JP5690549B2 - Measurement jig for long objects for measurement - Google Patents

Measurement jig for long objects for measurement Download PDF

Info

Publication number
JP5690549B2
JP5690549B2 JP2010232039A JP2010232039A JP5690549B2 JP 5690549 B2 JP5690549 B2 JP 5690549B2 JP 2010232039 A JP2010232039 A JP 2010232039A JP 2010232039 A JP2010232039 A JP 2010232039A JP 5690549 B2 JP5690549 B2 JP 5690549B2
Authority
JP
Japan
Prior art keywords
rectangular parallelepiped
base
axis
parallelepiped block
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010232039A
Other languages
Japanese (ja)
Other versions
JP2012081570A (en
Inventor
文宏 佐野
文宏 佐野
悦男 藤田
悦男 藤田
邦宜 松岡
邦宜 松岡
Original Assignee
株式会社岡本工作機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社岡本工作機械製作所 filed Critical 株式会社岡本工作機械製作所
Priority to JP2010232039A priority Critical patent/JP5690549B2/en
Publication of JP2012081570A publication Critical patent/JP2012081570A/en
Application granted granted Critical
Publication of JP5690549B2 publication Critical patent/JP5690549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、x軸−リニアスケール、y軸−リニアスケール、z軸−リニアスケール、直定規、変位センサ(角度センサも含む)、xy軸テーブルステージ、数値制御装置を備える加工ワーク面の形状測定装置を用い、xy軸テーブルステージ上に載置された被測定物(加工ワーク)表面形状を変位センサなどで測定する際に、数値制御工作機械のワークテーブル上に載置される位置決め治具に関する。   The present invention provides an x-axis-linear scale, a y-axis-linear scale, a z-axis-linear scale, a straight ruler, a displacement sensor (including an angle sensor), an xy-axis table stage, and a shape measurement of a workpiece surface provided with a numerical controller. The present invention relates to a positioning jig placed on a work table of a numerically controlled machine tool when measuring a surface shape of an object to be measured (working work) placed on an xy-axis table stage using a displacement sensor or the like. .

上述の加工ワーク面の形状測定装置は、通常、加工ワークを恒温室(23.5℃、相対湿度65%)内に持ち込み、変位センサで加工ワークの2点間の傾斜を測定し、変位センサを加工ワーク上面に走査させて加工ワークの長さ方向の真直度を表示板や紙上に表示するものである。   The above-described shape measuring apparatus for the workpiece surface usually brings the workpiece into a temperature-controlled room (23.5 ° C., relative humidity 65%), and measures the inclination between two points of the workpiece with a displacement sensor. Is scanned on the upper surface of the workpiece and the straightness in the length direction of the workpiece is displayed on a display board or paper.

上記加工ワークの恒温室内での真直度や表面形状の測定を、工作機械のワークテーブル上で行うことも提案されている。この際、ワークテーブルはxy軸テーブルステージと見做される。   It has also been proposed to measure the straightness and surface shape of the processed workpiece in a temperature-controlled room on a work table of a machine tool. At this time, the work table is regarded as an xy-axis table stage.

例えば、特開2007−327754号公報(特許文献1)は、測定範囲、感度、分解能も同種の2つの非接触型静電容量型変位計A,Bを用い、標準直定規に対してレバー式自律校正法で校正された変位計A,Bの両方をピッチ距離p間離して工作機械の工具頭に変位計A,Bの列がワークテーブルの長手方向に向くよう距離p離して支持し、次の工程を経て被加工物の真直度を測定する方法を提案する。
1)ワークテーブルおよび変位計A,Bの相対的な移動により前記ワークテーブル上に固定された標準直定規表面と各変位計A,Bプロ−ブ間の距離SA(Xi),SB(Xi+p)を検出し、メモリーで記録する。
2)演算部で両者の差{SB(Xi+p)−SA(Xi)}を演算し、被加工物の基準面と非接触型静電容量型変位計Aのプローブ電極間の距離をZ0A、被加工物の基準面と非接触型静電容量型変位計Bのプローブ電極間の距離Z0Bと仮定したときの距離Z0Bと距離Z0Aの差(Z0B−Z0A)として数値制御装置の記憶部(メモリー)に記憶する。
3)前記変位計A,Bを用いて前記ワークテーブル上の被加工物表面と各変位計A,Bのプローブ間の距離m1(Xi)およびm2(Xi+p)を検出し、メモリーする。
4)これら検出値の差m2d(Xi)=〔m2(Xi+p)−m1(Xi)〕を演算し、メモリーする。
5)m2d(Xi)/pを求める式に{SB(Xi+p)−SA(Xi)}を代入する演算を行い、このm2d(Xi)/pを被加工物表面の高さ変位函数f(X)の微分値df(X)/dXとして近似させ、次式で表される微分値を検出されていった各値よりこの導関数を積分していくとともに、メモリーに記録する。
df(X)/dX≒〔f(Xi+p)−f(Xi)〕/p+{SB(Xi+p)−SA(Xi)}/p
6)前式の導関数を積分した変位函数f(X)を、変位計Aにより計測された被加工物表面の真直度変位グラフとして出力するか、そのf(X)値の最大ピ−ク値を被加工物の真直度Sとして出力する。
また、上記真直度Sのデータ値を記憶する数値制御平面研削機械を用い、左右方向に移動可能なワークテーブル上に載置されたワークを、前後方向に移動可能なツールテーブルに搭載された砥石頭を用い、被加工物と砥石頭との相対的な動きにより砥石頭の砥石軸に回転自在に備えられた砥石車によりワーク表面を平面研削する方法であって、
予め、請求項1の工程6)で出力されたf(Xi)の値と、工程1)で検出された変位計AのSA(Xi)および工程3)で検出されたm1(Xi)の値より走査運動誤差Ez(Xi)を次式で演算し、この走査運動誤差Ez(Xi)をメモリーし、
Ez(Xi)=m1(Xi)−f(Xi)+SA(Xi)
ワークテーブル座標位置Xi位置でワークを研削加工する際、ワークの平面研削加工時の砥石車の上下方向移動距離をEz(Xi)の昇降移動補正を成しながら平面研削加工を行うことを特徴とする、ワークの平面研削方法も提案する。
For example, Japanese Patent Application Laid-Open No. 2007-327754 (Patent Document 1) uses two non-contact capacitive displacement meters A and B having the same measurement range, sensitivity, and resolution, and a lever type with respect to a standard straight ruler. Support both the displacement gauges A and B calibrated by the autonomous calibration method with a pitch distance p, and support them at a distance p so that the row of displacement gauges A and B faces the longitudinal direction of the work table. A method for measuring the straightness of a workpiece through the following steps is proposed.
1) Distances S A (X i ), S B between the standard straight ruler surface fixed on the work table by the relative movement of the work table and displacement gauges A, B and the displacement gauges A, B probe Detect (X i + p ) and record in memory.
2) The difference between the two parts {S B (X i + p ) −S A (X i )} is calculated by the calculation unit, and the distance between the reference surface of the workpiece and the probe electrode of the non-contact capacitive displacement meter A the Z 0A, the reference plane and the distance Z 0B and the distance difference between the Z 0A, assuming that the distance Z 0B between the probe electrode of the non-contact capacitive displacement gauge B of the workpiece (Z 0B -Z 0A) Is stored in the storage unit (memory) of the numerical controller.
3) Using the displacement meters A and B, the distances m 1 (X i ) and m 2 (X i + p ) between the workpiece surface on the work table and the probes of the displacement meters A and B are detected, and the memory To do.
4) The difference between the detected values m 2d (X i ) = [m 2 (X i + p ) −m 1 (X i )] is calculated and stored.
5) m 2d (X i) / p in equation for {S B (X i + p ) -S A (X i)} performs an operation of substituting this m 2d (X i) / p workpiece surface Is approximated as the differential value df (X) / dX of the height displacement function f (X), and the derivative value expressed by the following equation is integrated from each detected value and the memory To record.
df (X) / dX≈ [f (X i + p ) −f (X i )] / p + {S B (X i + p ) −S A (X i )} / p
6) Output the displacement function f (X) obtained by integrating the derivative of the previous equation as a straightness displacement graph of the workpiece surface measured by the displacement meter A, or the maximum peak of the f (X) value. and it outputs the value as straightness S a of the workpiece.
Further, using the numerical control surface grinding machine for storing data values of the straightness S a, a workpiece placed on a movable work table in the lateral direction, is mounted on the tool table movable in the longitudinal direction A method of surface grinding a workpiece surface with a grinding wheel provided on a grinding wheel shaft of a grinding wheel head by a relative movement between a workpiece and a grinding wheel head using a grinding wheel head,
The value of f (X i ) output in step 6) of claim 1 in advance, S A (X i ) of displacement meter A detected in step 1) and m 1 (detected in step 3). X i) of the values from the scanning motion error Ez a (X i) is calculated by the following equation, the scanning motion error Ez (X i) and memory,
Ez (X i ) = m 1 (X i ) −f (X i ) + S A (X i )
When grinding a workpiece at the work table coordinate position X i , surface grinding is performed while correcting the vertical movement distance of the grinding wheel Ez (X i ) when the workpiece is ground. A surface grinding method for workpieces is also proposed.

特許弟4,452,651号明細書(特許文献2)は、第1被測定物(直定規)と第2被測定物(加工ワーク)とを平行に配置し、前記第1被測定物の表面を逐次3点法により検出可能に3個の第1変位検出手段を配置し、前記第2被測定物を、間にするように位置させた一対の第2変位検出手段と、前記3個の第1変位検出手段のうち特定の第1変位検出手段とを直線上に配置し、
逐次3点法により、第1被測定物と前記3個の第1変位検出手段を相対移動させて、該第1変位検出手段の検出出力に基づき、逐次3点法による前記第1被測定物の表面形状を演算し、
前記第2被測定物を反転する前及び反転した後のそれぞれにおいて、第1及び第2被測定物と、前記一対の第2変位検出手段、及び前記特定の第1変位検出手段を相対移動させて、前記一対の第2変位検出手段と、該特定の第1変位検出手段の検出出力に基づいて、反転法による前記第1被測定物の表面形状を演算し、
前記逐次3点法及び前記反転法による前記第1被測定物の表面形状の演算結果に基づいて零点誤差補償量を算出し、該零点誤差補償量により、逐次3点法による零点誤差補正を行うことを特徴とする逐次3点法における零点誤差補正方法を提案する。
Japanese Patent No. 4,452,651 (Patent Document 2) discloses that a first object to be measured (straight ruler) and a second object to be measured (workpiece) are arranged in parallel, and the first object to be measured Three first displacement detectors are arranged so that the surface can be successively detected by the three-point method, and a pair of second displacement detectors are arranged with the second object to be measured in between, and the three Among the first displacement detection means, a specific first displacement detection means is arranged on a straight line,
The first object to be measured by the three-point method is sequentially moved based on the detection output of the first displacement detecting means by relatively moving the first object to be measured and the three first displacement detecting means by the successive three-point method. Calculate the surface shape of
The first and second objects to be measured, the pair of second displacement detection means, and the specific first displacement detection means are moved relative to each other before and after the second object to be inverted. And calculating the surface shape of the first object to be measured by the inversion method based on the detection output of the pair of second displacement detection means and the specific first displacement detection means,
A zero-point error compensation amount is calculated based on the calculation result of the surface shape of the first object to be measured by the sequential three-point method and the inversion method, and zero-point error correction is performed by the sequential three-point method using the zero-point error compensation amount. We propose a zero error correction method in the sequential three-point method.

また、特開2009−251621号公報(特許文献3)は、工作機械のテーブルに固定され、距離が既知の第一基準部及び第二基準部を有する基準手段と、
前記工作機械の主軸に装着されて前記基準部の位置を計測する基準部位置計測手段と、
前記基準部位置計測手段によって計測された前記第一基準部の位置に基づいて前記主軸と前記テーブルの相対位置のずれを補正する基準位置補正手段とを備える工作機械の基準位置補正装置であって、
前記基準位置補正手段が、前記基準部位置計測手段によって計測された結果に基づいて前記第一基準部と前記第二基準部との基準部間距離を算出し、算出された前記基準部間距離と予め設定する許容範囲とを比較した結果に基づいて前記基準位置の補正の有無を決定するようにしたことを特徴とする工作機械の基準位置補正装置を提案する。
JP 2009-251621 A (Patent Document 3) is fixed to a table of a machine tool and includes a reference means having a first reference portion and a second reference portion whose distance is known;
A reference portion position measuring means mounted on the spindle of the machine tool and measuring the position of the reference portion;
A reference position correcting device for a machine tool, comprising reference position correcting means for correcting a deviation of a relative position between the spindle and the table based on the position of the first reference part measured by the reference part position measuring means. ,
The reference position correcting means calculates a distance between the reference parts between the first reference part and the second reference part based on the result measured by the reference part position measuring means, and the calculated distance between the reference parts The present invention proposes a reference position correcting apparatus for a machine tool that determines whether or not to correct the reference position based on a result of comparing the above and a preset allowable range.

特開2007−327754号公報JP 2007-327754 A 特許弟4,452,651号明細書Patent Brother 4,452,651 Specification 特開2009−251621号公報JP 2009-251621 A

前記特許文献1および特許文献2記載の校正方法において、工作機械のワークテーブル上に治具を用いて被加工物(ワ−ク)や直定規を固定している。数値制御平面工作機械においては、一般にワーク治具として磁気チャックを用いている。   In the calibration methods described in Patent Document 1 and Patent Document 2, a workpiece (work) or a straight ruler is fixed on a work table of a machine tool using a jig. In a numerically controlled planar machine tool, a magnetic chuck is generally used as a work jig.

特許文献1に記載されるように、測定されたワークの真直度を利用して加工されたワークの補正加工を行うことも提案されている。真直度の誤差は通常、5μm以下である。よって、ワークや直定規の治具としてx軸、y軸、z軸の距離や傾斜を5μm以下の微小な距離変位させることができる治具が存在すれば、x軸リニアスケール、y軸リニアスケール、z軸リニアスケールに合わせて治具されるワークや直定規のワークテーブル上での位置座標を補正することは容易となる。   As described in Patent Document 1, it has also been proposed to perform correction processing of a processed workpiece using the measured straightness of the workpiece. The straightness error is typically 5 μm or less. Therefore, if there is a jig that can displace the distance and inclination of the x-axis, y-axis, and z-axis as small as 5 μm or less as a jig for a workpiece or a straight ruler, an x-axis linear scale, a y-axis linear scale It becomes easy to correct the position coordinates on the work table or the straight ruler work table that are jigged in accordance with the z-axis linear scale.

本発明者らは、上記x軸、y軸、z軸の距離や傾斜を5μm以下の微小な距離で変位させることができるワークや直定規を固定することができる治具の提供を目的とする。 The present inventors have aimed to provide a jig capable of fixing a workpiece or a straight ruler that can displace the distance and inclination of the x-axis, y-axis, and z-axis by a minute distance of 5 μm or less. .

本発明の請求項1は、案内レール(8a)上をx軸方向に移動可能な滑走体(8b)上面の一方の端面近くに、ベース(8c)を設けその上にキネマカップリング基部(8d)を設け、このキネマカップリング基部(8d)の上面中央に断面V型溝頭部部材(8e)を搭載し、この断面V型溝頭部部材のV型溝部(V)中央を突き抜けて1本の半球頂の移動支点(8g)を起立させ、その移動支点(8g)の根部は前記キネマカップリング基部(8d)に固定されており、前記キネマカップリング基部の下方に設けた上面傾斜面(8h)を有する凹部空所(8i)内に移動傾斜ブロック(8k)を回動ネジ(8s)の回動によりx軸方向に移動可能に嵌挿し、この移動傾斜ブロック(8k)が移動して前記上面傾斜面(8h)と接触する位置により前記半球頂の移動支点(8g)のxz−平面上での傾斜角度を0〜10度傾斜させてz軸方向高さを0〜5μm変位させることを可能としたキネマカップリング機構(9a)と、
前記滑走体(8b)上面の他方の端面近くに、ベース(8m)を設け、このベース(8m)上端面近くに設けた旋回調整回転ネジ(8l)の回動により直方体ブロック(8n)内に内蔵された中空雌ネジを旋回させることにより前記直方体ブロック(8n)をxz-平面上で旋回させる高さ位置調整機構(9b)と、
この直方体ブロック(8n)の隣に上面にV型溝2個(V,V)が60度の角度で交差するように設けた2個のV型溝(V,V)を有する回可能な直方体ブロック(8r)を設け、この2個のV型溝の中央に半球頭頂の固定支点一対(8f,8w)をその固定支点の根部が前記直方体ブロック(8r)に固定されるように設け、チルト角度調整ネジ(8s)の回動により円柱状チルト軸(8q)を有する台(8j)が前記円柱状チルト軸(8q)の中心点(O)廻りに0〜15度左右に旋回させることを可能とする円柱状チルト機構(9c)、
とからなる測定用長尺状物の位置決め治具(8)であって、
前記移動支点(8g)の半球頭頂と一対の固定支点(8f,8w)の半球頭頂を結ぶ仮想線は、二等辺三角形を示し、
測定用長尺状物(w)は、前記キネマカップリング機構(9a)のV型溝頭部部材(8e)の上面、高さ位置調整機構(9b)の直方体ブロック(8n)上面およびチルト機構(9c)の直方体ブロック(8r)上面に跨って載置されることを特徴とする、位置決め治具()を提供するものである。
According to the first aspect of the present invention, a base (8c) is provided near one end face of the upper surface of the sliding body (8b) movable in the x-axis direction on the guide rail (8a), and a kinema coupling base (8d) is provided thereon. ), And a cross-sectional V-shaped groove head member (8e) is mounted at the center of the upper surface of the kinema coupling base (8d), and penetrates the center of the V-shaped groove (V 1 ) of the cross-sectional V-shaped groove head member. is raised one mobile fulcrum hemisphere head top to (8 g), the root portion of the movable fulcrum (8 g) is fixed to said kinematic coupling base (8d), an upper surface which is provided below the kinematic coupling base A moving inclined block (8k) is inserted into a recessed space (8i) having an inclined surface (8h) so as to be movable in the x-axis direction by rotating a rotating screw (8s). Move and come into contact with the upper inclined surface (8h) Position by said semispherical head top mobile fulcrum (8 g) of xz- inclination angle on a plane by inclining 0 ° z-axis height allows to 0~5μm displaced and the kinematic coupling mechanism ( 9a)
A base (8m) is provided near the other end surface of the upper surface of the sliding body (8b ), and the inside of the rectangular parallelepiped block (8n) is rotated by a turning adjustment rotation male screw (8l) provided near the upper end surface of the base (8m ). A height position adjusting mechanism (9b) for turning the rectangular parallelepiped block (8n) on the xz-plane by turning a hollow female screw incorporated in
Next to the rectangular parallelepiped block (8n), there are two V-shaped grooves (V 2 , V 3 ) provided on the upper surface so that two V-shaped grooves (V 2 , V 3 ) intersect at an angle of 60 degrees. swivel possible rectangular parallelepiped block (8r) is provided, hemisphere parietal fixed support pair (8f, 8w) to the root of the fixed support is fixed to the rectangular parallelepiped block (8r) at the center of the two V-grooves The platform (8j) having the cylindrical tilt axis (8q) is rotated by 0 to 15 degrees around the center point (O) of the cylindrical tilt axis (8q) by rotating the tilt angle adjusting screw (8s). cylindrical tilt mechanism that allows pivoting to (9c),
A long measuring object positioning jig (8) comprising :
An imaginary line connecting the hemispherical vertex of the moving fulcrum (8g) and the hemispherical vertex of the pair of fixed fulcrums (8f, 8w) indicates an isosceles triangle,
The long object for measurement (w) includes the upper surface of the V-shaped groove head member (8e) of the kinema coupling mechanism (9a), the upper surface of the rectangular parallelepiped block (8n) of the height position adjusting mechanism (9b), and the tilt mechanism. The positioning jig ( 8 ) is provided to be placed across the upper surface of the rectangular parallelepiped block (8 r) of (9 c).

変位センサやオートコリメータによる長尺状物wの真直度の測定誤差は、長さ50〜4,500mmの長尺状物wで0.1〜10μm程度の小さい値を示すので、この程度の誤差を校正するに、前記キネマカップリング機構9a、高さ位置調整機構9bおよびチルト機構9cによる0〜1,000μm程度のxy−平面、xz−平面、yz−平面での移動で充分である。また、長尺の被測定物を距離ずづつずらして固定位置の変位センサにより被測定物の真直度を測定する際、位置決め治具7をワークテーブル上に設けた案内レール8a上を滑走させて長い被測定物の真直度を測定することができる。   The measurement error of the straightness of the long object w by the displacement sensor or the autocollimator shows a small value of about 0.1 to 10 μm for the long object w having a length of 50 to 4,500 mm. In order to calibrate, the movement in the xy-plane, xz-plane, and yz-plane of about 0 to 1,000 μm by the kinema coupling mechanism 9a, the height position adjusting mechanism 9b, and the tilt mechanism 9c is sufficient. Further, when measuring the straightness of the object to be measured by the displacement sensor at the fixed position while shifting the long object to be measured, the positioning jig 7 is slid on the guide rail 8a provided on the work table. The straightness of a long object can be measured.

変位センサにより測定された被測定物の表面形状(真直度)が閾値より外れている位置の校正を、位置決め治具1の前記キネマカップリング機構9a、高さ位置調整機構9bおよびチルト機構9cの調整ネジの回動などにより位置調整し、研削砥石で前記閾値から外れている変位部分の被測定物の表面を研削加工することも可能である。   Calibration of the position where the surface shape (straightness) of the object measured by the displacement sensor deviates from the threshold value is performed by the kinema coupling mechanism 9a, the height position adjusting mechanism 9b and the tilt mechanism 9c of the positioning jig 1. It is also possible to adjust the position by turning the adjusting screw or the like, and to grind the surface of the object to be measured at the displaced portion that is out of the threshold value with a grinding wheel.

図1は位置決め治具を正面側から見た斜視図である。FIG. 1 is a perspective view of the positioning jig as seen from the front side. 図2は位置決め治具の断面図である。FIG. 2 is a sectional view of the positioning jig. 図3は位置決め治具を背面側から見た斜視図である。FIG. 3 is a perspective view of the positioning jig viewed from the back side. 図3は表面形状測定装置のxy軸テーブルステージ上に位置決め治具を用いて載置された被測定物の上面を変位センサで真直度を測定している状態を示す一部を取り除いた斜視図である。FIG. 3 is a perspective view in which a part of the top surface of the object to be measured placed on the xy-axis table stage of the surface shape measuring apparatus is measured with a displacement sensor to remove the straightness. It is. 図5は被測定物の表面形状(傾き)を示す図である。FIG. 5 is a diagram showing the surface shape (tilt) of the object to be measured.

図1、図2および図3において、位置決め治具は、案内レール8a、その上をx軸方向に移動可能な滑走体(基台)8b、この滑走体上面の左端面近くに、ベース8cを設けその上にキネマカップリング基部8dを設け、このキネマカップリング基部8dの上面中央に断面V型溝頭部部材8eを搭載し、この断面V型溝頭部部材のV型溝部v中央を突き抜けて1本の半球頂の移動支点(移動ピン)8gを起立させ、その移動支点8gの根部は前記キネマカップリング基部8dに固定されている。 1, FIG. 2 and FIG. 3, the positioning jig 8 includes a guide rail 8a, a sliding body (base) 8b movable on the guide rail 8a in the x-axis direction, and a base 8c near the left end surface of the upper surface of the sliding body. the provided kinematic coupling base 8d provided thereon, mounted a V-groove head member 8e center of the upper surface of the kinematic coupling base 8d, V-type groove v 1 the center of the cross-section V-grooves head member penetration by standing a single movement fulcrum hemispherical head top (moving pins) 8g, roots of the moving fulcrum 8g is fixed to said kinematic coupling base 8d.

キネマカップリング機構9aは、前記キネマカップリング基部8dの下方に設けた上面傾斜面(固定傾斜ブロック)8hを有する凹部空所8i内に移動傾斜ブロック(楔)8kを回動ネジ8sの回動によりx軸方向に移動可能に嵌挿し、この移動傾斜ブロック(楔)8kが移動して前記上面傾斜面(固定傾斜ブロック)8hと接触する位置により前記半球頂の移動支点8gのxz−平面上での旋回角度0〜10度傾斜させてz軸方向高さを0〜5μm変位させることを可能としている。移動傾斜ブロック(楔)8kのx軸方向移動距離は最大20mm程度で充分である。 The kinema coupling mechanism 9a is configured such that a moving inclined block (wedge) 8k is rotated by a rotating screw 8s in a recessed space 8i having an upper surface inclined surface (fixed inclined block) 8h provided below the kinema coupling base 8d. fitted movably in the x-axis direction by, xz- plane of movement fulcrum 8g of the hemispherical head top by a position in contact with the moving angle blocks (wedges) said top inclined surface and 8k movement (fixed ramp block) 8h It is possible to displace the height in the z-axis direction by 0 to 5 μm by inclining the above turning angle by 0 to 10 degrees. A moving distance in the x-axis direction of the moving inclined block (wedge) 8k is about 20 mm at the maximum.

高さ位置調整機構9bは、前記滑走体(基台)8b上面の右端面近くに、ベース8mを設け、このベース8m上端面近くに旋回調整ネジ8lの回動によりxz−平面上で直方体ブロック8nを旋回させる。旋回調整ネジ8lは雄ネジでその先端は直方体状固定ブロック8pに内蔵されている中空雌ネジ内で旋回できる。   The height position adjusting mechanism 9b is provided with a base 8m near the right end surface of the upper surface of the sliding body (base) 8b, and a rectangular parallelepiped block on the xz-plane by the rotation of the turning adjusting screw 8l near the upper end surface of the base 8m. Turn 8n. The turning adjustment screw 8l is a male screw, and its tip can be turned in a hollow female screw built in the rectangular parallelepiped fixing block 8p.

前記直方体ブロック8nの隣に上面に2個のV型溝V,Vが60度の角度で交差するように設けたV型溝2個を有する回可能な直方体ブロック8rを設け、この2個のV型溝の中央に半球頭頂の固定支点(固定ピン)一対8f,8wをその固定支点の根部が前記直方体ブロック8rに固定されるように設けている。図2の円弧内に描かれるように、チルト角度調整ネジ8の回動により円柱状チルト軸8qを有する台8jが円柱状チルト軸8qの中心点O廻りにxy−平面上を0〜15度左右に旋回させるので前記直方体ブロック8rをxy−平面上で旋回させる。チルト角度調整ネジ8の半時計廻りの回動により姿勢バネ8zが円柱状チルト軸8qを有する台8jに付勢を与えるので台8jは後退する。 Two V-grooves V 2, V 3 are swivel capable rectangular blocks 8r having two V-shaped groove provided so as to intersect at an angle of 60 degrees to the top surface next to the rectangular parallelepiped block 8n provided, this A pair of fixed fulcrum (fixed pins) 8f and 8w at the top of the hemisphere is provided at the center of the two V-shaped grooves so that the roots of the fixed fulcrum are fixed to the rectangular parallelepiped block 8r. As depicted in arc 2, a tilt angle adjusting screw 8 l cylindrical tilt axis 8q having trapezoidal 8j is a center point O around the cylindrical tilt axis 8q xy-on a plane by rotation 0-15 Therefore, the rectangular parallelepiped block 8r is turned on the xy-plane. Table 8j Since tilt angle adjusting screw 8 rotation by the posture spring 8z of counterclockwise around l gives a biasing a trapezoidal 8j having a cylindrical tilt axis 8q is retracted.

位置決め治具の前記移動支点8g半球頭頂と一対の固定支点8f,8w半球頭頂を結ぶ仮想線は、二等辺三角形を示す。測定用長尺状物wは、前記キネマカップリング機構9aのV型溝頭部部材8e上面、高さ位置調整機構9bの直方体ブロック8n上面およびチルト機構9cの直方体ブロック8r上面に載置される。位置決め治具7の移動支点8gの半球頂、移動支点8f,8wの半球頭頂および直方体ブロック8rの上面と断面V型溝頭部部材8eの上面は面一になるよう初期設定される。 An imaginary line connecting the moving fulcrum 8g hemispherical top of the positioning jig 8 and the pair of fixed fulcrums 8f, 8w hemispherical top shows an isosceles triangle. The long object for measurement w is placed on the upper surface of the V-shaped groove head member 8e of the kinema coupling mechanism 9a, the upper surface of the rectangular parallelepiped block 8n of the height position adjusting mechanism 9b, and the upper surface of the rectangular parallelepiped block 8r of the tilt mechanism 9c. . Hemispherical head top of the moving fulcrum 8g of the positioning jig 7, moving the fulcrum 8f, the upper surface of the upper surface and a V-groove head member 8e hemisphere parietal and rectangular blocks 8r of 8w is initialized to be flush.

変位センサ、表示器、xy軸テーブルステージ、数値制御装置のセットされたものは、株式会社交洋製作所より高感度マイクロ角度センサ“KMA−20”(商品名)が、株式会社キーエンスより“CMOS レーザアプリセンサIL”(商品名)が、オムロン株式会社よりCMOSレーザタイプ変位センサ“ZS−Lスマートセンサ”(商品名)、小野測器株式会社より“静電容量式非接触変位計VT” (商品名)が入手できる。   A high-sensitivity micro-angle sensor “KMA-20” (trade name) is supplied by Koyo Manufacturing Co., Ltd., and “CMOS Laser” is provided by Keyence Corporation. Application sensor IL "(product name) is CMOS laser type displacement sensor" ZS-L smart sensor "(product name) from OMRON Corporation, and" capacitance type non-contact displacement meter VT "(product) from Ono Sokki Co., Ltd. Name).

図4において、位置決め治具は数値制御平面研削装置のワークテーブル3上に搭載される。2は姿勢表示物体、3はワークテーブル(xy軸テーブルステージ)、4は変位センサである。この変位センサ4は図示されていない表示器付きアンプに連結されており、このアンプはパソコンの数値制御装置に連結されている。真直度の個々の表示および真直度表示線はこのパソコンの表示画面に映し出すことができる。また、プリンターを利用して紙に印刷することもできる。パソコンの数値制御装置は、入力部、記憶部、記録部、演算部、指令部、出力部を備える。x軸−リニアスケール、y軸−リニアスケール、および、z軸−リニアスケールも図示されていない。 In FIG. 4, a positioning jig 8 is mounted on a work table 3 of a numerically controlled surface grinding apparatus. 2 is a posture display object, 3 is a work table (xy-axis table stage), and 4 is a displacement sensor. The displacement sensor 4 is connected to an amplifier with a display (not shown), and this amplifier is connected to a numerical controller of a personal computer. Individual displays of straightness and straightness display lines can be projected on the display screen of this personal computer. It is also possible to print on paper using a printer. A numerical controller of a personal computer includes an input unit, a storage unit, a recording unit, a calculation unit, a command unit, and an output unit. Also not shown are the x-axis-linear scale, the y-axis-linear scale, and the z-axis-linear scale.

図4に示す数値制御平面研削装置1を用い、変位センサを用いて加工ワーク(被測定物)表面の真直度を測定し、この真直度から誤差e(x)を取り除く校正は、例えば次の工程を経て行われる。 Calibration using the numerically controlled surface grinding apparatus 1 shown in FIG. 4 to measure the straightness of the surface of the workpiece (object to be measured) using a displacement sensor and remove the error e (x i ) from this straightness is, for example, as follows. It is performed through the process.

(1).恒温室内で前記姿勢表示物体2の傾斜μ=(μM2−μM1
μM1=αM1+φ
μA2=αM2+φ
μM2−μM1=αM2−αM1
を測定し、この傾斜の値 μ=μM2−μM1=αM2−αM1 を数値制御装置の記録部に送信する。
(1). Inclined mu M wherein in a constant temperature chamber attitude display object 2 = (μ M2M1)
μ M1 = α M1 + φ
μ A2 = α M2 + φ
μ M2 −μ M1 = α M2 −α M1
Was measured, and transmits the value μ M = μ M2 -μ M1 = α M2 -α M1 of the inclined in the recording unit of the numerical controller.

(2).xy軸テーブルステージ3上に搭載された被測定物wの上面に前記姿勢表示物体2を搭載し、変位センサ4により前記姿勢表示物体上の鏡(M)の位置μwM1=αwM1+φを測定する。 (2). The posture display object 2 is mounted on the upper surface of the object to be measured w mounted on the xy-axis table stage 3, and the position μ wM1 = α wM1 + φ of the mirror (M 1 ) on the posture display object is detected by the displacement sensor 4. taking measurement.

(3).ついで、前記xy軸テーブルステージ3上で被測定物wを距離dだけx軸左方向に移動し、前記変位センサ4により前記姿勢表示物体上の鏡(M)の位置μwM2=αwM2+φを測定する。 (3) Next, the object to be measured w is moved to the left of the x axis by a distance d on the xy axis table stage 3, and the position μ wM2 of the mirror (M 1 ) on the posture display object is moved by the displacement sensor 4. = ΑwM2 + φ is measured.

(4).被測定物の上に前記姿勢表示物体を載せて変位センサで測定した距離d離間した一対の鏡(M,M)の傾きμwMは、μwM =μwM2−μwM1と演算される。 (4). Inclination mu wM of a pair of mirrors distance d spaced measured by the displacement sensor by placing the posture display object on the object to be measured (M 1, M 2) is calculated as μ wM = μ wM2 -μ wM1 .

(5).xy軸テーブルステージ3をx軸左方向に走査させ、変位センサ4でxy軸テーブルステージ上の前記被測定物のx軸方向真直度f(x)を測定する。
(x)=f’(x)+fe(x
(5). The xy-axis table stage 3 is scanned in the x-axis left direction, and the displacement sensor 4 measures the straightness f w (x i ) in the x-axis direction of the measurement object on the xy-axis table stage.
f w (x i ) = f ′ (x i ) + f e e (x i )

xy軸テーブルステージ3を距離dづつ移動させて変位センサ4下方に位置させる移動は、治具7の滑走体8bを距離dだけx軸左方向に移動させて行ってもよい。   The movement of moving the xy axis table stage 3 by the distance d and positioning it below the displacement sensor 4 may be performed by moving the sliding body 8b of the jig 7 to the left of the x axis by the distance d.

この(5)工程の被測定物のx軸方向真直度f(x)の測定は、上記(2)工程前に行っても良いし、上記(2)工程前に行ってこの真直度の最初の距離dの真直度(μwd−μw0)を利用し、上記(3)工程の後に、被測定物の上から前記姿勢表示物体を取り外し、xy軸テーブルステージ3をx軸左方向に走査させ、変位センサ4でxy軸テーブルステージ上の前記被測定物がdだけ移動されている状態からx軸方向真直度f(xi+d)を測定し、前記前記被測定物の0からd距離までの真直度(μwd−μw0)にこの真直度f(xi+d)を合体させてもよい。 The measurement of the straightness f w (x i ) in the x-axis direction of the object to be measured in the step (5) may be performed before the step (2) or performed before the step (2). Using the straightness (μ wd −μ w0 ) of the first distance d, and after the step (3), the posture display object is removed from the object to be measured, and the xy axis table stage 3 is moved to the left in the x axis. Then, the displacement sensor 4 measures the straightness f w (x i + d ) in the x-axis direction from the state in which the object to be measured on the xy-axis table stage is moved by d, and from 0 of the object to be measured This straightness f w (x i + d ) may be combined with the straightness (μ wd −μ w0 ) up to the d distance.

後者の場合、次の(6)工程で演算される最初にdだけ被測定物や姿勢表示物体を移動させることにより生じる誤差e(x)=e(x)−e(x)を差し引いた真直度f’(x0+d)は、
f’(x0+d)=(μwd−μw0)−{(αM2−αM1)+(μwM2−μwM1)}
と演算される。
In the latter case, an error e (x i ) = e (x d ) −e (x 0 ) generated by moving the object to be measured and the posture display object by d at the beginning calculated in the next step (6). The subtracted straightness f ′ w (x 0 + d ) is
f 'w (x 0 + d ) = (μ wd -μ w0) - {(α M2 -α M1) + (μ wM2 -μ wM1)}
Is calculated.

(6).xy軸テーブルステージをx軸左方向に移動させて被測定物の真直度を変位センサにより測定する校正すべき誤差e(x)は、前記恒温室内で測定した姿勢表示物体の傾斜μと被測定物の上に前記姿勢表示物体を載せて変位センサで測定した距離d離間した一対の鏡(M,M)の傾きμwMの合算した和を演算する。
e(x)=μ+μwM=(αM2−αM1)+(μwM2−μwM1
(6). The error e (x i ) to be calibrated for measuring the straightness of the object to be measured by the displacement sensor by moving the xy axis table stage in the left direction of the x axis is the inclination μ M of the posture display object measured in the temperature-controlled room. The sum of the inclination μwM of a pair of mirrors (M 1 , M 2 ) separated by a distance d measured by the displacement sensor is placed on the object to be measured.
e (x i) = μ M + μ wM = (α M2 -α M1) + (μ wM2 -μ wM1)

(7).前記(5)工程で測定した真直度f(x)の値より前記(6)工程で得た誤差e(x)を差し引く校正を行う。
f’(x)=f(x)−fe(x
(7). Calibration is performed by subtracting the error e (x i ) obtained in the step (6) from the value of the straightness f w (x i ) measured in the step (5).
f ′ w (x i ) = f w (x i ) −f e e (x i )

(8).上記(7)工程で演算した真直度f’(x)を表示板に映し出す、または紙に印刷する。 (8). The straightness f ′ w (x i ) calculated in the step (7) is displayed on a display board or printed on paper.

なお、実験で用いた被測定物のx軸方向の長さは、1,500mm、姿勢表示物体2の一対の鏡間の距離dは100mmであったので、被測定物をd距離づつ移動させた回数(n)は15回である。また、被測定物の真直度測定時の工場建屋内に設置された数値制御平面研削装置のワークテーブル3近傍の環境は、温度が25±3℃、相対湿度55%であった。   Note that the length of the measurement object used in the experiment in the x-axis direction was 1,500 mm, and the distance d between the pair of mirrors of the posture display object 2 was 100 mm. Therefore, the measurement object was moved by d distances. The number of times (n) is 15 times. Further, the environment in the vicinity of the work table 3 of the numerically controlled surface grinding apparatus installed in the factory building at the time of measuring the straightness of the object to be measured was a temperature of 25 ± 3 ° C. and a relative humidity of 55%.

校正された被測定物のx軸方向の真直度を図5aに示す。図5aより真直度の最大高さは3.84μmと読み取れる。図5aに示される真直度f’(x)より、前記(5)工程で測定された被測定物の真直度f(x)を差し引いた値は、表面測定装置の運動誤差e(x)に相当する。この運動誤差e(x)を図5bに示す。 The straightness in the x-axis direction of the calibrated object to be measured is shown in FIG. From FIG. 5a, the maximum height of straightness can be read as 3.84 μm. The value obtained by subtracting the straightness f w (x i ) of the object measured in the step (5) from the straightness f ′ w (x i ) shown in FIG. It corresponds to (x i ). This motion error e (x i ) is shown in FIG.

よって、測定された被測定物(加工ワーク)の平面の平滑度を更に平坦にする補正研削加工を行う場合、ワークテーブル3上に載置された位置決め治具上に被測定物を載せ、この位置決め治具で上記運動誤差e(x)を打ち消すよう被測定物の位置座標を変更しながら被測定物の研削加工を実施すればよい。 Therefore, when performing the correction grinding process for further flattening the flatness of the measured object (workpiece), the object w is placed on the positioning jig 8 placed on the work table 3. Then, the object to be measured may be ground while changing the position coordinates of the object to be measured so that the positioning error 8 cancels the motion error e (x i ).

本発明の被測定物の位置決め用治具は、被測定物のx,y,z軸座標位置を微小な移動量でx軸リニアスケール、y軸リニアスケール、z軸リニアスケールの座標に適合させることができる。   The object positioning jig according to the present invention adapts the x, y, and z axis coordinate positions of the object to be measured to the coordinates of the x axis linear scale, the y axis linear scale, and the z axis linear scale with a small amount of movement. be able to.

1 数値制御平面研削装置
2 姿勢表示物体
3 ワークテーブル(xyテーブルステージ)
4 変位センサ
位置決め治具
8a 案内レール
8b 滑走体(基台)
9a キネマカップリング機構
9b 高さ位置調整機構
9c チルト機構
w 被測定物
DESCRIPTION OF SYMBOLS 1 Numerical control surface grinding apparatus 2 Posture display object 3 Work table (xy table stage)
4 Displacement sensor
8 Positioning jig 8a Guide rail 8b Sliding body (base)
9a Kinema coupling mechanism 9b Height position adjusting mechanism 9c Tilt mechanism w DUT

Claims (1)

案内レール(8a)上をx軸方向に移動可能な滑走体(8b)上面の一方の端面近くに、ベース(8c)を設けその上にキネマカップリング基部(8d)を設け、このキネマカップリング基部(8d)の上面中央に断面V型溝頭部部材(8e)を搭載し、この断面V型溝頭部部材のV型溝部(V)中央を突き抜けて1本の半球頂の移動支点(8g)を起立させ、その移動支点(8g)の根部は前記キネマカップリング基部(8d)に固定されており、前記キネマカップリング基部の下方に設けた上面傾斜面(8h)を有する凹部空所(8i)内に移動傾斜ブロック(8k)を回動ネジ(8s)の回動によりx軸方向に移動可能に嵌挿し、この移動傾斜ブロック(8k)が移動して前記上面傾斜面(8h)と接触する位置により前記半球頂の移動支点(8g)のxz−平面上での傾斜角度を0〜10度傾斜させてz軸方向高さを0〜5μm変位させることを可能としたキネマカップリング機構(9a)と、
前記滑走体(8b)上面の他方の端面近くに、ベース(8m)を設け、このベース(8m)上端面近くに設けた旋回調整回転ネジ(8l)の回動により直方体ブロック(8n)内に内蔵された中空雌ネジを旋回させることにより前記直方体ブロック(8n)をxz-平面上で旋回させる高さ位置調整機構(9b)と、
この直方体ブロック(8n)の隣に上面にV型溝2個(V,V)が60度の角度で交差するように設けた2個のV型溝(V,V)を有する回可能な直方体ブロック(8r)を設け、この2個のV型溝の中央に半球頭頂の固定支点一対(8f,8w)をその固定支点の根部が前記直方体ブロック(8r)に固定されるように設け、チルト角度調整ネジ(8s)の回動により円柱状チルト軸(8q)を有する台(8j)が前記円柱状チルト軸(8q)の中心点(O)廻りに0〜15度左右に旋回させることを可能とする円柱状チルト機構(9c)、
とからなる測定用長尺状物の位置決め治具(8)であって、
前記移動支点(8g)の半球頭頂と一対の固定支点(8f,8w)の半球頭頂を結ぶ仮想線は、二等辺三角形を示し、
測定用長尺状物(w)は、前記キネマカップリング機構(9a)のV型溝頭部部材(8e)の上面、高さ位置調整機構(9b)の直方体ブロック(8n)上面およびチルト機構(9c)の直方体ブロック(8r)上面に跨って載置されることを特徴とする、位置決め治具()。
A base (8c) is provided near one end face of the upper surface of the sliding body (8b) that can move in the x-axis direction on the guide rail (8a), and a kinema coupling base (8d) is provided on the base (8c). equipped with a base top center section V-groove head member (8d) (8e), the movement of one hemisphere head top penetrates the V-groove (V 1) the center of the cross-section V-grooves head member A fulcrum (8g) is erected, a root of the moving fulcrum (8g) is fixed to the kinema coupling base (8d), and a concave portion having an upper surface inclined surface (8h) provided below the kinema coupling base The movable inclined block (8k) is inserted into the space (8i) so as to be movable in the x-axis direction by rotating the rotating screw (8s) , and the movable inclined block (8k) is moved to move the upper inclined surface ( the hemisphere by position in contact with 8h) A moving fulcrum of the top can and the kinematic coupling mechanism that the z-axis direction height of the inclination angle on xz- plane (8 g) is inclined 0-10 degrees to 0~5μm displacement (9a),
A base (8m) is provided near the other end surface of the upper surface of the sliding body (8b ), and the inside of the rectangular parallelepiped block (8n) is rotated by a turning adjustment rotation male screw (8l) provided near the upper end surface of the base (8m ). A height position adjusting mechanism (9b) for turning the rectangular parallelepiped block (8n) on the xz-plane by turning a hollow female screw incorporated in
Next to the rectangular parallelepiped block (8n), there are two V-shaped grooves (V 2 , V 3 ) provided on the upper surface so that two V-shaped grooves (V 2 , V 3 ) intersect at an angle of 60 degrees. swivel possible rectangular parallelepiped block (8r) is provided, hemisphere parietal fixed support pair (8f, 8w) to the root of the fixed support is fixed to the rectangular parallelepiped block (8r) at the center of the two V-grooves The platform (8j) having the cylindrical tilt axis (8q) is rotated by 0 to 15 degrees around the center point (O) of the cylindrical tilt axis (8q) by rotating the tilt angle adjusting screw (8s). cylindrical tilt mechanism that allows pivoting to (9c),
A long measuring object positioning jig (8) comprising :
An imaginary line connecting the hemispherical vertex of the moving fulcrum (8g) and the hemispherical vertex of the pair of fixed fulcrums (8f, 8w) indicates an isosceles triangle,
The long object for measurement (w) includes the upper surface of the V-shaped groove head member (8e) of the kinema coupling mechanism (9a), the upper surface of the rectangular parallelepiped block (8n) of the height position adjusting mechanism (9b), and the tilt mechanism. (9) A positioning jig ( 8 ), which is placed across the upper surface of the rectangular parallelepiped block (8r).
JP2010232039A 2010-10-15 2010-10-15 Measurement jig for long objects for measurement Active JP5690549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010232039A JP5690549B2 (en) 2010-10-15 2010-10-15 Measurement jig for long objects for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010232039A JP5690549B2 (en) 2010-10-15 2010-10-15 Measurement jig for long objects for measurement

Publications (2)

Publication Number Publication Date
JP2012081570A JP2012081570A (en) 2012-04-26
JP5690549B2 true JP5690549B2 (en) 2015-03-25

Family

ID=46240983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010232039A Active JP5690549B2 (en) 2010-10-15 2010-10-15 Measurement jig for long objects for measurement

Country Status (1)

Country Link
JP (1) JP5690549B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186502A (en) * 2017-06-16 2017-09-22 航天精工股份有限公司 The fixture and processing method of a kind of union elbow
TWI806363B (en) * 2022-01-17 2023-06-21 財團法人精密機械研究發展中心 Intelligent digital geometric accuracy detection system of machine tool and method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217257A (en) * 1982-06-09 1983-12-17 Sumitomo Special Metals Co Ltd Method and apparatus for high-precision parallelism processing
JP4447348B2 (en) * 2004-02-26 2010-04-07 株式会社ナガセインテグレックス Measurement reference device
JP2006119092A (en) * 2004-10-25 2006-05-11 Mitsutoyo Corp Paralleling device and paralleling method
JP4851848B2 (en) * 2006-05-30 2012-01-11 株式会社ナガセインテグレックス Processing method

Also Published As

Publication number Publication date
JP2012081570A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US7131207B2 (en) Workpiece inspection method
JP4568621B2 (en) Straightness correction method for surface texture measuring instrument and surface texture measuring instrument
US8006398B2 (en) Method for scanning the surface of a workpiece
CN101352817A (en) Method of measuring position detection error in machine tool
US4800652A (en) Machine for measuring generally circular objects in cylindrical coordinates
US5671541A (en) Accuracy verification devices for coordinate measuring machines
CN108362221A (en) A kind of free form surface pattern nano-precision detection method and device
US6895682B2 (en) Polar coordinate-based profilometer and methods
US20090198472A1 (en) Probe straightness measuring method
JP5690549B2 (en) Measurement jig for long objects for measurement
US9019510B2 (en) Control method and apparatus for positioning a stage
US7353616B2 (en) Shape measuring instrument
JP4875409B2 (en) Surface grinding method for surface ground workpieces
US9664604B2 (en) Measurement apparatus, measurement method, and method of manufacturing article
JP7296334B2 (en) Straightness measurement system, displacement sensor calibration method, and straightness measurement method
JP2012083275A (en) Calibration method for straightness of workpiece
JP2008096114A (en) Measuring apparatus
US11092422B2 (en) Measuring apparatus and measuring method
US6242926B1 (en) Method and apparatus for moving an article relative to and between a pair of thickness measuring probes to develop a thickness map for the article
JP5051567B2 (en) Surface shape displacement measuring device and measuring method
JPH01202611A (en) Three-dimensional measurement method and apparatus
JP4972764B2 (en) Detector, shape measuring device, and shape measuring method
JP6405195B2 (en) Measurement value correction method, measurement value correction program, and measurement apparatus
JP2022047558A (en) Sizer
JP2010181157A (en) Apparatus for three-dimensional measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5690549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250