JP5689857B2 - Microwave signal generator and self-injection locking method thereof - Google Patents

Microwave signal generator and self-injection locking method thereof Download PDF

Info

Publication number
JP5689857B2
JP5689857B2 JP2012195732A JP2012195732A JP5689857B2 JP 5689857 B2 JP5689857 B2 JP 5689857B2 JP 2012195732 A JP2012195732 A JP 2012195732A JP 2012195732 A JP2012195732 A JP 2012195732A JP 5689857 B2 JP5689857 B2 JP 5689857B2
Authority
JP
Japan
Prior art keywords
signal
phase
delay
output
yig oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012195732A
Other languages
Japanese (ja)
Other versions
JP2014053709A (en
Inventor
誠範 待鳥
誠範 待鳥
滝沢 正則
正則 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2012195732A priority Critical patent/JP5689857B2/en
Publication of JP2014053709A publication Critical patent/JP2014053709A/en
Application granted granted Critical
Publication of JP5689857B2 publication Critical patent/JP5689857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

本発明は、YIG発振器が出力するマイクロ波信号の位相雑音を広い周波数可変範囲にわたって抑圧するための技術に関する。この技術は、広い周波数範囲を掃引するスペアナの局部発振器などに利用可能である。   The present invention relates to a technique for suppressing phase noise of a microwave signal output from a YIG oscillator over a wide frequency variable range. This technique can be used for a local oscillator of a spectrum analyzer that sweeps a wide frequency range.

広帯域に周波数が可変なマイクロ波発振器として、YIG発振器(YIG Tuned Oscillator ; YTO)が広く用いられている。YIG(Yttrium Iron Garnet)はフェリ磁性結晶であり、印加される磁場に応じて、数GHz〜数10GHzの範囲で強磁性共鳴を生じる。これを利用したものがYIG発振器である。   As a microwave oscillator whose frequency is variable over a wide band, a YIG oscillator (YTO) is widely used. YIG (Yttrium Iron Garnet) is a ferrimagnetic crystal and produces ferromagnetic resonance in the range of several GHz to several tens of GHz depending on the applied magnetic field. A YIG oscillator utilizing this is used.

このYIG発振器はマイクロ波帯で電気的に(機械式ではなく)1オクターブ程度の可変範囲が得られる唯一の実用的な発振器である。このため、スペクトラムアナライザのような信号解析装置のローカル信号源として用いられるが、このような用途ではローカル信号に含まれる雑音によって解析できるレベルの下限が制限されるので、このYIG発振器の出力をより低位相雑音化することが重要である。   This YIG oscillator is the only practical oscillator that can obtain a variable range of about one octave electrically (not mechanically) in the microwave band. For this reason, it is used as a local signal source of a signal analyzer such as a spectrum analyzer. However, in such applications, the lower limit of the level that can be analyzed is limited by the noise contained in the local signal. It is important to reduce the phase noise.

その一つの方法として、マイクロ波の発振器の出力の一部を遅延して適度な強度と位相で発振器に帰還注入して、自己注入同期と呼ばれる状態とすることで、発振器の出力の位相雑音を低減する技術が知られている(非特許文献1、2)。   One method is to delay a part of the output of the microwave oscillator and inject it back into the oscillator with an appropriate strength and phase, and to bring it into a state called self-injection locking, thereby reducing the phase noise of the oscillator output. The technology to reduce is known (nonpatent literatures 1 and 2).

この自己注入同期状態は、発振器への注入信号の強度がある程度以上大きいときに生じ得るが、注入信号の位相が適切でないと安定な同期が得られない。同期状態に入った場合、注入信号の強度が大きいほど、また、注入信号に大きな遅延を与えるほど位相雑音を小さくできることが知られている。   This self-injection synchronization state can occur when the intensity of the injection signal to the oscillator is larger than a certain level, but stable synchronization cannot be obtained unless the phase of the injection signal is appropriate. It is known that when entering the synchronized state, the phase noise can be reduced as the intensity of the injection signal is increased and as the delay of the injection signal is increased.

Heng-ChiaChang, ”Stability Analysis of Self-Injection-LockedOscillators,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.51, NO. 9, SEPTEMBER 2003, pp.1989-1992Heng-ChiaChang, “Stability Analysis of Self-Injection-LockedOscillators,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.51, NO. 9, SEPTEMBER 2003, pp.1989-1992

Heng-Chia Chang, ”Phase Noise inSelf-Injection-Locked Oscillators-Theory and Experiment” IEEE TRANSACTIONSON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 9, SEPTEMBER 2003,pp.1993-1998Heng-Chia Chang, “Phase Noise in Self-Injection-Locked Oscillators-Theory and Experiment” IEEE TRANSACTIONSON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 9, SEPTEMBER 2003, pp.1993-1998

しかし、上記方式でマイクロ波帯において十分な位相雑音抑圧効果を得るためには、数10m以上の同軸ケーブルで遅延を与える必要があり、その体積が大きくなること、ケーブル損失が大きく、その損失補償のために増幅すると余剰雑音が増えることから、現実的ではない。   However, in order to obtain a sufficient phase noise suppression effect in the microwave band by the above method, it is necessary to give a delay with a coaxial cable of several tens of meters or more, and its volume increases, cable loss is large, and loss compensation For this reason, it is not realistic to amplify the noise because the excess noise increases.

また、注入信号の位相を発振出力に対して適切な位相に設定するために、ラインストレッチャーのような移相器を用いる必要があるが、ラインストレッチャーのような移相器では、安定な自己注入同期を広帯域に実現することは困難である。   In addition, in order to set the phase of the injection signal to an appropriate phase with respect to the oscillation output, it is necessary to use a phase shifter such as a line stretcher, but a phase shifter such as a line stretcher is stable. It is difficult to realize self-injection synchronization in a wide band.

例えば、遅延時間がτであるとすると、発振器の出力周波数がΔfだけ変化した場合に、注入信号と発振出力の位相差を適切な値に保持させるために必要な位相変化は2πΔfτとなる。そして、遅延時間τを1μs、Δfを1GHzとすると、周波数をΔf分変化させる間に1(μs)×1(GHz)=1000周期分の位相回転を生じさせなくてはならないが、通常のラインストレッチャーによる位相変化量は、周波数10GHzに対して高々数回転程度であって、YIG発振器の周波数変化幅に全く対応できない。   For example, assuming that the delay time is τ, when the output frequency of the oscillator changes by Δf, the phase change necessary to hold the phase difference between the injection signal and the oscillation output at an appropriate value is 2πΔfτ. When the delay time τ is 1 μs and Δf is 1 GHz, phase rotation of 1 (μs) × 1 (GHz) = 1000 periods must be generated while the frequency is changed by Δf. The amount of phase change by the stretcher is at most several rotations for a frequency of 10 GHz, and cannot correspond to the frequency change width of the YIG oscillator at all.

このように、従来の自己注入同期技術では、十分な位相雑音抑圧効果を得るために必要な遅延処理を実現できず、また、YIG発振器による1オクターブ程度(例えば、3GHz〜8GHz)の広帯域な周波数可変に対応できていない。   As described above, the conventional self-injection locking technique cannot realize the delay processing necessary for obtaining a sufficient phase noise suppression effect, and has a wide frequency of about one octave (for example, 3 GHz to 8 GHz) by the YIG oscillator. It is not variable.

本発明は、この課題を解決して、YIG発振器が出力するマイクロ波信号の位相雑音の抑圧を、自己注入同期処理で広い周波数可変範囲にわたって実現できるマイクロ波信号発生器およびその自己注入同期方法を提供することを目的としている。その実現のために、光遅延線を用いた自己注入同期を適切な位相関係で行うことで、位相雑音を抑圧する。   The present invention solves this problem, and provides a microwave signal generator and a self-injection locking method capable of realizing suppression of phase noise of a microwave signal output from a YIG oscillator over a wide frequency variable range by self-injection locking processing. It is intended to provide. To achieve this, phase noise is suppressed by performing self-injection synchronization using an optical delay line with an appropriate phase relationship.

前記目的を達成するために、本発明のマイクロ波信号発生器は、
入力される制御信号に応じた周波数のマイクロ波信号を発振出力するYIG発振器(21)と、
前記YIG発振器の出力を分岐する第1の分岐手段(23)と、
入力信号に所定の遅延を与えて出力する遅延器(26)、および入力信号の位相を変化させて出力する可変移相器(31)を含み、前記第1の分岐手段で分岐された第1信号を受けて、前記所定の遅延と前記位相変化を与えて出力する遅延・移相処理部(25)と、
前記遅延・移相処理部の出力信号を分岐する第2の分岐手段(33)と、
前記第2の分岐手段で分岐された第4信号を前記YIG発振器に注入させる注入手段(36)と、
前記第1の分岐手段で分岐された第2信号と、前記第2の分岐手段で分岐された第5信号の位相を比較する位相比較器(35)と、
前記YIG発振器の出力周波数を指定する前記制御信号を出力する周波数設定器(40)と、
前記位相比較器の出力と前記制御信号とを受け、前記YIG発振器が前記制御信号に対応した周波数の信号を出力している状態で、前記位相比較器に入力される前記第2信号と前記第5信号の位相差が、前記YIG発振器を前記第4信号に対して自己注入同期状態にさせる所定値に維持されるように、前記可変移相器の移相量を制御する制御部(37)とを有するマイクロ波信号発生器であって、
前記遅延・移相処理部の前記遅延器が、入力信号で強度変調された光を所定長の光ファイバ遅延線に伝搬させて前記所定の遅延を与えてから電気信号に戻して出力するように構成され、
前記遅延・移相処理部の前記可変移相器が、入力信号をI、Q信号で直交変調する直交変調器を有し、該I、Q信号に応じた移相処理を行うように構成され、
前記制御部は、前記位相比較器に入力される前記第2信号と前記第5信号の位相差が、前記YIG発振器を前記第5信号に対して自己注入同期状態にさせる所定値に維持させるためのI、Q信号を算出して前記可変移相器に設定するように構成されていることを特徴とする。
In order to achieve the above object, the microwave signal generator of the present invention comprises:
A YIG oscillator (21) that oscillates and outputs a microwave signal having a frequency corresponding to an input control signal;
First branching means (23) for branching the output of the YIG oscillator;
A first delay unit (26) for outputting a predetermined delay to the input signal and a variable phase shifter (31) for changing the phase of the input signal and outputting the first signal branched by the first branching means A delay / phase shift processing unit (25) for receiving a signal and outputting the predetermined delay and the phase change;
Second branch means (33) for branching the output signal of the delay / phase shift processing section;
Injection means (36) for injecting the fourth signal branched by the second branch means into the YIG oscillator;
A phase comparator (35) for comparing the phases of the second signal branched by the first branching means and the fifth signal branched by the second branching means;
A frequency setter (40) for outputting the control signal designating an output frequency of the YIG oscillator;
In response to the output of the phase comparator and the control signal, the YIG oscillator outputs a signal having a frequency corresponding to the control signal, and the second signal and the second signal input to the phase comparator. A control unit (37) for controlling the phase shift amount of the variable phase shifter so that the phase difference of the five signals is maintained at a predetermined value that causes the YIG oscillator to be in a self-injection synchronization state with respect to the fourth signal. A microwave signal generator comprising:
The delay unit of the delay / phase shift processing unit propagates light whose intensity is modulated by an input signal to an optical fiber delay line having a predetermined length, gives the predetermined delay, and then returns to an electric signal for output. Configured,
The variable phase shifter of the delay / phase shift processing unit includes a quadrature modulator that quadrature modulates an input signal with I and Q signals, and is configured to perform phase shift processing according to the I and Q signals. ,
The control unit maintains the phase difference between the second signal and the fifth signal input to the phase comparator at a predetermined value that causes the YIG oscillator to be in a self-injection synchronization state with respect to the fifth signal. The I and Q signals are calculated and set in the variable phase shifter.

また、本発明のマイクロ波信号発生器の自己注入同期方法は、
制御信号に応じた周波数のマイクロ波信号を発振出力するYIG発振器(21)の出力に、所定の遅延処理と可変移相処理を行って得られた信号を、前記YIG発振器に注入させるとともに、前記YIG発振器の出力との位相比較処理を行い、該位相比較処理の出力と前記YIG発振器の出力周波数を指定するための前記制御信号とに基づいて、前記YIG発振器が前記制御信号に対応した周波数の信号を出力している状態で、前記位相比較処理される信号の位相差が、前記YIG発振器を自己注入同期状態にさせる所定値に維持されるように、前記可変移相処理の移相量を制御するマイクロ波信号発生器の自己注入同期方法であって、
前記遅延処理が、入力信号で強度変調された光を所定長の光ファイバ遅延線に伝搬させて前記所定の遅延を与えてから電気信号に戻して出力する処理であり、
前記可変移相処理が、入力信号をI、Q信号で直交変調して、該I、Q信号に応じた位相変化を与える処理であり、
前記位相比較処理される信号の位相差が、前記YIG発振器を自己注入同期状態にさせる所定値に維持させるためのI、Q信号を算出して前記可変移相処理に用いることを特徴とする。
Further, the self-injection locking method of the microwave signal generator of the present invention is
A signal obtained by performing a predetermined delay process and a variable phase shift process is injected into the output of the YIG oscillator (21) that oscillates and outputs a microwave signal having a frequency corresponding to the control signal. A phase comparison process with the output of the YIG oscillator is performed, and the YIG oscillator has a frequency corresponding to the control signal based on the output of the phase comparison process and the control signal for designating the output frequency of the YIG oscillator. In the state where the signal is output, the phase shift amount of the variable phase shift process is set so that the phase difference of the signal subjected to the phase comparison process is maintained at a predetermined value that causes the YIG oscillator to be in a self-injection synchronization state. A self-injection locking method for a microwave signal generator to control,
The delay process is a process of propagating light whose intensity is modulated by an input signal to an optical fiber delay line having a predetermined length to give the predetermined delay and then returning to an electric signal and outputting it.
The variable phase shift process is a process of performing quadrature modulation of an input signal with I and Q signals and giving a phase change according to the I and Q signals,
The phase difference between the signals subjected to the phase comparison processing is calculated and used for the variable phase shift processing by calculating I and Q signals for maintaining the YIG oscillator at a predetermined value for bringing the YIG oscillator into a self-injection synchronization state.

このように、本発明では、YIG発振器の出力に所定の遅延と位相変化を与えてYIG発振器に戻して自己注入同期状態にする際に、所定の遅延を与える遅延処理が、入力信号で強度変調された光を所定長の光ファイバ遅延線に伝搬させて前記所定の遅延を与えてから電気信号に戻して出力する処理とし、位相変化を与えるための処理が、入力信号をI、Q信号で直交変調して、該I、Q信号に応じた位相変化を与える処理とし、YIG発振器の周波数変化に対して、YIG発振器の出力と注入信号との位相差が自己注入同期状態を維持するようにI、Q信号を与えている。   As described above, in the present invention, when a predetermined delay and phase change are given to the output of the YIG oscillator and returned to the YIG oscillator so as to be in the self-injection locked state, the delay process for giving the predetermined delay is intensity modulation by the input signal. The processed light is propagated to the optical fiber delay line of a predetermined length, given the predetermined delay, and then returned to the electric signal to be output. The processing for giving the phase change is performed by using the I and Q signals as input signals. A process of giving a phase change according to the I and Q signals by performing quadrature modulation so that the phase difference between the output of the YIG oscillator and the injection signal maintains the self-injection synchronization state with respect to the frequency change of the YIG oscillator. I and Q signals are given.

このため、ラインストレッチャーによる位相変化量に比べて格段に広い移相処理が行え、YIG発振器の周波数のオクターブ変化に対応した広い周波数範囲で自己注入同期状態を維持することができ、広帯域で低位相雑音な信号を生成することができる。   For this reason, the phase shift processing is much wider than the amount of phase change by the line stretcher, and the self-injection locked state can be maintained in a wide frequency range corresponding to the octave change of the YIG oscillator frequency. A signal with phase noise can be generated.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 実施形態の要部構成図Main part configuration diagram of the embodiment 実施形態の各電気長と信号位相の関係を説明するための模式図Schematic diagram for explaining the relationship between each electrical length and signal phase of the embodiment 実施形態の要部構成図Main part configuration diagram of the embodiment 本発明の別の実施形態の構成図Configuration diagram of another embodiment of the present invention

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用したマイクロ波信号発生器20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a microwave signal generator 20 to which the present invention is applied.

このマイクロ波信号発生器20は、入力される制御信号Vcに応じた周波数のマイクロ波信号を発振出力するYIG発振器21(YTO)を信号源としている。   The microwave signal generator 20 uses a YIG oscillator 21 (YTO) that oscillates and outputs a microwave signal having a frequency corresponding to an input control signal Vc as a signal source.

YIG発振器21の出力Soは、後述するサーキュレータ36を介して第1の分岐手段としてのカプラ23に入力され、3分岐される。その分岐された第1信号S1は、遅延・移相処理部25に入力され、分岐された第2信号S2は、後述する位相比較器35に入力され、分岐された第3信号S3は、このマイクロ波信号発生器20の出力信号となる。   An output So of the YIG oscillator 21 is input to a coupler 23 as a first branching unit via a circulator 36 described later, and is branched into three branches. The branched first signal S1 is input to the delay / phase shift processing unit 25, the branched second signal S2 is input to a phase comparator 35 described later, and the branched third signal S3 is It becomes an output signal of the microwave signal generator 20.

遅延・移相処理部25は、入力信号に所定の遅延τを与えて出力する遅延器26、および入力信号の位相を変化させて出力する可変移相器31を含み、第1の分岐手段23で分岐された第1信号S1を受けて、所定の遅延τと位相変化を与えて出力する。   The delay / phase-shift processing unit 25 includes a delay unit 26 that outputs a predetermined delay τ given to an input signal and a variable phase shifter 31 that changes the phase of the input signal and outputs the first signal. The first signal S1 branched in step (b) is received, given a predetermined delay τ and a phase change, and output.

ここでは、遅延器26で遅延された信号を可変移相器31に入力しているが、その順序を逆にしてもよい。   Here, the signal delayed by the delay unit 26 is input to the variable phase shifter 31, but the order may be reversed.

遅延器26は、入力信号(この場合、第1信号S1であるが可変移相器31の出力でもよい)で強度変調された光を所定長の光ファイバ遅延線に伝搬させて所定の遅延を与えてから電気信号に戻して出力するように構成されている。   The delay unit 26 propagates the light whose intensity is modulated by the input signal (in this case, the first signal S1 but may be the output of the variable phase shifter 31) to the optical fiber delay line having a predetermined length to thereby generate a predetermined delay. It is configured so as to return to an electric signal and then output it.

より具体的に言えば、遅延器26は、レーザダイオード等からなる光源27、光変調器28、光ファイバ遅延線29、受光器30からなり、光源27から光変調器28に入射された光を、入力信号(第1信号S1)で強度変調して、その出射光を光ファイバ遅延線29に伝搬させてから受光器30に入射させて電気信号Sdに戻して出力する。   More specifically, the delay unit 26 includes a light source 27 composed of a laser diode or the like, an optical modulator 28, an optical fiber delay line 29, and a light receiver 30. The delay unit 26 receives light incident on the optical modulator 28 from the light source 27. Then, intensity modulation is performed with the input signal (first signal S1), and the emitted light is propagated to the optical fiber delay line 29 and then incident on the light receiver 30 to return to the electric signal Sd and output.

なお、光変調器28の具体的な構成は任意であるが、ここでは、入射光を2分岐して二つの導波路を伝搬させて合波する構造の光路が、印加電界に応じて屈折率が変化する電気光学効果を有する基板に形成され、その二つの導波路の少なくとも一方に所定振幅の信号電界を与えることで、信号によって強度変調された光を出射させる、所謂LN変調器を用いている。   The specific configuration of the optical modulator 28 is arbitrary, but here, the optical path having a structure in which incident light is split into two and propagated through two waveguides is combined with a refractive index according to the applied electric field. A so-called LN modulator that emits light whose intensity is modulated by a signal by applying a signal electric field having a predetermined amplitude to at least one of the two waveguides. Yes.

また、可変移相器31は、入力信号(この場合、遅延信号Sd)をI、Q信号で直交変調する直交変調器を有し、そのI、Q信号に応じた移相処理を行う。   The variable phase shifter 31 has a quadrature modulator that quadrature modulates an input signal (in this case, the delay signal Sd) with I and Q signals, and performs phase shift processing according to the I and Q signals.

可変移相器31を構成する直交変調器は、2つのミキサと0度ハイブリッドカプラ、90度ハイブリッドカプラなどを用いて構成されており、入力信号をcos ωtとし、I、Q信号を、
I=A cosφ
Q=A sinφ
とすると、変調器出力Sxは、
Acos φ・cosωt−Asin φ・sin ωt=Acos (ωt+φ)
となって、入力信号の位相をφだけシフトしたものになる。
The quadrature modulator constituting the variable phase shifter 31 is configured using two mixers, a 0-degree hybrid coupler, a 90-degree hybrid coupler, and the like. The input signal is cos ωt, and the I and Q signals are
I = A cosφ
Q = A sinφ
Then, the modulator output Sx is
Acos φ ・ cosωt−Asin φ ・ sin ωt = Acos (ωt + φ)
Thus, the phase of the input signal is shifted by φ.

例えば、φ=Ωt(Ω;角周波数,t;時間)のように変化させればRF入力に対するRF出力の位相は持続的に回転することになる。   For example, if it is changed as φ = Ωt (Ω; angular frequency, t; time), the phase of the RF output with respect to the RF input rotates continuously.

ただし、IC化された直交変調器の場合、その帯域は2GHz程度しかないため、それ以上の周波数帯の発振器を実現するためには、補助的なミキシングが必要になる。図2はその構成例を示すものであり、YTO構成の局部発振器31aからのローカル信号Lc、ミキサ31bおよびローパスフィルタ31cを用いて、入力信号をダウンコンバートしてから、直交変調器31dに入力し、I、Q信号で直交変調する。そしてその出力を、ローカル信号Lc、ミキサ31eおよびバンドパスフィルタ31fを用いて元の周波数帯にアップコンバートすることで、全体としては数GHz以上の高い周波数で直交変調処理を行うことができる。   However, in the case of an IC-equipped quadrature modulator, the band is only about 2 GHz, so auxiliary mixing is necessary to realize an oscillator of a frequency band higher than that. FIG. 2 shows an example of the configuration. The local signal Lc from the local oscillator 31a having the YTO configuration, the mixer 31b and the low-pass filter 31c are used to down-convert the input signal and then input to the quadrature modulator 31d. , I, and Q signals are orthogonally modulated. Then, the output is up-converted to the original frequency band using the local signal Lc, the mixer 31e, and the band pass filter 31f, so that the orthogonal modulation processing can be performed at a high frequency of several GHz or more as a whole.

この遅延・移相処理部25によって、所定の遅延τと、I、Q信号に応じた任意の位相変化を与えられた信号Sxは、第2の分岐手段としてのカプラ33で2分岐される。   The signal Sx given a predetermined delay τ and an arbitrary phase change according to the I and Q signals by the delay / phase shift processing unit 25 is branched into two by a coupler 33 as a second branching unit.

このカプラ33で分岐された第4信号S4は、注入手段としてのサーキュレータ36を介してYIG発振器21に注入される。   The fourth signal S4 branched by the coupler 33 is injected into the YIG oscillator 21 via a circulator 36 as injection means.

ここで、YIG発振器21の出力と注入信号S4の位相差が、その系の最適値φrであれば自己注入同期状態となってYIG発振器21の出力の位相雑音が抑圧される。また、この状態からYIG発振器21の出力周波数が変化すれば、その周波数変化に対する時間τの遅延処理による位相変化分が生じて、自己注入同期状態から外れてしまうが、その時間τによる位相変化をキャンセルするように移相処理を行うことで、YIG発振器21の出力と注入信号の位相を最適値φrに保持することができる。   Here, if the phase difference between the output of the YIG oscillator 21 and the injection signal S4 is the optimum value φr of the system, the self-injection synchronization state is established and the phase noise of the output of the YIG oscillator 21 is suppressed. Further, if the output frequency of the YIG oscillator 21 changes from this state, a phase change due to the delay process of the time τ with respect to the frequency change occurs and falls out of the self-injection synchronization state. By performing the phase shift process so as to cancel, the output of the YIG oscillator 21 and the phase of the injection signal can be held at the optimum value φr.

そのために、発振器出力と注入信号の位相差を検出し、その位相差が変化しないように移相処理を行う必要がある。   For this purpose, it is necessary to detect the phase difference between the oscillator output and the injection signal and perform phase shift processing so that the phase difference does not change.

これを実現するために、カプラ33で分岐された第5信号S5を、カプラ23で分岐された第2信号S2とともに、アナログミキサ(DBM)型の位相比較器35に入力して、その位相比較を行う。   In order to realize this, the fifth signal S5 branched by the coupler 33 is input to the analog mixer (DBM) type phase comparator 35 together with the second signal S2 branched by the coupler 23, and the phase comparison is performed. I do.

この位相比較器35は、YIG発振器21の出力と注入信号の位相差を間接的に検出するものであり、ここでは、入力信号の位相差がπ/2のときに、低周波の出力成分V(φ)が0ボルトとなるDBM型のものを用い、発振器出力と注入信号との位相差が最適値φrとなるように、カプラ23、33の分岐位置や配線長等を予め設定している。   This phase comparator 35 indirectly detects the phase difference between the output of the YIG oscillator 21 and the injection signal. Here, when the phase difference of the input signal is π / 2, the low frequency output component V A DBM type in which (φ) is 0 volt is used, and branch positions and wiring lengths of the couplers 23 and 33 are set in advance so that the phase difference between the oscillator output and the injection signal becomes the optimum value φr. .

すなわち、YIG発振器21の出力端を基準とし、その出力端からサーキュレータ36、カプラ23を経由して位相比較器35の入力端に至る経路の電気長Laと、遅延・移相処理部25の出力を分岐するカプラ33からサーキュレータ36を経由してYIG発振器21の出力端に至る経路の電気長Lbから、そのカプラ33から位相比較器35に至る経路の電気長Lcを差し引いたものとが、所定の電気長になるよう調整されている必要がある。   That is, with reference to the output end of the YIG oscillator 21, the electrical length La of the path from the output end to the input end of the phase comparator 35 via the circulator 36 and the coupler 23, and the output of the delay / phase shift processing unit 25 Is obtained by subtracting the electrical length Lc of the path from the coupler 33 to the phase comparator 35 from the electrical length Lb of the path from the coupler 33 that branches through the circulator 36 to the output terminal of the YIG oscillator 21. It is necessary to be adjusted so that it becomes the electrical length.

ここで、所定の電気長とは、YIG発振器21の出力端における発振器出力とその出力端における注入信号の位相差が最適値φrとなり、且つ、位相比較器35の入力端における入力信号の位相差がπ/2となる値である。   Here, the predetermined electrical length means that the phase difference between the oscillator output at the output terminal of the YIG oscillator 21 and the injection signal at the output terminal is the optimum value φr, and the phase difference between the input signals at the input terminal of the phase comparator 35. Is a value such that π / 2.

さらに詳しく説明すると、一般的に注入同期は、図3の(a)に示すように、発振器21内部の発振に寄与する能動素子(例えばトランジスタ)の所定端子(例えばエミッタ)21aにおける発振信号とそこに注入される注入信号とがほぼ同相になるとき、最も位相雑音が低減される。現実には能動素子の所定端子21aから整合回路などを介して出力が得られるため、YIG発振器21の出力端21bでは発振信号と注入信号が、ある位相差φr(最適値)を持つときに、最も位相雑音が低減されるように見える。   More specifically, as shown in FIG. 3 (a), injection locking is generally performed by an oscillation signal at a predetermined terminal (eg, emitter) 21a of an active element (eg, transistor) that contributes to oscillation inside the oscillator 21, and there. The phase noise is most reduced when the injection signal injected into is substantially in phase. In reality, since an output is obtained from the predetermined terminal 21a of the active element via a matching circuit or the like, when the oscillation signal and the injection signal have a certain phase difference φr (optimum value) at the output terminal 21b of the YIG oscillator 21, It seems that the phase noise is reduced most.

ここで、能動素子の所定端子21aの出力位相を基準にとり、φout =0とする。位相比較器35の入力S2、S5の位相をφ2、φ5と表し、遅延線(可変移相器31)の調整によって、2πの整数倍を除いて、φ2、φ5の位相差がπ/2になっているものとする。このとき、例えば、サーキュレータ36からカプラ33の電気長を変えれば、発振器の出力端に注入される位相φinだけが変化するから、これを、2πの整数倍を除いて、0にすることができる。   Here, φout = 0 is set based on the output phase of the predetermined terminal 21a of the active element. The phases of the inputs S2 and S5 of the phase comparator 35 are represented as φ2 and φ5, and the phase difference between φ2 and φ5 is π / 2 except for an integral multiple of 2π by adjusting the delay line (variable phase shifter 31). Suppose that At this time, for example, if the electrical length of the coupler 33 from the circulator 36 is changed, only the phase φin injected into the output terminal of the oscillator changes, so this can be set to 0 except for an integer multiple of 2π. .

カプラやサーキュレータの周波数依存性が無視できる場合、この状態から周波数が変化した場合に、
φ2−φout=−(φin−φ5)+π/2
であれば、
(φ2−φ5)−π/2=φout−φin
であるから、φ2、φ5の位相差がπ/2に制御されていれば、φout −φinは0に保たれる。
If the frequency dependence of the coupler or circulator can be ignored, when the frequency changes from this state,
φ2−φout = − (φin−φ5) + π / 2
If,
(φ2−φ5) −π / 2 = φout−φin
Therefore, if the phase difference between φ2 and φ5 is controlled to π / 2, φout−φin is kept at 0.

信号の伝搬方向を考えると、カプラで分岐して得られる位相比較器35の入力S2、S5と同相の信号が流れる位置を遅延経路上に定めることができる(図3の(a)の記号/の位置)ことに注意して、先の条件を模式的に書くと、図3の(b)のようになる。   Considering the propagation direction of the signal, the position where a signal in phase with the inputs S2 and S5 of the phase comparator 35 obtained by branching by the coupler flows can be determined on the delay path (the symbol / in FIG. 3A). (B) of FIG. 3 when the above condition is schematically written.

先の条件を電気長の関係として示すと、
La=Lc−Lb+λ/4
となり、これが周波数を変化させたときに安定な自己注入同期を得る上で望ましい条件であり、さらに、発振に寄与する能動素子の所定端子21aと発振器出力端21bとの電気長Lrを考慮すれば、
La=Lc−Lb+Lr+λ/4
とすればよい。
If we show the previous condition as the relationship of electrical length,
La = Lc−Lb + λ / 4
This is a desirable condition for obtaining stable self-injection synchronization when the frequency is changed. Further, if the electric length Lr between the predetermined terminal 21a of the active element contributing to oscillation and the oscillator output terminal 21b is taken into consideration. ,
La = Lc−Lb + Lr + λ / 4
And it is sufficient.

結局、φ2はφoutから一定時間遅れた信号であるから、φ5を、φinより同じ時間遅れた信号にしておけば、φ2とφ5を一定の位相差に制御すると、φout とφinの位相差も一定となり、このことは周波数が変わっても保たれる。   After all, since φ2 is a signal delayed for a certain time from φout, if φ5 is a signal delayed for the same time from φin, the phase difference between φout and φin is also constant when φ2 and φ5 are controlled to a constant phase difference. This holds even if the frequency changes.

このように設定されていれば、位相比較器35の出力V(φ)が常に0となるようなI、Q信号を制御部37で算出して可変移相器31に与えることで、YIG発振器21を自己注入同期状態に維持することができる。   If set in this way, the control unit 37 calculates the I and Q signals so that the output V (φ) of the phase comparator 35 is always 0, and supplies the I and Q signals to the variable phase shifter 31. 21 can be maintained in a self-injection synchronization state.

制御部37は、位相比較器35の出力と、周波数設定器40からYIG発振器21の出力周波数を指定するために出力された制御信号Vcとを受けて、発振周波数について発振器出力と注入信号の位相差が最適値φrとなるように可変移相器31の移相量を制御する。   The control unit 37 receives the output of the phase comparator 35 and the control signal Vc output from the frequency setting unit 40 for designating the output frequency of the YIG oscillator 21, and determines the level of the oscillator output and the injection signal with respect to the oscillation frequency. The amount of phase shift of the variable phase shifter 31 is controlled so that the phase difference becomes the optimum value φr.

図4に制御部37の具体的な構成例を示す。制御部37は、位相比較器35の出力V(φ)から、所定周波数以下の成分をローパスフィルタ37aで抽出し、制御信号Vcとともに2チャンネル型のA/D変換器37bでデジタル値に変換して、演算器37cに与える。演算器37cは、制御信号Vcに対応した周波数で時間τ分の遅延による位相変化に追従した移相量を与え、且つ、位相比較器35の出力V(φ)を0に近づけるためのI、Q信号を算出して、2チャンネル型のD/A変換器37dでアナログ信号に変換して、直交変調器31に与える。   FIG. 4 shows a specific configuration example of the control unit 37. The control unit 37 extracts a component having a predetermined frequency or less from the output V (φ) of the phase comparator 35 by a low-pass filter 37a, and converts it into a digital value together with the control signal Vc by a two-channel A / D converter 37b. To the calculator 37c. The computing unit 37c gives a phase shift amount following the phase change due to the delay of time τ at the frequency corresponding to the control signal Vc, and I for bringing the output V (φ) of the phase comparator 35 close to 0, The Q signal is calculated, converted into an analog signal by a two-channel D / A converter 37d, and supplied to the quadrature modulator 31.

このようなフィードバック制御を行うことで、YIG発振器21には、広い周波数範囲において常に自己注入同期状態となる位相の注入信号を注入させることができ、YIG型のYIG発振器21の広い周波数可変範囲を最大限に生かして、広帯域で低位相雑音のマイクロ波信号を得ることができる。   By performing such feedback control, the YIG oscillator 21 can be injected with an injection signal having a phase that is always in a self-injection locked state in a wide frequency range, and the wide frequency variable range of the YIG type YIG oscillator 21 can be increased. A microwave signal with a wide band and low phase noise can be obtained by making the best use of it.

このように構成されているので、実施形態のマイクロ波信号発生器20は、ラインストレッチャーによる位相変化量に比べて格段に広い移相処理が行え、YIG発振器21の周波数のオクターブ変化に対応した広い周波数範囲で自己注入同期状態を維持することができ、広帯域で低位相雑音な信号を生成することができる。   Since it is configured in this way, the microwave signal generator 20 of the embodiment can perform a phase shift process much wider than the phase change amount by the line stretcher, and corresponds to the octave change of the frequency of the YIG oscillator 21. A self-injection locked state can be maintained over a wide frequency range, and a wide band and low phase noise signal can be generated.

なお、前記したYIG発振器21の出力端における発振出力と注入信号の位相差と、位相比較器35で検出される位相差との対応関係が周波数によって変化して、前記電気長についての条件を満たさなくなる場合が考えられる。つまり、前記した条件式自体にλが含まれる(周波数に依存する)ことや、カプラやサーキュレータの透過位相の周波数依存性の影響により、十分に広帯域な周波数変化に対して自己注入同期が維持できなくなる場合が考えられる。   It should be noted that the correspondence between the phase difference between the oscillation output and the injection signal at the output end of the YIG oscillator 21 and the phase difference detected by the phase comparator 35 changes depending on the frequency, and satisfies the condition for the electrical length. The case where it disappears is considered. In other words, self-injection synchronization can be maintained for a sufficiently wide frequency change due to the fact that λ is included in the conditional expression itself (which depends on the frequency) and the frequency dependence of the transmission phase of the coupler or circulator. The case where it disappears is considered.

この場合には、図5のように、位相比較器35を、アナログミキサ型ではなく、入力信号の位相差を特定するための同相成分I′、直交相成分Q′を出力する直交検波器で構成し、その出力I、Qを受けた制御部37が、I′、Q′で特定される位相が、周波数に応じて予め求められた位相値となるように可変移相器31へのI、Q信号を設定すればよい。   In this case, as shown in FIG. 5, the phase comparator 35 is not an analog mixer type but a quadrature detector that outputs an in-phase component I ′ and a quadrature component Q ′ for specifying the phase difference of the input signal. The control unit 37 configured to receive the outputs I and Q receives the I to the variable phase shifter 31 so that the phase specified by I ′ and Q ′ becomes a phase value determined in advance according to the frequency. , Q signal may be set.

つまり、この場合には、初期調整時にYIG発振器21の周波数をパラメータとして離散的に変えながら、出力信号の位相雑音を測定して、その位相雑音が最も低くなる位相に決めておく。より具体的に言えば、初期調整時に、周波数に対して位相雑音が最も低くなる位相のテーブルを作り、そのテーブルを制御部37に記憶させておき、運転時に、このテーブルを補間して、設定周波数で位相雑音が最も低くなると推測される位相に制御する。   That is, in this case, the phase noise of the output signal is measured while discretely changing the frequency of the YIG oscillator 21 as a parameter at the time of initial adjustment, and the phase having the lowest phase noise is determined. More specifically, at the time of initial adjustment, a phase table having the lowest phase noise with respect to the frequency is created, the table is stored in the control unit 37, and this table is interpolated and set during operation. The phase is controlled so that the phase noise is estimated to be lowest at the frequency.

前記実施形態では、遅延器26の強度変調光を生成する構成として、光源27から出射された光を光変調器28で強度変調する間接変調の例を示したが、光源としてのレーザダイオードの注入電流に変調を掛けることで強度変調光を生成する直接変調方式を採用してもよい。   In the above-described embodiment, an example of indirect modulation in which the light emitted from the light source 27 is intensity-modulated by the light modulator 28 is shown as a configuration for generating the intensity-modulated light of the delay device 26. However, injection of a laser diode as a light source is shown. You may employ | adopt the direct modulation system which produces | generates intensity | strength modulated light by applying a modulation to an electric current.

20……マイクロ波信号発生器、21……発振器、23……カプラ、25……遅延・移相処理部、26……遅延器、31……可変移相器、33……カプラ、35……位相比較器、36……サーキュレータ、37……制御部、40……周波数設定器   20... Microwave signal generator, 21... Oscillator, 23... Coupler, 25... Delay / phase shift processing unit, 26. ... Phase comparator, 36 ... circulator, 37 ... control section, 40 ... frequency setting device

Claims (2)

入力される制御信号に応じた周波数のマイクロ波信号を発振出力するYIG発振器(21)と、
前記YIG発振器の出力を分岐する第1の分岐手段(23)と、
入力信号に所定の遅延を与えて出力する遅延器(26)、および入力信号の位相を変化させて出力する可変移相器(31)を含み、前記第1の分岐手段で分岐された第1信号を受けて、前記所定の遅延と前記位相変化を与えて出力する遅延・移相処理部(25)と、
前記遅延・移相処理部の出力信号を分岐する第2の分岐手段(33)と、
前記第2の分岐手段で分岐された第4信号を前記YIG発振器に注入させる注入手段(36)と、
前記第1の分岐手段で分岐された第2信号と、前記第2の分岐手段で分岐された第5信号の位相を比較する位相比較器(35)と、
前記YIG発振器の出力周波数を指定する前記制御信号を出力する周波数設定器(40)と、
前記位相比較器の出力と前記制御信号とを受け、前記YIG発振器が前記制御信号に対応した周波数の信号を出力している状態で、前記位相比較器に入力される前記第2信号と前記第5信号の位相差が、前記YIG発振器を前記第4信号に対して自己注入同期状態にさせる所定値に維持されるように、前記可変移相器の移相量を制御する制御部(37)とを有するマイクロ波信号発生器であって、
前記遅延・移相処理部の前記遅延器が、入力信号で強度変調された光を所定長の光ファイバ遅延線に伝搬させて前記所定の遅延を与えてから電気信号に戻して出力するように構成され、
前記遅延・移相処理部の前記可変移相器が、入力信号をI、Q信号で直交変調する直交変調器を有し、該I、Q信号に応じた移相処理を行うように構成され、
前記制御部は、前記位相比較器に入力される前記第2信号と前記第5信号の位相差が、前記YIG発振器を前記第4信号に対して自己注入同期状態にさせる所定値に維持させるためのI、Q信号を算出して前記可変移相器に設定するように構成されていることを特徴とするマイクロ波信号発生器。
A YIG oscillator (21) that oscillates and outputs a microwave signal having a frequency corresponding to an input control signal;
First branching means (23) for branching the output of the YIG oscillator;
A first delay unit (26) for outputting a predetermined delay to the input signal and a variable phase shifter (31) for changing the phase of the input signal and outputting the first signal branched by the first branching means A delay / phase shift processing unit (25) for receiving a signal and outputting the predetermined delay and the phase change;
Second branch means (33) for branching the output signal of the delay / phase shift processing section;
Injection means (36) for injecting the fourth signal branched by the second branch means into the YIG oscillator;
A phase comparator (35) for comparing the phases of the second signal branched by the first branching means and the fifth signal branched by the second branching means;
A frequency setter (40) for outputting the control signal designating an output frequency of the YIG oscillator;
In response to the output of the phase comparator and the control signal, the YIG oscillator outputs a signal having a frequency corresponding to the control signal, and the second signal and the second signal input to the phase comparator. A control unit (37) for controlling the phase shift amount of the variable phase shifter so that the phase difference of the five signals is maintained at a predetermined value that causes the YIG oscillator to be in a self-injection synchronization state with respect to the fourth signal. A microwave signal generator comprising:
The delay unit of the delay / phase shift processing unit propagates light whose intensity is modulated by an input signal to an optical fiber delay line having a predetermined length, gives the predetermined delay, and then returns to an electric signal for output. Configured,
The variable phase shifter of the delay / phase shift processing unit includes a quadrature modulator that quadrature modulates an input signal with I and Q signals, and is configured to perform phase shift processing according to the I and Q signals. ,
The control unit maintains the phase difference between the second signal and the fifth signal input to the phase comparator at a predetermined value that causes the YIG oscillator to be in a self-injection synchronization state with respect to the fourth signal. A microwave signal generator configured to calculate the I and Q signals of the variable phase shifter and set them in the variable phase shifter.
制御信号に応じた周波数のマイクロ波信号を発振出力するYIG発振器(21)の出力に、所定の遅延処理と可変移相処理を行って得られた信号を、前記YIG発振器に注入させるとともに、前記YIG発振器の出力との位相比較処理を行い、該位相比較処理の出力と前記YIG発振器の出力周波数を指定するための前記制御信号とに基づいて、前記YIG発振器が前記制御信号に対応した周波数の信号を出力している状態で、前記位相比較処理される信号の位相差が、前記YIG発振器を自己注入同期状態にさせる所定値に維持されるように、前記可変移相処理の移相量を制御するマイクロ波信号発生器の自己注入同期方法であって、
前記遅延処理が、入力信号で強度変調された光を所定長の光ファイバ遅延線に伝搬させて前記所定の遅延を与えてから電気信号に戻して出力する処理であり、
前記可変移相処理が、入力信号をI、Q信号で直交変調して、該I、Q信号に応じた位相変化を与える処理であり、
前記位相比較処理される信号の位相差が、前記YIG発振器を自己注入同期状態にさせる所定値に維持させるためのI、Q信号を算出して前記可変移相処理に用いることを特徴とするマイクロ波信号発生器の自己注入同期方法。
A signal obtained by performing a predetermined delay process and a variable phase shift process is injected into the output of the YIG oscillator (21) that oscillates and outputs a microwave signal having a frequency corresponding to the control signal. A phase comparison process with the output of the YIG oscillator is performed, and the YIG oscillator has a frequency corresponding to the control signal based on the output of the phase comparison process and the control signal for designating the output frequency of the YIG oscillator. In the state where the signal is output, the phase shift amount of the variable phase shift process is set so that the phase difference of the signal subjected to the phase comparison process is maintained at a predetermined value that causes the YIG oscillator to be in a self-injection synchronization state. A self-injection locking method for a microwave signal generator to control,
The delay process is a process of propagating light whose intensity is modulated by an input signal to an optical fiber delay line having a predetermined length to give the predetermined delay and then returning to an electric signal and outputting it.
The variable phase shift process is a process of performing quadrature modulation of an input signal with I and Q signals and giving a phase change according to the I and Q signals,
A phase difference between signals subjected to phase comparison processing is calculated and used for the variable phase shift processing by calculating I and Q signals for maintaining the YIG oscillator at a predetermined value for bringing the YIG oscillator into a self-injection synchronization state. Self-injection locking method for wave signal generator.
JP2012195732A 2012-09-06 2012-09-06 Microwave signal generator and self-injection locking method thereof Expired - Fee Related JP5689857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195732A JP5689857B2 (en) 2012-09-06 2012-09-06 Microwave signal generator and self-injection locking method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195732A JP5689857B2 (en) 2012-09-06 2012-09-06 Microwave signal generator and self-injection locking method thereof

Publications (2)

Publication Number Publication Date
JP2014053709A JP2014053709A (en) 2014-03-20
JP5689857B2 true JP5689857B2 (en) 2015-03-25

Family

ID=50611797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195732A Expired - Fee Related JP5689857B2 (en) 2012-09-06 2012-09-06 Microwave signal generator and self-injection locking method thereof

Country Status (1)

Country Link
JP (1) JP5689857B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015750B2 (en) * 1998-05-14 2007-11-28 株式会社東芝 Active array antenna system
JP4246182B2 (en) * 2004-10-27 2009-04-02 独立行政法人科学技術振興機構 Signal generating apparatus and signal generating method
JP5213789B2 (en) * 2009-04-21 2013-06-19 三菱電機株式会社 High frequency oscillation source

Also Published As

Publication number Publication date
JP2014053709A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US10404371B2 (en) Opto-electronic oscillator with stimulated Brillouin scattering feedback
Li et al. Optically tunable frequency-multiplying optoelectronic oscillator
JP2011049970A (en) Phase noise reduction apparatus
CN109286124B (en) Laser linewidth compression method and system
JP6714270B2 (en) Optical frequency comb generator
Gao et al. Frequency-and phase-tunable optoelectronic oscillator
KR20190045048A (en) Method and apparatus for detecting phase error between optical pulses and microwave signals
Lamb et al. Femtosecond stable laser-to-RF phase detection using optical modulators
Zhai et al. Microwave photonic multifunctional phase coded signal generator
JP5689857B2 (en) Microwave signal generator and self-injection locking method thereof
US20130322807A1 (en) Integrated Light Source Independent Linewidth Reduction
Chen et al. Ultra-simple all-optical microwave frequency divider
EP3747091A1 (en) Injection-locked laser system
JP5893783B2 (en) Microwave signal generator and frequency control method thereof
Shang et al. Tunable frequency-doubled optoelectronic oscillator based on a phase modulator in a Sagnac loop
CN110061406B (en) Photon type microwave frequency divider with multiple frequency division modes and frequency division method thereof
US9634763B2 (en) Tracking frequency conversion and network analyzer employing optical modulation
Zhang et al. Oscillator phase noise reduction using self-injection locked and phase locked loop (SILPLL)
JP5753826B2 (en) Microwave signal generator and frequency control method thereof
JP2013123175A (en) Self-injection locked oscillator
Ivanov Generation of pure phase and amplitude-modulated signals at microwave frequencies
Zhou et al. A tunable multi-frequency optoelectronic oscillator based on stimulated Brillouin scattering
Zhu et al. A background-free phase-coded microwave pulse generator by optoelectronic oscillation
JP3459166B2 (en) Optical phase-locked light source
Larger et al. Optoelectronic phase chaos generator for secure communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5689857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees