JP5690181B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5690181B2
JP5690181B2 JP2011063117A JP2011063117A JP5690181B2 JP 5690181 B2 JP5690181 B2 JP 5690181B2 JP 2011063117 A JP2011063117 A JP 2011063117A JP 2011063117 A JP2011063117 A JP 2011063117A JP 5690181 B2 JP5690181 B2 JP 5690181B2
Authority
JP
Japan
Prior art keywords
cylinder
injection
amount
injection amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011063117A
Other languages
Japanese (ja)
Other versions
JP2012197745A (en
Inventor
斎藤 陽一
陽一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2011063117A priority Critical patent/JP5690181B2/en
Publication of JP2012197745A publication Critical patent/JP2012197745A/en
Application granted granted Critical
Publication of JP5690181B2 publication Critical patent/JP5690181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、ディーゼルエンジンのメイン噴射に先立つ燃料噴射を最適化する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that optimizes fuel injection prior to main injection of a diesel engine.

一般に、ディーゼルエンジンにおける燃料噴射では、安定した燃焼状態を得るためや燃焼音を低減するため、メイン噴射に先立ってパイロット噴射やプレ噴射等の先行噴射を実施している。このメイン噴射に先立つ先行噴射の噴射量が多すぎると、燃費悪化や粒子状物質の排出増加につながるため、最小限の量にすることが望まれるが、逆に噴射量が少なくなり過ぎると、インジェクタの噴射特性バラツキや経時変化等により失火等が発生し、燃焼状態が悪化する。   In general, in fuel injection in a diesel engine, in order to obtain a stable combustion state and to reduce combustion noise, prior injection such as pilot injection and pre-injection is performed prior to main injection. If the injection amount of the preceding injection prior to this main injection is too large, it leads to deterioration of fuel consumption and increased emission of particulate matter, so it is desirable to make it the minimum amount, but conversely if the injection amount becomes too small, Misfires occur due to variations in injector injection characteristics and changes over time, and the combustion state deteriorates.

このため、特許文献1には、アイドリング状態に移行したとき、パイロット噴射をn回に分割し、インジェクタからの燃料の噴射時期毎に分割パイロット噴射量を徐々に減量すしてゆき、気筒間での回転偏差が所定値より大きくなると、このときの分割パイロット噴射量をインジェクタから噴射可能な燃料の下限値として学習することで、インジェクタ毎の燃料噴射量の下限値の個体差、及び燃料噴射量の経時的な変化を取得し、パイロット噴射量を適正化する技術が開示されている。   For this reason, in Patent Document 1, when the engine is shifted to the idling state, the pilot injection is divided into n times, and the divided pilot injection amount is gradually reduced at each fuel injection timing from the injector. When the rotational deviation becomes larger than a predetermined value, the divided pilot injection amount at this time is learned as the lower limit value of the fuel that can be injected from the injector, so that the individual difference of the lower limit value of the fuel injection amount for each injector and the fuel injection amount A technique for obtaining a change over time and optimizing a pilot injection amount is disclosed.

特開2009−36067号公報JP 2009-36067 A

しかしながら、特許文献1に開示の技術は、インジェクタから噴射可能な燃料の下限値を学習するインジェクタ主体の噴射量最適化であり、学習条件を満足する運転領域以外では精度良い最適化を期待できない。   However, the technique disclosed in Patent Document 1 is injection-injection-optimization optimization that learns the lower limit value of fuel that can be injected from the injector, and high-precision optimization cannot be expected outside the operating region that satisfies the learning conditions.

本発明は上記事情に鑑みてなされたもので、ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲に渡る運転領域で最適に制御することのできる燃料噴射制御装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel injection control device that can optimally control the pre-injection prior to the main injection of a diesel engine in a wide range of operation.

本発明による燃料噴射制御装置は、ディーゼルエンジンの一回の燃焼行程中に燃焼の主たる燃料を噴射するメイン噴射に先立って、上記メイン噴射よりも少量の燃料を噴射する先行噴射を実施する燃料噴射制御装置であって、上記先行噴射の噴射量を上記ディーゼルエンジンの全ての気筒について連続爆発しない順序で所定の減量分だけ順次減量し、上記先行噴射の気筒毎の噴射量を調整する噴射量調整部と、上記先行噴射における噴射量減量前後のエンジンの燃焼状態の変化を検出し、該燃焼状態の変化が限界レベルを超えたか否かを判定する噴射量限界判定部とを備え、上記噴射量限界判定部で上記燃焼状態の変化が上記限界レベルを超えたと判定したとき、上記噴射量調整部における気筒別の減量調整分を更新するものである。 The fuel injection control apparatus according to the present invention performs fuel injection for performing preceding injection for injecting a smaller amount of fuel than the main injection prior to main injection for injecting main fuel for combustion during a single combustion stroke of a diesel engine. An injection amount adjustment that adjusts the injection amount for each cylinder of the preceding injection by sequentially reducing the injection amount of the preceding injection by a predetermined reduction amount in an order not to continuously explode for all the cylinders of the diesel engine. And an injection amount limit determination unit that detects a change in the combustion state of the engine before and after a decrease in the injection amount in the preceding injection and determines whether or not the change in the combustion state exceeds a limit level. When the limit determination unit determines that the change in the combustion state has exceeded the limit level, the reduction adjustment for each cylinder in the injection amount adjustment unit is updated.

本発明によれば、ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲の運転領域で最適に制御することができ、常に良好な燃焼状態を維持して燃費及び排ガスエミッションの低減を図ることができる。   According to the present invention, the preceding injection prior to the main injection of the diesel engine can be optimally controlled in a wide range of operation, and it is possible to always maintain a good combustion state and reduce fuel consumption and exhaust emission. .

エンジン制御系の構成図Configuration diagram of engine control system プレ噴射制御に係る機能ブロック図Functional block diagram related to pre-injection control プレ噴射量の変化を示す説明図Explanatory drawing showing changes in pre-injection amount プレ噴射最適化ルーチンのフローチャートPre-injection optimization routine flowchart 気筒別プレ噴射最適化ルーチンのフローチャートFlow chart of pre-injection optimization routine for each cylinder

以下、図面を参照して本発明の実施の形態を説明する。
図1において、符号1はエンジンであり、本実施の形態においては、ディーゼルエンジン(以下、単に「エンジン」と記載する)である。このエンジン1の燃焼室2に、吸気弁3,排気弁4を介して吸気通路5,排気通路6が連通されている。吸気通路5の上流側には吸気チャンバ40が形成され、この吸気チャンバ40の上流に、スロットル弁10が介装されている。吸気チャンバ40には、スロットル弁10下流の空気圧を絶対圧で検出する吸気圧センサ37、が臨まされている。
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 1 denotes an engine, and in the present embodiment, a diesel engine (hereinafter simply referred to as “engine”). An intake passage 5 and an exhaust passage 6 are communicated with the combustion chamber 2 of the engine 1 through an intake valve 3 and an exhaust valve 4. An intake chamber 40 is formed on the upstream side of the intake passage 5, and a throttle valve 10 is interposed upstream of the intake chamber 40. An intake pressure sensor 37 that detects an air pressure downstream of the throttle valve 10 as an absolute pressure is exposed to the intake chamber 40.

スロットル弁10は、電子制御装置(ECU50)からの制御信号によってスロットル弁10の開度を調整し、吸気量(新気量)を制御する吸気アクチュエータ11に連設されている。また、スロットル弁10の上流側には、インタークーラ12が介装され、このインタークーラ12の上流側に、ターボ過給機13のコンプレッサ13aが介装されている。更に、ターボ過給機13のコンプレッサ13a上流側には、エアクリーナ14が介装され、このエアクリーナ14の下流側に、吸気温を検出する吸気温センサ15を内蔵する吸入空気量センサ16が介装されている。   The throttle valve 10 is connected to an intake actuator 11 that adjusts the opening of the throttle valve 10 by a control signal from an electronic control unit (ECU 50) and controls the intake amount (fresh air amount). Further, an intercooler 12 is interposed upstream of the throttle valve 10, and a compressor 13 a of the turbocharger 13 is interposed upstream of the intercooler 12. Further, an air cleaner 14 is interposed on the upstream side of the compressor 13 a of the turbocharger 13, and an intake air amount sensor 16 incorporating an intake air temperature sensor 15 for detecting the intake air temperature is interposed on the downstream side of the air cleaner 14. Has been.

一方、エンジン1の排気通路6には、ターボ過給機13のタービン13bが介装され、タービン13b上流側の排気通路6が排気ガス還流(EGR)通路17を介してスロットル弁10下流側の吸気通路5にバイパス接続されている。EGR通路17には、ECU50からの制御信号によってEGR量を制御するEGR弁18と、EGRガスを冷却するEGRクーラ19とが介装されている。   On the other hand, the turbine 13 b of the turbocharger 13 is interposed in the exhaust passage 6 of the engine 1, and the exhaust passage 6 on the upstream side of the turbine 13 b is connected to the downstream side of the throttle valve 10 via the exhaust gas recirculation (EGR) passage 17. The intake passage 5 is connected by bypass. The EGR passage 17 is provided with an EGR valve 18 that controls the amount of EGR by a control signal from the ECU 50, and an EGR cooler 19 that cools the EGR gas.

ターボ過給機13は、本実施の形態においては、周知の可変ノズル式ターボ過給機(Variable Geometory Turbosupercharger:VGT)であり、タービン13bの周囲に設けられた可変ノズルのベーンがリンク機構(図示せず)を介して負圧作動式のアクチュエータ20に連設されている。アクチュエータ20の圧力導入管には、ECU50によって制御される負圧制御電磁弁21が接続されており、図示しない負圧源からの負圧が負圧制御電磁弁21で調圧されてアクチュエータ20に導入される。   In the present embodiment, the turbocharger 13 is a well-known variable nozzle turbosupercharger (VGT), and a vane of a variable nozzle provided around the turbine 13b is a link mechanism (see FIG. (Not shown) is connected to the negative pressure actuated actuator 20. A negative pressure control electromagnetic valve 21 controlled by the ECU 50 is connected to the pressure introduction pipe of the actuator 20, and negative pressure from a negative pressure source (not shown) is regulated by the negative pressure control electromagnetic valve 21 to be supplied to the actuator 20. be introduced.

これにより、ターボ過給機13の可変ノズルのベーン開度が可変されてタービン13bに吹き付けられる排気ガスの流速が調整され、タービン回転数が可変されて過給圧が制御される。すなわち、アクチュエータ20の動作により、可変ノズルのベーン開度が閉方向へ変化すると、排気ガス流速が速くなり、過給圧が上昇する。逆にベーン開度が開方向へ変化すると、排気ガス流速が遅くなり、過給圧が低下する。   Thereby, the vane opening degree of the variable nozzle of the turbocharger 13 is varied, the flow rate of the exhaust gas blown to the turbine 13b is adjusted, the turbine rotational speed is varied, and the supercharging pressure is controlled. That is, when the vane opening degree of the variable nozzle is changed in the closing direction by the operation of the actuator 20, the exhaust gas flow rate is increased and the supercharging pressure is increased. On the other hand, when the vane opening degree changes in the opening direction, the exhaust gas flow rate becomes slow and the supercharging pressure decreases.

タービン13b下流側の排気通路6は、主として排気ガス中の炭化水素(HC)と一酸化炭素(CO)を触媒反応により酸化させるディーゼル用酸化触媒(Diesel Oxidation Catalyst;DOC)22に連通されている。また、DOC22の下流側には、排気ガス中の窒素酸化物(NOx)を吸蔵し、還元浄化するNOx吸蔵還元型触媒(Lean NOx Trap catalyst;LNT)23が配設され、更に、LNT23の下流側に、排気ガス中の煤やカーボンスート(Soot),可溶性有機成分(Soluble Organic Fraction;SOF),サルフェート(sulfate;SO4)等の粒子状物質(Particulate Matter;PM)を捕集するディーゼルパティキュレートフィルタ(Diesel Particulate Filter;DPF)24が配設されている。   The exhaust passage 6 on the downstream side of the turbine 13b is in communication with a diesel oxidation catalyst (DOC) 22 that mainly oxidizes hydrocarbon (HC) and carbon monoxide (CO) in the exhaust gas by a catalytic reaction. . Further, on the downstream side of the DOC 22, a NOx occlusion reduction catalyst (LNT) 23 that stores nitrogen oxide (NOx) in exhaust gas and reduces and purifies is disposed, and further downstream of the LNT 23. Diesel particulates that collect particulate matter (Particulate Matter; PM) such as soot, carbon soot (Soot), soluble organic components (SOF), and sulfate (SO4) in the exhaust gas A filter (Diesel Particulate Filter; DPF) 24 is provided.

タービン13bを通過した排気は、DOC22,LNT23を通過する際に所定に浄化され、更に、DPF24の多孔性の隔壁を通過しながら下流側へ流れ、その間、排気ガス中のPMが捕集・堆積される。そして、最終的に浄化された排気ガスが排気マフラ(図示せず)を経て排出される。   Exhaust gas that has passed through the turbine 13b is purified as it passes through the DOC 22 and LNT 23, and further flows downstream while passing through the porous partition walls of the DPF 24, during which PM in the exhaust gas is collected and deposited. Is done. Then, finally purified exhaust gas is discharged through an exhaust muffler (not shown).

このようなDOC22,LNT23,DPF24には、排気ガスの状態を検出するためのセンサ類が配設されている。すなわち、DOC22の上流側に、DOC22に流入する排気ガスの温度を検出する温度センサ41が臨まされ、DOC22とLNT23との間に、排気ガスの空燃比を検出するリニア空燃比センサ42が臨まされている。また、LNT23とDPF24の間に、排気ガスの温度を検出する温度センサ43と、排気ガス中のNOx濃度を検出するNOxセンサ44とが臨まされ、更に、DPF24の上下流に、DPF24の入口圧力と出口圧力との差圧を検出する差圧センサ45が配設されている。   Such DOC22, LNT23, and DPF24 are provided with sensors for detecting the state of the exhaust gas. That is, a temperature sensor 41 that detects the temperature of the exhaust gas flowing into the DOC 22 is exposed upstream of the DOC 22, and a linear air-fuel ratio sensor 42 that detects the air-fuel ratio of the exhaust gas is exposed between the DOC 22 and the LNT 23. ing. Further, a temperature sensor 43 for detecting the temperature of the exhaust gas and a NOx sensor 44 for detecting the NOx concentration in the exhaust gas are faced between the LNT 23 and the DPF 24, and the inlet pressure of the DPF 24 is further upstream and downstream of the DPF 24. A differential pressure sensor 45 for detecting a differential pressure between the outlet pressure and the outlet pressure is provided.

次に、エンジン1の燃料噴射系について説明する。このエンジン1は、周知のコモンレール式燃料噴射システムを採用しており、燃焼室2に、ECU50によって制御されるインジェクタ25が臨まされている。また、燃焼室2のインジェクタ25の噴射ノズル近傍には、グローコントローラ27によって通電が制御されるグロープラグ26が臨まされている。   Next, the fuel injection system of the engine 1 will be described. The engine 1 employs a well-known common rail fuel injection system, and an injector 25 controlled by the ECU 50 is exposed to the combustion chamber 2. A glow plug 26 whose energization is controlled by a glow controller 27 is exposed near the injection nozzle of the injector 25 in the combustion chamber 2.

インジェクタ25は、各気筒に分岐配管される燃料配管28を介してコモンレール29に接続されており、コモンレール29には、図示しない燃料タンクから燃料を吸い上げて加圧するサプライポンプ30が接続されている。そして、サプライポンプ30によって高圧に昇圧された燃料がコモンレール29に蓄圧され、各気筒への燃料配管28を介して各気筒のインジェクタ25に高圧燃料が供給される。   The injector 25 is connected to a common rail 29 via a fuel pipe 28 branched to each cylinder. A supply pump 30 that sucks and pressurizes fuel from a fuel tank (not shown) is connected to the common rail 29. The fuel boosted to a high pressure by the supply pump 30 is accumulated in the common rail 29, and the high-pressure fuel is supplied to the injector 25 of each cylinder via the fuel pipe 28 to each cylinder.

サプライポンプ30は、例えばインナカム式の圧送系と電磁弁による吸入量の調量方式を備えるものであり、吸入量を調整する吸入調量電磁弁31、燃料温度を検出する燃料温度センサ32が本体内に組込まれている。サプライポンプ30の燃料温度センサ32からの信号は、コモンレール29内の燃料圧力(レール圧)を検出する燃料圧力センサ33からの信号と共にECU50に入力され、他のセンサ類からの信号と共に処理される。そして、ECU50により、サプライポンプ30の吐出圧すなわちコモンレール29の燃料圧力が、例えばエンジン回転数と負荷とに応じた最適値に、吸入調量電磁弁31を介してフィードバック制御される。   The supply pump 30 is provided with, for example, an inner cam type pressure feeding system and an intake amount adjustment method using an electromagnetic valve, and an intake adjustment electromagnetic valve 31 for adjusting the intake amount, and a fuel temperature sensor 32 for detecting a fuel temperature are provided in the main body. It is built in. A signal from the fuel temperature sensor 32 of the supply pump 30 is input to the ECU 50 together with a signal from the fuel pressure sensor 33 that detects the fuel pressure (rail pressure) in the common rail 29, and is processed together with signals from other sensors. . Then, the ECU 50 feedback-controls the discharge pressure of the supply pump 30, that is, the fuel pressure of the common rail 29, for example, to an optimum value according to the engine speed and the load via the intake metering solenoid valve 31.

次に、ECU50を中心とする電子制御系について説明する。ECU50は、CPU,ROM,RAM,I/Oインターフェイス等からなるマイクロコンピュータを中心として、その他、A/D変換器、タイマ、カウンタ、各種ロジック回路等の周辺回路を含んで構成されている。   Next, an electronic control system centering on the ECU 50 will be described. The ECU 50 is configured to include a peripheral circuit such as an A / D converter, a timer, a counter, and various logic circuits, with a microcomputer including a CPU, a ROM, a RAM, an I / O interface and the like as a center.

ECU50には、吸気温センサ15、吸入空気量センサ16、燃料温度センサ32、燃料圧力センサ33、エンジン1の冷却水通路に臨まされて冷却水温を検出する水温センサ34、クランク軸1aの回転位置を検出するクランク角センサ35、アクセルペダルの踏込み量を検出するアクセルペダルセンサ36、吸気チャンバ40に臨まされている吸気圧センサ37、大気圧を検出する大気圧センサ38、排気系に介装された各センサ(温度センサ41,43、リニア空燃比センサ42、NOxセンサ44、差圧センサ45)、その他、図示しない各種センサ類やスイッチ類からの信号が入力される。   The ECU 50 includes an intake air temperature sensor 15, an intake air amount sensor 16, a fuel temperature sensor 32, a fuel pressure sensor 33, a water temperature sensor 34 that faces the cooling water passage of the engine 1 and detects the cooling water temperature, and a rotational position of the crankshaft 1 a. A crank angle sensor 35 that detects the amount of depression, an accelerator pedal sensor 36 that detects the amount of depression of the accelerator pedal, an intake pressure sensor 37 that faces the intake chamber 40, an atmospheric pressure sensor 38 that detects atmospheric pressure, and an exhaust system. Signals from various sensors (temperature sensors 41 and 43, linear air-fuel ratio sensor 42, NOx sensor 44, differential pressure sensor 45) and other various sensors and switches (not shown) are input.

尚、ECU50は、更に、例えばCAN(Controller Area Network)等の通信プロトコルに基づく車内ネットワーク(図示せず)に接続されている。この車内ネットワークには、ECU50の他、変速機を制御するトランスミッションECU、ブレーキを制御するブレーキECU等の複数のECUが接続されており、互いにデータを送受信して各種情報を共有する。   The ECU 50 is further connected to an in-vehicle network (not shown) based on a communication protocol such as CAN (Controller Area Network). In addition to the ECU 50, a plurality of ECUs such as a transmission ECU that controls the transmission and a brake ECU that controls the brake are connected to the in-vehicle network, and various information is shared by transmitting and receiving data to and from each other.

ECU50は、エンジン運転状態を検出する上述の各種センサ類からの信号、車内ネットワークを介して入力される各種制御情報に基づいて、燃料圧力制御、燃料噴射制御、吸気制御、過給圧制御、EGR制御等の各種エンジン制御を実行し、エンジン1の運転状態を最適状態に維持する。このエンジン制御においては、通常走行時、クランク角センサ35からの信号に基づくエンジン回転数とアクセルペダルセンサ36からの信号に基づくアクセル開度とに応じて、マップ参照等により燃料噴射量や噴射時期を決定し、ピストン上死点前後の多段噴射のパターン、例えば、プレ噴射→メイン噴射→アフター噴射のパターンでインジェクタ25から高圧燃料を噴射させ、燃焼安定化及び排気エミッションの低減を図っている。   The ECU 50 controls the fuel pressure control, the fuel injection control, the intake air control, the supercharging pressure control, the EGR based on signals from the above-described various sensors for detecting the engine operating state and various control information input via the in-vehicle network. Various engine controls such as control are executed, and the operating state of the engine 1 is maintained in an optimum state. In this engine control, during normal running, the fuel injection amount and the injection timing are determined by referring to a map or the like according to the engine speed based on the signal from the crank angle sensor 35 and the accelerator opening based on the signal from the accelerator pedal sensor 36. The high-pressure fuel is injected from the injector 25 in a multi-stage injection pattern before and after the piston top dead center, for example, a pattern of pre-injection → main injection → after-injection, thereby stabilizing combustion and reducing exhaust emissions.

特に、燃料噴射制御においては、ECU50は、広範囲の運転領域においてメイン噴射に先立つ先行噴射の噴射量を最適に制御し、常に良好な燃焼状態を維持して燃費及び排ガスエミッションの低減を図るようにしている。尚、本実施の形態においては、メイン噴射に先立つ先行噴射を、パイロット噴射を含むプレ噴射として代表して記載する。   In particular, in the fuel injection control, the ECU 50 optimally controls the injection amount of the preceding injection prior to the main injection in a wide range of operation so as to always maintain a good combustion state and reduce fuel consumption and exhaust gas emission. ing. In the present embodiment, the preceding injection prior to the main injection is representatively described as pre-injection including pilot injection.

このため、ECU50は、プレ噴射制御に係る機能として、図2に示すように、基本プレ噴射量設定部51、プレ噴射量調整部52、プレ噴射量限界判定部53を備えている。これらの機能部によるプレ噴射制御は、概略的には、基本プレ噴射量設定部51にてプレ噴射量のベース値である基本プレ噴射量Gpbaseを設定し、1サイクル毎に連続爆発しない異なる気筒を対象として、プレ噴射量調整部52で基本プレ噴射量Gpbaseを順次減量補正する制御であり、プレ噴射量の減量前後の燃焼状態の変化をプレ噴射量限界判定部53で判定し、その判定結果に応じて減量分を調整することで、運転領域毎の燃焼状態を主体としてプレ噴射量を最適化する制御である。   Therefore, the ECU 50 includes a basic pre-injection amount setting unit 51, a pre-injection amount adjustment unit 52, and a pre-injection amount limit determination unit 53 as functions related to the pre-injection control, as shown in FIG. The pre-injection control by these functional units is generally performed by setting a basic pre-injection amount Gpbase that is a base value of the pre-injection amount in the basic pre-injection amount setting unit 51, and different cylinders that do not continuously explode every cycle. In this control, the pre-injection amount adjusting unit 52 sequentially reduces and corrects the basic pre-injection amount Gpbase. The pre-injection amount limit determining unit 53 determines the change in the combustion state before and after the pre-injection amount is decreased. In this control, the pre-injection amount is optimized based on the combustion state for each operation region by adjusting the amount of reduction according to the result.

プレ噴射量を減量する気筒の順番は、エンジン1が#1〜#4の4つの気筒を備える4気筒エンジンである場合、3爆発気筒毎若しくは5爆発気筒毎若しくは7爆発気筒毎若しくは9爆発気筒毎であり、例えば、#1→#3→#2→#4の爆発順(燃焼順)に設定されている場合、以下に示すように、●印の気筒がプレ噴射量を減量する気筒となる。尚、以下では、エンジン1を4気筒エンジンとして説明するが、6気筒エンジンである場合には、5爆発気筒毎、若しくは7爆発気筒毎、若しくは11爆発気筒毎、若しくは13爆発気筒毎とする。   When the engine 1 is a four-cylinder engine having four cylinders # 1 to # 4, the order of the cylinders for reducing the pre-injection amount is every three explosion cylinders, every five explosion cylinders, every seven explosion cylinders, or every nine explosion cylinders. For example, when the explosion order (combustion order) of # 1 → # 3 → # 2 → # 4 is set, the cylinder marked with ● is a cylinder that reduces the pre-injection amount, as shown below. Become. In the following description, the engine 1 will be described as a four-cylinder engine. However, when the engine 1 is a six-cylinder engine, it is assumed to be every 5 explosion cylinders, every 7 explosion cylinders, every 11 explosion cylinders, or every 13 explosion cylinders.

○3爆発気筒毎
#1気筒●→#3気筒 →#2気筒 →#4気筒●→
#1気筒 →#3気筒 →#2気筒●→#4気筒 →
#1気筒 →#3気筒●→#2気筒 →#4気筒 →
#1気筒●→#3気筒 →#2気筒 →#4気筒●→
#1気筒 →#3気筒 →#2気筒●→#4気筒 →
・・・・・・・・
○ Each 3 explosion cylinders # 1 cylinder-># 3 cylinder-># 2 cylinder-># 4 cylinder->
# 1 cylinder → # 3 cylinder → # 2 cylinder ● → # 4 cylinder →
# 1 cylinder-># 3 cylinder-># 2 cylinder-># 4 cylinder->
# 1 cylinder-># 3 cylinder-># 2 cylinder-># 4 cylinder->
# 1 cylinder → # 3 cylinder → # 2 cylinder ● → # 4 cylinder →
...

○5爆発気筒毎
#1気筒●→#3気筒 →#2気筒 →#4気筒 →
#1気筒 →#3気筒●→#2気筒 →#4気筒 →
#1気筒 →#3気筒 →#2気筒●→#4気筒 →
#1気筒 →#3気筒 →#2気筒 →#4気筒●→
#1気筒 →#3気筒 →#2気筒 →#4気筒 →
#1気筒●→#3気筒 →#2気筒 →#4気筒 →
・・・・・・・・
○ Each 5 explosion cylinders # 1 cylinder ● → # 3 cylinder → # 2 cylinder → # 4 cylinder →
# 1 cylinder-># 3 cylinder-># 2 cylinder-># 4 cylinder->
# 1 cylinder → # 3 cylinder → # 2 cylinder ● → # 4 cylinder →
# 1 cylinder → # 3 cylinder → # 2 cylinder → # 4 cylinder ● →
# 1 cylinder → # 3 cylinder → # 2 cylinder → # 4 cylinder →
# 1 cylinder-># 3 cylinder-># 2 cylinder-># 4 cylinder->
...

以上のような1サイクル毎に異なる気筒を対象として、基本プレ噴射量Gpbaseが減量補正され、実際に噴射される最終的なプレ噴射量Gpが設定される。この最終的なプレ噴射量Gpは、以下の(1)式に示すように、基本プレ噴射量Gpbaseから所定の気筒別の減量分(順次気筒別減量分)Gcyを減算した値を主として、気筒毎の燃焼状態の変化に応じた気筒別の減量調整分である気筒別補正量Ghによって調整される。本実施に形態においては、順次気筒別減量分Gcyに加えて、気筒毎に徐々に減量する微調整用の減量分である徐変減量分Gjを用いているが、徐変減量分Gjは省略することも可能である。
Gp=Gpbase−Gcy−Gj+Gh …(1)
但し、Gcy:順次気筒別減量分
Gj :徐変減量分
Gh :気筒別補正量
The basic pre-injection amount Gpbase is reduced and corrected for the different cylinders for each cycle as described above, and the final pre-injection amount Gp to be actually injected is set. The final pre-injection amount Gp is mainly based on a value obtained by subtracting a predetermined reduction amount for each cylinder (sequential reduction amount for each cylinder) Gcy from the basic pre-injection amount Gpbase as shown in the following equation (1). It is adjusted by the cylinder-specific correction amount Gh, which is a reduction adjustment amount for each cylinder corresponding to the change in the combustion state for each cylinder. In the present embodiment, in addition to the cylinder-by-cylinder reduction Gcy, the gradual change reduction Gj, which is a fine adjustment reduction that gradually decreases for each cylinder, is used, but the gradual decrease Gj is omitted. It is also possible to do.
Gp = Gpbase-Gcy-Gj + Gh (1)
However, Gcy: Sequential reduction by cylinder
Gj: Gradual weight loss
Gh: Correction amount for each cylinder

図3は、最適化処理開始後のプレ噴射量の変化を図式的に示すものである。ここでは、便宜上、最適化開始前のプレ噴射量(基本プレ噴射量)を10という数値で表現し、最適化により#1気筒からプレ噴射量の減量が開始され、図3中のバーグラフ表示の塗り潰し部分に示すように、3爆発気筒毎に、気筒別の減量補正が順次実行されるものとする。図3中の数値そのものには特に意味はなく、相対的な大きさの変化を示している。   FIG. 3 schematically shows the change in the pre-injection amount after the start of the optimization process. Here, for the sake of convenience, the pre-injection amount (basic pre-injection amount) before the start of optimization is expressed by a numerical value of 10, and the reduction of the pre-injection amount is started from the # 1 cylinder by the optimization, and the bar graph display in FIG. It is assumed that the cylinder-by-cylinder weight reduction correction is sequentially executed for every three explosion cylinders. The numerical value itself in FIG. 3 has no particular meaning and shows a change in relative size.

この最適化制御における最初の#1気筒では、基本プレ噴射量Gpbase=10から順次気筒別減量分Gcy=2及び徐変減量分Gj=0.05が減算され、更に気筒別補正量Gh=0が加算され、#1気筒の最終的なプレ噴射量Gp=7.95が設定される。更に、3爆発毎の#4気筒,#2気筒,#3気筒,#1気筒,#4気筒,#2気筒,…に対して、基本プレ噴射量Gpから順次気筒別減量分Gcy及び徐変減量分Gjが減算され、減量補正が実施される。   In the first cylinder # 1 in this optimization control, the cylinder-by-cylinder reduction amount Gcy = 2 and the gradually changing reduction amount Gj = 0.05 are sequentially subtracted from the basic pre-injection amount Gpbase = 10, and further, the cylinder-by-cylinder correction amount Gh = 0. Are added, and the final pre-injection amount Gp = 7.95 of the # 1 cylinder is set. Further, for each of the # 4 cylinder, # 2 cylinder, # 3 cylinder, # 1 cylinder, # 4 cylinder, # 2 cylinder,... Every three explosions, the cylinder-by-cylinder reduction Gcy and the gradual change are sequentially performed from the basic pre-injection amount Gp. The amount of decrease Gj is subtracted and the amount of decrease correction is performed.

尚、図3においては、プレ噴射量の減量によって燃焼状態が限界レベルまで変化しておらず、気筒別補正量Ghは0のままであるものとする。   In FIG. 3, it is assumed that the combustion state does not change to the limit level due to the decrease in the pre-injection amount, and the cylinder-specific correction amount Gh remains zero.

このとき、徐変減量分Gjは、全ての気筒毎に0.05ずつ順次大きくされ、最初に順次気筒別減量分Gcyによって大きく減量された#1気筒の次の#3気筒では、最終的なプレ噴射量Gpが9.9(Gpbase=10,Gcy=0,Gj=0.1,Gh=0)、次の#2気筒では、最終的なプレ噴射量Gpが9.85(Gpbase=10,Gcy=0,Gj=0.15,Gh=0)に微調整される。そして、#1気筒から3爆発後の#4気筒で、最終的なプレ噴射量Gpが7.8(Gpbase=10,Gcy=2,Gj=0.2,Gh=0)に再度大きく減量され、以後、同様にして、順次、プレ噴射量が減量調整される。   At this time, the gradual decrease amount Gj is sequentially increased by 0.05 for all the cylinders, and in the # 3 cylinder next to the # 1 cylinder, which is first greatly decreased by the cylinder specific decrease amount Gcy, the final value is finally obtained. The pre-injection amount Gp is 9.9 (Gpbase = 10, Gcy = 0, Gj = 0.1, Gh = 0), and the final pre-injection amount Gp is 9.85 (Gpbase = 10) in the next # 2 cylinder. , Gcy = 0, Gj = 0.15, Gh = 0). And the final pre-injection amount Gp is greatly reduced again to 7.8 (Gpbase = 10, Gcy = 2, Gj = 0.2, Gh = 0) in # 4 cylinder after 3 explosions from # 1 cylinder. Thereafter, in the same manner, the pre-injection amount is sequentially adjusted to decrease.

プレ噴射量の減量によるエンジンの燃焼状態の変化は、プレ噴射量限界判定部53にて判定される。具体的には、プレ噴射量限界判定部53は、プレ噴射量の減量前後のエンジンの燃焼状態を各気筒の筒内圧の変化や回転変動に基づいて判定する。すなわち、気筒毎に設置した筒内圧センサで検出した燃焼圧の値に基づいて、或いはクランク角センサ35からの信号により計測した各気筒の燃焼後の所定クランク角度の回転時間に基づいて、エンジンの燃焼状態を判定する。   A change in the combustion state of the engine due to a decrease in the pre-injection amount is determined by the pre-injection amount limit determination unit 53. Specifically, the pre-injection amount limit determination unit 53 determines the combustion state of the engine before and after the decrease of the pre-injection amount based on the change in the in-cylinder pressure of each cylinder and the rotational fluctuation. That is, based on the value of the combustion pressure detected by the in-cylinder pressure sensor installed for each cylinder, or based on the rotation time of the predetermined crank angle after combustion of each cylinder measured by the signal from the crank angle sensor 35, Determine the combustion state.

本実施の形態においては、クランク角センサ35からの信号により所定クランク角度毎の回転時間を算出し、減量前後の回転時間の差による回転変動に基づいて、エンジンの燃焼状態が安定限界レベルに近いか否かを判定する。詳細には、プレ噴射量限界判定部53は、クランク角センサ35の信号入力間隔から所定クランク角度間の経過時間を計測し、エンジン半回転(180°CA)の経過時間(半回転時間)を算出する。   In the present embodiment, the rotation time for each predetermined crank angle is calculated from the signal from the crank angle sensor 35, and the combustion state of the engine is close to the stability limit level based on the rotation fluctuation due to the difference in rotation time before and after the weight reduction. It is determined whether or not. Specifically, the pre-injection amount limit determination unit 53 measures the elapsed time between predetermined crank angles from the signal input interval of the crank angle sensor 35, and determines the elapsed time (half-rotation time) of the engine half-rotation (180 ° CA). calculate.

この半回転時間に基づく燃焼状態の判定は、以下の(a)の(2)式に示すように、全気筒についてのプレ噴射量減量前後の回転変動の所定サイクル数の平均値を判定閾値と比較する判定条件と、以下の(b)の(3)式に示すように、各気筒毎のプレ噴射量減量前の回転変動の所定サイクル数の平均値を判定閾値とを比較する判定条件との2つの条件で判定される。
(a)全気筒についての回転変動判定
(ΣTa#i)/N−(ΣT#i)/N>S1 …(2)
但し、T#i :#i気筒の減量前燃焼時半回転時間(i=1,3,2,4)
Ta#i:#i気筒の減量後燃焼時半回転時間(i=1,3,2,4)
N :サイクル数
S1 :運転領域毎の回転変動判定閾値(全気筒)
(b)各気筒についての回転変動判定
(ΣTa#i')/3/N−(ΣTa#i)/N>S2 …(3)
但し、Ta#i':#i気筒以外の減量後燃焼時半回転時間
(i=1→i'=3,2,4、i=3→i'=1,2,4、i=2→i'=1,3,4、i=4→i'=1,3,2)
S2 :運転領域毎の回転変動判定閾値(気筒毎)
The determination of the combustion state based on the half-rotation time is performed by using an average value of a predetermined number of cycles of rotational fluctuations before and after the decrease in the pre-injection amount for all cylinders as a determination threshold, as shown in the following equation (2). A determination condition for comparing, and a determination condition for comparing an average value of a predetermined number of cycles of rotation fluctuations before reduction of the pre-injection amount for each cylinder with a determination threshold, as shown in the following equation (3) of (b): The two conditions are used.
(A) Rotational fluctuation determination for all cylinders (ΣTa # i) / N− (ΣT # i) / N> S1 (2)
However, T # i: #i cylinder half-rotation time before combustion (i = 1, 3, 2, 4)
Ta # i: #i Cylinder half-rotation time after weight reduction (i = 1, 3, 2, 4)
N: Number of cycles
S1: Rotational fluctuation judgment threshold for each operating region (all cylinders)
(B) Rotational fluctuation determination for each cylinder (ΣTa # i ′) / 3 / N− (ΣTa # i) / N> S2 (3)
However, Ta # i ': Combustion half-rotation time after weight reduction except for #i cylinder
(I = 1 → i '= 3,2,4, i = 3 → i' = 1,2,4, i = 2 → i '= 1,3,4, i = 4 → i' = 1,3 , 2)
S2: Rotational fluctuation judgment threshold for each operating region (for each cylinder)

以上のプレ噴射量限界判定部53における燃焼状態の判定結果は、基本プレ噴射量設定部51及びプレ噴射量調整部52に反映され、全気筒の回転変動平均値が運転領域毎に設定した目標値(判定閾値)になるようにプレ噴射量が更新されると共に、気筒毎の回転変動バラツキが所定範囲内に収まるように気筒毎のプレ噴射量の補正量が更新される。   The determination result of the combustion state in the pre-injection amount limit determination unit 53 described above is reflected in the basic pre-injection amount setting unit 51 and the pre-injection amount adjustment unit 52, and the rotation fluctuation average value of all the cylinders is set for each operation region. The pre-injection amount is updated so as to become a value (determination threshold), and the correction amount of the pre-injection amount for each cylinder is updated so that the variation variation in rotation for each cylinder is within a predetermined range.

詳細には、(2)式による判定条件が成立し、プレ噴射量限界判定部53にて全体の回転変動が限界レベルに近づいたと判定されたとき、基本プレ噴射量設定部51において、基本プレ噴射量Gpbaseが以下の(4)式に従って更新され、プレ噴射量が増量方向に補正される。
Gpbase=Gpbase'−Gcy'−Gj'+ΔQ …(4)
但し、Gpbase':限界判定時の基本プレ噴射量
Gcy' :限界判定時の順次気筒別減量分
Gj' :限界判定時の徐変減量分
ΔQ :所定のシフト量
Specifically, when the determination condition by the equation (2) is satisfied and the pre-injection amount limit determination unit 53 determines that the entire rotation fluctuation has approached the limit level, the basic pre-injection amount setting unit 51 The injection amount Gpbase is updated according to the following equation (4), and the pre-injection amount is corrected in the increasing direction.
Gpbase = Gpbase′−Gcy′−Gj ′ + ΔQ (4)
However, Gpbase ': Basic pre-injection amount at the time of limit judgment
Gcy ': Sequential reduction by cylinder at the time of limit judgment
Gj ': Gradually decreasing amount at the time of limit judgment
ΔQ: predetermined shift amount

また、(3)式による判定条件が成立し、プレ噴射量限界判定部53にて気筒毎の回転変動が限界レベルに近づいたと判定されたとき、プレ噴射量調整部52において、限界判定された#i気筒の気筒別補正量Gh#iが以下の(5)式に従って更新され、プレ噴射量が増量方向に補正される。尚、このとき、限界判定された#i気筒以外の気筒に対しては、以下の(6)式に従って気筒別補正量Gh#i'が更新される。
Gh#i=Gh'#i+Δh …(5)
Gh#i'=Gh'#i'−Δh/3 …(6)
但し、Gh'#i :限界判定時の#i気筒の気筒別補正量
Gh'#i':限界判定時の#i気筒以外の気筒の気筒別補正量
Δh :補正値
Further, when the determination condition by the expression (3) is satisfied and the pre-injection amount limit determining unit 53 determines that the rotational fluctuation for each cylinder has approached the limit level, the pre-injection amount adjusting unit 52 determines the limit. The cylinder specific correction amount Gh # i of the #i cylinder is updated according to the following equation (5), and the pre-injection amount is corrected in the increasing direction. At this time, the cylinder-specific correction amount Gh # i ′ is updated according to the following equation (6) for the cylinders other than the #i cylinder whose limit is determined.
Gh # i = Gh '# i + Δh (5)
Gh # i ′ = Gh ′ # i′−Δh / 3 (6)
However, Gh '# i: Correction amount for each cylinder of #i cylinder at the time of limit judgment
Gh '# i': Cylinder correction amount for cylinders other than cylinder #i at the time of limit judgment
Δh: Correction value

次に、以上のプレ噴射制御に係るプログラム処理について、図4に示すプレ噴射最適化ルーチンのフローチャート、図5に示す気筒別プレ噴射最適化ルーチンのフローチャートを用いて説明する。   Next, the program processing relating to the above pre-injection control will be described using the flowchart of the pre-injection optimization routine shown in FIG. 4 and the flowchart of the cylinder-specific pre-injection optimization routine shown in FIG.

図4のプレ噴射最適化ルーチンは、最適化制御のメインとなるルーチンであり、先ず最初のステップS1において、各種センサ類からの信号に基づくエンジンパラメータを検出し、ステップS2でプレ噴射量の最適化開始のタイミングか否かを調べる。最適化開始タイミングでない場合にはステップS2からルーチンを抜け、最適化開始タイミングである場合、ステップS2からステップS3へ進み、図5の気筒別プレ噴射最適化ルーチンによるプレ噴射量の調整処理を開始する。   The pre-injection optimization routine in FIG. 4 is a main routine for optimization control. First, in the first step S1, engine parameters based on signals from various sensors are detected, and in step S2, the pre-injection amount is optimized. It is checked whether or not it is the timing to start the conversion. If it is not the optimization start timing, the routine exits from step S2, and if it is the optimization start timing, the process proceeds from step S2 to step S3, and the pre-injection amount adjustment process by the cylinder-specific pre-injection optimization routine of FIG. 5 is started. To do.

その後、ステップS4へ進み、前述の(2)式による限界判定の判定条件が成立するか否かを調べる。(2)式の判定条件が成立せず、気筒全体の回転変動が判定閾値を超えていない場合には、ステップS4からステップS5へ進んでプレ噴射量の調整処理を継続する。一方、(2)式の判定条件が成立し、気筒全体の回転変動が判定閾値を超えて全気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS4からステップS6へ進み、前述の(4)式に従って、基本プレ噴射量を、現在の値から所定シフト量だけ増量する方向に更新する。   Thereafter, the process proceeds to step S4, and it is checked whether or not the determination condition of the limit determination by the above-described equation (2) is satisfied. When the determination condition of the expression (2) is not satisfied and the rotation fluctuation of the entire cylinder does not exceed the determination threshold value, the process proceeds from step S4 to step S5 and the pre-injection amount adjustment process is continued. On the other hand, when the determination condition of the expression (2) is satisfied, and it is determined that the rotational fluctuation of the entire cylinder exceeds the determination threshold and the rotational fluctuation of all the cylinders approaches the limit level, the process proceeds from step S4 to step S6. The basic pre-injection amount is updated so as to increase from the current value by a predetermined shift amount in accordance with the above-described equation (4).

次に、図5の気筒別プレ噴射最適化ルーチンについて説明する。
この気筒別プレ噴射最適化ルーチンでは、最初のステップS11で、同様に、各種センサ類からの信号に基づくエンジンパラメータを検出し、ステップS12で気筒別プレ噴射量の最適化開始タイミングか否かを調べる。気筒別のプレ噴射量最適化開始タイミングでない場合にはステップS12からルーチンを抜け、気筒別のプレ噴射量最適化開始タイミングである場合、ステップS12からステップS13へ進み、気筒別のプレ噴射量の調整処理を開始する。この気筒別のプレ噴射量の調整処理は、前述の(1)式に基づいて、基本プレ噴射量Gpbaseから順次気筒別減量分Gcy及び徐変減量分Gjを減算し、気筒別補正量Ghを加算することにより、最終的なプレ噴射量Gpに調整する処理である。
Next, the cylinder specific pre-injection optimization routine of FIG. 5 will be described.
In this cylinder-specific pre-injection optimization routine, in the first step S11, similarly, engine parameters based on signals from various sensors are detected, and in step S12, it is determined whether it is the timing for starting optimization of the cylinder-specific pre-injection amount. Investigate. When it is not the pre-injection amount optimization timing for each cylinder, the routine exits from step S12, and when it is the pre-injection amount optimization start timing for each cylinder, the routine proceeds from step S12 to step S13, where the pre-injection amount for each cylinder is determined. Start the adjustment process. This cylinder-by-cylinder pre-injection amount adjustment processing subtracts the cylinder-by-cylinder decrease amount Gcy and the gradual change decrease amount Gj sequentially from the basic pre-injection amount Gpbase based on the above-described equation (1) to obtain the cylinder-by-cylinder correction amount Gh. This is a process of adjusting to the final pre-injection amount Gp by adding.

次に、ステップS14,S15,S16,S17で、それぞれ、#1気筒のプレ噴射量限界、#3気筒のプレ噴射量限界、#2気筒のプレ噴射量限界、#4気筒のプレ噴射量限界を、前述の(3)式による条件で判定する。そして、S14,S15,S16,S17の何れのステップにおいても、プレ噴射量限界に達していない場合には、ステップS18で気筒別のプレ噴射量の調整処理を継続し、ルーチンを抜ける。   Next, in steps S14, S15, S16, and S17, the # 1 cylinder pre-injection amount limit, the # 3 cylinder pre-injection amount limit, the # 2 cylinder pre-injection amount limit, and the # 4 cylinder pre-injection amount limit, respectively. Is determined under the condition according to the above-described equation (3). If the pre-injection amount limit has not been reached in any of steps S14, S15, S16, and S17, the pre-injection amount adjustment process for each cylinder is continued in step S18, and the routine is exited.

その後、ステップS14,S15,S16,S17の何れかでプレ噴射量限界に達したと判定された場合、前述の(5)式に基づいて該当する気筒の気筒別補正量を更新する。すなわち、ステップS14で#1気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS19で#1気筒の気筒別補正量Gh#1を、限界判定時の気筒別補正量Gh'#1に補正値Δhを加算した値に更新することにより、最終的なプレ噴射量Gpに対して加算項として作用する気筒別補正量を増量し、回転変動を解消する方向に補正する。尚、このとき、(6)式に基づいて、#1気筒以外の#3,#2,#4気筒に対する気筒別補正量も、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。   Thereafter, when it is determined in any of steps S14, S15, S16, and S17 that the pre-injection amount limit has been reached, the cylinder-specific correction amount for the corresponding cylinder is updated based on the above-described equation (5). That is, if it is determined in step S14 that the rotational fluctuation of the # 1 cylinder has approached the limit level, the cylinder-specific correction amount Gh # 1 of the # 1 cylinder is determined in step S19, and the cylinder-specific correction amount Gh ′ in the limit determination is determined. By updating to the value obtained by adding the correction value Δh to # 1, the correction amount for each cylinder acting as an addition term is increased with respect to the final pre-injection amount Gp, and the correction is made in a direction to eliminate the rotational fluctuation. At this time, the correction value Δh / 3 is subtracted from the correction amount for each cylinder for the # 3, # 2, and # 4 cylinders other than the # 1 cylinder from the correction amount for each cylinder based on the equation (6). Update to the specified value.

また、ステップS15で#3気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS20で3気筒の気筒別補正量Gh#3を、限界判定時の気筒別補正量Gh'#3に補正値Δhを加算した値に更新し、同様に、回転変動を解消する方向に補正する。尚、このときにおいても、#3気筒以外の#1,#2,#4気筒に対する気筒別補正量を、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。   If it is determined in step S15 that the rotational fluctuation of the # 3 cylinder has approached the limit level, the cylinder specific correction amount Gh # 3 for the three cylinders is determined in step S20, and the cylinder specific correction amount Gh '# for the limit determination is determined. The value is updated to a value obtained by adding the correction value Δh to 3, and similarly, correction is made in a direction to eliminate the rotation fluctuation. Even at this time, the cylinder-specific correction amounts for the # 1, # 2, and # 4 cylinders other than the # 3 cylinder are updated to values obtained by subtracting the correction value Δh / 3 from the cylinder-specific correction amounts at the time of the limit determination.

また、ステップS16で#2気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS21で#2気筒の気筒別補正量Gh#2を、限界判定時の気筒別補正量Gh'#2に補正値Δhを加算した値に更新し、同様に、回転変動を解消する方向に補正する。このときも、#2気筒以外の#1,#3,#4気筒に対する気筒別補正量を、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。   If it is determined in step S16 that the rotational fluctuation of the # 2 cylinder has approached the limit level, the cylinder-specific correction amount Gh # 2 for the # 2 cylinder is determined in step S21, and the cylinder-specific correction amount Gh ′ for the limit determination is determined. It is updated to a value obtained by adding the correction value Δh to # 2, and similarly, correction is made in a direction to eliminate the rotation fluctuation. Also at this time, the cylinder specific correction amount for the # 1, # 3, and # 4 cylinders other than the # 2 cylinder is updated to a value obtained by subtracting the correction value Δh / 3 from the cylinder specific correction amount at the time of the limit determination.

また、ステップS17で#4気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS22で#4気筒の気筒別補正量Gh#4を、限界判定時の気筒別補正量Gh'#4に補正値Δhを加算した値に更新し、同様に、回転変動を解消する方向に補正する。このときも、#4気筒以外の#1,#3,#2気筒に対する気筒別補正量を、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。   If it is determined in step S17 that the rotational fluctuation of the # 4 cylinder has approached the limit level, the cylinder-specific correction amount Gh # 4 for the # 4 cylinder is determined in step S22, and the cylinder-specific correction amount Gh ′ for the limit determination is determined. It is updated to a value obtained by adding the correction value Δh to # 4, and similarly, correction is made in a direction to eliminate the rotation fluctuation. Also at this time, the cylinder specific correction amount for the # 1, # 3, and # 2 cylinders other than the # 4 cylinder is updated to a value obtained by subtracting the correction value Δh / 3 from the cylinder specific correction amount at the time of the limit determination.

このように、本実施の形態においては、目的とする燃焼形態のままプレ噴射量を低減していき、回転変動に影響を与えるようなポイントを探すことにより、プレ噴射量を最適化する。このとき、プレ噴射の低減量が大きくなるとトルク低下を招くため、4気筒エンジンの場合には、3気筒毎若しくは5気筒毎というように、プレ噴射量を減量する気筒を同一気筒で連続させず、且つ全気筒を順々にプレ噴射量が低減するように制御することで、ドライバビリティの低下を回避することができる。また、プレ噴射量の低減処理を数回転毎に行って回転変動成分や負荷変動成分の影響を除外することにより、定常運転状態だけでなく、緩加速、緩減速等を含めたより広範囲の運転領域でプレ噴射量を最適化することが可能になる。   Thus, in the present embodiment, the pre-injection amount is optimized by reducing the pre-injection amount while maintaining the target combustion form, and searching for points that affect the rotation fluctuation. At this time, if the amount of reduction in pre-injection increases, torque decreases. In the case of a four-cylinder engine, the cylinders that reduce the amount of pre-injection are not continued in the same cylinder, such as every three cylinders or every five cylinders. In addition, it is possible to avoid a decrease in drivability by controlling all the cylinders so that the pre-injection amount is reduced in order. In addition, the pre-injection amount reduction process is performed every few revolutions to eliminate the effects of rotational fluctuation components and load fluctuation components, thereby enabling a wider operating range including not only steady-state operation but also slow acceleration and slow deceleration. This makes it possible to optimize the pre-injection amount.

1 ディーゼルエンジン
50 電子制御装置
51 基本プレ噴射量設定部
52 プレ噴射量調整部
53 プレ噴射量限界判定部
Gpbase 基本プレ噴射量
Gcy 順次気筒別減量分(所定の減量分)
Gh 気筒別補正量(気筒別の減量調整分)
Gj 徐変減量分(微調整用の減量分)
Gp プレ噴射量
1 Diesel Engine 50 Electronic Control Unit 51 Basic Pre-Injection Amount Setting Unit 52 Pre-Injection Amount Adjustment Unit 53 Pre-Injection Amount Limit Determination Unit Gpbase Basic Pre-Injection Amount Gcy Sequential cylinder decrement (predetermined decrement)
Gh Cylinder correction amount (reduction adjustment for each cylinder)
Gj Gradual weight loss (weight loss for fine adjustment)
Gp Pre-injection amount

Claims (6)

ディーゼルエンジンの一回の燃焼行程中に燃焼の主たる燃料を噴射するメイン噴射に先立って、上記メイン噴射よりも少量の燃料を噴射する先行噴射を実施する燃料噴射制御装置であって、
上記先行噴射の噴射量を上記ディーゼルエンジンの全ての気筒について連続爆発しない順序で所定の減量分だけ順次減量し、上記先行噴射の気筒毎の噴射量を調整する噴射量調整部と、
上記先行噴射における噴射量減量前後のエンジンの燃焼状態の変化を検出し、該燃焼状態の変化が限界レベルを超えたか否かを判定する噴射量限界判定部とを備え、
上記噴射量限界判定部で上記燃焼状態の変化が上記限界レベルを超えたと判定したとき、上記噴射量調整部における気筒別の減量調整分を更新することを特徴とする燃料噴射制御装置。
A fuel injection control device that performs a preceding injection that injects a smaller amount of fuel than the main injection prior to a main injection that injects the main fuel of combustion during a single combustion stroke of a diesel engine,
An injection amount adjustment unit that sequentially reduces the injection amount of the preceding injection by a predetermined reduction amount in an order that does not continuously explode for all the cylinders of the diesel engine, and adjusts the injection amount for each cylinder of the preceding injection;
An injection amount limit determination unit that detects a change in the combustion state of the engine before and after the injection amount reduction in the preceding injection, and determines whether or not the change in the combustion state exceeds a limit level;
The fuel injection control device, wherein when the injection amount limit determination unit determines that the change in the combustion state has exceeded the limit level, a reduction adjustment amount for each cylinder in the injection amount adjustment unit is updated.
上記噴射量調整部は、更に、各気筒毎の上記先行噴射の噴射量を微調整用の減量分で徐々に減量することを特徴とする請求項1記載の燃料噴射制御装置。   2. The fuel injection control device according to claim 1, wherein the injection amount adjustment unit further reduces the injection amount of the preceding injection for each cylinder gradually by a reduction amount for fine adjustment. 上記噴射量調整部は、上記ディーゼルエンジンが4気筒エンジンである場合、3爆発気筒毎、5爆発気筒毎、7爆発気筒毎、9爆発気筒毎の何れかの気筒毎に、上記先行噴射の噴射量を順次減量することを特徴とする請求項1記載の燃料噴射制御装置。   When the diesel engine is a four-cylinder engine, the injection amount adjusting unit is configured to inject the preceding injection for each of the three explosion cylinders, the five explosion cylinders, the seven explosion cylinders, and the nine explosion cylinders. 2. The fuel injection control device according to claim 1, wherein the amount is sequentially reduced. 上記噴射量調整部は、上記ディーゼルエンジンが6気筒エンジンである場合、5爆発気筒毎、7爆発気筒毎、11爆発気筒毎、13爆発気筒毎の何れかの気筒毎に、上記先行噴射の噴射量を減量補正することを特徴とする請求項1記載の燃料噴射制御装置。   When the diesel engine is a 6-cylinder engine, the injection amount adjustment unit is configured to inject the preceding injection for each cylinder of every 5 explosion cylinders, every 7 explosion cylinders, every 11 explosion cylinders, and every 13 explosion cylinders. 2. The fuel injection control device according to claim 1, wherein the amount is corrected to decrease. 上記噴射量限界判定部は、クランク角センサの信号により計測した各気筒の燃焼後の所定クランク角度の回転時間に基づいて、エンジンの燃焼状態を検出することを特徴とする請求項1記載の燃料噴射制御装置。   2. The fuel according to claim 1, wherein the injection amount limit determination unit detects the combustion state of the engine based on a rotation time of a predetermined crank angle after combustion of each cylinder measured by a signal of a crank angle sensor. Injection control device. 上記噴射量限界判定部は、各気筒毎に設置した筒内圧センサからの信号に基づいて、エンジンの燃焼状態を検出することを特徴とする請求項1記載の燃料噴射制御装置。   2. The fuel injection control device according to claim 1, wherein the injection amount limit determination unit detects the combustion state of the engine based on a signal from an in-cylinder pressure sensor installed for each cylinder.
JP2011063117A 2011-03-22 2011-03-22 Fuel injection control device Expired - Fee Related JP5690181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063117A JP5690181B2 (en) 2011-03-22 2011-03-22 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063117A JP5690181B2 (en) 2011-03-22 2011-03-22 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2012197745A JP2012197745A (en) 2012-10-18
JP5690181B2 true JP5690181B2 (en) 2015-03-25

Family

ID=47180213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063117A Expired - Fee Related JP5690181B2 (en) 2011-03-22 2011-03-22 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP5690181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291481B (en) * 2013-05-24 2016-02-17 潍柴动力股份有限公司 A kind of pre-spray controlling method of motor, device and electrical control system for engine
JP2017020436A (en) * 2015-07-13 2017-01-26 三菱自動車工業株式会社 Controller for engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013436A (en) * 2000-06-30 2002-01-18 Toyota Motor Corp Fuel injector of cylinder injection internal combustion engine
JP3804480B2 (en) * 2001-07-13 2006-08-02 マツダ株式会社 Diesel engine control device and control method
JP4227924B2 (en) * 2004-03-29 2009-02-18 株式会社日本自動車部品総合研究所 Fuel injection control device for internal combustion engine
JP2005315107A (en) * 2004-04-27 2005-11-10 Toyota Motor Corp Eight-cylinder engine
JP4253654B2 (en) * 2005-12-07 2009-04-15 本田技研工業株式会社 Control device for internal combustion engine
JP4784571B2 (en) * 2007-08-01 2011-10-05 株式会社デンソー Fuel injection control device

Also Published As

Publication number Publication date
JP2012197745A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4770742B2 (en) Engine fuel injection control device and combustion device
JP5146612B2 (en) Control device for internal combustion engine
JP4667346B2 (en) Control device for internal combustion engine
JP2009209741A (en) Engine
US7886524B2 (en) Method for controlling an internal combustion engine during regeneration of an emission after-treatment device
EP3090155A1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
JP4645585B2 (en) Engine torque control device
JP2008184908A (en) Engine control system
WO2016143822A1 (en) Exhaust purification system, and control method for exhaust purification system
JP2016133050A (en) Exhaust emission control system
JP2011132906A (en) Regeneration control device of dpf
JP5690181B2 (en) Fuel injection control device
US8463530B2 (en) Method for operating auto ignition combustion engine
JP5152097B2 (en) Gas sensor signal processing device
JP2010255528A (en) Exhaust emission control device for engine
JP2012145054A (en) Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine
JPWO2012127574A1 (en) Control device for internal combustion engine
JP2015121182A (en) Control device of engine
JP2008121518A (en) Exhaust emission control device of internal combustion engine
JP4868908B2 (en) Control device for engine with selective reduction type NOx catalyst
EP2290210A1 (en) Fuel supply control system for internal combustion engine
EP3462012B1 (en) Controller and control method for internal combustion engine
JP5083398B2 (en) Engine torque control device
JP4710729B2 (en) Control device for internal combustion engine
JP2008215110A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees