JP5694897B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5694897B2
JP5694897B2 JP2011237992A JP2011237992A JP5694897B2 JP 5694897 B2 JP5694897 B2 JP 5694897B2 JP 2011237992 A JP2011237992 A JP 2011237992A JP 2011237992 A JP2011237992 A JP 2011237992A JP 5694897 B2 JP5694897 B2 JP 5694897B2
Authority
JP
Japan
Prior art keywords
heat
defrosting
refrigerator
refrigerant
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011237992A
Other languages
Japanese (ja)
Other versions
JP2013096607A (en
JP2013096607A5 (en
Inventor
慎一郎 岡留
慎一郎 岡留
良二 河井
良二 河井
大平 昭義
昭義 大平
義明 藤木
義明 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011237992A priority Critical patent/JP5694897B2/en
Publication of JP2013096607A publication Critical patent/JP2013096607A/en
Publication of JP2013096607A5 publication Critical patent/JP2013096607A5/ja
Application granted granted Critical
Publication of JP5694897B2 publication Critical patent/JP5694897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

本発明は,蒸発器の霜取りを行う冷蔵庫に関する。   The present invention relates to a refrigerator that defrosts an evaporator.

従来,冷蔵庫の断熱箱体の表面の結露を防止する構成として,特許文献1には,冷却運転を行う冷媒回路の凝縮器を,断熱箱体の表面を介して放熱する放熱パイプで構成した冷蔵庫が開示されている。これにより,凝縮器の放熱を利用して断熱箱体の表面温度を露点温度より上昇させることで,結露を防止している。   Conventionally, as a configuration for preventing condensation on the surface of a heat insulating box of a refrigerator, Patent Document 1 discloses a refrigerator in which a condenser of a refrigerant circuit that performs a cooling operation is configured with a heat radiating pipe that radiates heat through the surface of the heat insulating box. Is disclosed. This prevents condensation by raising the surface temperature of the heat insulation box above the dew point temperature using the heat radiation of the condenser.

特許文献2には,庫内を冷却する蒸発器に付着した霜を取り除く蒸発器除霜用の加熱手段として,電気ヒータやIHヒータを用いた輻射熱や対流による間接加熱手段と,電気ヒータを用いた熱伝導による直接加熱手段を用いる冷蔵庫が開示されている。さらに,圧縮機と凝縮器とキャピラリチューブと蒸発器と四方弁を備え,除霜時には,四方弁を切換え圧縮機から吐出した高温冷媒を蒸発器,キャピラリチューブ,凝縮器の順に流し(特許文献2の図3参照),圧縮機からの高温冷媒で蒸発器を加熱する直接加熱手段が開示されている。   In Patent Document 2, an indirect heating means using radiant heat or convection using an electric heater or an IH heater and an electric heater are used as a heating means for evaporator defrosting to remove frost adhering to the evaporator that cools the inside of the refrigerator. A refrigerator using a direct heating means by heat conduction has been disclosed. Furthermore, a compressor, a condenser, a capillary tube, an evaporator, and a four-way valve are provided. During defrosting, the four-way valve is switched, and the high-temperature refrigerant discharged from the compressor flows in the order of the evaporator, capillary tube, and condenser (Patent Document 2). 3), a direct heating means for heating the evaporator with a high-temperature refrigerant from a compressor is disclosed.

特開2003−227675号公報JP 2003-227675 A 特開2000−121233号公報JP 2000-121233 A

ところで,特許文献1に開示された冷蔵庫は,放熱パイプで冷蔵庫壁面に放熱することによって表面温度を上げ,良好に冷蔵庫壁面の結露を防止できる。しかしながら放熱パイプが過度に低温となった場合,断熱箱体表面である冷蔵庫の表面も低温となり露点温度以下となり,却って冷蔵庫壁面の結露が生じ易くなることがある。   By the way, the refrigerator disclosed by patent document 1 can raise surface temperature by thermally radiating to a refrigerator wall surface with a heat radiating pipe, and can prevent dew condensation on a refrigerator wall surface favorably. However, if the heat radiating pipe becomes excessively cold, the surface of the refrigerator, which is the surface of the heat insulation box, also becomes cold and below the dew point temperature, and on the contrary, condensation on the refrigerator wall surface is likely to occur.

また,特許文献2では,冷蔵庫の蒸発器除霜用の加熱手段として複数の加熱手段が開示されている。ここで除霜時の省エネルギ性能を考えた場合,直接加熱手段であり,また凝縮器により外界から吸熱することから圧縮機から吐出した冷媒を蒸発器,キャピラリチューブ,凝縮器の順に流して蒸発器を加熱する加熱手段が優れていると言える。
しかしながら,凝縮器の放熱を利用して壁面の結露を防止している冷蔵庫に適用した場合,除霜時に凝縮器で冷媒が気化し,蒸発潜熱の吸熱により放熱パイプが低温となり,冷蔵庫壁面の結露が生じ易くなるという問題があった。
Moreover, in patent document 2, the some heating means is disclosed as a heating means for the evaporator defrost of a refrigerator. Here, when considering energy saving performance during defrosting, it is a direct heating means, and heat is absorbed from the outside by the condenser, so the refrigerant discharged from the compressor flows in the order of the evaporator, capillary tube, and condenser to evaporate. It can be said that the heating means for heating the vessel is excellent.
However, when it is applied to a refrigerator that uses the heat radiation of the condenser to prevent condensation on the wall surface, the refrigerant vaporizes in the condenser during defrosting, the heat radiation pipe becomes cold due to the absorption of latent heat of vaporization, and the condensation on the wall surface of the refrigerator There has been a problem that it is likely to occur.

本発明は以上のような問題点に鑑み,冷蔵庫壁面の結露を抑制するとともに省エネルギ性能が高い冷蔵庫の提供を目的とする。   In view of the above problems, the present invention aims to provide a refrigerator that suppresses condensation on the wall surface of the refrigerator and has high energy saving performance.

上記目的を達成すべく,第1の本発明に関わる冷蔵庫は,断熱箱体と,圧縮機と,前記断熱箱体の外面を介して外気と熱交換する第一の熱交換手段と,前記断熱箱体内の空気と熱交換する第二の熱交換手段と,減圧手段とを備え,冷媒が流れる冷媒配管によって順に前記圧縮機,前記第一の熱交換手段,前記減圧手段,前記第二の熱交換手段を接続し,前記冷媒が前記第一の熱交換手段により放熱し,前記第二の熱交換手段によって吸熱することで庫内の冷却を行う冷蔵庫であって,前記断熱箱体の外部に設けられ外気と熱交換する第三の熱交換手段と,前記圧縮機の吐出口から放出される冷媒を,前記第二の熱交換手段,前記減圧手段,前記第三の熱交換手段,前記圧縮機の吸込口の順に流すように切換え,前記第二の熱交換手段の除霜を行う際に前記第一の熱交換手段に冷媒を流さないように切換えるための冷媒流路切換え手段とを備えている。 To achieve the above object, a refrigerator according to the first aspect of the present invention includes a heat insulating box, a compressor, first heat exchanging means for exchanging heat with the outside air via an outer surface of the heat insulating box, and the heat insulating. A second heat exchanging means for exchanging heat with the air in the box; and a decompression means, wherein the compressor, the first heat exchange means, the decompression means, and the second heat are sequentially arranged by a refrigerant pipe through which the refrigerant flows. A refrigerator for cooling the interior by connecting an exchange means, wherein the refrigerant dissipates heat by the first heat exchange means and absorbs heat by the second heat exchange means, outside the heat insulating box. A third heat exchanging means provided for exchanging heat with the outside air, and a refrigerant discharged from an outlet of the compressor, the second heat exchanging means, the pressure reducing means, the third heat exchanging means, the compression Switch to flow in the order of the suction port of the machine, and defrost the second heat exchange means. And a refrigerant flow path switching means for switching so as not to flow the refrigerant into the first heat exchange means in earthenware pots.

本発明によれば,冷蔵庫壁面の結露を抑制しつつ,省エネルギ性能が高い冷蔵庫を提供することができる。   According to the present invention, it is possible to provide a refrigerator with high energy saving performance while suppressing condensation on the refrigerator wall surface.

本発明の実施形態1に関わる冷蔵庫の正面図である。It is a front view of the refrigerator in connection with Embodiment 1 of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 冷蔵庫本体内の冷気ダクトや冷気吹き出し口の配置を示す正面模式図である。It is a front schematic diagram which shows arrangement | positioning of the cold air duct in a refrigerator main body, and a cold air outlet. 実施形態1に関わる冷蔵庫の冷凍サイクル(冷媒流路)の構成を示す図であり,太線で冷却運転時の冷媒の流れを示す。It is a figure which shows the structure of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 1, and shows the flow of the refrigerant | coolant at the time of cooling operation with a thick line. 実施形態1に関わる冷蔵庫における壁面凝縮器の配設位置を示す図である。It is a figure which shows the arrangement | positioning position of the wall surface condenser in the refrigerator in connection with Embodiment 1. FIG. 実施形態1に関わる冷蔵庫を背面から目視した際の機械室の構成を示す模式図である。It is a schematic diagram which shows the structure of the machine room when the refrigerator in connection with Embodiment 1 is viewed from the back. 実施形態1に関わる冷蔵庫の除霜運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the defrost operation of the refrigerator in connection with Embodiment 1 with a thick line. 実施形態1に関わる冷蔵庫の除霜運転に関する制御を示すフローチャートである。It is a flowchart which shows the control regarding the defrost operation of the refrigerator in connection with Embodiment 1. FIG. (a)および(b)はそれぞれ実施形態1の冷蔵庫の除霜運転に関する制御を示すフローチャート図である。(a) And (b) is a flowchart figure which shows the control regarding the defrost operation of the refrigerator of Embodiment 1, respectively. 庫外凝縮器の代わりに除霜用冷却器を用いた場合の冷却運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the cooling driving | operation at the time of using the defrost cooler instead of the outside condenser in a thick line. 庫外凝縮器の代わりに除霜用冷却器を用いた場合の除霜運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of a defrost driving | operation at the time of using the defrost cooler instead of an external condenser with a thick line. 図4の四方弁および三方弁の代わりに,二方弁を用いて同等の冷媒流路を構成した場合の冷却運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of a cooling operation when the equivalent refrigerant | coolant flow path is comprised using a two-way valve instead of the four-way valve of FIG. 4, and a thick line. 図4の四方弁および三方弁の代わりに,二方弁を用いて同等の冷媒流路を構成した場合の除霜運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of a defrost operation at the time of comprising the equivalent refrigerant | coolant flow path using a two-way valve instead of the four-way valve and the three-way valve of FIG. 一般的な冷却運転およびヒートポンプ除霜を用いた除霜運転時の冷凍サイクルを示すモリエル(圧力‐比エンタルピ)線図であり,(a)は第一のキャピラリチューブを用いて行った冷却運転,(b)は第一のキャピラリチューブを用いて行った除霜運転,(c)は第二のキャピラリチューブを用いて行った除霜運転である。It is a Mollier (pressure-specific enthalpy) diagram showing a refrigeration cycle during a general cooling operation and a defrosting operation using a heat pump defrost, (a) is a cooling operation performed using the first capillary tube, (B) is a defrosting operation performed using the first capillary tube, and (c) is a defrosting operation performed using the second capillary tube. 実施形態2に関わる冷蔵庫の冷凍サイクル(冷媒流路)の冷却運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of cooling operation of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 2 with a thick line. 実施形態2に関わる冷蔵庫の冷凍サイクル(冷媒流路)の除霜運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the defrost driving | operation of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 2 with a thick line. 実施形態3に関わる冷蔵庫の冷凍サイクル(冷媒流路)の冷却運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of cooling operation of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 3 with a thick line. 実施形態3に関わる冷蔵庫の冷凍サイクル(冷媒流路)の除霜運転時の冷媒流路を太線で示す図である。第3実施の形態例の冷蔵庫の除霜運転時の冷凍サイクル構成を示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the defrost driving | operation of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 3 with a thick line. It is a figure which shows the refrigerating-cycle structure at the time of the defrost operation of the refrigerator of 3rd Embodiment. 実施形態4に関わる冷蔵庫の冷凍サイクル(冷媒流路)の冷却運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of cooling operation of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 4 with a thick line. 実施形態4に関わる冷蔵庫の冷凍サイクル(冷媒流路)の除霜運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the defrost driving | operation of the refrigerating cycle (refrigerant flow path) of the refrigerator in connection with Embodiment 4 with a thick line. 実施形態5に関わる冷蔵庫の冷却運転時の冷凍サイクル(冷媒流路)の冷却運転時の冷媒流路を太線で示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the cooling operation of the refrigerating cycle (refrigerant flow path) at the time of the cooling operation of the refrigerator in connection with Embodiment 5 with a thick line. 実施形態5に関わる冷蔵庫の除霜運転時の冷凍サイクル(冷媒流路)の除霜運転時の冷媒流路を太線で示す図であるIt is a figure which shows the refrigerant | coolant flow path at the time of the defrost operation of the refrigerating cycle (refrigerant flow path) at the time of the defrost operation of the refrigerator concerning Embodiment 5 with a thick line. 実施形態5に関わる冷蔵庫の冷却器の構成を示す図であり,(a)は冷却器の正面図,(b)は冷却器の右側面図である。It is a figure which shows the structure of the refrigerator of the refrigerator in connection with Embodiment 5, (a) is a front view of a cooler, (b) is a right view of a cooler. 実施形態5に関わる冷蔵庫の除霜運転に関する制御を示すフローチャートである。It is a flowchart which shows the control regarding the defrost operation of the refrigerator in connection with Embodiment 5. (a),(b)は,実施形態5に関わる冷蔵庫の除霜運転に関する制御を示すフローチャートである。(a), (b) is a flowchart which shows the control regarding the defrost operation of the refrigerator in connection with Embodiment 5. FIG.

以下,本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
本発明に関わる実施形態1の冷蔵庫1の例を,図1から図9を参照して説明する。
図1は,本発明の実施形態1に関わる冷蔵庫の正面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
The example of the refrigerator 1 of Embodiment 1 in connection with this invention is demonstrated with reference to FIGS.
FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention.

実施形態1の冷蔵庫1は,食品を冷蔵,冷凍して貯蔵する貯蔵室として,上方から冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6を備えている。製氷室3と上段冷凍室4は同じ高さ位置に左右に並設されている。
なお,冷凍温度帯の製氷室3と上段冷凍室4と下段冷凍室5は,冷凍温度帯室60と総称し,冷蔵温度帯の冷蔵室2と野菜室6は,冷蔵温度帯室61と総称する。
The refrigerator 1 according to the first embodiment includes a refrigerator room 2, an ice making room 3, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 from above as storage rooms for storing food by refrigeration and freezing. The ice making chamber 3 and the upper freezing chamber 4 are arranged side by side at the same height.
The ice making chamber 3, the upper freezing chamber 4 and the lower freezing chamber 5 in the freezing temperature zone are collectively referred to as the freezing temperature zone 60, and the refrigerating temperature zone 2 and the vegetable room 6 are collectively referred to as the refrigerating temperature zone 61. To do.

冷蔵室2は,前面側に左右に分割されるとともに冷蔵庫本体1H(図2参照)の前面両側端部に枢設される観音開きの冷蔵室扉2a,2bを備えている。図2は,冷蔵庫の庫内の構成を示す図1のA−A線断面図である。
冷蔵室扉2a,2bの庫内側には複数の扉ポケット32が備えられている。また,冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。
The refrigerating room 2 is provided with two-sided refrigerating room doors 2a and 2b that are divided into left and right sides on the front side and pivoted at both ends of the front side of the refrigerator main body 1H (see FIG. 2). FIG. 2 is a cross-sectional view taken along the line AA of FIG.
A plurality of door pockets 32 are provided inside the refrigerator compartment doors 2a and 2b. The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.

一方,製氷室3と,上段冷凍室4と,下段冷凍室5と,野菜室6は,それぞれ引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aを備えている。
製氷室3,上段冷凍室4,下段冷凍室5および野菜室6には,それぞれ各室の前部に備えられた扉(3a,4a,5a,6a)と一体に引き出される収納容器3b,4b,5b,6bを設けている。ユーザが各扉(3a,4a,5a,6a)の取手部(図示せず)に手を掛けて手前側(図2の紙面左側)に引き出すことにより収納容器3b,4b,5b,6bを引き出せるようになっている。
On the other hand, the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 have a drawer type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a, respectively. I have.
In the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6, the storage containers 3b and 4b that are pulled out integrally with the doors (3a, 4a, 5a, 6a) provided at the front of each room, respectively. , 5b, 6b. The user can pull out the storage containers 3b, 4b, 5b, 6b by placing a hand on the handle (not shown) of each door (3a, 4a, 5a, 6a) and pulling it out to the near side (left side in FIG. 2). It is like that.

また,冷蔵庫1は,各扉(2a,2b,3a,4a,5a,6a)の開閉状態をそれぞれ検知する扉センサ(図示せず)と,所定時間(例えば1分間)以上扉が開放状態であると判定した場合に使用者(ユーザ)に報知するアラーム(図示せず)と,冷蔵温度帯室61の温度設定や冷凍温度帯室60の温度設定をする温度設定器(図示せず)等を備えている。   The refrigerator 1 includes a door sensor (not shown) that detects the open / closed state of each door (2a, 2b, 3a, 4a, 5a, 6a) and a door that is open for a predetermined time (for example, 1 minute) or more. An alarm (not shown) that informs the user (user) when it is determined that there is a temperature setting device (not shown) that sets the temperature of the refrigeration temperature zone 61 or the temperature of the freezing temperature zone 60 It has.

図2に示すように,冷蔵庫1の庫内と庫外は,外郭を形成する外箱1aと貯蔵室(2,3,4,5,6)を形成する内箱1bの間に発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10によって,隔てられている。また,冷蔵庫1の断熱箱体10には,真空状態を有する断熱性が高い真空断熱材26を実装している。   As shown in FIG. 2, the inside and outside of the refrigerator 1 have a foam insulation between the outer box 1a forming the outer shell and the inner box 1b forming the storage chamber (2, 3, 4, 5, 6). They are separated by a heat insulating box 10 formed by filling (foamed polyurethane). In addition, the heat insulating box 10 of the refrigerator 1 is mounted with a vacuum heat insulating material 26 having a vacuum state and high heat insulating properties.

冷蔵庫1の庫内は,冷蔵室−冷凍室断熱仕切壁28により,冷蔵室2と冷凍温度帯室60とに隔てられるとともに,冷凍室−野菜室断熱仕切壁29により,冷凍温度帯室60と野菜室6とに隔てられている。ここで,同じ冷凍温度帯である製氷室3,上段冷凍室4,および下段冷凍室5間を隔てる仕切りは設けられていないが,扉3a,4a,5aの隙間から庫外への冷凍温度帯室60内の冷気(空気)の漏出を防止する冷凍室間仕切り壁30が備えられている。   The refrigerator 1 is separated into the refrigerator compartment 2 and the freezing temperature zone chamber 60 by the refrigerator compartment-freezer compartment insulating partition wall 28 and the freezer temperature zone chamber 60 by the freezer compartment-vegetable compartment insulating partition wall 29. It is separated from the vegetable compartment 6. Here, although the partition which separates the ice making room 3, the upper freezing room 4, and the lower freezing room 5 which are the same freezing temperature zone is not provided, the freezing temperature zone to the exterior from the clearance gap between the doors 3a, 4a, 5a A freezer compartment partition wall 30 is provided to prevent leakage of cool air (air) in the compartment 60.

なお,上段冷凍室4は,急速冷凍室として使用できるように構成されている。急速冷凍性能の向上のために,上段冷凍室4の収納容器4bには熱伝導率,熱容量が高いアルミニウムトレー(図示せず)が備えられており,冷凍速度を向上させている。   The upper freezer compartment 4 is configured to be used as a quick freezer compartment. In order to improve the quick freezing performance, the storage container 4b of the upper freezer compartment 4 is provided with an aluminum tray (not shown) having a high thermal conductivity and high heat capacity to improve the freezing speed.

また,冷蔵庫1は,冷媒の蒸発時の潜熱で庫内の空気を冷却する冷却器7と,冷却器7が収納される冷却器収納室8と,冷却器7からの冷気を庫内に送る庫内ファン9とを備えている。冷却器7は,熱媒体の冷媒が循環する後記の冷凍サイクルRS1を構成し,下段冷凍室5の略背部に配置され,冷却器収納室8内に設けられている。冷蔵庫1では,イソブタンを冷却器7等で構成される冷凍サイクルRS1の冷媒として用い,冷媒封入量は約88gと少量にしている。   Moreover, the refrigerator 1 sends the cooler 7 which cools the air in a store | warehouse | chamber with the latent heat at the time of evaporation of a refrigerant | coolant, the cooler storage chamber 8 in which the cooler 7 is accommodated, and the cool air from the cooler 7 in a store | warehouse | chamber. An internal fan 9 is provided. The cooler 7 constitutes a later-described refrigeration cycle RS <b> 1 in which the refrigerant of the heat medium circulates, and is disposed in a substantially back portion of the lower freezer compartment 5 and provided in the cooler storage chamber 8. In the refrigerator 1, isobutane is used as a refrigerant of the refrigeration cycle RS <b> 1 configured by the cooler 7 and the like, and the amount of refrigerant enclosed is as small as about 88 g.

冷却器7の冷媒と熱交換して冷却された空気(冷気)は,冷却器7の上方に設けられた庫内ファン9により,冷蔵室ダクト11を介して冷蔵室2に送られ,野菜室ダクト(図示せず)を介して野菜室6に送られる。また,冷気は,冷凍室ダクト13を介して製氷室3と上段冷凍室4と下段冷凍室5の各室へ送られる。   The air (cold air) cooled by exchanging heat with the refrigerant in the cooler 7 is sent to the refrigerating room 2 via the refrigerating room duct 11 by the internal fan 9 provided above the cooler 7, and the vegetable room It is sent to the vegetable compartment 6 through a duct (not shown). Further, the cold air is sent to each of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 through the freezing chamber duct 13.

各室(2,3,4,5,6)への送風は,各室に設けた後記の温度センサ(35,33,33a,34)と連動して,冷気の通路(11,13等)を開閉する冷蔵室ダンパ50,野菜室ダンパ51(図3参照),冷凍室ダンパ52の開閉により制御している。図3は,冷蔵庫本体内の冷気ダクトや冷気吹き出し口の配置を示す正面模式図である。
なお,野菜室6が過度に低温となった場合は,野菜室6に設けた野菜室電気ヒータ(図示せず)を通電することにより野菜室6を加熱する。
The air flow to each chamber (2, 3, 4, 5, 6) is linked to a temperature sensor (35, 33, 33a, 34) provided later in each chamber, and cool air passages (11, 13, etc.) Control is performed by opening and closing the refrigerator compartment damper 50, the vegetable compartment damper 51 (see FIG. 3), and the freezer compartment damper 52. FIG. 3 is a schematic front view showing the arrangement of the cold air duct and the cold air outlet in the refrigerator main body.
In addition, when the vegetable compartment 6 becomes too low temperature, the vegetable compartment 6 is heated by supplying with electricity the vegetable compartment electric heater (not shown) provided in the vegetable compartment 6.

冷蔵庫1は,図1に示す正面から見て,図3に示すように,冷却器7の左上部に冷却器温度センサ35,冷蔵室2に冷蔵室温度センサ33,野菜室6に野菜室温度センサ33a,下段冷凍室5に冷凍室温度センサ34をそれぞれ備え,それぞれ冷却器7の温度,冷蔵室2の温度,野菜室6の温度,下段冷凍室5の温度を検知している。さらに,冷蔵庫1は,外部空間の庫外の温度を検知する外気温度センサ(図示せず)も備えている。   As shown in FIG. 3, the refrigerator 1 has a cooler temperature sensor 35 in the upper left part of the cooler 7, a refrigerator temperature sensor 33 in the refrigerator room 2, and a vegetable room temperature in the vegetable room 6, as shown in FIG. The sensor 33a and the lower freezer compartment 5 are each provided with a freezer temperature sensor 34, which detects the temperature of the cooler 7, the temperature of the refrigerator compartment 2, the temperature of the vegetable compartment 6, and the temperature of the lower freezer compartment 5, respectively. Furthermore, the refrigerator 1 also includes an outside air temperature sensor (not shown) that detects the temperature outside the external space.

冷蔵庫1は,図2の天井壁10uの上面側にCPU(Central Processing Unit),ROM(Read Only Memory)やRAM(Random Access Memory)等のメモリ,インターフェース回路等を搭載した制御基板31を配置している。制御基板31は,前記した外気温度センサ,庫内の各温度センサ(35,33,33a,34),各貯蔵室扉の開閉状態をそれぞれ検知する前記した扉センサ,温度設定器等と接続される。   In the refrigerator 1, a control board 31 having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and a control circuit 31 mounted thereon is arranged on the upper surface side of the ceiling wall 10 u in FIG. ing. The control board 31 is connected to the above-described outside temperature sensor, each temperature sensor (35, 33, 33a, 34) in the warehouse, the above-described door sensor that detects the open / closed state of each storage room door, a temperature setting device, and the like. The

冷蔵庫1の制御に際しては,ROMに予め記録した制御プログラムの実行により,圧縮機24のON/OFF等の制御,冷蔵室ダンパ50,野菜室ダンパ51,および冷凍室ダンパ52を個別に駆動させるそれぞれのアクチュエータ(図示せず)の制御,庫内ファン9のON/OFF制御や回転速度制御,前記した扉の開放状態を報知するアラームのON/OFF等の制御が遂行される。   When controlling the refrigerator 1, the control program recorded in advance in the ROM is executed to control ON / OFF of the compressor 24, and the refrigerator compartment damper 50, the vegetable compartment damper 51, and the freezer compartment damper 52 are individually driven. Control of the actuator (not shown), ON / OFF control and rotation speed control of the internal fan 9, and control of ON / OFF of the alarm for informing the open state of the door are performed.

また,冷却器7の下方に,除霜運転時に冷却器7に付着した霜を加熱する電気ヒータ22を設置している。冷却器7の除霜(霜の融解)によって生じた除霜水は,冷却器収納室8の下部に備えられた樋23に流入した後に,排水管27を介して後記する機械室19に配設された第一の蒸発皿21に達して貯留され,庫外凝縮器40と圧縮機24の熱により蒸発する。   In addition, an electric heater 22 for heating the frost attached to the cooler 7 during the defrosting operation is installed below the cooler 7. The defrost water generated by defrosting (melting of frost) of the cooler 7 flows into a cage 23 provided at the lower part of the cooler storage chamber 8 and then distributed to a machine room 19 to be described later via a drain pipe 27. The first evaporating tray 21 is provided and stored, and is evaporated by the heat of the external condenser 40 and the compressor 24.

冷蔵室ダンパ50が開状態の時,冷却器7で熱交換(冷却)された冷気は,庫内ファン9により昇圧され,冷蔵室ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に吹き出され供給される。冷蔵室2を冷却した冷気は,冷蔵室戻りダクト16(図3参照)を通過して冷却器収納室8に戻り,再び冷却器7で冷却される。   When the refrigerator compartment damper 50 is in the open state, the cold air exchanged (cooled) by the cooler 7 is boosted by the internal fan 9, and passes through the refrigerator compartment duct 11 through the outlets 2 c provided in multiple stages. Is blown out and supplied. The cold air that has cooled the refrigerator compartment 2 passes through the refrigerator compartment return duct 16 (see FIG. 3), returns to the cooler storage chamber 8, and is cooled again by the cooler 7.

図3に示す野菜室ダンパ51が開状態の時,冷却器7で熱交換された冷気は,庫内ファン9により昇圧され,野菜室ダクト(図示せず)を介して,野菜室6の背面右側上部に設けられた野菜室吹き出し口6cから野菜室6に流入して野菜室6を冷却する。野菜室6を冷却した冷気は,冷凍室−野菜室断熱仕切壁29の下部左前方に設けられた野菜室戻り口6dから,野菜室戻りダクト18(図2参照)を通過して冷却器収納室8に戻り,再び冷却器7で冷却される。   When the vegetable compartment damper 51 shown in FIG. 3 is in the open state, the cold air heat-exchanged by the cooler 7 is pressurized by the internal fan 9 and the back of the vegetable compartment 6 through the vegetable compartment duct (not shown). The vegetable compartment 6 is cooled by flowing into the vegetable compartment 6 from the vegetable compartment outlet 6c provided on the upper right side. The cold air that has cooled the vegetable compartment 6 passes through the vegetable compartment return duct 18 (see FIG. 2) from the vegetable compartment return port 6d provided at the lower left front of the freezer compartment-vegetable compartment insulation partition wall 29, and is stored in the cooler. It returns to the chamber 8 and is cooled again by the cooler 7.

また,冷凍室ダンパ52(図2参照)が開状態のときには,冷却器7で熱交換された冷気が庫内ファン9により昇圧され,冷凍室ダクト13を経て各吹き出し口3c,4c,5cからそれぞれ製氷室3,上段冷凍室4,下段冷凍室5へ送風される。そして,製氷室3,上段冷凍室4,下段冷凍室5を冷却した冷気は,冷凍室戻り口17(図2参照)から冷却器収納室8に戻り,再び冷却器7で冷却される。
なお,冷凍温度帯室60の吹き出し口3c,4c,5cは,それぞれ1個,1個,5個の場合を例示したがこれに限定されない。
In addition, when the freezer damper 52 (see FIG. 2) is in the open state, the cold air heat-exchanged by the cooler 7 is boosted by the internal fan 9 and passes through the freezer duct 13 from the outlets 3c, 4c, 5c. The air is sent to the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, respectively. The cold air that has cooled the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 returns to the cooler storage chamber 8 from the freezer return port 17 (see FIG. 2) and is cooled again by the cooler 7.
In addition, although the case where each of the outlets 3c, 4c, and 5c of the freezing temperature zone 60 is one, one, and five is illustrated, it is not limited to this.

<冷凍サイクルRS1>
図4は,実施形態1に関わる冷蔵庫の冷凍サイクル(冷媒流路)の構成を示す図であり,太線で冷却運転時の冷媒の流れを示している。
冷蔵庫1は,庫内を冷却するために冷媒が循環する冷凍サイクルRS1を具備している。
冷凍サイクルRS1は,冷媒を高温高圧に圧縮する圧縮機24,高温の冷媒の熱を放熱する庫外凝縮器40および壁面凝縮器41,冷媒を減圧する第一のキャピラリチューブ42aおよび第二のキャピラリチューブ42b,冷却器7,第一の気液分離器105a,第二の気液分離器105b,冷媒分岐部80a,冷媒分岐部80b,および,冷媒分岐部80cを備えている。
<Refrigeration cycle RS1>
FIG. 4 is a diagram illustrating a configuration of a refrigeration cycle (refrigerant flow path) of the refrigerator according to the first embodiment, and a thick line indicates a refrigerant flow during a cooling operation.
The refrigerator 1 includes a refrigeration cycle RS1 in which a refrigerant circulates to cool the interior of the refrigerator.
The refrigeration cycle RS1 includes a compressor 24 that compresses the refrigerant to a high temperature and a high pressure, an external condenser 40 and a wall condenser 41 that radiate the heat of the high temperature refrigerant, a first capillary tube 42a and a second capillary that decompress the refrigerant. The tube 42b, the cooler 7, the first gas-liquid separator 105a, the second gas-liquid separator 105b, the refrigerant branch part 80a, the refrigerant branch part 80b, and the refrigerant branch part 80c are provided.

冷媒分岐部80aは,冷媒の庫外凝縮器40と壁面凝縮器41との分岐点を構成する。冷媒分岐部80bは,第一のキャピラリチューブ42aと第二のキャピラリチューブ42bとの分岐点を構成する。冷媒分岐部80cは後記の熱交換部43のバイパス流路を構成する。   The refrigerant branching portion 80a constitutes a branch point between the refrigerant external condenser 40 and the wall condenser 41. The refrigerant branch portion 80b constitutes a branch point between the first capillary tube 42a and the second capillary tube 42b. The refrigerant branch portion 80c constitutes a bypass flow path of the heat exchange portion 43 described later.

冷凍サイクルRS1は,冷媒流路を制御する切換え弁として,四方弁100,三方弁101,102,103,二方弁104を備えており,これらは接続配管70(71〜79)により接続されている。接続配管70は,接続配管71〜79で構成され,管路の分岐から分岐までを同一の符号を付して示す。   The refrigeration cycle RS1 includes a four-way valve 100, three-way valves 101, 102, 103, and a two-way valve 104 as switching valves for controlling the refrigerant flow path, which are connected by connection pipes 70 (71 to 79). Yes. The connection pipe 70 is constituted by connection pipes 71 to 79, and the same reference numerals are given from the branch to the branch of the pipeline.

四方弁100は,1つの流入口100aと,1つの流出口100bと,ある時は流入側またある時は流出側となる2つの流入流出口100c,100dを備えている。四方弁100は,流入口100aと流入流出口100cとを連通させるとともに流出口100bと流入流出口100dとを連通させる一方,流入口100aと流入流出口100dとを連通させるとともに流出口100bと流入流出口100cとを連通させる(図7参照)ことができる部材である。   The four-way valve 100 includes one inflow port 100a, one outflow port 100b, and two inflow / outflow ports 100c and 100d that are on the inflow side in some cases and on the outflow side in other cases. The four-way valve 100 allows the inflow port 100a and the inflow / outflow port 100c to communicate with each other and the outflow port 100b and the inflow / outflow port 100d to communicate with each other, while the inflow port 100a and the inflow / outflow port 100d communicate with each other. This is a member that can communicate with the outlet 100c (see FIG. 7).

三方弁101,103は,それぞれ1つの流入口101a,103aと,1つの流出口101b,103bと,1つの流入流出口101c,103cとを備えている。
三方弁101,103は,それぞれ流入口101a,103aまたは流出口101b,103bと,流入流出口101c,103cとを連通させる部材である。三方弁101は,流入口101aまたは流出口101bと,流入流出口101cとを連通させることができる。同様に,三方弁103は,流入口103aまたは流出口103bと,流入流出口103cとを連通させることができる。
The three-way valves 101 and 103 include one inflow port 101a and 103a, one outflow port 101b and 103b, and one inflow and outflow port 101c and 103c, respectively.
The three-way valves 101 and 103 are members that connect the inflow ports 101a and 103a or the outflow ports 101b and 103b with the inflow and outflow ports 101c and 103c, respectively. The three-way valve 101 can communicate the inflow port 101a or the outflow port 101b with the inflow / outflow port 101c. Similarly, the three-way valve 103 can connect the inflow port 103a or the outflow port 103b and the inflow / outflow port 103c.

三方弁102は,1つの流出口102bと,2つの流入流出口102c,102dとを備えている。三方弁102は,流出口102bまたは流入流出口102dと,流入流出口102cとを連通させることができる部材である。
二方弁104は,接続配管70内の冷媒流路を開閉する部材である。各冷媒分岐部80(80a,80b,80c)は3つの接続配管と接続され,それぞれの接続配管は常に連通状態となっている。
The three-way valve 102 includes one outflow port 102b and two inflow / outflow ports 102c and 102d. The three-way valve 102 is a member capable of communicating the outflow port 102b or the inflow / outflow port 102d with the inflow / outflow port 102c.
The two-way valve 104 is a member that opens and closes the refrigerant flow path in the connection pipe 70. Each refrigerant branch part 80 (80a, 80b, 80c) is connected to three connection pipes, and each connection pipe is always in communication.

四方弁100の流入口100a,流入流出口100c,流入流出口100d,流出口100bには,それぞれ接続配管71,72,78,79が接続されている。
圧縮機24の吐出口24oと四方弁100の流入口100aは,接続配管71により接続されている。第二の気液分離器105bと,機械室19に配置された庫外凝縮器40は,四方弁100の流入流出口100cに接続された接続配管72により接続されている。接続配管72の庫外凝縮器40を介した他方側の端部は冷媒分岐部80aと接続されている。
Connection pipes 71, 72, 78, and 79 are connected to the inlet 100a, the inlet / outlet 100c, the inlet / outlet 100d, and the outlet 100b of the four-way valve 100, respectively.
The discharge port 24 o of the compressor 24 and the inflow port 100 a of the four-way valve 100 are connected by a connection pipe 71. The second gas-liquid separator 105 b and the external condenser 40 disposed in the machine room 19 are connected by a connection pipe 72 connected to the inflow / outflow port 100 c of the four-way valve 100. The other end of the connection pipe 72 via the external condenser 40 is connected to the refrigerant branching portion 80a.

こうして,接続配管72を介して,四方弁100の流入流出口100c,第二の気液分離器105b,庫外凝縮器40,冷媒分岐部80aの順に配設されている。冷媒分岐部80aは,接続配管72の他に,接続配管73aと接続配管73bとに接続されている。   Thus, the inflow / outflow port 100c of the four-way valve 100, the second gas-liquid separator 105b, the external condenser 40, and the refrigerant branching portion 80a are arranged in this order via the connection pipe 72. In addition to the connection pipe 72, the refrigerant branching portion 80a is connected to the connection pipe 73a and the connection pipe 73b.

二方弁104,壁面凝縮器41は,接続配管73aにより接続され,接続配管73aの他方端は,三方弁101の流入口101aと接続されている。こうして,接続配管73aを介して,冷媒分岐部80a,二方弁104,壁面凝縮器41,三方弁101の順に配設されている。また,冷媒分岐部80aと一方端が接続されている接続配管73bの他方端は,三方弁101の流出口101bと接続されている。   The two-way valve 104 and the wall condenser 41 are connected by a connection pipe 73 a, and the other end of the connection pipe 73 a is connected to the inlet 101 a of the three-way valve 101. Thus, the refrigerant branching portion 80a, the two-way valve 104, the wall condenser 41, and the three-way valve 101 are arranged in this order via the connection pipe 73a. Further, the other end of the connection pipe 73 b connected to the refrigerant branch part 80 a and one end is connected to the outlet 101 b of the three-way valve 101.

三方弁101の流入口101a,流出口101b,流入流出口101cは,それぞれ接続配管73a,73b,74に接続されている。
三方弁101の流入流出口101cに一方端が接続した接続配管74の他方端は,三方弁102の流入流出口102cと接続している。三方弁102の流入流出口102c,流出口102b,流入流出口102dは,それぞれ接続配管74,75a,75bに接続されている。
The inlet 101a, outlet 101b, and inlet / outlet 101c of the three-way valve 101 are connected to connecting pipes 73a, 73b, and 74, respectively.
The other end of the connection pipe 74 whose one end is connected to the inflow / outflow port 101 c of the three-way valve 101 is connected to the inflow / outflow port 102 c of the three-way valve 102. The inflow / outflow port 102c, outflow port 102b, and inflow / outflow port 102d of the three-way valve 102 are connected to connection pipes 74, 75a, and 75b, respectively.

冷蔵庫1は,減圧手段として,第一のキャピラリチューブ42aと第二のキャピラリチューブ42bとを備えている。第一のキャピラリチューブ42aは接続配管75aにより,また,第二のキャピラリチューブ42bは接続配管75bにより,それぞれ三方弁102と冷媒分岐部80bと接続されている。以下に記載するキャピラリチューブ42は第一・第二のキャピラリチューブ42a,42bの総称である。
ここで,第一のキャピラリチューブ42aは第二のキャピラリチューブ42bよりも絞りが大きい。
The refrigerator 1 includes a first capillary tube 42a and a second capillary tube 42b as decompression means. The first capillary tube 42a is connected to the three-way valve 102 and the refrigerant branching portion 80b by the connection pipe 75a, and the second capillary tube 42b is connected by the connection pipe 75b. The capillary tube 42 described below is a general term for the first and second capillary tubes 42a and 42b.
Here, the first capillary tube 42a has a larger aperture than the second capillary tube 42b.

絞りの大きさは以下のように比較する。まず,減圧手段(第一・第二のキャピラリチューブ42a,42b)内の流路長さをL,減圧手段の流入部における管路の等価直径をD1,減圧手段内の管路の等価直径をD2とする。
Lが長いもの(1000mm以上)では,LをD2で除したもので絞りの大きさを表し,L/D2が大きい場合を絞りが大きいとする。また,Lが短いもの(1000mm未満)では,D1をD2で除したもので絞りの大きさを表し,D1/D2が大きい場合を絞りが大きいとする。
The diaphragm size is compared as follows. First, the flow path length in the pressure reducing means (first and second capillary tubes 42a, 42b) is L, the equivalent diameter of the pipeline in the inflow portion of the pressure reducing means is D1, and the equivalent diameter of the pipe in the pressure reducing means is Let D2.
When L is long (1000 mm or more), L is divided by D2 to indicate the size of the diaphragm, and when L / D2 is large, the diaphragm is large. When L is short (less than 1000 mm), D1 is divided by D2 to indicate the size of the diaphragm, and when D1 / D2 is large, the diaphragm is large.

ここで,接続配管75aと接続配管75bの端部に接続された冷媒分岐部80bは,その他,接続配管76と接続されている。冷却器7,第一の気液分離器105a,三方弁103の流入流出口103cは,接続配管76により接続されている。つまり,接続配管76を介して,冷媒分岐部80b,冷却器7,第一の気液分離器105a,三方弁103の順に配設されている。
三方弁103は,流入流出口103c,流出口103b,流入口103aを備えており,それぞれ接続配管76,77a,77bが接続されている。
Here, the refrigerant branching portion 80b connected to the ends of the connection pipe 75a and the connection pipe 75b is connected to the connection pipe 76 in addition. The cooler 7, the first gas-liquid separator 105 a, and the inflow / outflow port 103 c of the three-way valve 103 are connected by a connection pipe 76. That is, the refrigerant branch portion 80b, the cooler 7, the first gas-liquid separator 105a, and the three-way valve 103 are arranged in this order via the connection pipe 76.
The three-way valve 103 includes an inflow / outflow port 103c, an outflow port 103b, and an inflow port 103a, to which connection pipes 76, 77a, and 77b are connected, respectively.

本冷凍サイクルRS1では,キャピラリチューブ42(42a,42b)内の冷媒すなわち冷却器7で吸熱する前の冷媒と冷却器7で吸熱した冷媒とで熱交換を行う熱交換部43を備えている。熱交換部43は接続配管77aにより,三方弁103および冷媒分岐部80cと接続されている。   The refrigeration cycle RS1 includes a heat exchanging unit 43 that exchanges heat between the refrigerant in the capillary tube 42 (42a, 42b), that is, the refrigerant that has not absorbed heat by the cooler 7 and the refrigerant that has absorbed heat by the cooler 7. The heat exchange part 43 is connected to the three-way valve 103 and the refrigerant branch part 80c by a connection pipe 77a.

ここで,冷媒分岐部80cには,接続配管77aと,三方弁103の流入口103aと接続されている接続配管77bと,接続配管78が接続されている。接続配管78の他方端部は,前記した如く,四方弁100の流入流出口100dに接続されている。また,四方弁100の流入流出口100bと圧縮機24の吸込口24iは,接続配管79により接続されている。   Here, a connecting pipe 77a, a connecting pipe 77b connected to the inlet 103a of the three-way valve 103, and a connecting pipe 78 are connected to the refrigerant branching portion 80c. The other end of the connection pipe 78 is connected to the inflow / outflow port 100d of the four-way valve 100 as described above. Further, the inlet / outlet port 100 b of the four-way valve 100 and the suction port 24 i of the compressor 24 are connected by a connection pipe 79.

なお,本冷凍サイクルRS1では,接続配管74にドライヤ(図示せず)を備えており,ドライヤによりキャピラリチューブ42への水分の流入を防止している。また,接続配管72および接続配管76に備えられた第一の気液分離器105aおよび第二の気液分離器105bにより,液状態の冷媒の圧縮機24への流入を防止している。
以上が,実施形態1の冷蔵庫1が具備する冷凍サイクルRS1の構成である。
In this refrigeration cycle RS1, the connection pipe 74 is provided with a dryer (not shown), and the moisture is prevented from flowing into the capillary tube 42 by the dryer. In addition, the first gas-liquid separator 105 a and the second gas-liquid separator 105 b provided in the connection pipe 72 and the connection pipe 76 prevent liquid refrigerant from flowing into the compressor 24.
The above is the configuration of the refrigeration cycle RS1 included in the refrigerator 1 of the first embodiment.

<壁面凝縮器41>
図5は,実施形態1に関わる冷蔵庫における壁面凝縮器の配設位置を示す図である。
冷蔵庫1の冷凍サイクルRS1を構成する壁面凝縮器41(図4参照)は,放熱パイプ41a(図5に点線で示す)と放熱パイプ41b(図5に一点鎖線で示す)を有する。
<Wall condenser 41>
FIG. 5 is a diagram showing the arrangement position of the wall condenser in the refrigerator according to the first embodiment.
A wall condenser 41 (see FIG. 4) constituting the refrigeration cycle RS1 of the refrigerator 1 includes a heat radiating pipe 41a (shown by a dotted line in FIG. 5) and a heat radiating pipe 41b (shown by a one-dot chain line in FIG. 5).

図5中に点線で示す放熱パイプ41aは,図2に示す外箱1aと内箱1bとの間の外箱1aの内面に接するように配設している。外箱1aは鋼板製であり熱伝導性が良好で,外箱1aの外面から庫外の空気に良好に放熱がなされる。
図5中に一点鎖線で示す放熱パイプ41bは,断熱箱体10の冷蔵室−冷凍室断熱仕切り壁28(図2参照),冷凍室−野菜室断熱仕切り壁29,および冷凍室間仕切り壁30の各内部前方に配設されている。
The heat radiating pipe 41a indicated by a dotted line in FIG. 5 is disposed so as to contact the inner surface of the outer box 1a between the outer box 1a and the inner box 1b shown in FIG. The outer box 1a is made of a steel plate, has good thermal conductivity, and heat is radiated from the outer surface of the outer box 1a to the air outside the box.
The heat radiating pipe 41b indicated by the alternate long and short dash line in FIG. 5 is provided for the refrigerator compartment-freezer compartment insulation partition wall 28 (see FIG. 2), the freezer compartment-vegetable compartment insulation partition wall 29, and the freezer compartment partition wall 30 of the heat insulation box 10. Arranged in front of each interior.

<冷蔵庫1の機械室19>
冷蔵庫1は,図2に示すように,断熱箱体10の外側で,冷蔵庫1の野菜室6の背面下部であって冷却器収納室8の下部に,機械室19を備えている。
図6は,実施形態1に関わる冷蔵庫を背面から目視した際の機械室の構成を示す模式図である。
<Machine room 19 of refrigerator 1>
As shown in FIG. 2, the refrigerator 1 includes a machine room 19 outside the heat insulating box 10, at the lower back of the vegetable compartment 6 of the refrigerator 1 and below the cooler storage compartment 8.
FIG. 6 is a schematic diagram illustrating the configuration of the machine room when the refrigerator according to the first embodiment is viewed from the back.

機械室19には,左から順に圧縮機24,機械室19内の温められた空気の流れを促進する機械室ファン45,庫外凝縮器40を配設している。また,機械室19には,圧縮機24の上部であって排水管27の下部に設けた第一の蒸発皿21と,庫外凝縮器40の下部に設けた第二の蒸発皿44とを備えている。   In the machine room 19, a compressor 24, a machine room fan 45 that promotes the flow of warmed air in the machine room 19, and an outside condenser 40 are arranged in order from the left. Further, the machine room 19 includes a first evaporating dish 21 provided above the compressor 24 and below the drain pipe 27, and a second evaporating dish 44 provided below the external condenser 40. I have.

また,機械室19は両側面に,庫外と連通する開口部46a,46bを備えており,開口部46a,46bから機械室19内に庫外の外気が,図6の白抜き矢印α1,α2のように出入りできる構造としている。
冷却運転時,高温となる圧縮機24および庫外凝縮器40は,機械室ファン45を駆動して開口部46aから,図6の白抜き矢印α1のように取り入れた外気によって冷却され,昇温した空気は開口部46bから図6の白抜き矢印α2のように外部に排出される。
Further, the machine room 19 is provided with openings 46a and 46b communicating with the outside of the chamber on both sides, and the outside air from the openings 46a and 46b into the machine room 19 is indicated by white arrows α1, The structure is such that α2 can enter and exit.
During the cooling operation, the high-temperature compressor 24 and the outside-condenser 40 are cooled by the outside air that is driven from the opening 46a as indicated by the white arrow α1 in FIG. The exhausted air is discharged to the outside from the opening 46b as indicated by the white arrow α2 in FIG.

第一の蒸発皿21は,冷却器7の除霜後に排水管27から滴下する水を貯溜する。また,第二の蒸発皿44には後記するヒートポンプ除霜を用いた冷却器7の除霜運転から冷却運転に切換えた後に庫外凝縮器40から滴下する水を貯溜する。第一・第二の蒸発皿21,44に貯溜した水は,機械室19内の熱により気化され,開口部46bから外気に放出される構造としている。   The first evaporating dish 21 stores water dripped from the drain pipe 27 after defrosting the cooler 7. The second evaporating dish 44 stores water dripped from the external condenser 40 after switching from the defrosting operation of the cooler 7 using the heat pump defrosting described later to the cooling operation. The water stored in the first and second evaporating dishes 21 and 44 is vaporized by the heat in the machine chamber 19 and discharged to the outside air from the opening 46b.

<冷却運転時の冷凍サイクルRS1>
次に,冷却運転時における冷凍サイクルRS1の冷媒流路について説明する。
冷却運転時には,冷凍サイクルRS1の冷媒流路は,図4の太線で示すようになる。
具体的には,四方弁100は,流入口100aと流入流出口100cとを連通するとともに流出口100bと流入流出口100dとを連通とする。三方弁101は,流入口101aと流入流出口101cとを連通とし,三方弁102は流入流出口102cと流出口102bとを連通とする。また,三方弁103は流入流出口103cと流出口103bとを連通とし,二方弁104は開状態(連通状態)としている。
<Refrigeration cycle RS1 during cooling operation>
Next, the refrigerant flow path of the refrigeration cycle RS1 during the cooling operation will be described.
During the cooling operation, the refrigerant flow path of the refrigeration cycle RS1 is as shown by the thick line in FIG.
Specifically, the four-way valve 100 communicates the inflow port 100a and the inflow / outflow port 100c and communicates the outflow port 100b and the inflow / outflow port 100d. The three-way valve 101 communicates the inflow port 101a and the inflow / outflow port 101c, and the three-way valve 102 communicates the inflow / outflow port 102c and the outflow port 102b. The three-way valve 103 communicates the inflow / outflow port 103c and the outflow port 103b, and the two-way valve 104 is in an open state (communication state).

圧縮機24により高温高圧となった冷媒は,接続配管71を介し,四方弁100の流入口100aに流入する。四方弁100の流入口100aは四方弁100の流入流出口100cと連通しているため,冷媒は流入流出口100cと接続している接続配管72を介して,庫外凝縮器40に流入し,庫外凝縮器40により放熱される。その後,冷媒は冷媒分岐部80aに流入する。   The refrigerant that has become high temperature and high pressure by the compressor 24 flows into the inlet 100 a of the four-way valve 100 through the connection pipe 71. Since the inflow port 100a of the four-way valve 100 communicates with the inflow / outflow port 100c of the four-way valve 100, the refrigerant flows into the external condenser 40 via the connection pipe 72 connected to the inflow / outflow port 100c, Heat is dissipated by the external condenser 40. Thereafter, the refrigerant flows into the refrigerant branch portion 80a.

ここで,接続配管73bは冷媒分岐部80aと三方弁101の流出口101bとを接続しているが,三方弁101は流入口101aと流入流出口101cとを連通しており,流出口101bを閉塞しているため,冷媒は接続配管73bを通過できない。そのため,冷媒分岐部80aに流入した冷媒は接続配管73aを介し,壁面凝縮器41に流入して放熱する。その後,冷媒は三方弁101と接続配管74を介し,三方弁102に流入する。   Here, the connection pipe 73b connects the refrigerant branching portion 80a and the outflow port 101b of the three-way valve 101. However, the three-way valve 101 communicates the inflow port 101a and the inflow / outflow port 101c. Since it is blocked, the refrigerant cannot pass through the connection pipe 73b. Therefore, the refrigerant that has flowed into the refrigerant branching portion 80a flows into the wall surface condenser 41 through the connection pipe 73a and dissipates heat. Thereafter, the refrigerant flows into the three-way valve 102 via the three-way valve 101 and the connection pipe 74.

三方弁102では流入流出口102cと流出口102bとを連通している。そのため,冷媒は接続配管75aから第一のキャピラリチューブ42aに流入する。冷媒はこの第一のキャピラリチューブ42aにより減圧される。
減圧された冷媒は冷媒分岐部80bと接続配管76を介し,冷却器7に流入し,冷却器7にて蒸発するとともに庫内の空気から吸熱する。
The three-way valve 102 communicates the inflow / outflow port 102c and the outflow port 102b. Therefore, the refrigerant flows into the first capillary tube 42a from the connection pipe 75a. The refrigerant is decompressed by the first capillary tube 42a.
The decompressed refrigerant flows into the cooler 7 via the refrigerant branch portion 80b and the connection pipe 76, evaporates in the cooler 7, and absorbs heat from the air in the warehouse.

吸熱した冷媒は,次に三方弁103に流入する。三方弁103では流入流出口103cと流出口103bとが連通しているため,冷媒は接続配管77aを介して熱交換部43に流入する。
その後,冷媒は冷媒分岐部80c,接続配管78,四方弁100の流入流出口100d,流入流出口100b,接続配管79を介して,圧縮機24に戻る。
冷却運転時,冷凍サイクルRS1の冷媒は,このような冷媒流路を循環する。
The refrigerant that has absorbed heat then flows into the three-way valve 103. In the three-way valve 103, since the inflow / outflow port 103c and the outflow port 103b communicate with each other, the refrigerant flows into the heat exchange unit 43 through the connection pipe 77a.
Thereafter, the refrigerant returns to the compressor 24 via the refrigerant branch portion 80c, the connection pipe 78, the inflow / outflow outlet 100d of the four-way valve 100, the inflow / outflow outlet 100b, and the connection pipe 79.
During the cooling operation, the refrigerant of the refrigeration cycle RS1 circulates in such a refrigerant flow path.

<冷却器7の除霜運転>
冷蔵庫1では,冷却運転中に冷却器7に付着する霜を,加熱し除去する除霜運転を行う。
冷蔵庫1では,冷却器7の霜を加熱する第一の霜加熱手段としてヒートポンプ除霜と,第二の霜加熱手段として図2のヒータ22によるヒータ除霜と,第三の霜加熱手段として図2の庫内ファン9を用いるファン除霜とを備えている。
<Defrosting operation of the cooler 7>
In the refrigerator 1, a defrosting operation for heating and removing frost attached to the cooler 7 during the cooling operation is performed.
In the refrigerator 1, heat pump defrosting is performed as the first frost heating means for heating the frost in the cooler 7, heater defrosting by the heater 22 in FIG. 2 is used as the second frost heating means, and FIG. Fan defrosting using two internal fans 9.

図7は,実施形態1に関わる冷蔵庫の除霜運転時の冷媒流路を太線で示す図である。
第一の霜加熱手段のヒートポンプ除霜とは,図7の圧縮機24から吐出する高温冷媒を冷却器7に流入させ,冷却器7に付着した霜を加熱する霜加熱手段である。
第二の霜加熱手段のヒータ除霜は,図2の冷却器収納室8内の電気ヒータ22を通電状態とすることで,冷却器7の霜を加熱する霜加熱手段である。
FIG. 7 is a diagram showing a refrigerant flow path in bold lines during the defrosting operation of the refrigerator according to the first embodiment.
The heat pump defrosting of the first frost heating means is a frost heating means that heats the frost adhering to the cooler 7 by causing the high-temperature refrigerant discharged from the compressor 24 of FIG.
The heater defrosting of the second frost heating means is a frost heating means for heating the frost of the cooler 7 by energizing the electric heater 22 in the cooler housing chamber 8 of FIG.

第三の霜加熱手段のファン除霜は,図2に示す冷凍室ダンパ52を閉状態とするとともに図3に示す冷蔵室ダンパ50と野菜室ダンパ51の両方または何れか一方を開状態とする。そして,庫内ファン9を駆動させることで,冷蔵室2および/または野菜室6の空気を冷却器収納室8内に送り,冷却器7の霜を加熱する霜加熱手段である。
本冷蔵庫1では,ヒートポンプ除霜,ヒータ除霜,ファン除霜から1つまたは複数を選択して冷却器7に付着した霜を加熱する除霜運転を行う。
Fan defrosting of the third frost heating means brings the freezer compartment damper 52 shown in FIG. 2 into a closed state and opens both or any one of the refrigerator compartment damper 50 and the vegetable compartment damper 51 shown in FIG. 3. . And it is the frost heating means which sends the air of the refrigerator compartment 2 and / or the vegetable compartment 6 in the cooler storage chamber 8, and heats the frost of the cooler 7 by driving the internal fan 9.
In the refrigerator 1, a defrosting operation is performed in which one or more of heat pump defrost, heater defrost, and fan defrost are selected and the frost attached to the cooler 7 is heated.

<除霜運転のヒートポンプ除霜>
次に,ヒートポンプ除霜について詳細に説明する。
図7に示すヒートポンプ除霜を用いた除霜運転時は,四方弁100,三方弁101〜103および二方弁104を,図4の冷却運転から図7の太線に示す流路に切換え,冷媒を流す(図7の矢印参照)。
<Heat pump defrosting in defrosting operation>
Next, heat pump defrosting will be described in detail.
At the time of the defrosting operation using the heat pump defrosting shown in FIG. 7, the four-way valve 100, the three-way valves 101 to 103 and the two-way valve 104 are switched from the cooling operation of FIG. 4 to the flow path shown by the thick line in FIG. (See arrow in FIG. 7).

除霜運転では,四方弁100は流入口100aと流入流出口100dとを連通にするとともに流入流出口100cと流出口100bとを連通とする。三方弁101は,流出口101bと流入流出口101cとを連通とし,三方弁102は流入流出口102dと流入流出口102cとを連通とする。そして,三方弁103は流入口103aと流入流出口103cとを連通とし,二方弁104は閉状態とする。   In the defrosting operation, the four-way valve 100 makes the inflow port 100a and the inflow / outlet port 100d communicate with each other and makes the inflow / outflow port 100c and the outflow port 100b in communication. The three-way valve 101 connects the outflow port 101b and the inflow / outflow port 101c, and the three-way valve 102 connects the inflow / outflow port 102d and the inflow / outflow port 102c. The three-way valve 103 communicates the inlet 103a and the inlet / outlet 103c, and the two-way valve 104 is closed.

圧縮機24により高温高圧となった冷媒は,接続配管71を介して四方弁100の流入口100aに流入する。次に,冷媒は四方弁100の流入口100aから,流入流出口100d,接続配管78を介し,冷媒分岐部80cに流入する。ここで,三方弁103は流入流出口103cと流入口103aを連通としていることにより,冷媒は接続配管77bから三方弁103に流入する。その後,冷媒は三方弁103,接続配管76を介し,冷却器7に流入する。ここで,圧縮機24で高温高圧とされた冷媒は冷却器7にて放熱し,冷却器7は加熱される。   The refrigerant that has become high temperature and high pressure by the compressor 24 flows into the inlet 100 a of the four-way valve 100 through the connection pipe 71. Next, the refrigerant flows from the inlet 100a of the four-way valve 100 into the refrigerant branching portion 80c via the inlet / outlet outlet 100d and the connection pipe 78. Here, since the three-way valve 103 communicates the inlet / outlet port 103c and the inlet port 103a, the refrigerant flows into the three-way valve 103 from the connection pipe 77b. Thereafter, the refrigerant flows into the cooler 7 through the three-way valve 103 and the connection pipe 76. Here, the high-temperature and high-pressure refrigerant in the compressor 24 dissipates heat in the cooler 7, and the cooler 7 is heated.

その後,冷却器7で放熱した冷媒は冷媒分岐部80bに流入する。ここで,三方弁102は流入流出口102dと流入流出口102cとを連通としている。これにより,冷媒は接続配管75bから第二のキャピラリチューブ42bに流入する。冷媒はこの第二のキャピラリチューブ42bにより減圧される。   Thereafter, the refrigerant radiated by the cooler 7 flows into the refrigerant branching portion 80b. Here, the three-way valve 102 communicates the inflow / outflow port 102d and the inflow / outflow port 102c. Thereby, the refrigerant flows into the second capillary tube 42b from the connection pipe 75b. The refrigerant is decompressed by the second capillary tube 42b.

減圧された冷媒は三方弁102から接続配管74を介し三方弁101に流入する。三方弁101は流入流出口101cと流出口101bとを連通しているため,冷媒は接続配管73bに流入し,冷媒分岐部80aと接続配管72を介して庫外凝縮器40に流入する。ここで,庫外凝縮器40により,冷媒は吸熱し蒸発する。   The decompressed refrigerant flows into the three-way valve 101 from the three-way valve 102 through the connection pipe 74. Since the three-way valve 101 communicates the inflow / outflow port 101c and the outflow port 101b, the refrigerant flows into the connection pipe 73b and flows into the external condenser 40 through the refrigerant branch portion 80a and the connection pipe 72. Here, the refrigerant is absorbed by the external condenser 40 and evaporated.

その後,蒸発した冷媒は四方弁100の流入流出口100c,流出口100b,接続配管79を介し,圧縮機24に戻る。このように,ヒートポンプ除霜は圧縮機24にて高温高圧となった冷媒を冷却器7に流すことで冷却器7の霜を加熱し,除霜するものである。   Thereafter, the evaporated refrigerant returns to the compressor 24 through the inflow / outflow port 100c, the outflow port 100b, and the connection pipe 79 of the four-way valve 100. Thus, the heat pump defrost heats and defrosts the frost of the cooler 7 by flowing the refrigerant that has become high temperature and high pressure in the compressor 24 to the cooler 7.

<冷蔵庫1の除霜方法>
次に,実施形態1の冷蔵庫1が行う除霜方法を説明する。
図8,図9(a),(b)は,実施形態1に関わる冷蔵庫の除霜運転に関する制御を示すフローチャートである。
<Defrosting method of refrigerator 1>
Next, the defrost method which the refrigerator 1 of Embodiment 1 performs is demonstrated.
FIG. 8, FIG. 9 (a), (b) is a flowchart which shows the control regarding the defrost operation of the refrigerator concerning Embodiment 1. FIG.

冷蔵庫1の電源を投入すると(図8のステップS0),まず図4に示す冷却運転(ステップS1)を行う。その後,冷却器7の除霜運転開始条件の有無の判定を行う(ステップS2)。冷却器7の除霜運転開始条件とは,前回の除霜運転終了後または冷蔵庫1の通電開始後に圧縮機24の累積回転数が300万回転となった時,或いは前回の除霜運転終了後または冷蔵庫1の通電開始後に2日間除霜なしとなった時に,除霜運転開始条件が満たされる。除霜運転開始条件が満たされない場合(ステップS2でNo),ステップS2に移行する。   When the refrigerator 1 is turned on (step S0 in FIG. 8), first, the cooling operation (step S1) shown in FIG. 4 is performed. Then, the presence or absence of the defrost operation start conditions of the cooler 7 is determined (step S2). The defrosting operation start condition of the cooler 7 is the time when the cumulative rotation number of the compressor 24 reaches 3 million rotations after the end of the previous defrosting operation or the start of energization of the refrigerator 1, or after the end of the previous defrosting operation. Alternatively, the defrosting operation start condition is satisfied when there is no defrosting for two days after the start of energization of the refrigerator 1. When the defrosting operation start condition is not satisfied (No in step S2), the process proceeds to step S2.

除霜運転開始条件が満たされた場合(ステップS2でYes),冷却器7の除霜運転(ステップS21,S22)を開始する。本冷蔵庫1では,除霜運転として,第一除霜モード(ステップS21)と第二除霜モード(ステップS22)の二種類の除霜モードを実施する。   When the defrosting operation start condition is satisfied (Yes in step S2), the defrosting operation (steps S21 and S22) of the cooler 7 is started. In this refrigerator 1, two types of defrost modes, a 1st defrost mode (step S21) and a 2nd defrost mode (step S22), are implemented as a defrost operation.

第一除霜モード(ステップS21)は,前記のヒートポンプ除霜(第一の霜加熱手段)単独での除霜運転,あるいは庫内ファン9(図2参照)によるファン除霜(第三の霜加熱手段)および電気ヒータ22(図2参照)によるヒータ除霜(第二の霜加熱手段)の両方またはどちらか一方と,ヒートポンプ除霜とを組み合わせた除霜運転を実施する除霜モードである。   In the first defrosting mode (step S21), the defrosting operation by the heat pump defrosting (first frost heating means) alone or the fan defrosting (third frosting by the internal fan 9 (see FIG. 2)) is performed. This is a defrosting mode in which a defrosting operation is performed in which both or one of the heater defrosting (second frost heating means) by the heating means) and the electric heater 22 (see FIG. 2) and the heat pump defrosting are combined. .

第一除霜モード(ステップS21)について詳述する。
第一除霜モード(ステップS21)では,まずヒータ除霜を実施するか否かを判断する(図8のステップS3)。すなわち,ステップS3で,前回の除霜後に扉(2a〜6a)の扉を開放していた累積時間が10分を超えていた場合,または,電源投入後最初の除霜運転では(ステップS3でYes)ヒータ除霜を実施する(ステップS4)。
The first defrosting mode (step S21) will be described in detail.
In the first defrosting mode (step S21), it is first determined whether or not the heater defrosting is performed (step S3 in FIG. 8). That is, in step S3, if the accumulated time of opening the doors (2a to 6a) after the last defrosting exceeds 10 minutes, or in the first defrosting operation after turning on the power (in step S3 Yes) The heater defrosting is performed (step S4).

一方,前回の除霜後に扉(2a〜6a)の扉を開放していた累積時間が10分以下の場合かつ電源投入後最初の除霜運転でない場合(ステップS3でNo),電気ヒータ22に通電を行わず(ステップS4´),ステップS5に移行する。   On the other hand, if the accumulated time of opening the doors (2a to 6a) after the last defrosting is 10 minutes or less and not the first defrosting operation after turning on the power (No in step S3), the electric heater 22 is turned on. Without energization (step S4 '), the process proceeds to step S5.

次に,ファン除霜を実施するか否かを判断する(ステップS5)。ステップS5では,ファン除霜の実施条件として,外気温度センサにより測定された外気温が10℃以上か否か判断され,10℃以上の場合(ステップS5でYes),冷蔵室ダンパ50を開,野菜室ダンパ51を開,冷凍室ダンパ52を閉とするとともに庫内ファン9を駆動し,ファン除霜を実施する(ステップS6)。   Next, it is determined whether or not to perform fan defrosting (step S5). In step S5, it is determined whether or not the outside air temperature measured by the outside air temperature sensor is 10 ° C. or more as an implementation condition of the fan defrosting. If it is 10 ° C. or more (Yes in step S5), the refrigerator compartment damper 50 is opened. The vegetable compartment damper 51 is opened, the freezer compartment damper 52 is closed, and the internal fan 9 is driven to perform fan defrosting (step S6).

一方,外気温が10℃未満の場合(ステップS5でNo),庫内ファン9を停止のままとし,ファン除霜を実施しない(ステップS6´)。
ステップS7では,ヒートポンプ除霜を実施するため,図9(a)に示す以下の手順で図4の冷却運転の冷媒流路を図7の除霜運転の冷媒流路に切換える。
On the other hand, when the outside air temperature is less than 10 ° C. (No in step S5), the internal fan 9 is kept stopped and the fan defrosting is not performed (step S6 ′).
In step S7, in order to perform heat pump defrosting, the refrigerant flow path of the cooling operation of FIG. 4 is switched to the refrigerant flow path of the defrosting operation of FIG. 7 according to the following procedure shown in FIG.

まず,二方弁104を開状態から閉状態に切換え(図9(a)のステップS101),四方弁100,三方弁101,102,103は図4の冷却運転の状態と同様とし,N分間,例えば2分間圧縮機24を駆動させる(ステップS102a,S102b)。
その後,所定時間N分間,例えば2分間が経過した場合(ステップS102bでYes),圧縮機24を停止させる(ステップS103)。
First, the two-way valve 104 is switched from the open state to the closed state (step S101 in FIG. 9A), and the four-way valve 100 and the three-way valves 101, 102, 103 are the same as in the cooling operation state of FIG. For example, the compressor 24 is driven for 2 minutes (steps S102a and S102b).
Thereafter, when a predetermined time N minutes, for example, 2 minutes have elapsed (Yes in step S102b), the compressor 24 is stopped (step S103).

そして,三方弁102を流出口102bと流入流出口102cが連通の状態から,流入流出口102dと流入流出口102cが連通の状態(図7参照)に切換え(ステップS104),三方弁103を流出口103bと流入流出口103cとが連通の状態から,流入口103aと流入流出口103cが連通の状態(図7参照)に切換える(ステップS105)。   Then, the three-way valve 102 is switched from the state in which the outflow outlet 102b and the inflow outflow outlet 102c are in communication to the state in which the inflow outflow outlet 102d and the inflow outflow outlet 102c are in communication (see FIG. 7) (step S104). The state in which the outlet 103b and the inflow / outflow port 103c are in communication is switched to the state in which the inflow port 103a and the inflow / outflow port 103c are in communication (see FIG. 7) (step S105).

次に,三方弁101を流入口101aと流入流出口101cとが連通の状態から,流入流出口101cと流出口101bとが連通の状態(図7参照)に切換え(ステップS106),所定時間N分,例えば2分間その状態を保持する(ステップS107)。   Next, the three-way valve 101 is switched from a state where the inflow port 101a and the inflow / outflow port 101c are in communication to a state where the inflow / outflow port 101c and the outflow port 101b are in communication (see FIG. 7) (step S106). That state is maintained for 2 minutes, for example, 2 minutes (step S107).

その後,四方弁100を流入口100aと流入流出口100c,および流入流出口100dと流出口100bとが連通の状態から,図7に示す流入口100aと流入流出口100dとが連通するとともに流出口100bと流入流出口100cとが連通の状態に切換える(ステップS108)。そして,圧縮機24を駆動させ(ステップS109),ヒートポンプ除霜による除霜運転を実施する。   Thereafter, from the state where the inlet 100a and the inlet / outlet 100c and the inlet / outlet 100d and 100b communicate with each other, the inlet 100a and the inlet / outlet 100d shown in FIG. 100b and the inflow / outflow port 100c are switched to a communication state (step S108). And the compressor 24 is driven (step S109) and the defrost operation by heat pump defrost is implemented.

その後,図8のステップS8の第一除霜モード終了条件を満たすまで,第一除霜モードによる除霜運転を行う。第一除霜モード終了条件とは,冷却器7に取着された冷却器センサ35(図2参照)が出力する冷却器7の温度が3℃を超えた場合,第一除霜モード終了条件が満たされる。   Thereafter, the defrosting operation in the first defrost mode is performed until the first defrost mode end condition in step S8 of FIG. 8 is satisfied. The first defrost mode end condition is the first defrost mode end condition when the temperature of the cooler 7 output by the cooler sensor 35 (see FIG. 2) attached to the cooler 7 exceeds 3 ° C. Is satisfied.

第一除霜モード終了条件を満たす場合(図8のステップS8でYes),第二除霜モード(図8のステップS22)に移行する。
第二除霜モードは,庫内ファン9を停止状態(ステップS9)とするとともに電気ヒータ22と圧縮機24を第一除霜モードと同様の状態(ステップS10でNo)とする除霜運転,または,圧縮機24と庫内ファン9を停止状態とし電気ヒータ22を通電状態(ステップS11)とするヒータ除霜単独での除霜運転の何れかを選択して行う除霜モードである。
When the first defrosting mode end condition is satisfied (Yes in step S8 in FIG. 8), the process proceeds to the second defrosting mode (step S22 in FIG. 8).
The second defrosting mode is a defrosting operation in which the internal fan 9 is stopped (step S9) and the electric heater 22 and the compressor 24 are in the same state as the first defrosting mode (No in step S10). Alternatively, the defrosting mode is performed by selecting either the defrosting operation of the heater defrosting alone in which the compressor 24 and the internal fan 9 are stopped and the electric heater 22 is energized (step S11).

まず,第一除霜モードでファン除霜を実施していた場合は庫内ファン9を駆動状態から停止状態に切換える(ステップS9)。次に,第二除霜モードで行う除霜運転を判断するヒータ除霜切換え条件の判定(ステップS10)を行う。本冷蔵庫1では,前回の除霜後に扉(2a〜6a)を開放していた累積時間が15分を超えていた場合にヒータ除霜切換え条件成立として(ステップS10でYes),ヒータ除霜による除霜運転に切換える。   First, when the fan defrosting is performed in the first defrosting mode, the internal fan 9 is switched from the driving state to the stopped state (step S9). Next, the heater defrost switching condition is determined (step S10) for determining the defrost operation performed in the second defrost mode. In the refrigerator 1, when the accumulated time of opening the doors (2a to 6a) after the last defrosting exceeds 15 minutes, the heater defrosting switching condition is established (Yes in step S10), and the heater defrosting is performed. Switch to defrosting operation.

霜加熱手段をヒータ除霜単独とした場合(ステップS10でYes),圧縮機24は駆動状態から停止状態に切換え,第一除霜モードでヒータ除霜を実施していない場合は電気ヒータ22を非通電状態から通電状態に切換える(ステップS11)。
一方,ヒータ除霜切換え判定時(ステップS10)において,除霜間に扉(2a〜6a)を開放していた累積時間が15分未満の場合(ステップS10でNo),電気ヒータ22および圧縮機24は第一除霜モードと同様の状態を維持して除霜運転を行う。
When the frost heating means is the heater defrosting alone (Yes in step S10), the compressor 24 switches from the driving state to the stop state, and when the heater defrosting is not performed in the first defrosting mode, the electric heater 22 is switched on. Switching from the non-energized state to the energized state (step S11).
On the other hand, at the time of heater defrost switching determination (step S10), when the accumulated time during which the doors (2a to 6a) are opened during defrosting is less than 15 minutes (No in step S10), the electric heater 22 and the compressor 24 performs the defrosting operation while maintaining the same state as in the first defrosting mode.

その後,第二除霜モードによる除霜運転は除霜運転終了条件を満たすまで行われる(ステップS12)。本冷蔵庫1では,除霜運転終了条件を,冷却器7に取着された冷却器センサ35が出力する冷却器7の温度が9℃を超えた場合に除霜運転を終了するものとしている。   Thereafter, the defrosting operation in the second defrosting mode is performed until the defrosting operation end condition is satisfied (step S12). In the refrigerator 1, the defrosting operation is terminated when the temperature of the cooler 7 output from the cooler sensor 35 attached to the cooler 7 exceeds 9 ° C.

除霜運転終了条件が満たされた場合(ステップS12でYes),圧縮機24が駆動していた場合は圧縮機24を停止状態とし,電気ヒータ22を通電していた場合は電気ヒータ22を停止状態とし(ステップS13),除霜運転から冷却運転に冷媒流路を切換える(図8,図9(b)のステップS14)。   When the defrosting operation end condition is satisfied (Yes in step S12), the compressor 24 is stopped when the compressor 24 is driven, and the electric heater 22 is stopped when the electric heater 22 is energized. The refrigerant flow path is switched from the defrosting operation to the cooling operation (step S14 in FIGS. 8 and 9B).

本冷蔵庫1における除霜運転(図7参照)から冷却運転(図4参照)への切換えは,図9(b)に示すように,以下の手順で行う。
まず,四方弁100を図7の流入口100aと流入流出口100dとが連通されるとともに流出口100bと流入流出口100cが連通された状態から,図4の流入口100aと流入流出口100cとが連通されるとともに流出口100bと流入流出口100dが連通する状態に切換える(図9(b)のステップS201)。
Switching from the defrosting operation (see FIG. 7) to the cooling operation (see FIG. 4) in the refrigerator 1 is performed according to the following procedure, as shown in FIG. 9 (b).
First, the four-way valve 100 is connected to the inlet 100a and the inlet / outlet 100c of FIG. 4 from the state where the inlet 100a and the inlet / outlet 100d of FIG. Is switched to a state in which the outlet 100b and the inlet / outlet 100d are in communication (step S201 in FIG. 9B).

また,三方弁101を図7の流出口101bと流入流出口101cとが連通状態から図4の流入口101aと流入流出口101cが連通状態に切換える(ステップS202)。
そして,三方弁102を図7の流入流出口102dと流入流出口102cが連通状態から図4の流出口102bと流入流出口102cが連通状態に切換える(ステップS203)。また,三方弁103を図7の流入口103aと流入出口103cが連通状態から図4の流出口103bと流入流出口103cが連通状態に切換える(ステップS204)。
Further, the three-way valve 101 is switched from the communication state between the outflow port 101b and the inflow / outflow port 101c in FIG. 7 to the communication state between the inflow port 101a and the inflow / outflow port 101c in FIG. 4 (step S202).
Then, the three-way valve 102 is switched from the communication state of the inflow / outflow port 102d and the inflow / outflow port 102c of FIG. 7 to the communication state of the outflow port 102b and the inflow / outflow port 102c of FIG. 4 (step S203). Further, the three-way valve 103 is switched from the communication state between the inflow port 103a and the inflow / outflow port 103c in FIG. 7 to the communication state between the outflow port 103b and the inflow / outflow port 103c in FIG. 4 (step S204).

そして,圧縮機24を駆動させ(ステップS205),所定時間N分間,例えば2分間経過させ(ステップS206でYes),その後,二方弁104を閉状態から開状態に切換える(ステップS207)。
以上により,除霜運転を終了し,再び冷却運転を実施する(図8のステップS1)。
Then, the compressor 24 is driven (step S205), a predetermined time N minutes, for example, 2 minutes elapses (Yes in step S206), and then the two-way valve 104 is switched from the closed state to the open state (step S207).
As described above, the defrosting operation is terminated and the cooling operation is performed again (step S1 in FIG. 8).

<冷蔵庫1の効果>
ここまで,本実施形態1の冷蔵庫1の構造と,除霜運転に関する制御について述べたが,次に冷蔵庫1が奏する効果について説明する。
実施形態1の冷蔵庫1は,冷却運転時の放熱部として,図5の放熱パイプ41a,41bにより,冷蔵庫本体1Hの冷蔵庫壁面を介して放熱する壁面凝縮器41と,断熱箱体10の外側にある機械室19に配された庫外凝縮器40(図6参照)とを備えている。
<Effect of refrigerator 1>
Up to this point, the structure of the refrigerator 1 of the first embodiment and the control related to the defrosting operation have been described. Next, the effects of the refrigerator 1 will be described.
The refrigerator 1 according to the first embodiment has a wall surface condenser 41 that radiates heat through the refrigerator wall surface of the refrigerator main body 1H and a heat insulation box 10 on the outside of the heat insulating box 10 by heat radiation pipes 41a and 41b in FIG. An outside-condenser 40 (see FIG. 6) disposed in a certain machine room 19 is provided.

また,壁面凝縮器41を接続した冷媒流路を形成する接続配管73aと,壁面凝縮器41をバイパスする冷媒流路を形成する接続配管73bと,接続配管73aと73bとを切換える三方弁101と,図4の冷却運転と図7の除霜運転を切換える四方弁100を備えている。   Further, a connection pipe 73a that forms a refrigerant flow path that connects the wall condenser 41, a connection pipe 73b that forms a refrigerant flow path that bypasses the wall condenser 41, and a three-way valve 101 that switches between the connection pipes 73a and 73b; 4 is provided with a four-way valve 100 for switching between the cooling operation of FIG. 4 and the defrosting operation of FIG.

そして,図4に示すように,圧縮機24,庫外凝縮器40,壁面凝縮器41,キャピラリチューブ42a,冷却器7,圧縮機24の順に冷媒を循環させる冷媒流路を形成して冷却運転を行う。また,図7に示すように,四方弁100と三方弁101を切換え,圧縮機24,冷却器7,キャピラリチューブ42b,庫外凝縮器40,圧縮機24の順に冷媒を循環させる冷媒流路を形成してヒートポンプ除霜による除霜運転を行う。これにより,冷蔵庫本体1Hの冷蔵庫壁面(特に,図5の符号28,30,29の前方箇所)の結露を抑えつつ,省エネルギ性能が高い冷蔵庫1を得ることができる。   Then, as shown in FIG. 4, the cooling operation is performed by forming a refrigerant flow path for circulating the refrigerant in the order of the compressor 24, the external condenser 40, the wall condenser 41, the capillary tube 42a, the cooler 7, and the compressor 24. I do. Further, as shown in FIG. 7, the four-way valve 100 and the three-way valve 101 are switched, and the refrigerant flow path for circulating the refrigerant in the order of the compressor 24, the cooler 7, the capillary tube 42b, the external condenser 40, and the compressor 24 is provided. It forms and performs the defrost operation by heat pump defrost. Thereby, the refrigerator 1 with high energy saving performance can be obtained while suppressing the dew condensation on the refrigerator wall surface of the refrigerator main body 1H (particularly, the front portions of reference numerals 28, 30, and 29 in FIG. 5).

<冷却運転で結露を抑えつつ高い省エネルギ性能を得られる理由>
まず,図4の冷却運転に関して,冷蔵庫1が冷蔵庫壁面(特に,図5の28,30,29の前方箇所)の結露を抑えつつ高い省エネルギ性能を得られる理由について説明する。
一般に,断熱壁によって高温空間と低温空間を隔てた場合,温度は高温空間,高温空間側断熱壁表面,低温空間側断熱壁表面,低温空間の順に低くなる。
<Reason for high energy-saving performance while suppressing condensation in cooling operation>
First, regarding the cooling operation of FIG. 4, the reason why the refrigerator 1 can obtain high energy saving performance while suppressing dew condensation on the refrigerator wall surface (particularly, in front of 28, 30 and 29 in FIG. 5) will be described.
Generally, when a high temperature space and a low temperature space are separated by a heat insulating wall, the temperature decreases in the order of the high temperature space, the high temperature space side heat insulating wall surface, the low temperature space side heat insulating wall surface, and the low temperature space.

そのため,断熱箱体10によって庫内と庫外が隔てられた冷蔵庫1では,断熱箱体10の庫外側表面すなわち図2の外箱1aの外面の温度は外気よりも低温となり,特に外気が高湿であった場合には,露点温度を下回って結露が生じることがある。   Therefore, in the refrigerator 1 in which the inside and the outside of the refrigerator are separated from each other by the heat insulating box 10, the temperature of the outer surface of the heat insulating box 10, that is, the outer surface of the outer box 1a in FIG. 2 is lower than the outside air. In the case of moisture, condensation may occur below the dew point temperature.

また,図2に示すように,冷蔵室−冷凍室断熱仕切り壁28,冷凍室−野菜室断熱仕切り壁29,および冷凍室間仕切り壁30は,各貯蔵室(2,3,4,5,6)に接しているため低温であり,その前方部は各貯蔵室(2,3,4,5,6)の開口縁となるので,外気に接触しやすく外気の露点温度以下となり結露しやすい。   In addition, as shown in FIG. 2, the refrigerator compartment-freezer compartment heat insulation partition wall 28, the freezer compartment-vegetable room insulation partition wall 29, and the freezer compartment partition wall 30 are provided in each storage room (2, 3, 4, 5, 6). ), And the front part thereof is an opening edge of each storage chamber (2, 3, 4, 5, 6), so that it is easy to come into contact with the outside air and is easily dewed below the dew point temperature of the outside air.

ここで,冷蔵庫壁面の結露を抑制するためにその低温化を抑える手段として,冷蔵庫壁面近傍に電気ヒータを設け,この電気ヒータにより冷蔵庫壁面を加熱する手段が考えられる。しかし,この場合,冷蔵庫壁面を加熱するために新たにエネルギを投入する必要があり,省エネルギ性能が低下する。   Here, in order to suppress condensation on the wall surface of the refrigerator, an electric heater is provided in the vicinity of the refrigerator wall surface, and a means for heating the refrigerator wall surface with the electric heater is conceivable. However, in this case, it is necessary to input new energy to heat the refrigerator wall surface, and the energy saving performance is lowered.

そこで,実施形態1の冷蔵庫1では,冷却運転中に図4の壁面凝縮器41つまり図5の放熱パイプ41a,41bで放熱している。これにより,結露の抑制を目的として加熱のために新たなエネルギを投入することなく,外箱1aの外面および各仕切り壁前方部(図5の28,30,29の前方箇所)を加熱して結露を抑制することができる。   Therefore, in the refrigerator 1 of the first embodiment, heat is radiated by the wall condenser 41 of FIG. 4, that is, the heat radiating pipes 41a and 41b of FIG. 5, during the cooling operation. Thus, the outer surface of the outer box 1a and the front part of each partition wall (the front part of 28, 30, 29 in FIG. 5) are heated without supplying new energy for the purpose of suppressing condensation. Condensation can be suppressed.

さらに,壁面凝縮器41を用いることで放熱性能が向上し,冷凍サイクルRS1の性能の向上も得られる。
したがって,冷却運転において,壁面凝縮器41にて放熱することで,冷蔵庫壁面の結露を抑制しつつ高い省エネルギ性能を得ることができる。
Furthermore, by using the wall surface condenser 41, the heat dissipation performance is improved, and the performance of the refrigeration cycle RS1 is also improved.
Therefore, in the cooling operation, by dissipating heat from the wall condenser 41, high energy saving performance can be obtained while suppressing condensation on the refrigerator wall.

<冷却器7の除霜運転で結露を抑えつつ高い省エネルギ性能を得られる理由>
次に,除霜運転に関して,結露を抑えつつ高い省エネルギ性能を得られる理由について説明する。
電気ヒータ22を用いるヒータ除霜では,エネルギの損失なく霜を加熱できたとして,熱力学の第一法則から霜を加熱するエネルギは投入するエネルギと等しい。なお,前記した特許文献2のように電気ヒータ22の代わりにIHヒータを用いた場合も同様である。
<Reason why high energy saving performance can be obtained while suppressing dew condensation in the defrosting operation of the cooler 7>
Next, the reason why high energy saving performance can be obtained while suppressing condensation in the defrosting operation will be described.
In the heater defrosting using the electric heater 22, assuming that the frost can be heated without loss of energy, the energy for heating the frost is equal to the input energy from the first law of thermodynamics. The same applies to the case where an IH heater is used instead of the electric heater 22 as in Patent Document 2 described above.

これに対して,本実施形態1のヒートポンプ除霜で損失なく霜を加熱できた時の霜を加熱するエネルギは,圧縮機24に投入したエネルギ(冷蔵庫1の消費電力)に,庫外凝縮器40にて庫外から吸熱したエネルギを足したエネルギとなる。したがって,庫外から吸熱したエネルギがある分,実施形態1のヒートポンプ除霜の方が従来のヒータ除霜に比べて発熱効率の高い除霜といえる。   On the other hand, the energy for heating the frost when the frost can be heated without loss by the heat pump defrosting according to the first embodiment is the energy input to the compressor 24 (power consumption of the refrigerator 1), and the external condenser. At 40, energy is obtained by adding energy absorbed from outside the chamber. Therefore, it can be said that the heat pump defrost according to Embodiment 1 has higher heat generation efficiency than the conventional heater defrost because there is energy absorbed from the outside of the chamber.

また,実施形態1におけるヒータ除霜は,電気ヒータ22によって冷却器収納空間8の空気を加熱し,この加熱された空気と冷却器7の霜で熱交換を行うことで霜を加熱する間接加熱手段である。この間接加熱手段では,冷却器収納空間8で加熱された空気は冷却器収納空間8の壁面とも熱交換する。また,この高温空気が冷凍温度帯室60に流入し,冷凍温度帯室60と熱交換することも考えられ,これらはエネルギの漏出であり,エネルギ損失となる。さらに,加熱された冷凍温度帯室60や冷却器収納空間8の壁面は除霜後に冷却する必要があるため,それらを冷却するために用いるエネルギも余分に必要となる。   In addition, the heater defrosting according to the first embodiment is an indirect heating in which the air in the cooler housing space 8 is heated by the electric heater 22 and heat is exchanged between the heated air and the frost in the cooler 7. Means. In this indirect heating means, the air heated in the cooler housing space 8 also exchanges heat with the wall surface of the cooler housing space 8. Further, it is conceivable that this high-temperature air flows into the refrigeration temperature zone chamber 60 and exchanges heat with the refrigeration temperature zone chamber 60, which is a leakage of energy and results in energy loss. Furthermore, since the heated freezing temperature zone 60 and the wall surface of the cooler storage space 8 need to be cooled after defrosting, extra energy is required to cool them.

これに対して,実施形態1のヒートポンプ除霜では,圧縮機24で高温になった冷媒が冷却器7に流入し,冷媒と冷却器7で直接熱交換を行い,冷却器7に付着した霜を加熱する直接加熱手段であるためエネルギの損失が少ない。   In contrast, in the heat pump defrosting of the first embodiment, the refrigerant that has become high temperature in the compressor 24 flows into the cooler 7, and heat exchange is performed directly between the refrigerant and the cooler 7. Since it is a direct heating means for heating the battery, there is little energy loss.

一方,壁面凝縮器41が冷蔵庫壁面と熱交換する冷蔵庫1において,四方弁100により吸熱側と放熱側を入れ替えて除霜運転を行う場合,壁面凝縮器41にて外気から吸熱して外箱1aおよび各仕切り壁(図5の28,30,29)の外表面は低温となって,結露が生じやすくなる。また,壁面凝縮器41を含む凝縮器全てをバイパスさせた冷媒流路を形成すると仮定すると,庫外からの吸熱によるエネルギを得られないため,ヒートポンプ除霜時の圧縮機24に投入するエネルギが増加し,省エネルギ性能が低下する。   On the other hand, in the refrigerator 1 in which the wall condenser 41 exchanges heat with the refrigerator wall surface, when the defrosting operation is performed by switching the heat absorption side and the heat radiation side by the four-way valve 100, the wall condenser 41 absorbs heat from the outside air and the outer box 1a. And the outer surface of each partition wall (28, 30, 29 of FIG. 5) becomes low temperature, and it becomes easy to produce dew condensation. Further, assuming that the refrigerant flow path is formed by bypassing all the condensers including the wall condenser 41, the energy to be absorbed into the compressor 24 at the time of defrosting the heat pump cannot be obtained because the heat absorption from the outside of the warehouse cannot be obtained. Increases and energy saving performance decreases.

そこで,実施形態1の冷蔵庫1では,壁面凝縮器41とともに庫外凝縮器40を備え,除霜運転時に,庫外凝縮器40に冷媒を流して壁面凝縮器41には冷媒を流さないようにして各仕切り壁(図5の28,30,29)の外表面の露付きを抑制し,ヒートポンプ除霜を実施している。これにより,結露を抑制しつつ,省エネルギ性能の高い除霜運転を実現している。さらに,冷却運転時に庫外凝縮器40を用いることで放熱性能が向上し,冷却運転の効率向上も得られる。   Therefore, the refrigerator 1 according to the first embodiment includes the external condenser 40 together with the wall condenser 41 so that the refrigerant flows through the external condenser 40 and does not flow through the wall condenser 41 during the defrosting operation. The dew on the outer surface of each partition wall (28, 30, 29 in FIG. 5) is suppressed, and heat pump defrosting is performed. This realizes defrosting operation with high energy-saving performance while suppressing condensation. Furthermore, the heat dissipation performance is improved by using the external condenser 40 during the cooling operation, and the efficiency of the cooling operation can be improved.

なお,本実施形態1では図8,図9(a),図9(b)に示す様な除霜を行うが,ここでヒートポンプ除霜とヒータ除霜をそれぞれ単独で行った場合の投入エネルギを比較する。例えば,実施形態1の冷蔵庫1で,圧縮機24を毎分4000回転で駆動させてヒートポンプ除霜単独での除霜運転を行うと,圧縮機24への入力は160Wであり,30分で除霜可能である。すなわち,両者を積算してエネルギに換算すると投入エネルギは288kJである。   In the first embodiment, defrosting as shown in FIGS. 8, 9 (a), and 9 (b) is performed. Here, the input energy when heat pump defrosting and heater defrosting are performed individually, respectively. Compare For example, in the refrigerator 1 according to the first embodiment, when the compressor 24 is driven at 4000 revolutions per minute to perform the defrosting operation with the heat pump defrosting alone, the input to the compressor 24 is 160 W and is removed in 30 minutes. Frost is possible. That is, when both are integrated and converted into energy, the input energy is 288 kJ.

それに対し,従来の特許文献2のやり方で,同等の冷却器7の着霜状態において,電気ヒータに入力200Wを与えてヒータ除霜単独で除霜運転を行うと45分で除霜可能であり,両者を積算してエネルギに換算すると投入エネルギは540kJとなる。つまり,実施形態1に比べ,従来の方法では,252kJ投入エネルギを多く必要とする。
以上により,本実施形態1の冷蔵庫1では,冷蔵庫壁面(特に,図5の28,30,29の前方箇所)の結露を抑制しつつ省エネルギ性能が高い冷却運転および除霜運転を行うことができる。
On the other hand, when the defrosting operation is performed by the heater defrosting alone with the input of 200 W applied to the electric heater in the frosting state of the equivalent cooler 7 in the conventional method of Patent Document 2, the defrosting can be performed in 45 minutes. .., And integrating both, the input energy is 540 kJ. That is, as compared with the first embodiment, the conventional method requires a large amount of input energy of 252 kJ.
As described above, in the refrigerator 1 of the first embodiment, it is possible to perform the cooling operation and the defrosting operation with high energy saving performance while suppressing the dew condensation on the refrigerator wall surface (particularly, in front of 28, 30 and 29 in FIG. 5). it can.

なお,実施形態1の冷蔵庫1では,ヒートポンプ除霜における吸熱部として冷却運転時に放熱を行う庫外凝縮器40を用いているが,図10,図11に示すように,冷媒分岐部80aと三方弁101の流入流出口101bの間,つまり接続配管73bに除霜用冷却器200を備えてもよい。   In addition, in the refrigerator 1 of Embodiment 1, although the external condenser 40 which thermally radiates at the time of cooling operation is used as a heat absorption part in heat pump defrosting, as shown to FIG. 10, FIG. A defrosting cooler 200 may be provided between the inflow / outflow ports 101b of the valve 101, that is, in the connection pipe 73b.

図10および図11は,それぞれ庫外凝縮器40の代わりに除霜用冷却器200を用いた場合の冷媒流路を示す図であり,図10は冷却運転時の冷媒流路であり,図11は除霜運転時の冷媒流路である。
図10の冷却運転中の冷媒は接続配管73aを介して壁面凝縮器41により放熱し,図11の除霜運転中の冷媒は接続配管73bを介して除霜用冷却器200により吸熱することで同様の効果を得られる。
FIGS. 10 and 11 are diagrams showing refrigerant flow paths when the defrost cooler 200 is used in place of the external condenser 40, and FIG. 10 is a refrigerant flow path during the cooling operation. 11 is a refrigerant | coolant flow path at the time of a defrost operation.
The refrigerant in the cooling operation of FIG. 10 dissipates heat by the wall condenser 41 through the connection pipe 73a, and the refrigerant in the defrosting operation of FIG. 11 absorbs heat by the defrost cooler 200 through the connection pipe 73b. Similar effects can be obtained.

また,実施形態1の冷蔵庫1では,四方弁100,三方弁101,102,103,二方弁104を用いたが,同等の流路とすることができれば,弁の種類は限定されない。図12および図13は,図4の四方弁100および三方弁101,102,103の代わりに,二方弁106a〜106d,107a,107b,108a,108b,109a,109bを用いて同等の冷媒流路を構成した場合の冷媒流路を太線で示す図であり,図12は冷却運転時,図13は除霜運転時の冷媒流路である。   In the refrigerator 1 of the first embodiment, the four-way valve 100, the three-way valves 101, 102, 103, and the two-way valve 104 are used. However, the type of the valve is not limited as long as an equivalent flow path can be obtained. 12 and 13 show the same refrigerant flow using two-way valves 106a to 106d, 107a, 107b, 108a, 108b, 109a, and 109b instead of the four-way valve 100 and the three-way valves 101, 102, and 103 in FIG. It is a figure which shows the refrigerant | coolant flow path at the time of comprising a path | route with a thick line, FIG. 12 is at the time of cooling operation, FIG. 13 is a refrigerant | coolant flow path at the time of a defrost operation.

図12および図13では,四方弁100の代わりに4つの二方弁106a〜106dと接続配管110,三方弁101〜103の代わりにそれぞれ2つずつの二方弁107a,107b,108a,108b,109a,109bを用いることで,冷却運転時と除霜運転時でそれぞれ同等の冷媒流路とすることができる。   12 and 13, instead of the four-way valve 100, two two-way valves 107a, 107b, 108a, 108b, two two-way valves 106a to 106d and connection pipes 110, and two three-way valves 101 to 103, respectively. By using 109a and 109b, it is possible to provide the same refrigerant flow path during the cooling operation and during the defrosting operation.

具体的には,図12の冷却運転時には,図12の太線で示すように,二方弁104は開状態で,二方弁106a,106dを開,二方弁106b,106cを閉状態とし,二方弁107a,107b,108a,108b,109a,109bは,107a,108a,109aを開,107b,108b,109bを閉状態とする。これにより,実施形態1の冷蔵庫1の冷却運転時と同様の冷媒流路となる。   Specifically, during the cooling operation of FIG. 12, as shown by the thick line in FIG. 12, the two-way valve 104 is open, the two-way valves 106a and 106d are opened, and the two-way valves 106b and 106c are closed. The two-way valves 107a, 107b, 108a, 108b, 109a, 109b open 107a, 108a, 109a and close 107b, 108b, 109b. Thereby, it becomes the refrigerant | coolant flow path similar to the time of the cooling operation of the refrigerator 1 of Embodiment 1. FIG.

図13のヒートポンプ除霜運転時には,図13の太線で示すように,二方弁104は閉状態とし,二方弁106b,106cを開,106a,106dを閉状態とし,二方弁107b,108b,109bを開,二方弁107a,108a,109aを閉状態とする。これにより,実施形態1の冷蔵庫1の除霜運転時と同様の冷媒流路となる。
以上のように,二方弁106a〜106d,〜,109a,109bを備えることで,実施形態1の冷蔵庫1と同様の冷媒流路とすることができ,同様の効果を奏する。
During the heat pump defrosting operation of FIG. 13, as shown by the thick line in FIG. 13, the two-way valve 104 is closed, the two-way valves 106b and 106c are opened, the 106a and 106d are closed, and the two-way valves 107b and 108b are closed. 109b are opened, and the two-way valves 107a, 108a, 109a are closed. Thereby, it becomes the refrigerant | coolant flow path similar to the time of the defrost operation of the refrigerator 1 of Embodiment 1. FIG.
As described above, by providing the two-way valves 106a to 106d,..., 109a and 109b, the refrigerant flow path can be the same as that of the refrigerator 1 of the first embodiment, and the same effect can be obtained.

ただし,実装性を考慮した場合,弁が多数となると弁の設置にスペースを要して食品収納容積(冷蔵庫1の容積)が低下するため,本実施形態1の冷蔵庫1のように,省スペース化に資する三方弁や四方弁を用いて少ない弁で同様の冷媒流路とすることがより好ましい。   However, in consideration of mountability, if a large number of valves are used, space is required for installation of the valves and the food storage volume (volume of the refrigerator 1) is reduced. It is more preferable to use a three-way valve or a four-way valve that contributes to the formation of a similar refrigerant flow path with a small number of valves.

<冷却/除霜運転時の絞りの大きい第一/小さい第二のキャピラリチューブ42a,42bの選択理由>
本実施形態1の冷蔵庫1では,図4,図7に示すように,第一・第二のキャピラリチューブ42a,42bと三方弁102を備え,三方弁102によって,図4の冷却運転時は絞りの大きい第一のキャピラリチューブ42aを,図7の除霜運転時には絞りの小さい第二のキャピラリチューブ42bを用いる構成としている。これにより,除霜運転の省エネルギ性能を向上させることができる。以下,理由を説明する。
<Reasons for selecting first / small second capillary tubes 42a, 42b with large throttle during cooling / defrosting operation>
4 and 7, the refrigerator 1 according to the first embodiment includes first and second capillary tubes 42a and 42b and a three-way valve 102. The three-way valve 102 restricts the throttle during the cooling operation of FIG. The first capillary tube 42a having a large diameter is configured to use the second capillary tube 42b having a small throttle during the defrosting operation of FIG. Thereby, the energy saving performance of a defrost operation can be improved. The reason will be described below.

まず,冷却運転時および除霜運転時の冷凍サイクルについて説明する。
図14は,一般的な冷却運転およびヒートポンプ除霜を用いた除霜運転時の冷凍サイクルを示すモリエル(圧力‐比エンタルピ)線図である。図14(a)は第一のキャピラリチューブ42aを用いて行った冷却運転,図14(b)は第一のキャピラリチューブ42aを用いて行った除霜運転,図14(c)は第二のキャピラリチューブ42bを用いて行った除霜運転である。
First, the refrigeration cycle during cooling operation and defrosting operation will be described.
FIG. 14 is a Mollier (pressure-specific enthalpy) diagram showing a refrigeration cycle during a general cooling operation and a defrosting operation using heat pump defrosting. 14A is a cooling operation performed using the first capillary tube 42a, FIG. 14B is a defrosting operation performed using the first capillary tube 42a, and FIG. 14C is a second operation. This is a defrosting operation performed using the capillary tube 42b.

図14中の1,2,3,4は,それぞれ圧縮機24入口,圧縮機24出口,キャピラリチューブ42入口,キャピラリチューブ42出口の冷媒の状態を表し,図14中の1,2,3,4の圧力をP_1,P_2,P_3,P_4,比エンタルピをh_1,h_2,h_3,h_4とする。また,図14(a),図14(b),図14(c)の状態を,それぞれA,B,Cで表し,例えばh_2Bは図14(b)中の2の比エンタルピである。   In FIG. 14, 1, 2, 3, and 4 represent refrigerant states at the compressor 24 inlet, the compressor 24 outlet, the capillary tube 42 inlet, and the capillary tube 42 outlet, respectively. 4 is P_1, P_2, P_3, P_4, and the specific enthalpy is h_1, h_2, h_3, h_4. 14A, 14B, and 14C are represented by A, B, and C, respectively. For example, h_2B is a specific enthalpy of 2 in FIG. 14B.

キャピラリチューブ42(42a,42b)は,吸熱側の圧力に影響を受けにくく,放熱側の圧力を制御する特徴を持っているため,P_2A(P_3A)は放熱側の空気温度に大きく依存し,P_4A(P_1A)は主にキャピラリチューブ42の絞りの大きさと冷媒循環量および冷却量のバランスで決まる。なお,絞りが大きいほど減圧されやすいことから,同冷媒循環量での圧力損失が大きくなる。そのため,P_2AとP_4Aの圧力差は大きくなる。   Since the capillary tube 42 (42a, 42b) is less affected by the pressure on the heat absorption side and has a characteristic of controlling the pressure on the heat dissipation side, P_2A (P_3A) greatly depends on the air temperature on the heat dissipation side, and P_4A (P_1A) is mainly determined by the balance between the size of the restriction of the capillary tube 42, the refrigerant circulation amount, and the cooling amount. In addition, since the pressure is easily reduced as the throttle is increased, the pressure loss at the same refrigerant circulation amount increases. Therefore, the pressure difference between P_2A and P_4A increases.

ここで,まず,ヒートポンプ除霜の効率について考える。
絞りの大きい第一のキャピラリチューブ42aを用いて除霜運転を行った場合,図14(b)に示すように,圧力損失が大きいことからP_2BとP_4Bの圧力差は大きくなる。この時の,圧縮機24がこの冷凍サイクルを駆動させるのに必要な投入エネルギは,冷媒循環量×(h_1B―h_2B),冷却器7の霜を加熱するエネルギは冷媒循環量×(h_3B―h_2B)となる。
First, let us consider the efficiency of heat pump defrosting.
When the defrosting operation is performed using the first capillary tube 42a having a large throttle, the pressure difference between P_2B and P_4B becomes large because the pressure loss is large as shown in FIG. 14 (b). At this time, the input energy necessary for the compressor 24 to drive the refrigeration cycle is refrigerant circulation amount × (h_1B−h_2B), and the energy for heating the frost in the cooler 7 is refrigerant circulation amount × (h_3B−h_2B). )

ここで,霜を加熱するエネルギに対する投入エネルギの割合をCOP_Hとすると,図14(b)の冷凍サイクルでは,COP_Hは(h_3B―h_2B)/(h_1B―h_2B)となる。   Here, when the ratio of the input energy to the energy for heating the frost is COP_H, in the refrigeration cycle of FIG. 14B, COP_H is (h_3B−h_2B) / (h_1B−h_2B).

これに対して,図7の絞りの小さい第二のキャピラリチューブ42bを用いた図14(c)の状態は,絞りが小さいために流路の変化が小さいことからP_2CとP_4Cの圧力差が小さい。このとき,圧縮機24がこの冷凍サイクルを駆動させるのに必要な入力は冷媒循環量×(h_1C―h_2C)となり,霜を加熱するエネルギは冷媒循環量×(h_3C―h_2C)となり,COP_Hは(h_3C―h_2C)/(h_1C―h_2C)となる。   In contrast, in the state of FIG. 14C using the second capillary tube 42b with a small throttle in FIG. 7, the pressure difference between P_2C and P_4C is small because the change in the flow path is small because the throttle is small. . At this time, the input necessary for the compressor 24 to drive the refrigeration cycle is refrigerant circulation amount × (h — 1C−h — 2C), energy for heating the frost is refrigerant circulation amount × (h — 3C−h — 2C), and COP_H is ( h_3C-h_2C) / (h_1C-h_2C).

ここで,冷却器7の霜が融解中は,放熱温度はほぼ一定であるためP_2BとP_2Cはほぼ等しく,そのため(h_3B―h_2B)と(h_3C―h_2C)もほぼ等しくなる。一方で,図14(b),(c)から分るように,(P_2C―P_4C)=(P_2C―P_1C)が(P_2B―P_4B)=(P_2B―P_1B)より小さいため,P_2BとP_2Cがほぼ等しいと考えられる今回の場合は,絞りの大きい第一のキャピラリチューブ42aを用いた場合の(h_1B―h_2B)に比べ絞りの小さい第二のキャピラリチューブ42bを用いた場合の(h_1C―h_2C)の方が小さい値となる。   Here, while the frost in the cooler 7 is melting, the heat radiation temperature is substantially constant, so P_2B and P_2C are substantially equal, and therefore (h_3B-h_2B) and (h_3C-h_2C) are also substantially equal. On the other hand, as shown in FIGS. 14B and 14C, since (P_2C-P_4C) = (P_2C-P_1C) is smaller than (P_2B-P_4B) = (P_2B-P_1B), P_2B and P_2C are almost equal. In this case, which is considered to be equal, (h_1C-h_2C) in the case of using the second capillary tube 42b having a smaller aperture than in the case of using the first capillary tube 42a having a larger aperture (h_1B-h_2B). The value becomes smaller.

したがって,絞りの小さい第二のキャピラリチューブ42bを用いたヒートポンプ除霜の方が,絞りの大きい第一のキャピラリチューブ42aを用いたヒートポンプ除霜に比べ,霜を加熱するエネルギに対する投入エネルギの割合を表すCOP_Hは高く,同じ投入エネルギ(消費電力量)で多くの霜の加熱量を得られるため,高効率な除霜となる。   Therefore, the heat pump defrosting using the second capillary tube 42b with a small throttle is less in the ratio of the input energy to the energy for heating the frost than the heat pump defrosting using the first capillary tube 42a with a large throttle. Since COP_H to be expressed is high and a large amount of frost heating can be obtained with the same input energy (power consumption), highly efficient defrosting is achieved.

なお,除霜運転を考えた場合,放熱部である冷却器7の温度は霜の融解中は約0℃と低温であり,また吸熱側は外気温度以下であればよい。したがって,除霜運転時では,吸熱側の温度が高くなるように,極力P4を高く保つことが望まれる。   In consideration of the defrosting operation, the temperature of the cooler 7 serving as the heat radiating unit may be as low as about 0 ° C. during melting of the frost, and the heat absorption side may be lower than the outside air temperature. Therefore, during defrosting operation, it is desired to keep P4 as high as possible so that the temperature on the heat absorption side becomes high.

一方で,図14(a)の冷却運転を考えた場合,冷蔵庫1は庫内を所定の温度に冷やすことを目的とした装置であるため,各室の所定温度(例えば,冷凍温度帯室60では約−18℃)以下の冷気を冷却器7で生成する必要がある。そのため,冷却器7の蒸発温度を,所定の温度(例えば,約−18℃)以下とするためにはP_4Aを十分に低くする必要がある。   On the other hand, when considering the cooling operation of FIG. 14 (a), the refrigerator 1 is a device intended to cool the interior to a predetermined temperature, and therefore, the predetermined temperature (for example, the freezing temperature zone 60 in each chamber). In this case, it is necessary to generate cool air of about −18 ° C. or less in the cooler 7. Therefore, P_4A needs to be made sufficiently low in order to keep the evaporation temperature of the cooler 7 below a predetermined temperature (for example, about -18 ° C.).

なお,P_4Aを低くする手段としては,圧縮機24の駆動回転数を上げる(投入エネルギを上げる)こと,冷却器7の熱交換量を少なくすること,絞りを大きくすることが考えられるが,圧縮機24の駆動回転数を上げることや熱交換量を少なくすることはそれぞれ投入エネルギの増加や冷却仕事量の低下であることから,冷却効率の低下に繋がるため,絞りを大きくすることでP_4を低くする方がより好ましい。   As means for lowering P_4A, it is conceivable to increase the rotational speed of the compressor 24 (increase the input energy), reduce the heat exchange amount of the cooler 7, and increase the throttle. Increasing the drive rotation speed of the machine 24 and reducing the heat exchange amount increase the input energy and decrease the cooling work amount, respectively. This leads to a decrease in cooling efficiency. Lowering is more preferable.

したがって,図4の冷却運転時には絞りの大きい第一のキャピラリチューブ42aを用いてP_2AとP_4Aの圧力差を十分確保し,図7の除霜運転時には絞りの小さい第二のキャピラリチューブ42bを用いて圧力差を小さくすることで,冷却運転の省エネルギ性能を低減することなく,除霜運転の省エネルギ性能を向上させることができる。   Therefore, a sufficient pressure difference between P_2A and P_4A is ensured by using the first capillary tube 42a having a large throttle during the cooling operation of FIG. 4, and a second capillary tube 42b having a small throttle is used by the defrosting operation of FIG. By reducing the pressure difference, the energy saving performance of the defrosting operation can be improved without reducing the energy saving performance of the cooling operation.

さらに,本実施形態1の冷蔵庫1では,三方弁102の除霜運転における流入口として流入流出口102dを用いているが,流入流出口102dは流出口としても機能できるため,冷却運転時においても第二のキャピラリチューブ42bを使用することができる。これにより庫外温度が低温の場合も効率よく冷却することができる。理由を以下で説明する。   Furthermore, in the refrigerator 1 of the first embodiment, the inflow / outflow port 102d is used as an inflow port in the defrosting operation of the three-way valve 102. However, since the inflow / outflow port 102d can also function as an outflow port, even during the cooling operation. A second capillary tube 42b can be used. Thereby, even when the outside temperature is low, it can be efficiently cooled. The reason will be explained below.

冷凍サイクルを考えた場合,図14(a)の放熱側の圧力P_2Aと吸熱側の圧力P_4Aの差が小さい方が,投入エネルギが小さくなるので冷却効率は高い。また,前記のとおり,庫内を所定の温度に冷却するため,P_4Aは一定以下,すなわち冷凍温度帯室以下の温度とする必要がある。ここで,絞りが一定の冷蔵庫で,庫外が低温となった場合,高温時に比べ,放熱側の圧力P_2Aが低くなり,吸熱側の圧力P_4Aも低くなる。   Considering the refrigeration cycle, the smaller the difference between the heat radiation side pressure P_2A and the heat absorption side pressure P_4A in FIG. Further, as described above, in order to cool the interior to a predetermined temperature, P_4A needs to be a constant temperature or lower, that is, a temperature equal to or lower than the freezing temperature zone. Here, when the refrigerator has a fixed throttle and the outside of the refrigerator has a low temperature, the heat release side pressure P_2A and the heat absorption side pressure P_4A are also lower than when the temperature is high.

しかしながら,高温時のP_4Aで庫内を十分に冷却できるため,冷却効率を考えた場合,高温時と同等のP_4Aとすることが効率向上に繋がる。そこで,本実施形態1の冷蔵庫1では,絞りの小さい第二のキャピラリチューブ42bを用いて冷却運転を行うことで,P_4Aを高くすることができる。したがって,庫外が低温時の冷却効率を向上させることができる。   However, since the interior can be sufficiently cooled with P_4A at high temperature, considering cooling efficiency, P_4A equivalent to that at high temperature leads to improved efficiency. Therefore, in the refrigerator 1 of the first embodiment, P_4A can be increased by performing the cooling operation using the second capillary tube 42b having a small throttle. Therefore, it is possible to improve the cooling efficiency when the outside is at a low temperature.

なお,実施形態1の冷蔵庫1では,絞りの大きさの変更手法として2つのキャピラリチューブを用いたが,キャピラリチューブの数は2つに限られるものではなく,3つ以上備えてもよい。また,複数のキャピラリチューブの代わりに,減圧手段として,膨張弁等の絞りの調整ができる減圧手段を用いても同様の効果が得られる。   In the refrigerator 1 of the first embodiment, two capillary tubes are used as a method for changing the size of the throttle. However, the number of capillary tubes is not limited to two, and three or more capillary tubes may be provided. Further, the same effect can be obtained by using a pressure reducing means capable of adjusting the throttle such as an expansion valve as the pressure reducing means instead of the plurality of capillary tubes.

<第二の蒸発皿44>
実施形態1の冷蔵庫1では,図6に示すように,庫外凝縮器40の下部に,第二の蒸発皿44が設けられている。ヒートポンプ除霜では庫外凝縮器40で吸熱が行われるため,庫外凝縮器40は低温となる。したがって,庫外凝縮器40が露点温度以下となり庫外凝縮器40に結露が生じ霜や水が滴下する場合,または,庫外凝縮器40に着霜が生じて除霜終了後に霜が融解して滴下する場合がある。
<Second evaporating dish 44>
In the refrigerator 1 of Embodiment 1, the 2nd evaporating dish 44 is provided in the lower part of the external condenser 40, as shown in FIG. In heat pump defrosting, heat is absorbed by the external condenser 40, so the external condenser 40 is at a low temperature. Therefore, when the external condenser 40 becomes below the dew point temperature, dew condensation occurs on the external condenser 40 and frost or water is dripped, or frost forms on the external condenser 40 and the frost melts after defrosting is completed. May drop.

そこで,実施形態1の冷蔵庫1では,庫外凝縮器40の下方に水受け部であり貯水部でもある第二の蒸発皿44を設けている。すなわち,水受け部とは庫外凝縮器40から滴下する水を受ける部材であり,貯水部はその受けた水を気化(蒸発)するまで貯留しておく部材である。   Therefore, in the refrigerator 1 of the first embodiment, a second evaporating dish 44 that is a water receiving part and a water storage part is provided below the external condenser 40. That is, the water receiving part is a member that receives water dripped from the external condenser 40, and the water storage part is a member that stores the received water until it is vaporized (evaporated).

したがって,庫外凝縮器40の下部に第二の蒸発皿44を設けることで,水が冷蔵庫1から冷蔵庫設置床面に流出することを抑制(防止)することができる。そのため,使用者の快適性を阻害することを抑制することができる。   Therefore, by providing the second evaporating dish 44 at the lower part of the external condenser 40, it is possible to suppress (prevent) the outflow of water from the refrigerator 1 to the refrigerator installation floor. Therefore, it can suppress inhibiting a user's comfort.

なお,実施形態1の冷蔵庫1では第一の蒸発皿21と第二の蒸発皿44を2つの部材として分ける場合を例示したが,庫外凝縮器40の貯水部となっていれば1つの部材で構成してもよい。或いは,機械室19の底面構成部材が貯水部となっていれば,第一の蒸発皿21や第二の蒸発皿44の別部材を用いなくても同様の効果が得られる。
或いは,貯水部を別の箇所(例えば圧縮機24の下部)に設け,庫外凝縮器40の下部に,滴下した水を受けて貯水部に誘導する樋(水受け部)を設ける構成としてもよい。
In addition, although the case where the 1st evaporating dish 21 and the 2nd evaporating dish 44 were divided as two members was illustrated in the refrigerator 1 of Embodiment 1, if it became a water storage part of the external condenser 40, it will be one member. You may comprise. Alternatively, if the bottom constituent member of the machine chamber 19 is a water reservoir, the same effect can be obtained without using separate members such as the first evaporating dish 21 and the second evaporating dish 44.
Alternatively, the water storage unit may be provided at another location (for example, the lower portion of the compressor 24), and a trough (water receiving portion) may be provided at the lower portion of the external condenser 40 for receiving the dropped water and guiding it to the water storage portion. Good.

<庫外凝縮器40>
また,図6,図2に示すように,庫外凝縮器40は,断熱箱体10の外部であり,かつ機械室ファン45を備えた機械室19に配置している。ヒートポンプ除霜では,吸熱は庫外凝縮器40で行われ,この庫外凝縮器40による吸熱量を増加させると,圧縮機24への投入エネルギを増加させずに,冷却器7の霜を加熱するエネルギを増加させることができるため除霜効率COP_Hの向上に繋がる。
<External condenser 40>
As shown in FIGS. 6 and 2, the external condenser 40 is disposed outside the heat insulation box 10 and in the machine room 19 provided with a machine room fan 45. In the heat pump defrosting, the heat absorption is performed by the external condenser 40, and if the amount of heat absorbed by the external condenser 40 is increased, the frost in the cooler 7 is heated without increasing the input energy to the compressor 24. Therefore, the defrosting efficiency COP_H is improved.

ここで,図6に示す機械室19には圧縮機24を冷却する機械室ファン45を備えている。そのため,機械室19に庫外凝縮器40を備え,機械室ファン45を駆動させることで空気の対流を促進して庫外凝縮器40における空気側の熱伝達率を向上させ,庫外凝縮器40による吸熱量を増加させることができる。したがって,機械室19内に庫外凝縮器40と機械室ファン45とを備えることで,除霜運転の省エネルギ性能の向上を図ることができる。   Here, the machine room 19 shown in FIG. 6 is provided with a machine room fan 45 for cooling the compressor 24. Therefore, the machine room 19 includes the outside condenser 40, and the machine room fan 45 is driven to promote air convection and improve the heat transfer coefficient on the air side in the outside condenser 40. The amount of heat absorbed by 40 can be increased. Therefore, by providing the outside cooler 40 and the machine room fan 45 in the machine room 19, the energy saving performance of the defrosting operation can be improved.

また,実施形態1の冷蔵庫1における機械室19は,外気の流入口(図6の白抜き矢印α1参照)となる開口部46aと外気の流出口(図6の白抜き矢印α2参照)となる開口部46bを設けており,機械室19内には,外気の流入口である開口部46a側から順に,庫外凝縮器40と圧縮機24と開口部46bを配置している。   Moreover, the machine room 19 in the refrigerator 1 of Embodiment 1 becomes the opening part 46a used as the outside air inlet (refer white arrow α1 of FIG. 6), and the outside air outlet (refer white arrow α2 of FIG. 6). An opening 46b is provided, and the outside condenser 40, the compressor 24, and the opening 46b are disposed in the machine chamber 19 in order from the opening 46a side which is an inflow port for outside air.

ヒートポンプ除霜を用いた除霜運転時において,庫外凝縮器40を通過した空気は,庫外凝縮器40で吸熱されているため外気よりも低温となる。この冷えた空気が,図6の白抜き矢印α2のように,開口部46bから排出されて外箱1aの側面1a1を流れると,外箱1aは外気よりも低温となり結露し易くなる。   During the defrosting operation using the heat pump defrosting, the air that has passed through the outside condenser 40 has a lower temperature than the outside air because it is absorbed by the outside condenser 40. When this cooled air is discharged from the opening 46b and flows through the side surface 1a1 of the outer box 1a as indicated by the white arrow α2 in FIG. 6, the outer box 1a becomes lower in temperature than the outside air and is likely to condense.

一方,本実施形態1の冷蔵庫1では,庫外凝縮器40で吸熱された空気は,圧縮機24を通過して開口部46bから排出するため,圧縮機24の排熱により昇温される。
したがって,機械室19内に開口部46a,庫外凝縮器40,圧縮機24,開口部46bの順に配置することで,開口部46bから排出される空気温度は高くなり,冷蔵庫壁面の結露を抑制することができる。
On the other hand, in the refrigerator 1 according to the first embodiment, the air absorbed by the outside condenser 40 passes through the compressor 24 and is discharged from the opening 46b, so that the temperature is raised by the exhaust heat of the compressor 24.
Therefore, by arranging the opening 46a, the external condenser 40, the compressor 24, and the opening 46b in this order in the machine room 19, the temperature of the air discharged from the opening 46b increases, and the condensation on the refrigerator wall surface is suppressed. can do.

<熱交換部43>
また,本冷蔵庫1では,図4に示すように,冷却器7で蒸発して低温となった冷媒とキャピラリチューブ42が熱交換する熱交換部43を備え,熱交換部43と接続されている接続配管77aと,熱交換部43をバイパスする冷媒流路を構成する接続配管77bと,接続配管77aと接続配管77bとの冷媒流路の切換えを制御する三方弁103を備えている。
<Heat exchange part 43>
In addition, as shown in FIG. 4, the refrigerator 1 includes a heat exchanging unit 43 that exchanges heat between the refrigerant evaporated in the cooler 7 and having a low temperature and the capillary tube 42, and is connected to the heat exchanging unit 43. A connection pipe 77a, a connection pipe 77b that constitutes a refrigerant flow path that bypasses the heat exchanging portion 43, and a three-way valve 103 that controls switching of the refrigerant flow path between the connection pipe 77a and the connection pipe 77b are provided.

そして,除霜運転時には,三方弁103を切換え,冷媒を,熱交換部43をバイパスする接続配管77bに流す構成とし,冷媒の熱が熱交換部43で消費(ロス)されるのを抑制している。
これにより,効率の高い冷却運転を行うとともに,ヒートポンプ除霜による除霜運転の効率低下を抑制することができる。理由をさらに詳細に以下で説明する。
During the defrosting operation, the three-way valve 103 is switched to allow the refrigerant to flow through the connection pipe 77b that bypasses the heat exchange unit 43, so that the heat of the refrigerant is prevented from being consumed (lost) by the heat exchange unit 43. ing.
Thereby, while performing a highly efficient cooling operation, the efficiency fall of the defrost operation by heat pump defrost can be suppressed. The reason will be explained in more detail below.

図4の冷却運転中の冷凍サイクルRS1を考えた場合,本冷蔵庫1は,熱交換部43により,冷却器7の前後,すなわちキャピラリチューブ42と接続配管77aとで熱交換をすることで冷却効率を向上させている。また,熱交換部43を備えていない場合,機械室19内に配された接続配管78,79(図6参照)は冷却器7で気化した冷媒の蒸発時の潜熱により低温となる。そのため,接続配管78,79への結露や着霜の配慮も必要となる。これらにより,本実施形態1の冷蔵庫1では熱交換部43を備え,接続配管78,79を流れる冷媒に熱を与え,結露や着霜を抑制している。   When considering the refrigeration cycle RS1 during the cooling operation of FIG. 4, the refrigerator 1 performs cooling efficiency by exchanging heat between the heat exchanger 43 and before and after the cooler 7, that is, between the capillary tube 42 and the connection pipe 77a. Has improved. Further, when the heat exchanging unit 43 is not provided, the connection pipes 78 and 79 (see FIG. 6) arranged in the machine room 19 become low temperature due to latent heat at the time of evaporation of the refrigerant vaporized by the cooler 7. Therefore, it is necessary to consider condensation and frost formation on the connection pipes 78 and 79. As a result, the refrigerator 1 according to the first embodiment includes the heat exchanging unit 43, applies heat to the refrigerant flowing through the connection pipes 78 and 79, and suppresses condensation and frost formation.

一方で,ヒートポンプ除霜の冷媒流路として熱交換部43を用いた場合,圧縮機24から吐出した高温冷媒の熱が,冷却器7に流入する前に熱交換部43からキャピラリチューブ42に移動してしまう。そのため,冷却器7の霜を加熱するエネルギがロスされ減少する。結果として,霜の加熱を十分に行えず除霜時間が長時間となる。   On the other hand, when the heat exchange unit 43 is used as a refrigerant flow path for heat pump defrosting, the heat of the high-temperature refrigerant discharged from the compressor 24 moves from the heat exchange unit 43 to the capillary tube 42 before flowing into the cooler 7. Resulting in. Therefore, the energy for heating the frost in the cooler 7 is lost and reduced. As a result, the frost cannot be heated sufficiently and the defrosting time becomes long.

ここで,除霜時間を短くするために圧縮機24を高回転速度で駆動させた場合,図14(c)のP_4Cが低下してP_4CとP_2Cの差圧が上昇して入力エネルギ(h_1C―h_2C)が増加して,除霜効率COP_H(冷却器7での加熱量に対する入力(h_1C―h_2C)の割合)の低下を招来する。   Here, when the compressor 24 is driven at a high rotation speed in order to shorten the defrosting time, P_4C in FIG. 14C decreases, the differential pressure between P_4C and P_2C increases, and the input energy (h_1C− h_2C) is increased, and the defrosting efficiency COP_H (the ratio of the input (h_1C-h_2C) to the heating amount in the cooler 7) is reduced.

そのため,ヒートポンプ除霜時には,熱交換部43とキャピラリチューブ42で熱交換することによる霜を加熱するエネルギの減少を抑制することが望まれる。
そこで,本実施形態1の冷蔵庫1は,図4,図7に示す熱交換部43を用いる冷媒流路の接続配管77aと,熱交換部43をバイパスする冷媒流路の接続配管77bと,それらを切換える三方弁103とを備えている。
Therefore, at the time of heat pump defrosting, it is desired to suppress a decrease in energy for heating the frost due to heat exchange between the heat exchange unit 43 and the capillary tube 42.
Therefore, the refrigerator 1 of the first embodiment includes a refrigerant channel connection pipe 77a using the heat exchange unit 43 shown in FIGS. 4 and 7, a refrigerant channel connection pipe 77b bypassing the heat exchange unit 43, and And a three-way valve 103 for switching between them.

これにより,図4の冷却運転時には熱交換部43を使用しての効率を高め,図7の除霜運転時には熱交換部43をバイパスさせることで,除霜運転の効率低下を抑制した省エネルギ性能が高い冷蔵庫を得られる。   As a result, the efficiency of using the heat exchanging unit 43 is increased during the cooling operation of FIG. 4, and the heat exchanging unit 43 is bypassed during the defrosting operation of FIG. A high-performance refrigerator can be obtained.

<第一・第二の気液分離器105a,105b>
また,実施形態1の冷蔵庫1では,図4に示すように,冷却器7と三方弁103の流入流出口103cの間に第一の気液分離器105aを備えるとともに,庫外凝縮器40と四方弁100の流入流出口100cの間に第二の気液分離器105bを備えている。
<First and second gas-liquid separators 105a and 105b>
Further, in the refrigerator 1 of the first embodiment, as shown in FIG. 4, the first gas-liquid separator 105 a is provided between the cooler 7 and the inflow / outflow port 103 c of the three-way valve 103, and the outside condenser 40 and A second gas-liquid separator 105 b is provided between the inflow / outflow port 100 c of the four-way valve 100.

図4の冷却運転時,庫外凝縮器40および壁面凝縮器41で放熱することで液状態となった冷媒は,冷却器7で吸熱することで気化する。ここで,圧縮機24ではガス状態の冷媒を圧縮するように設計しているが,冷却器7での熱交換が十分でなかった場合,冷媒の一部が気化できずに圧縮機24に液状態の冷媒が流入する場合がある。   In the cooling operation of FIG. 4, the refrigerant that has become a liquid state by radiating heat from the external condenser 40 and the wall surface condenser 41 is vaporized by absorbing heat by the cooler 7. Here, the compressor 24 is designed to compress the refrigerant in the gas state. However, if the heat exchange in the cooler 7 is not sufficient, a part of the refrigerant cannot be vaporized and the liquid is supplied to the compressor 24. The state refrigerant may flow in.

一方,図7の除霜運転時においても,冷媒は冷却器7で放熱して液化し庫外凝縮器40で吸熱して気化するが,庫外凝縮器40での熱交換が十分でなかった場合には同様に冷媒の一部が液状態であることが考えられる。   On the other hand, even during the defrosting operation of FIG. 7, the refrigerant dissipates heat by the cooler 7 and liquefies and absorbs heat by the external condenser 40 to vaporize, but heat exchange in the external condenser 40 is not sufficient. In some cases, a part of the refrigerant may be in a liquid state.

そこで,実施形態1の冷蔵庫1では,冷却器7と圧縮機24と間の流路に,冷却運転時に液体の冷媒が圧縮機24に流入することを抑制する第一の気液分離器105a(図4参照)を設け,さらに,庫外凝縮器40と圧縮機24間の流路に,除霜運転時に液体の冷媒が圧縮機24に流入することを抑制する第二の気液分離器105b(図7参照)を備えている。
これにより,冷却運転においても,また,ヒートポンプ除霜運転においても,圧縮機24に液状態の冷媒が流入することを抑制することができる。
Therefore, in the refrigerator 1 of the first embodiment, the first gas-liquid separator 105a (which suppresses the liquid refrigerant from flowing into the compressor 24 during the cooling operation into the flow path between the cooler 7 and the compressor 24. 4), and a second gas-liquid separator 105b that suppresses the flow of liquid refrigerant into the compressor 24 during the defrosting operation in the flow path between the external condenser 40 and the compressor 24. (See FIG. 7).
Thereby, it is possible to suppress the liquid refrigerant from flowing into the compressor 24 in both the cooling operation and the heat pump defrosting operation.

<除霜運転の作用効果・その理由等>
本実施形態1の冷蔵庫1は,ヒートポンプ除霜を可能とするとともに,電気ヒータ22を備えることで,ヒートポンプ除霜とヒータ除霜を併用した除霜運転を可能としている。除霜運転中は基本的に庫内を冷却できないため,その間,庫内の温度は上昇する。
<Effects and reasons of defrosting operation>
The refrigerator 1 according to the first embodiment enables heat pump defrosting and includes an electric heater 22 to enable defrosting operation using both heat pump defrosting and heater defrosting. During the defrosting operation, the inside of the cabinet cannot basically be cooled, so the temperature inside the cabinet rises during that time.

そのため,冷却器7の着霜量が多くなり除霜時間が長時間となった場合,庫内の温度が上昇し食品の温度が過度に高くなり,食品の保存性(鮮度)が低下することが考えられる。例えば,冷凍温度帯室60が0℃を超えると,冷凍食品の解凍が発生する。   Therefore, when the amount of frost formation in the cooler 7 is increased and the defrosting time is prolonged, the temperature in the refrigerator rises, the temperature of the food becomes excessively high, and the storage stability (freshness) of the food decreases. Can be considered. For example, when the freezing temperature zone 60 exceeds 0 ° C., the frozen food is thawed.

そこで,本実施形態1の冷蔵庫1では,複数の霜加熱手段(ヒートポンプ除霜とヒータ除霜と後記のファン除霜)を備えており,冷却器7の着霜量が多い場合においては霜加熱手段を併用することで,除霜時間を短縮して食品の過度な温度上昇を防止し,食品の保存性低下を抑制している。   Therefore, the refrigerator 1 of the first embodiment is provided with a plurality of frost heating means (heat pump defrosting, heater defrosting and fan defrosting described later), and when the frosting amount of the cooler 7 is large, frost heating is performed. By using the means together, the defrosting time is shortened to prevent an excessive increase in the temperature of the food, and the storage stability of the food is suppressed.

また,実施形態1の冷蔵庫1は,ヒートポンプ除霜を可能とするとともに,冷凍室ダンパ52(図2参照)を設けることで,ヒートポンプ除霜と後記のファン除霜を併用した除霜運転を可能としている。これにより,食品の保存性低下を抑えつつ省エネルギ性能が高い除霜運転を行うことができる。理由を以下で説明する。   In addition, the refrigerator 1 according to the first embodiment enables heat pump defrosting, and by providing a freezer damper 52 (see FIG. 2), enables defrosting operation using both heat pump defrosting and fan defrosting described later. It is said. Thereby, defrosting operation with high energy-saving performance can be performed while suppressing the storage stability of food. The reason will be explained below.

ファン除霜は,冷蔵室ダンパ50(図2参照)と野菜室ダンパ51(図3参照)の両方またはどちらか一方を開状態(本実施形態1では両ダンパを開状態の場合を例示),冷凍室ダンパ52を閉状態とし,冷蔵温度帯室61を冷却する際と同一の風路とし,庫内ファン9を駆動させる霜加熱手段である。   In the fan defrosting, both or one of the refrigerator compartment damper 50 (see FIG. 2) and the vegetable compartment damper 51 (see FIG. 3) is in an open state (in the first embodiment, the case where both dampers are in an open state), Frost heating means that drives the internal fan 9 with the freezer damper 52 closed and the same air path as when the refrigerated temperature zone 61 is cooled.

このとき,冷却器7および冷却器7に付着した霜(融解中温度:約0℃)と冷蔵温度帯室61(冷蔵室2と野菜室6との少なくとも何れか)の空気(温度:約3〜7℃)とで熱交換を行い,冷蔵温度帯室61の熱によって霜を加熱することができる。本実施形態1では,冷蔵室2と野菜室6との熱で冷却器7の霜を加熱する。   At this time, the frost (temperature during melting: about 0 ° C.) adhering to the cooler 7 and the cooler 7 and the air (temperature: about 3) of the refrigerated temperature zone 61 (at least one of the refrigerated room 2 and the vegetable room 6). -7 ° C.), and the frost can be heated by the heat of the refrigerated temperature zone 61. In this Embodiment 1, the frost of the cooler 7 is heated with the heat of the refrigerator compartment 2 and the vegetable compartment 6.

ここで,ファン除霜では,除霜のために外部から投入するエネルギは庫内ファン9の動力(消費電力1〜2W程度)のみであり,また霜を加熱するとともに冷蔵温度帯室61を霜の融解に起因する冷気で冷却することもできるため,ファン除霜は省エネルギ性能の高い霜加熱手段である。   Here, in the fan defrosting, the energy input from the outside for the defrosting is only the power of the internal fan 9 (power consumption is about 1 to 2 W), and the frost is heated and the refrigeration temperature zone 61 is frosted. Fan defrosting is a frost heating means with high energy-saving performance because it can be cooled with cold air caused by melting of the air.

一方,冷凍温度帯室60の冷却は行えないため,ファン除霜のみでは除霜運転が長時間となり,冷凍温度帯室60の温度が上昇し,食品の保存性が低下することが考えられる。
そこで,本実施形態1の冷蔵庫1では,ヒートポンプ除霜とファン除霜を併用する除霜を行っている。
On the other hand, since the freezing temperature zone chamber 60 cannot be cooled, it is considered that the defrosting operation takes a long time only with fan defrosting, the temperature of the freezing temperature zone chamber 60 rises, and the storage stability of food decreases.
Then, in the refrigerator 1 of this Embodiment 1, the defrost which uses heat pump defrost and fan defrost together is performed.

これにより,ファン除霜により除霜運転中も冷蔵温度帯室61を冷却器7の霜の冷熱で冷却して温度上昇を抑え,またヒートポンプ除霜とファン除霜を併用することで除霜時間を短縮して冷凍温度帯室60の温度上昇を低減している。したがって,食品の保存性低下を抑えつつ省エネルギ性能が高い除霜運転を行う冷蔵庫を得られる。   Thereby, even during the defrosting operation by the fan defrosting, the refrigeration temperature zone 61 is cooled by the cold heat of the frost of the cooler 7 to suppress the temperature rise, and the defrosting time can be obtained by using both the heat pump defrosting and the fan defrosting. The temperature rise of the refrigeration temperature zone chamber 60 is reduced by shortening. Therefore, it is possible to obtain a refrigerator that performs a defrosting operation with high energy saving performance while suppressing deterioration of food storage stability.

本実施形態1の冷蔵庫1は,図4に示すように,冷媒分岐部80aと壁面凝縮器41の間に二方弁104を備えている。また,図9(a)に示すように,冷却運転から除霜運転に切換える際に,二方弁104を開状態から閉状態に切換え(ステップS101),その他の切換え弁は冷却運転のままで,所定時間のN分間,例えば2分間,圧縮機24を駆動させている(ステップS102b)。これにより,ヒートポンプ除霜時に冷媒不足となって除霜効率が低下することを防ぐことができる。以下,理由を説明する。   As shown in FIG. 4, the refrigerator 1 according to the first embodiment includes a two-way valve 104 between the refrigerant branching portion 80 a and the wall condenser 41. Further, as shown in FIG. 9A, when switching from the cooling operation to the defrosting operation, the two-way valve 104 is switched from the open state to the closed state (step S101), and the other switching valves remain in the cooling operation. The compressor 24 is driven for a predetermined time of N minutes, for example, 2 minutes (step S102b). Thereby, it can prevent that a refrigerant | coolant becomes insufficient at the time of heat pump defrosting, and defrosting efficiency falls. The reason will be described below.

図7に示すように,壁面凝縮器41と第一のキャピラリチューブ42aと熱交換部43とは除霜運転中に使用しない部材である。
一方,これらは,図4の冷却運転中に熱交換および減圧を行うため,比較的長い冷媒流路を備えているので冷媒が多く存在しており,特に壁面凝縮器41において,ガス冷媒に比べて密度の大きい液状態の冷媒が多く存在する。
As shown in FIG. 7, the wall condenser 41, the first capillary tube 42 a, and the heat exchange unit 43 are members that are not used during the defrosting operation.
On the other hand, in order to perform heat exchange and decompression during the cooling operation of FIG. 4, a relatively long refrigerant flow path is provided, so that a large amount of refrigerant exists. There are many liquid refrigerants with high density.

そのため,図4に示す壁面凝縮器41内と第一のキャピラリチューブ42a内と熱交換部43内とに冷媒が残ったまま除霜運転を行うと,冷媒(熱媒体)が不足して除霜効率が低下することがある。   Therefore, if the defrosting operation is performed with the refrigerant remaining in the wall condenser 41, the first capillary tube 42a, and the heat exchanging unit 43 shown in FIG. Efficiency may be reduced.

そこで,本実施形態1の冷蔵庫1では,ヒートポンプ除霜による除霜運転を実施する前に,二方弁104を閉じて圧縮機24を駆動させている。これにより,壁面凝縮器41内と第一のキャピラリチューブ42a内と熱交換部43内の冷媒を,冷却運転および除霜運転の両運転で使用する庫外凝縮器40内と接続配管71内と接続配管72内とに集めることができる。したがって,本実施形態1の冷蔵庫1は,ヒートポンプ除霜時の冷媒不足を抑えることができ,ヒートポンプ除霜の効率低下を防ぐことができる。   Therefore, in the refrigerator 1 of the first embodiment, the compressor 24 is driven by closing the two-way valve 104 before performing the defrosting operation by the heat pump defrosting. As a result, the refrigerant in the wall condenser 41, the first capillary tube 42a, and the heat exchanging portion 43 is used in the external condenser 40 and the connection pipe 71 used in both the cooling operation and the defrosting operation. It can be collected in the connection pipe 72. Therefore, the refrigerator 1 of this Embodiment 1 can suppress the refrigerant shortage at the time of heat pump defrosting, and can prevent the efficiency fall of heat pump defrosting.

なお,冷蔵庫1では,壁面凝縮器41内と第一のキャピラリチューブ42a内と熱交換部43内の冷媒を回収するのに十分な時間として,本制御の実施時間を2分の場合を例示したが,2分に限られるものではなく,本制御の実施時間は,壁面凝縮器41内と第一のキャピラリチューブ42a内の冷媒流路やそれらを接続する接続配管の長さ,また冷媒封入量や圧縮機24の回転速度(回転数)に応じて適宜変更すればよい。例えば,冷媒流路や接続配管が長い場合,圧縮機24の回転速度が低い場合に実施時間を長く,冷媒流路や接続配管が短い場合,圧縮機24の回転速度が高い場合に実施時間を短くするとよい。   In the refrigerator 1, the case where the execution time of this control is 2 minutes is illustrated as a sufficient time for collecting the refrigerant in the wall condenser 41, the first capillary tube 42 a, and the heat exchange unit 43. However, it is not limited to 2 minutes, and the duration of this control is the length of the refrigerant flow path in the wall condenser 41 and the first capillary tube 42a, the connecting pipe connecting them, and the amount of refrigerant filled Or may be appropriately changed according to the rotation speed (rotation speed) of the compressor 24. For example, when the refrigerant flow path or connection pipe is long, the execution time is long when the rotation speed of the compressor 24 is low, and when the refrigerant flow path or connection pipe is short, the execution time is long when the rotation speed of the compressor 24 is high. It is better to shorten it.

さらに,本実施形態1の冷蔵庫1では,図9(a)に示すように,冷媒を回収した後に圧縮機24を停止(ステップS103)し,三方弁102の流入流出口102dと流入流出口102cとを連通状態に(ステップS104),三方弁103の流入口103aと流入流出口103cとを連通状態(ステップS105)に切換え,次に,三方弁101の流出口101bと流入流出口101cを連通状態(ステップS106)に切換え,所定時間N分間,例えば2分間その状態を維持する。   Furthermore, in the refrigerator 1 according to the first embodiment, as shown in FIG. 9A, after the refrigerant is recovered, the compressor 24 is stopped (step S103), and the inflow / outflow ports 102d and 102c of the three-way valve 102 are stopped. To the communication state (step S104), the inflow port 103a and the inflow / outflow port 103c of the three-way valve 103 are switched to the communication state (step S105), and then the outflow port 101b and the inflow / outflow port 101c of the three-way valve 101 are communicated. Switching to the state (step S106), the state is maintained for a predetermined time N minutes, for example, 2 minutes.

本実施形態1の冷蔵庫1では,前記のように,二方弁104を閉状態(図9(a)のステップS101)として所定時間N分間,例えば2分間圧縮機24を駆動させている(ステップS102a)。これにより,接続配管72は高圧となり,その他の冷媒流路は低圧となっている。   In the refrigerator 1 of the first embodiment, as described above, the two-way valve 104 is closed (step S101 in FIG. 9A), and the compressor 24 is driven for a predetermined time N minutes, for example, 2 minutes (step S101). S102a). As a result, the connection pipe 72 has a high pressure, and the other refrigerant flow paths have a low pressure.

その後,圧縮機24停止状態(図9(a)のステップS103)で,三方弁102の流入流出口102dと流入流出口102cを連通状態(ステップS104),三方弁103の流入口103aと流入流出口103cとを連通状態(ステップS105)とし,三方弁101を流入流出口101cと流出口101bを連通状態(ステップS106)とする。これにより,高温高圧の冷媒は,弁で流路を閉じている冷媒流路を除くその他の低圧である冷媒流路に流入する。   Thereafter, when the compressor 24 is stopped (step S103 in FIG. 9A), the inflow / outflow port 102d and the inflow / outflow port 102c of the three-way valve 102 are in communication with each other (step S104). The outlet 103c is brought into a communication state (step S105), and the three-way valve 101 is brought into a communication state (step S106). As a result, the high-temperature and high-pressure refrigerant flows into other low-pressure refrigerant flow paths except the refrigerant flow path that is closed by the valve.

したがって,動力を用いずとも,高温冷媒を冷却器7に流して霜を加熱することができ,除霜時の省エネルギ性能を向上させることができる。
なお,本実施形態1の冷蔵庫1では,接続配管72の冷媒が冷却器7に流入するのに十分な時間として,本制御の実施時間を2分の場合を例示したが,2分に限られるものではなく,本制御の実施時間は,冷媒流路の長さや冷媒封入量に応じて適宜変更すればよい。
Therefore, the frost can be heated by flowing the high-temperature refrigerant to the cooler 7 without using power, and the energy saving performance at the time of defrosting can be improved.
In the refrigerator 1 of the first embodiment, the execution time of this control is illustrated as 2 minutes as a sufficient time for the refrigerant in the connection pipe 72 to flow into the cooler 7, but is limited to 2 minutes. Instead, the duration of this control may be changed as appropriate according to the length of the refrigerant flow path and the amount of refrigerant filled.

さらに,本実施形態1の冷蔵庫1では,第一除霜モード(図8のステップS21)において,前回の除霜後に扉(2a〜6a)を開放していた累積時間を用いて,ヒータ除霜の実施の有無を判断している(図8のステップS3)。
これにより,長時間の除霜運転を防止しつつ,除霜運転の省エネルギ性能低下を最大限抑えることができる。理由を以下で説明する。
Furthermore, in the refrigerator 1 of the first embodiment, in the first defrosting mode (step S21 in FIG. 8), the heater defrosting is performed using the accumulated time during which the doors (2a to 6a) are opened after the previous defrosting. Is determined (step S3 in FIG. 8).
Thereby, the energy-saving performance fall of a defrost operation can be suppressed to the maximum, preventing a long-time defrost operation. The reason will be explained below.

電気ヒータ22によるヒータ除霜では,冷却器7の霜を加熱するための熱エネルギを全て電気ヒータ22に投入するエネルギから生成するため,損失がないとしても霜を加熱するエネルギと等しいエネルギを電気ヒータ22に投入する必要がある。   In the heater defrosting by the electric heater 22, all the heat energy for heating the frost of the cooler 7 is generated from the energy input to the electric heater 22. It is necessary to put in the heater 22.

これに対して,本実施形態1のファン除霜では,ファン動力の少ないエネルギで冷蔵温度帯室61の熱エネルギを得て,それを用いて霜を加熱することができる。また,ヒートポンプ除霜では,圧縮機24を駆動させるために投入したエネルギとともに,庫外凝縮器40より吸熱した外気の熱エネルギを用いて霜を加熱することができる。   On the other hand, in the fan defrosting of the first embodiment, the thermal energy of the refrigeration temperature zone chamber 61 can be obtained with less energy of the fan power, and the frost can be heated using it. Further, in the heat pump defrosting, the frost can be heated by using the energy input to drive the compressor 24 and the heat energy of the outside air absorbed by the external condenser 40.

したがって,ヒータ除霜は冷却器7の霜を加熱するための熱エネルギを全て投入するエネルギで賄うため,ファン除霜やヒートポンプ除霜に比べ省エネルギ性能の低い霜加熱手段といえ,省エネルギ性能面ではヒータ除霜を用いない方が好ましい。
一方,冷蔵庫1が食品を低温に保つことで食品の保存性を向上させていることを考えると,庫内を冷却できない除霜時間が過度に長くなってはいけない。
Therefore, the heater defrosting is covered by the energy to input all the heat energy for heating the frost of the cooler 7, and thus can be said to be a frost heating means having lower energy saving performance than fan defrosting or heat pump defrosting. In terms of surface, it is preferable not to use heater defrosting.
On the other hand, considering that the refrigerator 1 is improving the preservability of food by keeping the food at a low temperature, the defrosting time during which the inside of the refrigerator cannot be cooled should not be excessively long.

そこで,本実施形態1の冷蔵庫1では,前回の除霜後に,扉(2a〜6a)を開放していた累積時間からヒータ除霜の実施の必要性を判断し,必要に応じてヒータ除霜を実施する。
扉(2a〜6a)を開放していた累積時間が長いと,外気から庫内に水分が多く流入し,冷却器7に多く着霜している可能性があると判断して,ヒートポンプ除霜とともに,ヒータ除霜も用いることで除霜時間を短くする。
Therefore, in the refrigerator 1 of the first embodiment, after the previous defrosting, the necessity of heater defrosting is determined from the accumulated time during which the doors (2a to 6a) are opened, and the heater defrosting is performed as necessary. To implement.
If the accumulated time during which the doors (2a to 6a) are open is long, it is judged that there is a possibility that a large amount of moisture flows from the outside air into the cabinet and that a large amount of frost is formed on the cooler 7, and heat pump defrosting At the same time, the defrosting time is shortened by using heater defrosting.

一方,扉(2a〜6a)を開放していた累積時間が短い場合には,冷却器7への着霜は小量で,電気ヒータ22を用いずに短時間で除霜を完了できると判断して,ヒータ除霜を用いない除霜運転を行う。これにより,長時間の除霜運転を防止しつつ,除霜運転の省エネルギ性能の低下を最大限抑制することができる。   On the other hand, when the accumulated time during which the doors (2a to 6a) have been opened is short, it is determined that the frosting on the cooler 7 is small and the defrosting can be completed in a short time without using the electric heater 22. Then, defrosting operation is performed without using heater defrosting. Thereby, the fall of the energy-saving performance of a defrost operation can be suppressed to the maximum, preventing a long-time defrost operation.

なお,本実施形態1における制御は,ヒータ除霜の実施の有無のみを例示しているが,扉(2a〜6a)を開放していた累積時間によって,電気ヒータ22への入力電力を変化させてもよい。或いは,扉(2a〜6a)を開放していた累積時間によって電気ヒータ22の通電時間を変化せてもよい。すなわち,扉(2a〜6a)を開放していた累積時間によって電気ヒータ22への投入エネルギを変化させてもよい。   In addition, although control in this Embodiment 1 has illustrated only the presence or absence of implementation of heater defrost, the input electric power to the electric heater 22 is changed by the accumulation time which opened the door (2a-6a). May be. Alternatively, the energization time of the electric heater 22 may be changed according to the accumulated time during which the doors (2a to 6a) are opened. That is, the input energy to the electric heater 22 may be changed according to the accumulated time during which the doors (2a to 6a) are open.

本実施形態1の冷蔵庫1では,除霜運転開始時の外気温度センサで検出した出力値(外気温度)を用いて,第一除霜モードにおけるファン除霜の実施の有無を判断している。これにより,外気温度が高い場合において,除霜運転の省エネルギ性能を向上することができ,外気温度が低い場合においても,省エネルギ性能の低下を抑えることができる。理由を以下で説明する。   In the refrigerator 1 of the first embodiment, whether or not the fan defrosting is performed in the first defrosting mode is determined using the output value (outside air temperature) detected by the outside air temperature sensor at the start of the defrosting operation. As a result, when the outside air temperature is high, the energy saving performance of the defrosting operation can be improved, and even when the outside air temperature is low, a decrease in the energy saving performance can be suppressed. The reason will be explained below.

ファン除霜は,前記のように,冷蔵温度帯室61の空気と冷却器7の霜の間で熱交換することで冷却器7を加熱するため,除霜運転中も冷蔵温度帯室61の冷却を冷却器7の霜で行える。また,少ないエネルギで冷却器7を加熱できるため,省エネルギ性に優れた霜加熱手段である。   As described above, the fan defrosting heats the cooler 7 by exchanging heat between the air in the refrigeration temperature zone 61 and the frost in the cooler 7. Cooling can be performed by the frost of the cooler 7. Further, since the cooler 7 can be heated with less energy, it is a frost heating means excellent in energy saving.

一方,例えば外気温度が10℃未満と比較的低温の場合,冷蔵温度帯室61,特に野菜室6は,冷却器7による冷却を行わない場合においても所定の温度よりも過度に低温となってしまうことがある。所定の温度よりも過度に低温となった場合,例えば青果物に低温障害が発生したり,食品が凍結して食品の性質が変わったりすることが考えられる。そのため,野菜室6が過度に低温となった場合には,食品保存性の低下を抑えるために不図示の野菜室電気ヒータに通電して庫内を加熱する必要がある。   On the other hand, for example, when the outside air temperature is relatively low, such as less than 10 ° C., the refrigerated temperature zone 61, especially the vegetable compartment 6, becomes excessively lower than the predetermined temperature even when cooling by the cooler 7 is not performed. May end up. When the temperature is too low than the predetermined temperature, for example, a low temperature failure may occur in the fruits and vegetables, or the food may freeze and change the properties of the food. For this reason, when the vegetable compartment 6 becomes too cold, it is necessary to energize the vegetable compartment electric heater (not shown) to heat the interior in order to suppress a decrease in food storage stability.

したがって,外気温度が低い場合,ファン除霜を行って冷蔵温度帯室61を冷却すると,野菜室電気ヒータによって庫内を加熱することになるため,かえって省エネルギ性能を低下させることが考えられる。或いは,庫内を過度に冷却するため食品保存性の低下を招来する場合も考えられる。   Therefore, when the outside air temperature is low, if the refrigerator temperature zone 61 is cooled by performing fan defrosting, the inside of the cabinet is heated by the vegetable room electric heater, so that the energy saving performance may be lowered. Alternatively, it may be possible to reduce the food storage stability due to excessive cooling of the interior.

そこで,本実施形態1の冷蔵庫1では,外気温度センサの外気温度の測定値(出力)を用いてファン除霜の実施の有無を判断している。これにより,外気温度が高い場合においてはファン除霜を併用した省エネルギ性能の高い除霜運転を行うことができる一方,外気温度が低い場合においても野菜室電気ヒータによる加熱を抑えて省エネルギ性能の低下を抑制することができる。   Thus, in the refrigerator 1 of the first embodiment, the presence or absence of fan defrosting is determined using the measured value (output) of the outside air temperature of the outside temperature sensor. As a result, it is possible to perform defrosting operation with high energy-saving performance combined with fan defrosting when the outside air temperature is high, while suppressing heating by the vegetable room electric heater even when the outside air temperature is low. Can be suppressed.

なお,本実施形態1における制御では,ファン除霜実施の有無の二者択一としているが,冷蔵室2は冷却可能で野菜室6は冷却を回避したいといった場合は,冷蔵室ダンパ50を開状態で,野菜室ダンパ51を閉状態として冷蔵室2のみに送風するファン除霜を実施してもよい。或いはファン除霜の実施時間を短くしてもよい。   In the control according to the first embodiment, the fan defrosting is selected or not. However, when the refrigerator compartment 2 can be cooled and the vegetable compartment 6 is desired to avoid cooling, the refrigerator compartment damper 50 is opened. In the state, the vegetable room damper 51 may be closed and fan defrosting that blows air only to the refrigerator compartment 2 may be performed. Alternatively, the fan defrosting time may be shortened.

また,ファン除霜実施の有無は,外気温度センサの出力(外気温度)による判断に限られるものではなく,例えば冷蔵室温度センサ33の測定値(冷蔵室温度)および野菜室温度センサ33aの測定値(野菜室温度)を用いて判断することもでき,これらのセンサの出力により,冷蔵室2および野菜室6が十分に低温であると判断した場合,ファン除霜を実施しなければよい。   The presence or absence of fan defrosting is not limited to the judgment based on the output (outside temperature) of the outside air temperature sensor. For example, the measured value of the cold room temperature sensor 33 (cold room temperature) and the measurement of the vegetable room temperature sensor 33a. The value (vegetable room temperature) can also be used for the determination. If the output of these sensors determines that the refrigerator compartment 2 and the vegetable room 6 are sufficiently cold, fan defrosting may not be performed.

また,前回の除霜後からの野菜室電気ヒータの累積の通電時間によって判断してもよい。すなわち,当該累積の通電時間が多い場合には,野菜室6の温度が高めなので,ファン除霜を実施する一方,当該累積の通電時間が少ない場合には,野菜室6の温度が低めなので,ファン除霜を実施しないとよい。   Moreover, you may judge by the accumulation energization time of the vegetable room electric heater after the last defrost. That is, when the cumulative energization time is large, the temperature of the vegetable compartment 6 is high, so the fan defrosting is performed, whereas when the cumulative energization time is short, the temperature of the vegetable compartment 6 is low, It is better not to perform fan defrosting.

実施形態1の冷蔵庫1では,ヒートポンプ除霜から冷却運転に切換える際に,二方弁104は閉のままで,他の切換え弁を切換えて(図9(b)のステップS201〜204),所定時間N分間,例えば2分間圧縮機24を駆動させる(図9(b)のステップS205,206)。これにより,通常の冷却運転では使用しない第二のキャピラリチューブ42b内の冷媒を回収し,第二のキャピラリチューブ42b内に冷媒が残留することによる冷媒不足を防ぎ,冷却効率の低下を防ぐことができる。   In the refrigerator 1 according to the first embodiment, when switching from heat pump defrosting to cooling operation, the two-way valve 104 remains closed and the other switching valve is switched (steps S201 to S204 in FIG. 9B) to obtain a predetermined value. The compressor 24 is driven for time N minutes, for example, 2 minutes (steps S205 and S206 in FIG. 9B). As a result, the refrigerant in the second capillary tube 42b that is not used in the normal cooling operation is recovered, the refrigerant shortage due to the refrigerant remaining in the second capillary tube 42b is prevented, and the cooling efficiency is prevented from being lowered. it can.

なお,冷蔵庫1では,第二のキャピラリチューブ42b内の冷媒を回収するのに十分な時間として,本制御の実施時間を2分の場合を例示したが,2分に限られるものではなく,本制御の実施時間は,冷媒流路の長さや冷媒封入量,圧縮機の回転速度(数)に応じて適宜変更すればよい。例えば,冷媒流路の長さが長い場合,冷媒封入量が多い場合,圧縮機の回転速度が低い場合には,当該制御の実施時間を長くする一方,冷媒流路の長さが短い場合,冷媒封入量が少ない場合,圧縮機の回転速度が高い場合には,当該制御の実施時間を短くするとよい。   In the refrigerator 1, the case where the execution time of this control is 2 minutes is illustrated as a sufficient time for recovering the refrigerant in the second capillary tube 42 b, but is not limited to 2 minutes. The control execution time may be changed as appropriate according to the length of the refrigerant flow path, the refrigerant filling amount, and the rotational speed (number) of the compressor. For example, when the length of the refrigerant flow path is long, when the amount of refrigerant filled is large, when the rotation speed of the compressor is low, the time for performing the control is increased, while when the length of the refrigerant flow path is short, When the amount of refrigerant filled is small, or when the rotational speed of the compressor is high, the time for performing the control may be shortened.

本冷蔵庫1では,図8に示すように,第一除霜モード(ステップS21)を行い,第一除霜モード終了条件が満たされた場合(ステップS8でYes),常に庫内ファン9を停止状態(ステップS9)で除霜を行う第二除霜モード(ステップS22)を備えている。これにより,省エネルギ性能の高い除霜を実現する。以下,理由を説明する。   In the refrigerator 1, as shown in FIG. 8, the first defrost mode (step S21) is performed, and when the first defrost mode end condition is satisfied (Yes in step S8), the internal fan 9 is always stopped. A second defrosting mode (step S22) for performing defrosting in the state (step S9) is provided. This achieves high energy-saving defrosting. The reason will be described below.

庫内ファン9駆動によるファン除霜では,冷蔵温度帯室61の空気と冷却器7とで熱交換することにより冷却器7を加熱するが,冷却器7が冷蔵温度帯室61よりも高温の状態で冷蔵温度帯室61の空気と冷却器7が熱交換すると,冷却器7が冷却され冷蔵温度帯室61が加熱されることになる。したがって,冷却器7の除霜の妨げるになるだけでなく,熱交換して冷蔵温度帯室61に与えた熱量をその後の冷却運転で冷却する必要もあるため,省エネルギ性能の低下を招来する。   In fan defrosting by driving the internal fan 9, the cooler 7 is heated by exchanging heat between the air in the refrigerated temperature zone 61 and the cooler 7, but the cooler 7 is hotter than the refrigerated temperature zone 61. When the air in the refrigeration temperature zone 61 and the cooler 7 exchange heat in this state, the cooler 7 is cooled and the refrigeration temperature zone 61 is heated. Therefore, not only the defrosting of the cooler 7 is hindered, but also the amount of heat given to the refrigeration temperature zone 61 after heat exchange needs to be cooled in the subsequent cooling operation, resulting in a decrease in energy saving performance. .

一方,本実施形態1の冷蔵庫1では,冷却器7の温度が3℃を超えた場合,すなわち冷蔵温度帯室61の設定温度:約3〜7℃と同等またはそれ以上となった場合に,第一除霜モード(ステップS21)を終了とし,庫内ファン9を停止状態(図8のステップS9)として第二除霜モード(ステップS22)の除霜運転を行う。   On the other hand, in the refrigerator 1 of the first embodiment, when the temperature of the cooler 7 exceeds 3 ° C., that is, when the set temperature of the refrigeration temperature zone 61 is equal to or higher than about 3 to 7 ° C., The first defrosting mode (step S21) is terminated, the internal fan 9 is stopped (step S9 in FIG. 8), and the defrosting operation in the second defrosting mode (step S22) is performed.

これにより,第一除霜モード(ステップS21)でファン除霜を行っていたとしても,除霜運転中の冷蔵温度帯室61の加熱および冷却器7の冷却を抑制し,省エネルギ性能の高い除霜運転を行うことができる。   Thereby, even if the fan defrosting is performed in the first defrosting mode (step S21), the heating of the refrigeration temperature zone 61 and the cooling of the cooler 7 during the defrosting operation are suppressed, and the energy saving performance is high. A defrosting operation can be performed.

また,本冷蔵庫1における第二除霜モード(ステップS22)では,庫内ファン9を停止状態(ステップS9)とし,電気ヒータ22と圧縮機24を第一除霜モード(ステップS21)と同様の状態(ステップS10でNo)とする除霜運転,または庫内ファン9と圧縮機24を停止状態とし電気ヒータ22通電状態(ステップS9,ステップS11)とするヒータ除霜単独での除霜運転を選択して行う。これにより,霜の解け残りを防止しつつ,省エネルギ性能低下を最大限抑えた冷蔵庫1を得られる。理由を以下で説明する。   Moreover, in the 2nd defrost mode (step S22) in this refrigerator 1, the internal fan 9 is made into a stop state (step S9), and the electric heater 22 and the compressor 24 are the same as that of the 1st defrost mode (step S21). The defrosting operation in the state (No in step S10) or the defrosting operation in the heater defrosting alone in which the internal fan 9 and the compressor 24 are stopped and the electric heater 22 is energized (step S9, step S11). Select and do. Thereby, the refrigerator 1 which suppressed the energy-saving performance fall to the maximum while preventing the frost from remaining unmelted can be obtained. The reason will be explained below.

冷蔵庫本体1H(断熱箱体10)の壁面が氷点温度以下でかつ露点温度以下で着霜することを考慮すると,扉(2a〜6a)を開けて外気が庫内に流入し,庫内の水分が過度となった(増加した)場合には,低温である冷却器収納室8の壁面にも着霜することが考えられる。ここで,庫内ファン9で冷気を循環させる冷蔵庫1では,冷却運転を行うと冷却器7以外の壁面の霜は徐々に昇華していくが,長時間にわたって扉(2a〜6a)が開放されると,霜が昇華しきる前にさらに霜が増加し,徐々に霜が成長していく可能性がある。   Considering that the wall surface of the refrigerator main body 1H (the heat insulation box 10) frosts below the freezing point temperature and below the dew point temperature, the doors (2a to 6a) are opened and the outside air flows into the storage room, and moisture in the storage room Is excessive (increased), it is conceivable that frost is also formed on the wall surface of the cooler storage chamber 8 at a low temperature. Here, in the refrigerator 1 in which cold air is circulated by the internal fan 9, the frost on the wall surface other than the cooler 7 gradually sublimes when the cooling operation is performed, but the doors (2a to 6a) are opened for a long time. Then, before the frost is fully sublimated, the frost further increases and the frost may grow gradually.

一方,ヒートポンプ除霜は冷却器7をその内部の冷媒で直接加熱できる直接加熱手段であり,冷却器7を加熱する際のエネルギの損失が少ない除霜といえるが,冷却器7の壁面で熱を吸収することから冷却器7外部に放出できる熱は限られ冷却器7以外を加熱することは難しいといえる。また,冷却器7以外の箇所を加熱すると考えた場合,ヒートポンプ除霜とヒータ除霜を併用すると,冷却器7以外の箇所を加熱している間に,過度に冷却器7を加熱してしまう可能性があり,かえって省エネルギ性能が低下することがある   On the other hand, heat pump defrosting is a direct heating means that can directly heat the cooler 7 with the refrigerant inside, and can be said to be defrosting with little energy loss when the cooler 7 is heated. Therefore, it can be said that it is difficult to heat other than the cooler 7 because the heat that can be released to the outside of the cooler 7 is limited. Moreover, when it thinks that parts other than the cooler 7 are heated, when the heat pump defrost and the heater defrost are used together, the cooler 7 is excessively heated while the parts other than the cooler 7 are heated. There is a possibility that energy saving performance may be reduced.

そこで,本実施形態1の冷蔵庫1では,前回の除霜後に扉(2a〜6a)を開放していた累積時間が長時間となっていた場合,冷却器収納室8の壁面で霜が成長している可能性があると判断して(図8のステップS10でYes),圧縮機24と庫内ファン9を停止状態とし電気ヒータ22通電状態とするヒータ除霜を行い,冷却器7を過度に加熱することなく冷却器収納室8を加熱して霜の解け残りを防止している。   Therefore, in the refrigerator 1 of the first embodiment, frost grows on the wall surface of the cooler storage chamber 8 when the accumulated time of opening the doors (2a to 6a) after the previous defrosting is long. 8 (Yes in step S10 in FIG. 8), the heater 24 is defrosted with the compressor 24 and the internal fan 9 stopped and the electric heater 22 energized, and the cooler 7 is excessively moved. The cooler storage chamber 8 is heated without heating to prevent frost from remaining unmelted.

また,前回の除霜後に扉(2a〜6a)を開放していた累積時間が短時間であった場合,庫内ファン9を停止状態とし電気ヒータ22と圧縮機24を第一除霜モードと同様の状態として除霜運転を実施する(ステップS10でNo)。これにより,外部からのエネルギの吸収がない省エネルギ性能の悪いヒータ除霜の使用を抑え,外部からのエネルギの吸収があるヒートポンプ除霜による除霜運転,またはヒートポンプとヒータを併用した除霜運転を実施し,省エネルギ性能の高い除霜運転を行う。
したがって第二除霜モードを設けることで,霜の解け残りを防止しつつ,ヒータ除霜による省エネルギ性能の低下を最大限抑制した冷蔵庫1を得られる。
Moreover, when the accumulation time which opened the door (2a-6a) after the last defrost is short, the internal fan 9 is made into a stop state and the electric heater 22 and the compressor 24 are set to 1st defrost mode. A defrosting operation is performed as a similar state (No in step S10). This suppresses the use of heater defrosting that does not absorb energy from the outside and has poor energy saving performance, defrosting operation by heat pump defrosting that absorbs energy from outside, or defrosting operation that uses a heat pump and a heater in combination. To perform defrosting operation with high energy-saving performance.
Therefore, by providing the second defrosting mode, it is possible to obtain the refrigerator 1 that suppresses the decrease in energy saving performance due to the heater defrosting to the maximum while preventing the frost from remaining unmelted.

<<実施形態2>>
次に,実施形態2の冷蔵庫1の冷媒流路構成に関し,図15を参照して説明する。なお,実施形態1と同一の構成要素については,同一符号を付して示し,説明を省略する。
図15,図16は,それぞれ実施形態2に関わる冷蔵庫の冷凍サイクル(冷媒流路)RS2の構成を示す図であり,図15は冷却運転時の冷媒流路を太線で示し,図16は除霜運転時の冷媒流路を太線で示している。
<< Embodiment 2 >>
Next, the refrigerant flow path configuration of the refrigerator 1 of Embodiment 2 will be described with reference to FIG. In addition, about the component same as Embodiment 1, it attaches | subjects and shows the same code | symbol, and abbreviate | omits description.
FIGS. 15 and 16 are diagrams showing the configuration of the refrigeration cycle (refrigerant flow path) RS2 of the refrigerator according to the second embodiment, respectively. FIG. 15 shows the refrigerant flow path during the cooling operation by bold lines, and FIG. The refrigerant flow path at the time of frost operation is indicated by a thick line.

実施形態2の冷蔵庫1では,気液分離器105cを,四方弁100の流出口100bと圧縮機24の間に配設している。これにより,低コストで冷却運転中と除霜運転中の圧縮機24への液状態の冷媒流入を防止することができる。以下,理由を説明する。   In the refrigerator 1 according to the second embodiment, the gas-liquid separator 105 c is disposed between the outlet 100 b of the four-way valve 100 and the compressor 24. Thereby, it is possible to prevent the refrigerant in the liquid state from flowing into the compressor 24 during the cooling operation and the defrosting operation at low cost. The reason will be described below.

四方弁100の流出口100bから圧縮機24までの冷媒流路は,冷却運転中も除霜運転中も同方向に冷媒を流し,また常に吸熱部(冷却運転における冷却器7,ヒートポンプ除霜運転における庫外凝縮器40)と圧縮機24の間の流路となる。また,前記の実施形態1で述べたように,圧縮機24ではガス状態の冷媒を圧縮するように設計しているため,圧縮機24への液状態の冷媒流入を抑制することが望ましい。そこで,四方弁100の流出口100bと圧縮機24の間に気液分離器105cを設けることで,冷却運転と除霜運転の何れの状態においても,圧縮機24への液状態の冷媒流入を抑制することができる。   The refrigerant flow path from the outlet 100b of the four-way valve 100 to the compressor 24 allows the refrigerant to flow in the same direction during the cooling operation and the defrosting operation, and always absorbs heat (the cooler 7 in the cooling operation, the heat pump defrosting operation). The flow path between the external condenser 40) and the compressor 24 in FIG. Further, as described in the first embodiment, since the compressor 24 is designed to compress the refrigerant in the gas state, it is desirable to suppress the inflow of the liquid refrigerant to the compressor 24. Therefore, by providing the gas-liquid separator 105c between the outlet 100b of the four-way valve 100 and the compressor 24, the refrigerant in the liquid state can flow into the compressor 24 in both the cooling operation and the defrosting operation. Can be suppressed.

さらに,実施形態1の冷蔵庫1のように,図4に示す2つの気液分離器105a,105bを用いる必要がなく,1つの気液分離器105cで常に圧縮機24への液体状態の冷媒流入を抑制することができる。したがって,部品点数が削減され低コストで,冷却運転(図15参照)においても除霜運転(図16参照)においても圧縮機24への液状態の冷媒流入を抑制(防止)することができる。   Furthermore, unlike the refrigerator 1 of the first embodiment, it is not necessary to use the two gas-liquid separators 105a and 105b shown in FIG. 4, and the liquid refrigerant always flows into the compressor 24 by the one gas-liquid separator 105c. Can be suppressed. Therefore, the number of parts can be reduced and the cost can be reduced, and inflow of liquid refrigerant to the compressor 24 can be suppressed (prevented) in both the cooling operation (see FIG. 15) and the defrosting operation (see FIG. 16).

<<実施形態3>>
次に,実施形態3の冷蔵庫1の冷媒流路構成に関し,図17,図18を参照して説明する。なお,実施形態1と同一の構成要素については,同一符号を付して示し,説明を省略する。
図17および図18は,それぞれ実施形態3に関わる冷蔵庫1の冷凍サイクル(冷媒流路)RS3の構成を示す図であり,図17は冷却運転時の冷媒流路を太線で示し,図18は除霜運転時の冷媒流路を太線で示している。
<< Embodiment 3 >>
Next, the refrigerant flow path structure of the refrigerator 1 of Embodiment 3 is demonstrated with reference to FIG. 17, FIG. In addition, about the component same as Embodiment 1, it attaches | subjects and shows the same code | symbol, and abbreviate | omits description.
FIG. 17 and FIG. 18 are diagrams showing the configuration of the refrigeration cycle (refrigerant flow path) RS3 of the refrigerator 1 according to the third embodiment. FIG. 17 shows the refrigerant flow path during the cooling operation by a bold line. The refrigerant flow path during the defrosting operation is indicated by a thick line.

実施形態3の冷蔵庫1では,冷却運転用キャピラリチューブ42cと除霜運転用キャピラリチューブ42dと三方弁111を備え,三方弁111の流出口111bと冷却運転用キャピラリチューブ42cを接続する接続配管75aと,三方弁111の流入口111aと除霜運転用キャピラリチューブ42dを接続する接続配管75bを備える。また,冷却運転用キャピラリチューブ42cと熱交換するとともに除霜運転用キャピラリチューブ42dと熱交換しない熱交換部43を備えている。   The refrigerator 1 of Embodiment 3 includes a cooling operation capillary tube 42c, a defrosting operation capillary tube 42d, and a three-way valve 111, and a connection pipe 75a that connects the outlet 111b of the three-way valve 111 and the cooling operation capillary tube 42c. , A connecting pipe 75b for connecting the inlet 111a of the three-way valve 111 and the capillary tube 42d for defrosting operation is provided. Further, a heat exchanging portion 43 that exchanges heat with the cooling operation capillary tube 42c and does not exchange heat with the defrosting operation capillary tube 42d is provided.

三方弁111は,1つの流入口111aと,1つの流出口111bと,1つの流入流出口111cを備えており,流入口111aまたは流出口111bと,流入流出口111cとを連通させることができる部材である。流入口111a,流出口111b,流入流出口111cは,それぞれ接続配管75b,75a,74と接続されている。   The three-way valve 111 includes one inflow port 111a, one outflow port 111b, and one inflow outflow port 111c, and can connect the inflow port 111a or the outflow port 111b with the inflow outflow port 111c. It is a member. The inflow port 111a, the outflow port 111b, and the inflow / outflow port 111c are connected to connection pipes 75b, 75a, and 74, respectively.

そして,図17の冷却運転時には,三方弁102の流入流出口111cと流出口111bを連通状態として,冷却運転用キャピラリチューブ42cを使用する。
図18のヒートポンプ除霜運転では,三方弁111の流入流出口111cと流入口111aを連通状態として,除霜運転用キャピラリチューブ42dを使用するようにしている。これにより,低コストで,効率の高い冷却運転を行うとともにヒートポンプ除霜の効率も向上させることができる。理由を以下で説明する。
In the cooling operation of FIG. 17, the inflow / outflow port 111c and the outflow port 111b of the three-way valve 102 are brought into communication with each other and the cooling operation capillary tube 42c is used.
In the heat pump defrosting operation of FIG. 18, the inlet / outlet port 111c and the inlet port 111a of the three-way valve 111 are in communication with each other and the defrosting operation capillary tube 42d is used. Thereby, it is possible to perform a highly efficient cooling operation at low cost and to improve the efficiency of heat pump defrosting. The reason will be explained below.

実施形態1で述べたように,冷却運転と除霜運転で適切な絞り量は異なる。そこで,冷却運転と除霜運転でそれぞれに適切な絞り量を備えたキャピラリチューブ42(42c,42d)を用いることで,効率の高い冷却運転を行うことができるとともに,効率の高いヒートポンプ除霜による除霜運転も行うことができる。
なお,具体的には実施形態1で述べたように,冷却運転で使用するキャピラリチューブ42cの絞りに比べ,除霜運転で使用するキャピラリチューブ42dの絞りを小さくするとよい。
As described in the first embodiment, the appropriate throttle amount is different between the cooling operation and the defrosting operation. Therefore, by using the capillary tubes 42 (42c, 42d) each having an appropriate throttle amount in the cooling operation and the defrosting operation, it is possible to perform a highly efficient cooling operation and to perform high-efficiency heat pump defrosting. A defrosting operation can also be performed.
Specifically, as described in the first embodiment, the capillary tube 42d used in the defrosting operation may be made smaller than the capillary tube 42c used in the cooling operation.

また,図17の冷却運転時の冷凍サイクルRS3を考えた場合,前記のように,冷却器7の前後で冷却運転用キャピラリチューブ42cと熱交換をする熱交換部43を備えることで冷却効率が向上するが,図18のヒートポンプ除霜による除霜運転時の冷凍サイクルRS3を考えた場合,除霜運転用キャピラリチューブ42dと熱交換する熱交換部43を用いると圧縮機24から吐出した高温高圧の冷媒の熱は,冷却器7に伝わる前に熱交換部43からキャピラリチューブ42dに移り,除霜効率は低下する。   Further, when considering the refrigeration cycle RS3 during the cooling operation of FIG. 17, the cooling efficiency is improved by providing the heat exchanging portion 43 for exchanging heat with the cooling operation capillary tube 42c before and after the cooler 7, as described above. However, when the refrigeration cycle RS3 during the defrosting operation by the heat pump defrosting of FIG. 18 is considered, the high-temperature and high-pressure discharged from the compressor 24 when the heat exchange unit 43 that exchanges heat with the capillary tube 42d for the defrosting operation is used. The heat of the refrigerant is transferred from the heat exchanging portion 43 to the capillary tube 42d before being transmitted to the cooler 7, and the defrosting efficiency is lowered.

そのため,図17の冷却運転ではキャピラリチューブ42cと熱交換部43で熱交換を行い,図18のヒートポンプ除霜運転ではキャピラリチューブ42dと熱交換部43で熱交換は行わないように構成すれば,除霜運転時の効率低下を抑制しながら,冷却運転の効率を向上させることができる。   Therefore, in the cooling operation of FIG. 17, heat exchange is performed by the capillary tube 42c and the heat exchange unit 43, and heat exchange is not performed by the capillary tube 42d and the heat exchange unit 43 in the heat pump defrosting operation of FIG. The efficiency of the cooling operation can be improved while suppressing a decrease in efficiency during the defrosting operation.

そこで,実施形態3の冷蔵庫1では,熱交換部43と熱交換を行う冷却運転用キャピラリチューブ42cと,熱交換部43とは熱交換を行わず,しかも冷却運転用キャピラリチューブ42cよりも絞りが小さい除霜運転用キャピラリチューブ42dと,それらを制御する三方弁111を備えている。   Therefore, in the refrigerator 1 of the third embodiment, the cooling operation capillary tube 42c that performs heat exchange with the heat exchange unit 43 and the heat exchange unit 43 do not perform heat exchange, and the aperture is narrower than the cooling operation capillary tube 42c. A small defrosting operation capillary tube 42d and a three-way valve 111 for controlling them are provided.

そして,図17の冷却運転時には,三方弁111の流出口111bと流入流出口111cとを連通状態として,冷却運転用キャピラリチューブ42cのみを使用する。一方,図18のヒートポンプ除霜運転時には,三方弁111の流入口111aと流入流出口111cとを連通状態として,除霜運転用キャピラリチューブ42dのみを使用する。   In the cooling operation of FIG. 17, the outlet 111b and the inlet / outlet 111c of the three-way valve 111 are in communication with each other, and only the cooling operation capillary tube 42c is used. On the other hand, in the heat pump defrosting operation of FIG. 18, only the defrosting operation capillary tube 42d is used with the inlet 111a and the inlet / outlet 111c of the three-way valve 111 in communication.

これらにより,本実施形態3の冷蔵庫1では,キャピラリチューブ42の絞りの大きさと,キャピラリチューブ42と熱交換部43の熱交換を行うか否かの双方の面で,冷却運転とともにヒートポンプ除霜による除霜運転も高い効率とすることができる。   Thus, in the refrigerator 1 according to the third embodiment, the cooling operation and the heat pump defrosting are performed together with the cooling operation in terms of both the size of the capillary tube 42 and whether to exchange heat between the capillary tube 42 and the heat exchange unit 43. The defrosting operation can also be made highly efficient.

さらに,実施形態1の冷蔵庫1では2つの三方弁102,103(図4参照)により制御しているのに対し,実施形態3の冷蔵庫1では三方弁111のみで,キャピラリチューブ42の絞りの大きさと,キャピラリチューブ42と熱交換部43の熱交換を行うか否かを制御できるため,実施形態1の冷蔵庫1に比べ部品点数が削減され,コストを低減できる。   Further, in the refrigerator 1 of the first embodiment, the control is performed by the two three-way valves 102 and 103 (see FIG. 4), whereas in the refrigerator 1 of the third embodiment, only the three-way valve 111 is used and the size of the restriction of the capillary tube 42 is increased. In addition, since it is possible to control whether heat exchange is performed between the capillary tube 42 and the heat exchanging unit 43, the number of parts can be reduced and the cost can be reduced as compared with the refrigerator 1 of the first embodiment.

また,三方弁111は,三方弁101と同様に,流入口,流出口,流入出口がそれぞれ1つずつでよいため,流入流出口を2つ備える実施形態1の三方弁102(図4参照)に比べ構造が簡素であり,低コストの三方弁を用いることも可能である。   Moreover, since the three-way valve 111 may have one inflow port, one outflow port, and one inflow / outlet port, similarly to the three-way valve 101, the three-way valve 102 of the first embodiment having two inflow / outflow ports (see FIG. 4). Compared to, the structure is simpler and it is possible to use a low-cost three-way valve.

<<実施形態4>>
次に,実施形態4の冷蔵庫1の冷凍サイクルRS4の冷媒流路の構成に関し,図19と図20を用いて説明する。なお,実施形態1と同一の構成要素については,同一符号を付して示し,説明を省略する。また,他の実施形態に共通して得られる効果も省略する。
図19および図20は,実施形態4に関わる冷蔵庫の冷凍サイクル(冷媒流路)RS4の構成を示す図であり,図19は冷却運転時の冷媒流路を太線で示し,図20は除霜運転時の冷媒流路を太線で示している。
<< Embodiment 4 >>
Next, the configuration of the refrigerant flow path of the refrigeration cycle RS4 of the refrigerator 1 of Embodiment 4 will be described with reference to FIGS. 19 and 20. In addition, about the component same as Embodiment 1, it attaches | subjects and shows the same code | symbol, and abbreviate | omits description. Also, effects obtained in common with other embodiments are omitted.
19 and 20 are diagrams showing a configuration of a refrigeration cycle (refrigerant flow path) RS4 of the refrigerator according to the fourth embodiment. FIG. 19 shows a refrigerant flow path in a cooling operation by a bold line, and FIG. 20 shows defrosting. The refrigerant flow path during operation is indicated by a thick line.

図4,図7に示した実施形態1の冷凍サイクルRS1と比べると,庫外凝縮器40,二方弁104,三方弁101,冷媒分岐部80aを設けず,四方弁100,第二の気液分離器105b,壁面凝縮器41,三方弁102が順に接続配管72’を介して接続されている。   Compared with the refrigeration cycle RS1 of the first embodiment shown in FIGS. 4 and 7, the external condenser 40, the two-way valve 104, the three-way valve 101, and the refrigerant branching portion 80a are not provided, but the four-way valve 100, the second gas The liquid separator 105b, the wall condenser 41, and the three-way valve 102 are sequentially connected via a connection pipe 72 ′.

図19の冷却運転時では,太線で示すように,四方弁100は流入口100aと流入流出口100cとを連通状態とするとともに流出口100bと流入流出口100dとを連通状態とし,三方弁102は流出口102bと流入流出口102cとを連通状態とし,三方弁103は流出口103bと流入流出口103cとを連通状態とする。   In the cooling operation of FIG. 19, as shown by the thick line, the four-way valve 100 brings the inlet 100a and the inflow / outflow port 100c into communication with each other, and connects the outflow port 100b and the inflow / outflow port 100d with each other. Is in communication between the outlet 102b and the inflow outlet 102c, and the three-way valve 103 is in communication between the outlet 103b and the inflow outlet 103c.

これにより,圧縮機24により高温高圧となった冷媒は,壁面凝縮器41にて放熱し,第一のキャピラリチューブ42aに流入して減圧され,冷却器7に流入して蒸発して吸熱する。そして,熱交換部43でキャピラリチューブ42aと熱交換した後に,圧縮機24に戻る。   As a result, the high-temperature and high-pressure refrigerant by the compressor 24 dissipates heat in the wall condenser 41, flows into the first capillary tube 42a, is depressurized, flows into the cooler 7, and evaporates to absorb heat. Then, the heat exchange unit 43 exchanges heat with the capillary tube 42 a, and then returns to the compressor 24.

図20のヒートポンプ除霜運転時では,太線で示すように,四方弁100は流入口100aと流入流出口100dとを連通状態とするとともに,流出口100bと流入流出口100cとを連通状態とし,三方弁102は流入流出口102dと流入流出口102cとを連通状態とし,三方弁103は流入流入口103aと流出口103cとを連通状態とする。   In the heat pump defrosting operation of FIG. 20, as shown by the thick line, the four-way valve 100 brings the inlet 100a and the inflow / outlet 100d into communication, and connects the outflow 100b and the inflow / outflow 100c, The three-way valve 102 communicates the inflow / outflow port 102d and the inflow / outflow port 102c, and the three-way valve 103 communicates the inflow / outflow port 103a and the outflow port 103c.

これにより,圧縮機24により高温高圧となった冷媒は,冷却器7にて放熱し,第二のキャピラリチューブ42bに流入して減圧され,壁面凝縮器41に流入して蒸発し吸熱した後に圧縮機24に戻る。   As a result, the refrigerant that has become high temperature and high pressure by the compressor 24 dissipates heat in the cooler 7, flows into the second capillary tube 42b, is depressurized, flows into the wall condenser 41, evaporates and absorbs heat, and then is compressed. Return to machine 24.

ここまで,実施形態4の冷蔵庫1の構成について述べたが,次に本実施形態4に関わる冷蔵庫1による効果について説明する。
実施形態4の冷蔵庫1では,第一のキャピラリチューブ42aと第二のキャピラリチューブ42bと三方弁102を備え,三方弁102によって,冷却運転時は第一のキャピラリチューブ42aを,ヒートポンプ除霜運転時には第一のキャピラリチューブ42aに比べ絞りの小さい第二のキャピラリチューブ42bを用いる構成となっている。
Up to this point, the configuration of the refrigerator 1 according to the fourth embodiment has been described. Next, effects of the refrigerator 1 according to the fourth embodiment will be described.
The refrigerator 1 of the fourth embodiment includes a first capillary tube 42a, a second capillary tube 42b, and a three-way valve 102. The three-way valve 102 allows the first capillary tube 42a to be used during a cooling operation and the heat pump defrosting operation. The second capillary tube 42b having a smaller aperture than the first capillary tube 42a is used.

これにより,冷蔵庫壁面の結露を抑えつつ,省エネルギ性能の高い除霜を実現することができる。理由を以下で説明する。
まず,前記のように図14(a)の冷却運転を考えると,冷却器7での冷媒の蒸発温度を所定の温度以下(冷凍温度帯室60の冷凍温度以下)とするためにはP_4Aを十分に低くする必要があり,またP_4Aを低くする際には減圧を大きくできるので絞りを大きくして対応することが望ましい。
Thereby, defrosting with high energy saving performance can be realized while suppressing dew condensation on the refrigerator wall surface. The reason will be explained below.
First, considering the cooling operation of FIG. 14A as described above, in order to set the evaporation temperature of the refrigerant in the cooler 7 to a predetermined temperature or lower (below the freezing temperature of the freezing temperature zone 60), P_4A is set. It is necessary to make it sufficiently low, and when P_4A is made low, the pressure reduction can be increased, so it is desirable to cope with a larger aperture.

一方,除霜運転に絞りの大きいキャピラリチューブ42を用いると,図14(b)で示すようにP_4Bが低くなり,吸熱を行う壁面凝縮器41が低温となる。そのため壁面凝縮器41と熱交換する冷蔵庫壁面も低温となり,結露し易くなる。   On the other hand, when the capillary tube 42 having a large throttle is used for the defrosting operation, as shown in FIG. 14B, P_4B becomes low, and the wall condenser 41 that performs heat absorption becomes low temperature. Therefore, the refrigerator wall surface that exchanges heat with the wall surface condenser 41 also has a low temperature and is likely to condense.

そこで,本実施形態4の冷蔵庫1では,図20の除霜運転時に三方弁102を切換えて絞りの小さい第二のキャピラリチューブ42bを用いるようにしている。これにより,図14(b)および図14(c)に示すようにP_4Bに比べP_4Cが高くなり,蒸発温度が高くなる。したがって,冷蔵庫壁面の温度が比較的高温となって結露し難くなるため,冷蔵庫壁面の結露を抑え,かつ省エネルギ性能が高い除霜運転を実施することができる。   Therefore, in the refrigerator 1 of the fourth embodiment, the second capillary tube 42b having a small throttle is used by switching the three-way valve 102 during the defrosting operation of FIG. Thereby, as shown in FIG. 14B and FIG. 14C, P_4C becomes higher than P_4B, and the evaporation temperature becomes higher. Therefore, since the temperature of the refrigerator wall surface is relatively high and it is difficult for condensation to occur, it is possible to perform defrosting operation that suppresses condensation on the refrigerator wall surface and has high energy saving performance.

さらに,実施形態1の冷蔵庫1と同様に,除霜運転時に絞りの小さい第二のキャピラリチューブ42bを用いることで,絞りの大きい第一のキャピラリチューブ42aを用いた場合に比べて霜を加熱するエネルギに対する投入エネルギの割合を表すCOP_Hが高くなり,省エネルギ性能が高い除霜とすることができる。   Furthermore, similarly to the refrigerator 1 of the first embodiment, the frost is heated by using the second capillary tube 42b having a small throttle during the defrosting operation as compared with the case of using the first capillary tube 42a having a large throttle. COP_H representing the ratio of input energy to energy increases, and defrosting with high energy saving performance can be achieved.

ここで,本実施形態4の冷蔵庫1では凝縮器を壁面凝縮器41のみとしたが,実施形態1と同様に庫外凝縮器40(図4参照)を備えてもよい。また,本実施形態4の冷蔵庫1では,絞りの大きさの変更手法として2つのキャピラリチューブを用いたが,キャピラリチューブの数は2つに限られるものではなく,3つ以上備えてもよい。
なお,複数のキャピラリチューブ42a,42bに代替して,減圧手段として,膨張弁等の絞りの調整ができる減圧手段を用いても同様の効果を奏する。
Here, in the refrigerator 1 of the fourth embodiment, only the wall surface condenser 41 is used as the condenser. However, as in the first embodiment, an external condenser 40 (see FIG. 4) may be provided. In the refrigerator 1 of the fourth embodiment, two capillary tubes are used as a method for changing the size of the throttle. However, the number of capillary tubes is not limited to two, and three or more capillary tubes may be provided.
It should be noted that the same effect can be obtained by using a pressure reducing means capable of adjusting the throttle such as an expansion valve as a pressure reducing means instead of the plurality of capillary tubes 42a and 42b.

<<実施形態5>>
次に,実施形態5の冷蔵庫1に関し,図21から図25を用いて説明する。なお,実施形態1と同一の構成要素については,同一符号を付して示し説明を省略する。また,他の実施形態と共通して奏する効果も省略する。
図21は,実施形態5に関わる冷蔵庫1の冷却運転時の冷凍サイクル(冷媒流路)RS5の構成を太線で示す図である。
<< Embodiment 5 >>
Next, the refrigerator 1 of Embodiment 5 is demonstrated using FIGS. 21-25. In addition, about the component same as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. Also, effects that are shared with other embodiments are omitted.
FIG. 21 is a diagram illustrating the configuration of the refrigeration cycle (refrigerant flow path) RS5 during the cooling operation of the refrigerator 1 according to the fifth embodiment with a bold line.

三方弁201は,1つ流入口201aと,2つの流出口201b,201eとを備えており,流入口201aと,流出口201bまたは流出口201eとを連通させることができる部材である。流入口201a,流出口201b,流出口201eは,それぞれ接続配管91,92,93に接続されている。   The three-way valve 201 includes one inflow port 201a and two outflow ports 201b and 201e, and is a member capable of communicating the inflow port 201a with the outflow port 201b or the outflow port 201e. The inflow port 201a, the outflow port 201b, and the outflow port 201e are connected to connection pipes 91, 92, and 93, respectively.

また,三方弁202は,2つの流入口202a,202fと,1つの流出口202bとを備えており,流入口202aまたは流入口202fと,流出口202bとを連通させることができる部材である。流入口202a,流入口202f,流出口202bは,それぞれ接続配管92,93,94に接続されている。   The three-way valve 202 includes two inlets 202a and 202f and one outlet 202b, and is a member that allows the inlet 202a or the inlet 202f and the outlet 202b to communicate with each other. The inflow port 202a, the inflow port 202f, and the outflow port 202b are connected to connection pipes 92, 93, and 94, respectively.

圧縮機24の吐出側24oと接続している接続配管91は,他端を三方弁201の流入口201aに接続している。接続配管92は,順に三方弁201の流出口201b,壁面凝縮器41,冷却運転用キャピラリチューブ42c,冷却器7,第一の気液分離器105a,熱交換部43,三方弁202の流入口202aを接続している。接続配管93は,順に三方弁201の流出口201e,冷却器7,除霜運転用キャピラリチューブ42d,除霜運転用冷却器200,第二の気液分離器105b,三方弁202の流入口202fを接続している。接続配管94は,三方弁202の流出口202bと圧縮機24の吸込口24iを接続している。   The other end of the connection pipe 91 connected to the discharge side 24 o of the compressor 24 is connected to the inlet 201 a of the three-way valve 201. The connection pipe 92 includes an outlet 201b of the three-way valve 201, a wall condenser 41, a cooling capillary tube 42c, a cooler 7, a first gas-liquid separator 105a, a heat exchanger 43, and an inlet of the three-way valve 202. 202a is connected. The connection pipe 93 includes an outlet 201e of the three-way valve 201, a cooler 7, a defrosting operation capillary tube 42d, a defrosting operation cooler 200, a second gas-liquid separator 105b, and an inlet 202f of the three-way valve 202. Is connected. The connection pipe 94 connects the outlet 202 b of the three-way valve 202 and the suction port 24 i of the compressor 24.

以上が,本実施形態5の冷蔵庫1の冷凍サイクルRS5の構成であるが,次に,図21の冷却運転時における冷媒流路について説明する。
冷却運転時には,図21の太線で示すように,三方弁201は流入口201aと流出口201bとを連通状態とし,三方弁202は流入口202aと流出口202bとを連通状態とする。
The above is the configuration of the refrigeration cycle RS5 of the refrigerator 1 of the fifth embodiment. Next, the refrigerant flow path during the cooling operation of FIG. 21 will be described.
During the cooling operation, as shown by a thick line in FIG. 21, the three-way valve 201 brings the inlet 201a and the outlet 201b into communication, and the three-way valve 202 brings the inlet 202a and outlet 202b into communication.

圧縮機24により高温高圧となった冷媒は,接続配管91を介して三方弁201の流入口201aに流入し,流出口201bと接続配管92を介して,壁面凝縮器41に流入し,壁面凝縮器41において放熱する。次に,冷媒は冷却運転用キャピラリチューブ42cに流入して減圧され,冷却器7に流入して蒸発し吸熱される。その後,冷媒は第一の気液分離器105a,熱交換部43,三方弁202の流入口202a,流出口202b,接続配管94を介して圧縮機24に戻る。   The refrigerant that has become high temperature and high pressure by the compressor 24 flows into the inlet 201a of the three-way valve 201 through the connection pipe 91, flows into the wall condenser 41 through the outlet 201b and the connection pipe 92, and condenses on the wall. The heat is dissipated in the vessel 41. Next, the refrigerant flows into the cooling operation capillary tube 42c and is depressurized, and flows into the cooler 7 to evaporate and absorb heat. Thereafter, the refrigerant returns to the compressor 24 via the first gas-liquid separator 105 a, the heat exchange unit 43, the inlet 202 a and the outlet 202 b of the three-way valve 202, and the connection pipe 94.

次に,図22の除霜運転時における冷凍サイクルRS5の基本動作を説明する。図22は,実施形態5に関わる冷蔵庫1の除霜運転時の冷凍サイクル(冷媒流路)RS5の構成を太線で示す図である。
除霜運転時では,図22の太線で示すように,三方弁201は流入口201aと流出口201eを連通状態とし,三方弁202は流入口202fと流出口202bを連通状態とする。
Next, the basic operation of the refrigeration cycle RS5 during the defrosting operation of FIG. 22 will be described. FIG. 22 is a diagram showing the configuration of the refrigeration cycle (refrigerant flow path) RS5 during the defrosting operation of the refrigerator 1 according to the fifth embodiment with a thick line.
During the defrosting operation, as shown by the thick line in FIG. 22, the three-way valve 201 brings the inlet 201a and the outlet 201e into communication, and the three-way valve 202 puts the inlet 202f and outlet 202b into communication.

圧縮機24により高温高圧となった冷媒は,接続配管91から三方弁201の流入口201aに流入し,流出口201eと接続配管93を介して,冷却器7に流入する。ここで,冷媒は冷却器7で放熱するため,冷却器7は加熱される。次に,冷媒は除霜運転用キャピラリチューブ42dに流入して減圧され,除霜運転用冷却器200に流入して蒸発し吸熱する。その後,冷媒は第二の気液分離器105b,三方弁202の流入口202f,流出口202b,接続配管94を介して圧縮機24に戻る。   The refrigerant that has become high temperature and high pressure by the compressor 24 flows into the inlet 201 a of the three-way valve 201 from the connection pipe 91 and flows into the cooler 7 through the outlet 201 e and the connection pipe 93. Here, since the refrigerant dissipates heat in the cooler 7, the cooler 7 is heated. Next, the refrigerant flows into the defrosting operation capillary tube 42d and is depressurized, and flows into the defrosting operation cooler 200 to evaporate and absorb heat. Thereafter, the refrigerant returns to the compressor 24 through the second gas-liquid separator 105b, the inlet 202f of the three-way valve 202, the outlet 202b, and the connection pipe 94.

図23は,実施形態5の冷凍サイクル(冷媒流路)RS5を実現する,実施形態5に関わる冷蔵庫1の冷却器7の構成を示す図であり,図23(a)は冷却器の正面図,図23(b)は冷却器の右側面図である。
実施形態5の冷却器7は,フィンチューブ型熱交換器であり,熱交換面積を拡大する冷却器フィン7aが複数備えられている。冷却器フィン7aは冷却器配管7b,7cと伝熱する構造となっており,冷却器配管7b,7cにはそれぞれ接続配管92,93が接続されている。冷却器7はフィン7aと冷却器配管7bとで伝熱することにより冷却器7の吸熱面積を増やし,冷却運転時における吸熱性能を高めている。
FIG. 23 is a diagram illustrating a configuration of the cooler 7 of the refrigerator 1 according to the fifth embodiment, which realizes the refrigeration cycle (refrigerant flow path) RS5 of the fifth embodiment, and FIG. 23 (a) is a front view of the cooler. FIG. 23 (b) is a right side view of the cooler.
The cooler 7 of Embodiment 5 is a fin tube type heat exchanger, and is provided with a plurality of cooler fins 7a that expand the heat exchange area. The cooler fin 7a has a structure for transferring heat to the cooler pipes 7b and 7c, and connection pipes 92 and 93 are connected to the cooler pipes 7b and 7c, respectively. The cooler 7 transfers heat between the fins 7a and the cooler pipe 7b, thereby increasing the heat absorption area of the cooler 7 and improving the heat absorption performance during the cooling operation.

また,本実施形態5の冷却器フィン7aは冷却器配管7cとも伝熱する構造となっており,ヒートポンプ除霜時では,接続配管7cの熱を冷却器フィン7aに伝導させることで,冷却器フィン7aを加熱して除霜する。
図24,図25(a),(b)は,実施形態5に関わる冷蔵庫の除霜運転に関する制御を示すフローチャートである。なお,実施形態1の冷蔵庫1と共通の部分は省略する。
In addition, the cooler fin 7a of the fifth embodiment has a structure that also transfers heat to the cooler pipe 7c, and at the time of heat pump defrosting, the heat of the connection pipe 7c is conducted to the cooler fin 7a, thereby the cooler fin 7a. The fin 7a is heated and defrosted.
FIG. 24, FIG. 25 (a), (b) is a flowchart which shows the control regarding the defrost operation of the refrigerator concerning Embodiment 5. FIG. In addition, the common part with the refrigerator 1 of Embodiment 1 is abbreviate | omitted.

実施形態5の冷蔵庫1は,冷却運転を行い(図24のステップS1),除霜運転開始条件を満たした後(ステップS2でYes),前記の図8と同様にステップS3〜ステップS6,S6’を行い,ヒートポンプ除霜を実施するため,以下の手順で冷媒流路を切換える(図25(a)のステップS7’)。   The refrigerator 1 according to the fifth embodiment performs a cooling operation (step S1 in FIG. 24), satisfies the defrosting operation start condition (Yes in step S2), and then performs steps S3 to S6 and S6 similarly to FIG. In order to perform the heat pump defrosting, the refrigerant flow path is switched in the following procedure (step S7 ′ in FIG. 25A).

まず,三方弁201を流入口201aと流出口201bとの連通状態から流入口201aと流出口201eとの連通状態に切換え(図25(a)のステップS101’),所定時間N分間,例えば2分間圧縮機を駆動させ(ステップS102a’,S102b’),その後三方弁202を流入口202aと流出口202bとの連通状態から流出口202bと流入口202fとの連通状態(図22参照)にし(ステップS103’),これによりヒートポンプ除霜による除霜運転を行う。   First, the three-way valve 201 is switched from the communication state between the inflow port 201a and the outflow port 201b to the communication state between the inflow port 201a and the outflow port 201e (step S101 ′ in FIG. 25A), for a predetermined time N minutes, for example, 2 The compressor is driven for a minute (steps S102a ′, S102b ′), and then the three-way valve 202 is changed from the communication state between the inlet port 202a and the outlet port 202b to the communication state between the outlet port 202b and the inlet port 202f (see FIG. 22). Step S103 ′), thereby performing a defrosting operation by heat pump defrosting.

その後,前記の図8と同様に図24のステップS8〜S22を遂行し,除霜運転終了条件が満たされた後(ステップS12でYes),圧縮機24が駆動状態の場合は圧縮機24を停止状態とし,電気ヒータ22が通電状態の場合は電気ヒータ22を停止状態とする(ステップS13)。   Thereafter, Steps S8 to S22 in FIG. 24 are performed in the same manner as in FIG. 8, and after the defrosting operation end condition is satisfied (Yes in Step S12), the compressor 24 is turned on when the compressor 24 is in a driving state. When the electric heater 22 is energized, the electric heater 22 is stopped (step S13).

次に,図25(b)に示すように,三方弁201,202を以下の手順で切換えて冷却運転に切換える。
三方弁201を流入口201aと流出口201eとの連通状態から流入口201aと流出口201bとの連通状態に切換え(図25(b)のステップS201’),所定時間N分間,例えば2分間圧縮機24を駆動させ(ステップS202a’,ステップS202b’),その後三方弁202を流入口202fと流出口202bとの連通状態から流入口202aと流出口202bとの連通状態とし(ステップS203’),再び冷却運転(図24のステップS1)を行う。
Next, as shown in FIG. 25B, the three-way valves 201 and 202 are switched in the following procedure to switch to the cooling operation.
The three-way valve 201 is switched from the communication state between the inflow port 201a and the outflow port 201e to the communication state between the inflow port 201a and the outflow port 201b (step S201 ′ in FIG. 25B), and compressed for a predetermined time N minutes, for example, 2 minutes. Machine 24 is driven (step S202a ′, step S202b ′), and then the three-way valve 202 is changed from the communication state between the inlet 202f and the outlet 202b to the communication state between the inlet 202a and the outlet 202b (step S203 ′). The cooling operation (step S1 in FIG. 24) is performed again.

ここまで,実施形態5の冷蔵庫1の構造と,除霜運転に関する制御について述べたが,次に実施形態5に関わる冷蔵庫1による効果について説明する。
実施形態5の冷蔵庫1は,三方弁201および三方弁202によって冷却運転と除霜運転を切換えており,四方弁100を備えることなくヒートポンプ除霜を実現している。さらに,実施形態1に比べて少ない切換え弁で,実施形態1の冷蔵庫1と同様に,図22の除霜運転時に壁面凝縮器41と熱交換部43に冷媒を流さない構成を実現し,また,冷却運転と除霜運転で二つのキャピラリチューブ42c,42dを使い分ける構成を実現している。
Up to this point, the structure of the refrigerator 1 according to the fifth embodiment and the control related to the defrosting operation have been described. Next, the effects of the refrigerator 1 according to the fifth embodiment will be described.
In the refrigerator 1 of the fifth embodiment, the cooling operation and the defrosting operation are switched by the three-way valve 201 and the three-way valve 202, and the heat pump defrosting is realized without providing the four-way valve 100. Furthermore, a configuration in which no refrigerant is allowed to flow through the wall condenser 41 and the heat exchanging unit 43 during the defrosting operation of FIG. 22 is realized with fewer switching valves than in the first embodiment, as in the refrigerator 1 of the first embodiment. , A configuration in which the two capillary tubes 42c and 42d are selectively used in the cooling operation and the defrosting operation is realized.

また,除霜運転用冷却器200を備えることで,壁面凝縮器41で吸熱しないため冷蔵庫壁面の結露を抑制しつつ,除霜運転用冷却器200により冷媒の蒸発潜熱で外気から吸熱して霜の加熱に庫外の熱エネルギを用いることができる。
したがって,実施形態5の構成とすることで,四方弁100を用いる必要がなく,かつ実施形態1に比べて部品点数を削減できるため,低コストで,冷蔵庫壁面の結露を抑制しつつ省エネルギ性能が高い冷蔵庫1を得られる。
In addition, by providing the defrosting operation cooler 200, the wall condenser 41 does not absorb heat, so that dew condensation on the refrigerator wall surface is suppressed, and the defrosting operation cooler 200 absorbs heat from the outside air with the latent heat of vaporization of the refrigerant. Heat energy outside the box can be used for heating.
Therefore, with the configuration of the fifth embodiment, it is not necessary to use the four-way valve 100, and the number of parts can be reduced as compared with the first embodiment. Therefore, the energy saving performance is achieved at low cost while suppressing condensation on the wall of the refrigerator. A high refrigerator 1 can be obtained.

なお,図21,図22の三方弁201および三方弁202は流入流出口を備える必要がなく,流入口と流出口のみで構成可能であり,冷媒が三方弁内の流路を両方向に流れることへの配慮が不要であるため構造が簡素であり,実施形態1の三方弁101,102,103に比べてコストの低い三方弁を用いることも可能である。   Note that the three-way valve 201 and the three-way valve 202 in FIGS. 21 and 22 do not need to have an inflow / outflow port and can be configured only by an inflow port and an outflow port, and the refrigerant flows in both directions through the flow path in the three-way valve. Therefore, it is possible to use a three-way valve that is lower in cost than the three-way valves 101, 102, 103 of the first embodiment.

さらに,切換え弁の数を少なくすることができるので,切換え弁を設置するスペースを抑え,占有容積が少ないスペース効率の高い冷蔵庫1を得ることもできる。
なお,本実施形態5の冷蔵庫1では凝縮器を壁面凝縮器41のみとしたが,実施形態1と同じく,三方弁201の流出口201bから第一のキャピラリチューブ42cの間に前記の庫外凝縮器40を備えてもよい。
Furthermore, since the number of switching valves can be reduced, the space for installing the switching valve can be reduced, and the refrigerator 1 having a small space and high space efficiency can be obtained.
In the refrigerator 1 of the fifth embodiment, only the wall surface condenser 41 is used as the condenser. However, as in the first embodiment, the above-described external condensation is performed between the outlet 201b of the three-way valve 201 and the first capillary tube 42c. A vessel 40 may be provided.

また,実施形態5の冷蔵庫1では,図21の冷却運転から図22の除霜運転に切換える際に,三方弁201と三方弁202を同時に切換えず,三方弁201を切換えて(図25(a)のステップS101’および図25(b)のS201’),圧縮機24を所定時間N分間,例えば2分間駆動させた後(図25(a)のステップS102a’および図25(b)のS202a’),三方弁202を切換える(図25(a)のステップS103’ および図25(b)のS203’)。これにより,冷却運転および除霜運転における冷媒不足を抑制し,それぞれの運転の効率低下を抑制することができる。理由を以下で説明する。   In the refrigerator 1 of the fifth embodiment, when switching from the cooling operation of FIG. 21 to the defrosting operation of FIG. 22, the three-way valve 201 and the three-way valve 202 are not switched simultaneously, but the three-way valve 201 is switched (FIG. 25 (a ) Step S101 ′ and S201 ′ of FIG. 25B), after the compressor 24 is driven for a predetermined time N minutes, for example, 2 minutes (step S102a ′ of FIG. 25A and S202a of FIG. 25B). '), The three-way valve 202 is switched (step S103' in Fig. 25 (a) and S203 'in Fig. 25 (b)). Thereby, the refrigerant | coolant shortage in a cooling operation and a defrost operation can be suppressed, and the efficiency fall of each driving | operation can be suppressed. The reason will be explained below.

本実施形態5の冷蔵庫1では,図21に示す壁面凝縮器41,冷却運転用キャピラリチューブ42c,冷却器7の冷却器配管7b(図23参照),第一の気液分離器105a,熱交換部43を冷却運転のみで使用する。同様に,冷却器7の冷却器配管7c(図23参照),図22に示す除霜運転用キャピラリチューブ42d,除霜運転用冷却器200,第二の気液分離器105bを除霜運転のみで使用する。   In the refrigerator 1 of the fifth embodiment, the wall condenser 41, the cooling operation capillary tube 42c, the cooler piping 7b of the cooler 7 (see FIG. 23), the first gas-liquid separator 105a, the heat exchange shown in FIG. The unit 43 is used only for the cooling operation. Similarly, only the defrosting operation of the cooler pipe 7c (see FIG. 23) of the cooler 7, the capillary tube 42d for defrosting operation, the cooler 200 for defrosting operation, and the second gas-liquid separator 105b shown in FIG. Used in.

ここで,図21の冷却運転でのみ使用する壁面凝縮器41等に冷媒が残ったまま除霜運転を行うと,除霜運転を行うための冷媒が不足してしまい,また除霜運転でのみ使用する冷却器7の冷却器配管7c図23参照)等に冷媒が残ったまま冷却運転を行うと,冷却運転を行うための冷媒が不足することが考えられる。   Here, if the defrosting operation is performed with the refrigerant remaining in the wall condenser 41 or the like used only in the cooling operation of FIG. 21, the refrigerant for performing the defrosting operation is insufficient, and only in the defrosting operation. If the cooling operation is performed with the refrigerant remaining in the cooler pipe 7c of the cooler 7 to be used (see FIG. 23), the refrigerant for performing the cooling operation may be insufficient.

そこで,本実施形態5の冷蔵庫1では,除霜運転実施前に,三方弁202を切換える前に,三方弁201のみを切換えて圧縮機24を駆動させることで,三方弁201の流出口201bから三方弁202の流入口202a間の冷媒を,圧縮機24−三方弁201の流出口201a−流出口201e−三方弁202の流入口202f間に移すことができる。   Therefore, in the refrigerator 1 of the fifth embodiment, before the defrosting operation is performed, before the three-way valve 202 is switched, only the three-way valve 201 is switched and the compressor 24 is driven, so that from the outlet 201b of the three-way valve 201. The refrigerant between the inlet 202 a of the three-way valve 202 can be transferred between the compressor 24-the outlet 201 a of the three-way valve 201 -the outlet 201 e -the inlet 202 f of the three-way valve 202.

また,同じく冷却運転実施前に,三方弁202を切換える前に,三方弁201のみを切換えて圧縮機24を駆動させることで,三方弁201の流出口201eから三方弁202の流入口202f間の冷媒を,圧縮機24−三方弁201の流出口201a−流出口201b−三方弁202の流入口202a間に移すことができる。したがって,冷却運転時,除霜運転時に冷媒不足を防ぎ,冷媒(熱媒体)不足による効率の低下を抑制できる。   Similarly, before switching the three-way valve 202 before the cooling operation is performed, the compressor 24 is driven by switching only the three-way valve 201, so that the outlet 201 e of the three-way valve 201 is connected to the inlet 202 f of the three-way valve 202. The refrigerant can be transferred between the compressor 24-the outlet 201 a of the three-way valve 201 -the outlet 201 b -the inlet 202 a of the three-way valve 202. Therefore, it is possible to prevent a shortage of the refrigerant during the cooling operation and the defrosting operation, and to suppress a decrease in efficiency due to a shortage of the refrigerant (heat medium).

なお,実施形態5の冷蔵庫1では,冷媒を移すのに十分な時間として,三方弁201と三方弁202の切換え時間間隔を2分の場合を例示したが,2分に限られるものではなく,三方弁201と三方弁202の切換え時間間隔は,それぞれで用いる冷媒流路の長さや,冷媒封入量に応じて適宜変更すればよい。例えば,冷媒流路の長さが長く,冷媒封入量が多い場合には,三方弁201と三方弁202の切換え時間間隔を長めに,冷媒流路の長さが短く,冷媒封入量が少ない場合には,三方弁201と三方弁202の切換え時間間隔を短めにするとよい。   In addition, in the refrigerator 1 of Embodiment 5, although the case where the switching time interval of the three-way valve 201 and the three-way valve 202 was 2 minutes was illustrated as time sufficient for transferring a refrigerant | coolant, it is not restricted to 2 minutes, The switching time interval between the three-way valve 201 and the three-way valve 202 may be appropriately changed according to the length of the refrigerant flow path used in each of them and the refrigerant filling amount. For example, when the refrigerant flow path is long and the refrigerant filling amount is large, the switching time interval between the three-way valve 201 and the three-way valve 202 is long, the refrigerant flow path is short and the refrigerant filling amount is small. For this purpose, the switching time interval between the three-way valve 201 and the three-way valve 202 may be shortened.

<<その他の実施形態>>
なお,本発明は前記した各実施形態に限定されるものではなく,様々な変形例が含まれる。例えば,前記した実施形態は本発明を分かり易く説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。
<< Other Embodiments >>
In addition, this invention is not limited to each above-mentioned embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.

また,ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり,また,ある実施形態の構成に他の実施形態の構成を加えることも可能である。また,各実施形態の構成の一部について,他の構成の追加・削除・置換をすることが可能である。   In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また,説明した実施形態では,除霜運転として少なくとも一部は必ずヒートポンプ除霜を用いる制御としているが,これに限定されるものではない。例えば運転音を抑制する運転モードを備え,当該運転音抑制の運転モードとした時には圧縮機24の駆動による騒音を抑制するためヒートポンプ除霜を用いずヒータ除霜やファン除霜のみを用いた除霜運転を行ってもよい。   In the described embodiment, at least a part of the defrosting operation is always controlled using heat pump defrosting, but the present invention is not limited to this. For example, an operation mode that suppresses operation noise is provided, and when the operation mode is set to suppress the operation sound, a heater defrosting or fan defrosting is used without using a heat pump defrosting to suppress noise caused by driving the compressor 24. A frost operation may be performed.

なお,前記実施形態においては,冷凍温度帯室と冷蔵温度帯室とを具備する冷蔵庫を例示して説明したが,冷蔵温度帯室から成る冷蔵庫にも適用可能であり,さらにファン除霜を除き冷凍温度帯室から成る冷凍庫にも本発明は幅広く適用可能である。   In the above-described embodiment, the refrigerator having the freezing temperature zone chamber and the refrigeration temperature zone chamber has been described as an example. However, the present invention can be applied to a refrigerator including a refrigeration temperature zone chamber, except for fan defrosting. The present invention can be widely applied to a freezer comprising a freezing temperature zone.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 冷却器(第二の熱交換手段)
9 庫内ファン(庫内送風機)
10 断熱箱体
22 電気ヒータ
24 圧縮機
24i 圧縮機の吸込口
24o 圧縮機の吐出口
31 制御基板(制御手段)
40 庫外凝縮器(第三の熱交換手段)
41 壁面凝縮器(第一の熱交換手段)
42,42a キャピラリチューブ(減圧手段)
42b キャピラリチューブ(絞りが小さい減圧手段)
50 冷蔵室ダンパ
51 野菜室ダンパ(冷蔵室ダンパ)
52 冷凍室ダンパ
60 冷凍温度帯室
61 冷蔵温度帯室
70〜79 接続配管(冷媒配管)
101 三方弁(冷媒流路切換え手段)
103 三方弁(冷媒流路切換え手段)
1 Refrigerator 2 Refrigerated room (refrigerated temperature zone)
3 Ice making room (freezing temperature room)
4 Upper freezer room (freezing temperature room)
5 Lower freezer compartment (freezer temperature room)
6 Vegetable room (refrigerated temperature room)
7 Cooler (second heat exchange means)
9 Internal fan (internal fan)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 22 Electric heater 24 Compressor 24i Compressor suction port 24o Compressor discharge port 31 Control board (control means)
40 External condenser (third heat exchange means)
41 Wall condenser (first heat exchange means)
42, 42a Capillary tube (pressure reduction means)
42b Capillary tube (pressure reducing means with small aperture)
50 Cold room damper 51 Vegetable room damper (refrigerated room damper)
52 Freezer compartment damper 60 Freezing temperature zone room 61 Refrigeration temperature zone room 70-79 Connection piping (refrigerant piping)
101 Three-way valve (refrigerant flow path switching means)
103 3-way valve (refrigerant flow path switching means)

Claims (4)

断熱箱体と,圧縮機と,前記断熱箱体の外面を介して外気と熱交換する第一の熱交換手段と,前記断熱箱体内の空気と熱交換する第二の熱交換手段と,減圧手段とを備え,
冷媒が流れる冷媒配管によって順に前記圧縮機,前記第一の熱交換手段,前記減圧手段,前記第二の熱交換手段を接続し,前記冷媒が前記第一の熱交換手段により放熱し,前記第二の熱交換手段によって吸熱することで庫内の冷却を行う冷蔵庫であって,
前記断熱箱体の外部に設けられ外気と熱交換する第三の熱交換手段と,
前記圧縮機の吐出口から放出される冷媒を,前記第二の熱交換手段,前記減圧手段,前記第三の熱交換手段,前記圧縮機の吸込口の順に流すように切換え,前記第二の熱交換手段の除霜を行う際に前記第一の熱交換手段に冷媒を流さないように切換えるための冷媒流路切換え手段とを
備えることを特徴とする冷蔵庫。
A heat insulating box, a compressor, a first heat exchanging means for exchanging heat with the outside air via an outer surface of the heat insulating box, a second heat exchanging means for exchanging heat with the air in the insulating box, and a decompression Means,
The compressor, the first heat exchanging means, the pressure reducing means, and the second heat exchanging means are sequentially connected by a refrigerant pipe through which the refrigerant flows, and the refrigerant dissipates heat by the first heat exchanging means, A refrigerator that cools the interior by absorbing heat by means of two heat exchange means,
A third heat exchanging means provided outside the heat insulating box and exchanging heat with outside air;
The refrigerant discharged from the discharge port of the compressor is switched to flow in the order of the second heat exchange means, the pressure reducing means, the third heat exchange means, and the suction port of the compressor, A refrigerator comprising: a refrigerant flow path switching means for switching so that no refrigerant flows through the first heat exchange means when defrosting the heat exchange means .
前記減圧手段は,冷却運転中と除霜運転中とで,前記減圧手段での絞りの大きさを切換え可能であり,前記冷却運転中より前記除霜運転中の絞りを小さくする
ことを特徴とする請求項1に記載の冷蔵庫。
The decompression means can switch the size of the throttle in the decompression means between the cooling operation and the defrosting operation, and the throttle during the defrosting operation is made smaller than during the cooling operation. The refrigerator according to claim 1.
前記第二の熱交換手段の下方に設けられる電気ヒータと,
前記圧縮機の吐出口から放出される冷媒を,前記第二の熱交換手段,前記減圧手段,前記第三の熱交換手段または前記第一の熱交換手段,前記圧縮機の吸込口の順に流すように前記冷媒流路切換え手段を制御して,前記第二の熱交換手段の除霜を行う第一の霜加熱手段と,
前記電気ヒータに通電することで前記第二の熱交換手段の除霜を行う第二の霜加熱手段と,
前記第一および第二の霜加熱手段から1つまたは複数の霜加熱手段を選択して前記第二の熱交換手段の除霜を行う制御手段とを
備えることを特徴とする請求項1又は2に記載の冷蔵庫。
An electric heater provided below the second heat exchange means;
The refrigerant discharged from the discharge port of the compressor flows in the order of the second heat exchange means, the pressure reducing means, the third heat exchange means or the first heat exchange means, and the suction port of the compressor. First refrigerant frost heating means for controlling the refrigerant flow switching means to defrost the second heat exchange means,
Second frost heating means for defrosting the second heat exchange means by energizing the electric heater;
Claim 1 or 2, characterized in that a control means for selecting one or more frost heating means from said first and second frost heating means performs defrosting of the second heat exchange means Refrigerator.
冷蔵温度帯室と,庫内送風機と,該庫内送風機を駆動させて前記第二の熱交換手段で熱交換された空気を前記冷蔵温度帯室に送風することで前記第二の熱交換手段の除霜を行う第三の霜加熱手段とを備え,
前記制御手段は,前記第一から第三の霜加熱手段のうちから1つまたは複数の霜加熱手段を選択して前記第二の熱交換手段の除霜運転を行う
ことを特徴とする請求項に記載の冷蔵庫。
Refrigeration temperature zone chamber, internal fan, and second heat exchange means by driving the internal fan and blowing air heat exchanged by the second heat exchange means to the refrigeration temperature zone chamber A third frost heating means for performing defrosting of
The control means selects one or a plurality of frost heating means from the first to third frost heating means and performs the defrosting operation of the second heat exchange means. 3. The refrigerator according to 3 .
JP2011237992A 2011-10-28 2011-10-28 refrigerator Expired - Fee Related JP5694897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237992A JP5694897B2 (en) 2011-10-28 2011-10-28 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011237992A JP5694897B2 (en) 2011-10-28 2011-10-28 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015021406A Division JP5916174B2 (en) 2015-02-05 2015-02-05 refrigerator

Publications (3)

Publication Number Publication Date
JP2013096607A JP2013096607A (en) 2013-05-20
JP2013096607A5 JP2013096607A5 (en) 2013-10-24
JP5694897B2 true JP5694897B2 (en) 2015-04-01

Family

ID=48618731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237992A Expired - Fee Related JP5694897B2 (en) 2011-10-28 2011-10-28 refrigerator

Country Status (1)

Country Link
JP (1) JP5694897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307382B2 (en) * 2014-08-01 2018-04-04 日立アプライアンス株式会社 refrigerator
JP7229256B2 (en) * 2018-08-27 2023-02-27 三菱電機株式会社 Freezer and heat source side unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555033U (en) * 1978-06-23 1980-01-14
JPS6216625Y2 (en) * 1981-04-03 1987-04-27
JPH058459Y2 (en) * 1987-02-19 1993-03-03
JPS63213764A (en) * 1988-02-19 1988-09-06 株式会社日立製作所 Defrosting cycle for air conditioner
JP2003240412A (en) * 2002-02-20 2003-08-27 Fujitsu General Ltd Refrigerator
JP2005233464A (en) * 2004-02-18 2005-09-02 Kobayashi Seisakusho:Kk Defrosting heater and refrigerator with the defrosting heater
JP2008070014A (en) * 2006-09-13 2008-03-27 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
JP2013096607A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
RU2496063C2 (en) Refrigerator with low-temperature separation, and refrigerating storage device
JP4867758B2 (en) refrigerator
JP5178771B2 (en) Freezer refrigerator
JP5261066B2 (en) Refrigerator and refrigerator
US20090293514A1 (en) Cooling system for refrigerator
JP2013050237A (en) Refrigerator and freezer
RU2467264C2 (en) Refrigerating device with moisture separator, and operating method of refrigerating device
JP5557661B2 (en) refrigerator
WO2010092628A1 (en) Refrigerator
JP2007170758A (en) Refrigerating device
WO2019107066A1 (en) Refrigerator
JP5916174B2 (en) refrigerator
JP5694897B2 (en) refrigerator
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JP4206792B2 (en) refrigerator
JP2004324902A (en) Freezing refrigerator
JP2014048031A (en) Refrigerator
JP2004333092A (en) Freezer/refrigerator
JP2005345061A (en) Refrigerator
JP5475033B2 (en) Refrigeration equipment
JP6940424B2 (en) refrigerator
JP2017026210A (en) refrigerator
KR101858227B1 (en) Refrigerator
JP2018004170A (en) Refrigerator
JP2012087952A (en) Refrigerator freezer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5694897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees