in FIG. 5, the support member 34 used for positioning the vibrator 23 is fixed in contact with the node portion of the vibrator 23, so that the contact area of the contact portion 35 of the support member 34 with the node portion of the vibrator 23 is fixed. It is necessary to make the structure as small as possible and to withstand the maximum water pressure in the usage environment when the acoustic sensor is used in water.
A smaller contact area of the contact portion 35 of the support member 34 with respect to the node portion of the vibrator 23 has a smaller influence on the acoustic performance of the acoustic sensor. However, if the contact area is too small, the allowable strength (or fatigue stress) of the material of the vibrator 23 may be exceeded, and the vibrator 23 may be damaged.

このため、振動子23の破損を防止しながら、振動子23のノード部に対する支持部材34の接触箇所35の接触面積を最小にするため、接触面積の計算式は以下のように考えることができる。以下に示す接触面積の計算例は振動子23を角柱状とした場合の一例であり、振動子を角柱状以外のたとえば円柱形状とした場合でも考え方は同様である。   Therefore, in order to minimize the contact area of the contact portion 35 of the support member 34 with the node portion of the vibrator 23 while preventing the vibrator 23 from being damaged, the contact area calculation formula can be considered as follows. . The following calculation example of the contact area is an example in the case where the vibrator 23 has a prismatic shape, and the concept is the same even when the vibrator has a cylindrical shape other than the prismatic shape.

音響センサを水中で使用する際の使用環境における耐圧容器22が受ける水圧31(最大水圧)の下で、振動子23のノード部にかかる圧縮荷重をFmax、振動子23の横幅をa(長さ一定)、振動子23の縦幅をbとする。この場合の、振動子23のノード部に対する支持部材34の接触箇所35の接触面積Aは、次の式で表すことができる。
A=a×b
すなわち、振動子23の縦幅bの長さを最小にすることで、接触面積Aを最小にすることができる。
Under the water pressure 31 (maximum water pressure) received by the pressure vessel 22 in the use environment when the acoustic sensor is used in water, the compression load applied to the node portion of the vibrator 23 is Fmax, and the lateral width of the vibrator 23 is a (length). Constant), the vertical width of the vibrator 23 is b. In this case, the contact area A of the contact portion 35 of the support member 34 with the node portion of the vibrator 23 can be expressed by the following equation.
A = a × b
That is, the contact area A can be minimized by minimizing the length b of the vibrator 23.

音響センサを水中で使用する際に水圧31(最大水圧)の下での振動子23のノード部にかかる圧縮荷重Fmaxは、耐圧容器22から支持部材34を介して、振動子23のノード部に対する支持部材34の接触箇所35(接触面積A)に負荷される。その時の振動子23にかかる圧縮応力σは、次の式で表すことができる。
σ=Fmax/A
よって、振動子23のノード部に対する支持部材34の接触箇所35の接触面積Aを最小にするには、振動子23の材質の許容耐力(または疲労応力)をσsとした時、σs≧σを満たす振動子23の縦幅bを選定すれば良い。
When the acoustic sensor is used in water, the compressive load Fmax applied to the node portion of the vibrator 23 under water pressure 31 (maximum water pressure) is applied to the node portion of the vibrator 23 from the pressure vessel 22 through the support member 34. The contact portion 35 (contact area A) of the support member 34 is loaded. The compressive stress σ applied to the vibrator 23 at that time can be expressed by the following equation.
σ = Fmax / A
Therefore, in order to minimize the contact area A of the contact portion 35 of the support member 34 with respect to the node portion of the vibrator 23, when the allowable proof stress (or fatigue stress) of the material of the vibrator 23 is σs, σs ≧ σ What is necessary is just to select the vertical width b of the vibrator 23 to be satisfied.

また、振動子23のノード部に対する支持部材34の接触箇所35の接触面積Aを最小にしたときの最小接触面積Aminにおいては、許容耐力σsと圧縮応力σとの関係はσs=σで表されるが、必要により安全率を考慮する。
設計による安全率を考慮した場合、安全率をSfとすると、圧縮応力σは、次の式で表すことができる。
σ=(Fmax/A)×Sf
Further, in the minimum contact area Amin when the contact area A of the contact portion 35 of the support member 34 with respect to the node portion of the vibrator 23 is minimized, the relationship between the allowable proof stress σs and the compressive stress σ is expressed by σs = σ. However, if necessary, consider the safety factor.
When the safety factor by design is taken into consideration, when the safety factor is Sf, the compressive stress σ can be expressed by the following equation.
σ = (Fmax / A) × Sf

上記した方法で得られた振動子23のノード部に対する支持部材34の接触箇所35の接触面積を基に、支持部材34の形状を選択する。この実施形態では、支持部材34の形状は角柱状としているが、これに限らず、図6に示すような各種の形状が考えられる。   The shape of the support member 34 is selected based on the contact area of the contact portion 35 of the support member 34 with the node portion of the vibrator 23 obtained by the method described above. In this embodiment, the shape of the support member 34 is a prismatic shape, but is not limited thereto, and various shapes as shown in FIG. 6 are conceivable.

図6は、支持部材の形状の例を示す斜視図である。
図6に示すように、支持部材の形状としては、この実施形態の角柱状以外に、板状、台形状、L型形状などが考えられる。また、支持部材に用いる材質としては、弾性材料が好ましく、具体例としてはCFRP(Carbon Fiber Reinforced Plastics)などの複合材料、ゴムなどの樹脂材料、コルクなどが考えられる。
FIG. 6 is a perspective view showing an example of the shape of the support member.
As shown in FIG. 6, the shape of the support member may be a plate shape, a trapezoidal shape, an L shape, or the like other than the prismatic shape of this embodiment. The material used for the support member is preferably an elastic material, and specific examples include composite materials such as CFRP (Carbon Fiber Reinforced Plastics), resin materials such as rubber, cork, and the like.

この実施形態によれば、以下の効果がある。
第1の効果は、音響センサの耐圧容器22の内部に配列された複数の振動子23がそのノード部に支持部材34が固定されることで、支持部材34を介して、耐圧容器22と支持部材34と振動子23が一体化して連結される。このため、耐圧容器22の小型・軽量化を図りながら、耐圧容器22の強度(剛性)を確保できる音響センサを提供することができる。
その理由は、耐圧容器22の内部の各振動子23を強度部材と考え、各振動子23のノード部に適切な接触面積を有する支持部材34を固定する構造とする。このため、水中または海中での音響センサ21の使用時に図3のように耐圧容器22の両側面に水圧31を受けた際に、耐圧容器22は支点32と支持部材34が支持となることで、両端支持梁での変形モードにより変形する。
この実施形態の耐圧容器22の両端支持梁での変形モードを、従来構造の図8(a)の片持ち梁での変形モードと比較した場合、最大たわみは1/10となり、最大たわみが発生する部位も異なる。
ただし、この実施形態の図3(b)に示す計算式と、従来構造の図8(b)に示す計算式は、等分布荷重を受けたときのたわみの計算式である。Ymax:耐圧容器の最大たわみ、ω:水圧(等分布荷重)、L:耐圧容器の支点間の長さ、E:縦弾性係数、Iz:断面2次モーメントとし、λ:支点からのはねだし長さは、両者の単純比較のため、非常に小さいものとし、図8(b)のLの長さと同じと考えた場合とする。
According to this embodiment, there are the following effects.
The first effect is that the support member 34 is fixed to the node portion of the plurality of vibrators 23 arranged inside the pressure-resistant container 22 of the acoustic sensor. The member 34 and the vibrator 23 are integrally connected. Therefore, it is possible to provide an acoustic sensor that can ensure the strength (rigidity) of the pressure vessel 22 while reducing the size and weight of the pressure vessel 22.
The reason is that each vibrator 23 inside the pressure vessel 22 is considered as a strength member, and a support member 34 having an appropriate contact area is fixed to the node portion of each vibrator 23. For this reason, when the water pressure 31 is received on both sides of the pressure vessel 22 as shown in FIG. 3 when the acoustic sensor 21 is used in water or in the sea, the pressure vessel 22 is supported by the fulcrum 32 and the support member 34. , Deformation is caused by the deformation mode at both end support beams.
When the deformation mode at the both end support beams of the pressure vessel 22 of this embodiment is compared with the deformation mode at the cantilever beam in FIG. 8A of the conventional structure, the maximum deflection becomes 1/10, and the maximum deflection occurs. The site to do is also different.
However, the calculation formula shown in FIG. 3 (b) of this embodiment and the calculation formula shown in FIG. 8 (b) of the conventional structure are calculation formulas of deflection when subjected to a uniform load. Ymax: Maximum deflection of the pressure vessel, ω: Water pressure (uniformly distributed load), L: Length between fulcrums of the pressure vessel, E: Longitudinal elastic modulus, Iz: Secondary moment of section, λ: Splash from the fulcrum The length is very small for simple comparison between the two, and it is assumed that the length is the same as the length L in FIG.

第2の効果は、支持部材34を振動子23の配列および位置決め用の部品として用いることにより、音響センサの組立性、機械的位置決め精度、品質の向上を図り、生産性・信頼性の向上を実現することができる。
その理由は、図4(a)のように支持部材34を配列・位置決め用部品として用いて複数の振動子23の配列および位置決めを行うことで、各振動子23を耐圧容器22に組み込む前に精度良く配列でき、各振動子23の耐圧容器22への組み込み時に、各振動子23を耐圧容器内部の所望の位置に確実に固定することができる。
The second effect is that the support member 34 is used as a component for arranging and positioning the vibrators 23, thereby improving the assembly, mechanical positioning accuracy, and quality of the acoustic sensor, and improving productivity and reliability. Can be realized.
The reason for this is that the plurality of vibrators 23 are arranged and positioned by using the support member 34 as an arrangement / positioning part as shown in FIG. The vibrators 23 can be arranged with high accuracy, and each vibrator 23 can be securely fixed at a desired position inside the pressure vessel when the vibrators 23 are assembled into the pressure vessel 22.

第3の効果は、振動子23と支持部材34の接触面積を求め、支持部材34の形状を決めることで、換言すれば音響センサの使用環境に適した形状の支持部材を選択することで、音響影響に及ぼすセンサ性能や機械的特性などの影響を最小限にした音響センサを実現することができる。
その理由は、振動子のノード部と支持部材との接触は点または線が理想であるが、実用上は振動子の材料強度を確保することが難しいため、音響センサの使用環境での耐圧容器にかかる最大水圧と振動子の許容耐力(または疲労応力)により、適切な接触面積を求める。これにより、音響性能に及ぼす影響を最小限にした支持部材の形状を選択することができる。
The third effect is to obtain the contact area between the vibrator 23 and the support member 34, and to determine the shape of the support member 34. In other words, by selecting a support member having a shape suitable for the usage environment of the acoustic sensor, It is possible to realize an acoustic sensor that minimizes the influence of sensor performance, mechanical characteristics, etc. on the acoustic influence.
The reason for this is that a point or line is ideal for contact between the node part of the vibrator and the support member, but it is difficult to ensure the material strength of the vibrator for practical use. An appropriate contact area is obtained from the maximum water pressure applied to the vibrator and the allowable yield strength (or fatigue stress) of the vibrator. Thereby, the shape of the support member that minimizes the influence on the acoustic performance can be selected.

以上、この発明の一実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更などがあってもこの発明に含まれる。
上記した実施形態では、振動子23を固定する構造として、図3(a)のように振動子23の支点32と振動子23のノード部に支持部材34で固定する構造を例にあげたが、これに限らない。たとえば、振動子23を支持部材34のみで固定する構造、振動子23の複数のノード部を連結する構造にも適用できる。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. However, it is included in this invention.
In the above-described embodiment, as an example of the structure for fixing the vibrator 23, a structure in which the support member 34 is used to fix the vibrator 23 to the fulcrum 32 and the node portion of the vibrator 23 as shown in FIG. Not limited to this. For example, the present invention can be applied to a structure in which the vibrator 23 is fixed only by the support member 34 and a structure in which a plurality of node portions of the vibrator 23 are connected.

この発明のセンサの耐圧構造は、振動子を収納した耐圧容器と音響ゴムからなる音響センサへの適用に限らず、振動子を収納した耐圧容器を備える他のセンサなどの用途にも適用できる。 The pressure-resistant structure of the sensor according to the present invention is not limited to application to a pressure-resistant container containing a vibrator and an acoustic sensor made of acoustic rubber, but can also be applied to other sensors having a pressure-resistant container containing a vibrator.

21 音響センサ(センサ)
22 耐圧容器
23 振動子
24 音響ゴム(弾性部材)
26 バックプレート(バックプレート部材)
27a、27b サイドプレート(サイドプレート部材)
31 水圧
32 支点
34 支持部材
35 接触箇所
21 Acoustic sensor
22 Pressure-resistant container 23 Vibrator 24 Acoustic rubber (elastic member)
26 Back plate (back plate member)
27a, 27b Side plate (side plate member)
31 water pressure 32 fulcrum 34 support member 35 contact point

Claims (7)

複数の振動子が配列された状態で耐圧容器に収納されてなるセンサの耐圧構造であって、
前記複数の振動子の配列方向に沿って前記複数の振動子の両側に間隔をおいて配置されているサイドプレート部材、および、該サイドプレート部材の一方の端面に固定されているバックプレート部材を備えてなる前記耐圧容器と、
前記サイドプレート部材の他方の端面に固定されている弾性部材と、
前記複数の振動子のノード部と前記耐圧容器の前記サイドプレート部材の内壁部との間に固定されている支持部材とを備え、
前記支持部材を介して、前記耐圧容器と前記複数の振動子と前記支持部材が一体化して連結される構造を有していることを特徴とするセンサの耐圧構造
A pressure-resistant structure housed ing with sensors in a pressure vessel in a state in which a plurality of transducers are arranged,
Wherein the plurality of the arrangement direction of the transducers are spaced on opposite sides of said plurality of transducers Tei Ru side plate member, and, Tei Ru backplate member is fixed to one end face of said side plate members The pressure vessel comprising:
An elastic member Ru Tei is fixed to the other end face of the side plate member,
A Tei Ru supporting member is fixed between the inner wall portion of the side plate member of the pressure vessel and the node portion of the plurality of transducers,
Through said support member, the breakdown voltage structure of the sensor, characterized that you have to have a structure in which said pressure vessel and said plurality of transducers and the support member are connected integrally.
前記複数の振動子を前記耐圧容器に組み込む前に、前記支持部材を前記複数の振動子のノード部に取り付けることで、前記支持部材を前記複数の振動子の配列および位置決めを行うための部品として用いることを特徴とする請求項記載のセンサの耐圧構造Before assembling the plurality of vibrators into the pressure vessel, the support member is attached to a node portion of the plurality of vibrators, so that the support member is used as a component for arranging and positioning the plurality of vibrators. 2. The pressure-resistant structure of a sensor according to claim 1 , wherein the pressure-resistant structure is used . 前記振動子のノード部と、前記サイドプレート部材と前記バックプレート部材の接合箇所に相当する支点とにより支持される両端支持梁の構造を有することを特徴とする請求項記載のセンサの耐圧構造2. The pressure-resistant structure of a sensor according to claim 1 , wherein the sensor has a structure of a both-end support beam supported by a node portion of the vibrator and a fulcrum corresponding to a joint portion of the side plate member and the back plate member. . 前記センサは水中で使用され、
前記水中での使用時に前記耐圧容器が受ける水圧の下で前記振動子のノード部にかかる圧縮荷重と前記振動子の大きさを基に、前記振動子と前記支持部材との接触箇所の面積が最小になるように決定されることを特徴とする請求項1乃至のいずれか一に記載のセンサの耐圧構造
The sensor is used in water,
Based on the compressive load applied to the node portion of the vibrator under the water pressure received by the pressure vessel during use in the water and the size of the vibrator, the area of the contact portion between the vibrator and the support member is breakdown voltage structure of the sensor according to any one of claims 1 to 3, characterized in that it is determined to be minimized.
前記支持部材の形状は、角柱状、板状、台形状、L型形状を含む形状のなかから決定されることを特徴とする請求項1乃至のいずれか一に記載のセンサの耐圧構造Wherein the shape of the support member, a prismatic shape, a plate shape, a trapezoidal shape, the breakdown voltage structure of the sensor according to any one of claims 1 to 4, characterized in that it is determined from among shapes, including L-shaped. 前記支持部材の材質は、弾性材料を含む材質のなかから決定されることを特徴とする請求項1乃至のいずれか一に記載のセンサの耐圧構造The pressure resistance structure of the sensor according to any one of claims 1 to 4 , wherein a material of the support member is determined from a material including an elastic material. 複数の振動子が配列された状態で耐圧容器に収納されてなるセンサであって、請求項1ないし6のいずれか一つに記載のセンサの耐圧構造を備えてなることを特徴とするセンサ。A sensor which is housed in a pressure-resistant container in a state in which a plurality of vibrators are arranged, the sensor comprising the sensor pressure-resistant structure according to any one of claims 1 to 6.
JP2011065094A 2011-03-23 2011-03-23 Sensor and its pressure resistance structure Active JP5699727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065094A JP5699727B2 (en) 2011-03-23 2011-03-23 Sensor and its pressure resistance structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065094A JP5699727B2 (en) 2011-03-23 2011-03-23 Sensor and its pressure resistance structure

Publications (2)

Publication Number Publication Date
JP2012204886A JP2012204886A (en) 2012-10-22
JP5699727B2 true JP5699727B2 (en) 2015-04-15

Family

ID=47185433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065094A Active JP5699727B2 (en) 2011-03-23 2011-03-23 Sensor and its pressure resistance structure

Country Status (1)

Country Link
JP (1) JP5699727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798941A (en) * 2019-03-14 2019-05-24 上海交通大学 CFRP die forming and CFRP/ metallic composite panel single step co-curing shape test device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515111Y2 (en) * 1986-10-20 1993-04-21
JPH03213317A (en) * 1990-01-19 1991-09-18 Idemitsu Kosan Co Ltd Injection molding method and its device
JPH08228031A (en) * 1995-02-17 1996-09-03 Toko Inc Piezoelectric transformer and supporting device thereof
JPH11354856A (en) * 1998-06-04 1999-12-24 Daishinku:Kk Piezoelectric transformer
JP5255263B2 (en) * 2007-12-05 2013-08-07 株式会社タムラ製作所 Piezoelectric transformer
JP5309941B2 (en) * 2008-12-09 2013-10-09 日本電気株式会社 Acoustic transducer

Also Published As

Publication number Publication date
JP2012204886A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP2008209388A (en) Acceleration sensor
US7555133B2 (en) Electro-acoustic transducer
US8565043B2 (en) Acoustic transducer
KR20150055086A (en) Sound generating apparatus
JP5699727B2 (en) Sensor and its pressure resistance structure
JP5445323B2 (en) Acoustic transducer
EP2819434B1 (en) Ultrasonic wave-generating device
JPH09229960A (en) Vibrator
JP7253910B2 (en) vibration converter
US10310108B2 (en) Bow-shaped spring for marine vibrator
RU2363115C1 (en) Multi-element hydroacoustic antenna
KR20190017487A (en) Piezoelectric element, Transducer and Tonpilz Transducer using the same
JP6083403B2 (en) Bending type transmitter
Reichel et al. Efficient numerical modeling of oscillatory fluid-structure interaction
US20200379562A1 (en) Haptic actuator assembly having a fluid reservoir
JP7495690B2 (en) Ultrasonic Complex Vibration Device
JP2012191429A (en) Aerial ultrasonic sensor
KR102583661B1 (en) Acoustic wave transmission structure
KR20230077022A (en) Acoustic wave transmission structure
JPS596369B2 (en) force conversion mechanism
JP5194418B2 (en) Hydrophone
WO2022201999A1 (en) Ultrasonic sensor
JP6423148B2 (en) Piezoelectric vibration transmission element
JPH0515111Y2 (en)
RU2531552C1 (en) Resonant hydroacoustic antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150