JP5688632B2 - Objective lens system and electron microscope - Google Patents

Objective lens system and electron microscope Download PDF

Info

Publication number
JP5688632B2
JP5688632B2 JP2010134729A JP2010134729A JP5688632B2 JP 5688632 B2 JP5688632 B2 JP 5688632B2 JP 2010134729 A JP2010134729 A JP 2010134729A JP 2010134729 A JP2010134729 A JP 2010134729A JP 5688632 B2 JP5688632 B2 JP 5688632B2
Authority
JP
Japan
Prior art keywords
objective lens
microwave
lens system
electron microscope
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010134729A
Other languages
Japanese (ja)
Other versions
JP2012003843A (en
Inventor
國昭 永山
國昭 永山
幸則 永谷
幸則 永谷
善博 新井
善博 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inter University Research Institute Corp National Institute of Natural Sciences
Original Assignee
Inter University Research Institute Corp National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter University Research Institute Corp National Institute of Natural Sciences filed Critical Inter University Research Institute Corp National Institute of Natural Sciences
Priority to JP2010134729A priority Critical patent/JP5688632B2/en
Priority to PCT/JP2011/060855 priority patent/WO2011158579A1/en
Publication of JP2012003843A publication Critical patent/JP2012003843A/en
Application granted granted Critical
Publication of JP5688632B2 publication Critical patent/JP5688632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0475Changing particle velocity decelerating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

本発明は、対物レンズ系及びこれを用いた電子顕微鏡に関する。より詳しくは、超高圧電子顕微鏡などに使用される対物電磁レンズ系及びこのレンズ系が組み込まれた電子顕微鏡に関する。   The present invention relates to an objective lens system and an electron microscope using the same. More specifically, the present invention relates to an objective electromagnetic lens system used for an ultra-high voltage electron microscope or the like and an electron microscope incorporating this lens system.

透過型電子顕微鏡(Transmission Electron Microscope:TEM)は、薄片状の試料に電子線を照射して、試料を透過した電子線を観察するものである(例えば、特許文献1参照)。図4は一般的な透過型電子顕微鏡の光学系の構成を模式的に示す図である。図4に示すように、特許文献1に記載されているような一般的な透過型電子顕微鏡では、電子銃101から出射された電子線は、照射レンズ102によって明るさや開き角などが調整された後、対物レンズの前方対物レンズ部103により平行化され、平面波の状態で試料104に照射される。   A transmission electron microscope (TEM) irradiates a thin sample with an electron beam and observes the electron beam transmitted through the sample (see, for example, Patent Document 1). FIG. 4 is a diagram schematically showing a configuration of an optical system of a general transmission electron microscope. As shown in FIG. 4, in a general transmission electron microscope as described in Patent Document 1, the brightness and opening angle of the electron beam emitted from the electron gun 101 are adjusted by the irradiation lens 102. Thereafter, the sample is collimated by the front objective lens unit 103 of the objective lens and irradiated on the sample 104 in a plane wave state.

そして、試料104から透過又は散乱した電子線は、対物レンズの後方対物レンズ部105に入射し、更に、絞り106及び投影レンズ107を介して、像スクリーン108などに結像される。その際、照射レンズ102、対物レンズ(前方対物レンズ部103,後方対物レンズ部105)及び投影レンズ107などの各種レンズ系には、電界や磁界によって入射した電子線を曲げる電磁レンズが使用されている(例えば、特許文献2,3参照)。   Then, the electron beam transmitted or scattered from the sample 104 is incident on the rear objective lens unit 105 of the objective lens, and is further imaged on the image screen 108 or the like via the diaphragm 106 and the projection lens 107. At that time, various lens systems such as the irradiation lens 102, the objective lens (the front objective lens unit 103 and the rear objective lens unit 105), and the projection lens 107 use an electromagnetic lens that bends an incident electron beam by an electric field or a magnetic field. (For example, see Patent Documents 2 and 3).

一方、前述した透過型電子顕微鏡は、試料に照射する電子線の加速電圧が高いほど、試料に対する電子線の透過性能が向上し、より厚い試料を測定することが可能となる。また、加速電圧を上げると、試料に照射される電子線の波長が短くなるため、より高分解能の分析も可能となる。そこで、従来、加速電圧を500kV以上にした超高圧電子顕微鏡が開発され、利用されている(例えば、特許文献4,5参照。)。   On the other hand, in the transmission electron microscope described above, as the acceleration voltage of the electron beam applied to the sample is higher, the transmission performance of the electron beam with respect to the sample is improved, and a thicker sample can be measured. Further, when the acceleration voltage is increased, the wavelength of the electron beam applied to the sample is shortened, so that higher resolution analysis is possible. Therefore, conventionally, an ultrahigh voltage electron microscope having an acceleration voltage of 500 kV or higher has been developed and used (see, for example, Patent Documents 4 and 5).

特開2006−318651号公報JP 2006-318651 A 特開2000−243338号公報JP 2000-243338 A 特開2001−118535号公報JP 2001-118535 A 特開平6−203778号公報JP-A-6-203778 特開2000−182553号公報JP 2000-182553 A

しかしながら、前述した従来の超高圧電子顕微鏡には、装置が大型で、高価であるという問題点がある。これは、直流の超高圧電圧を作り出す装置(直流超高圧電源)、電子線を加速させるための直流加速管、高速電子線を曲げるための電磁レンズ及びエネルギーフィルターなどが巨大で、かつ高価なためである。   However, the above-described conventional ultra-high voltage electron microscope has a problem that the apparatus is large and expensive. This is because of the huge and expensive equipment (direct current ultra-high voltage power source) that generates DC ultra-high voltage, DC acceleration tube for accelerating electron beam, electromagnetic lens and energy filter for bending high-speed electron beam, etc. It is.

そこで、本発明は、直流超高圧電源、直流加速管及び多数の超高圧用電磁レンズを使用しなくても、超高圧に加速された電子線による試料観察が可能な対物レンズ系及び電子顕微鏡を提供することを主目的とする。   Therefore, the present invention provides an objective lens system and an electron microscope capable of observing a sample with an electron beam accelerated to an ultra-high voltage without using a DC ultra-high voltage power source, a DC accelerator tube and a number of ultra-high voltage electromagnetic lenses. The main purpose is to provide.

本発明に係る対物レンズ系は、少なくとも、電磁レンズからなる対物レンズと、前記対物レンズにおける電子線入射側に配設されたマイクロ波加速器と、を有するものである。
本発明においては、対物レンズの前にマイクロ波加速器を設置し、対物レンズの直前で電子を加速させているため、直流高圧電源が不要となる。
このレンズ系では、前述したマイクロ波加速器に加えて、前記対物レンズの後(電子線出射側)に、マイクロ波減速器が配設されていてもよい。
また、前記マイクロ波加速器及び前記マイクロ波減速器として、マイクロ波空洞を使用することができる。
その場合、前記マイクロ波加速器として使用される前方マイクロ波空洞と、前記マイクロ波減速器として使用される後方マイクロ波空洞とが、同一の高周波電力源に接続されており、該高周波電力源から供給されるマイクロ波の位相により、電子線の加速又は減速が制御してもよい。
また、前方マイクロ波空洞と前記後方マイクロ波空洞とを等価にし、これらが鏡像対称になるように配置してもよい。
一方、前記高周波電力源としては、例えばクライストロンを使用することができる。
The objective lens system according to the present invention includes at least an objective lens made of an electromagnetic lens and a microwave accelerator disposed on the electron beam incident side of the objective lens.
In the present invention, since a microwave accelerator is installed in front of the objective lens and electrons are accelerated immediately before the objective lens, a DC high-voltage power supply becomes unnecessary.
In this lens system, in addition to the above-described microwave accelerator, a microwave speed reducer may be disposed after the objective lens (on the electron beam emission side).
Further, as the microwave accelerator and the microwave decelerator, it can be used microwave cavity.
In that case, the front microwave cavity used as the microwave accelerator and the rear microwave cavity used as the microwave decelerator are connected to the same high-frequency power source and supplied from the high-frequency power source. The acceleration or deceleration of the electron beam may be controlled according to the phase of the microwave to be generated.
Alternatively, the front microwave cavity and the rear microwave cavity may be equivalent and arranged so as to be mirror-image symmetric .
On the other hand, for example, a klystron can be used as the high-frequency power source.

本発明に係る電子顕微鏡は、前述した対物レンズ系が組み込まれたものである。
本発明においては、試料が配置されている部分の前後のみで電子の加速及び減速を行っているため、コンデンサーレンズ系、投影レンズ系、エネルギーフィルター及び電子線検出観察系は、低加速電子線仕様でよい。これにより、超高圧電子顕微鏡の小型化及び低コスト化を実現することができる。
この電子顕微鏡は、例えば透過型電子顕微鏡又は走査透過型電顕微鏡である。
The electron microscope according to the present invention incorporates the objective lens system described above.
In the present invention, since the acceleration and deceleration of electrons are performed only before and after the portion where the sample is disposed, the condenser lens system, the projection lens system, the energy filter, and the electron beam detection observation system have low acceleration electron beam specifications. It's okay. Thereby, size reduction and cost reduction of an ultrahigh voltage electron microscope can be realized.
The electron microscope, for example, a transmission electron microscope or a scanning transmission electron microscope.

本発明によれば、直流超高圧電源を使用しなくても、超高圧に加速された電子線による試料観察が可能となるため、超高圧電子顕微鏡の小型化及び低コスト化を実現することができる。   According to the present invention, it is possible to observe a sample with an electron beam accelerated to an ultra-high voltage without using a DC ultra-high-voltage power source, so that the miniaturization and cost reduction of the ultra-high voltage electron microscope can be realized. it can.

本発明の実施形態に係る対物レンズ系の構成を模式的に示す図である。It is a figure which shows typically the structure of the objective lens system which concerns on embodiment of this invention. マイクロ波減空洞の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of a microwave reduction cavity. 図2に示すマイクロ波空洞の外観を示す斜視図である。It is a perspective view which shows the external appearance of the microwave cavity shown in FIG. 一般的な透過型電子顕微鏡の光学系の構成を模式的に示す図である。It is a figure which shows typically the structure of the optical system of a general transmission electron microscope.

以下、本発明を実施するための形態について、添付の図面を参照して、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。本発明者は、前述した課題を解決するために鋭意実験研究を行った結果、試料が配置されている部分のみ電子を超高圧に加速する方法を見出し、本発明に至った。即ち、本発明の対物レンズ系では、対物レンズの前後に加速用前方マイクロ波空洞及び減速用後方マイクロ波空洞を設置し、対物レンズの直前で電子を加速させると共に、対物レンズ通過した後で電子を減速させる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below. As a result of intensive experimental research to solve the above-mentioned problems, the present inventor has found a method for accelerating electrons to an ultrahigh pressure only in a portion where a sample is arranged, and has reached the present invention. That is, in the objective lens system of the present invention, an acceleration front microwave cavity and a deceleration rear microwave cavity are installed before and after the objective lens to accelerate electrons immediately before the objective lens and to pass electrons after passing through the objective lens. Decelerate.

<第1の実施形態>
先ず、本発明の第1の実施形態に係る対物レンズ系について説明する。図1は本実施形態の対物レンズ系の構成を模式的に示す図である。図1に示すように、本実施形態の対物レンズ系1は、電磁レンズからなる1対の対物レンズ(対物前方電磁レンズ2a,対物後方電磁レンズ2b)を備えており、これらは500keV以上の超高圧加速電子線に対し対物レンズ特性を保持し得る超強磁場電磁レンズ仕様(いわゆる超高圧透過電子顕微鏡仕様)となっている。
<First Embodiment>
First, the objective lens system according to the first embodiment of the present invention will be described. FIG. 1 is a diagram schematically showing the configuration of the objective lens system of the present embodiment. As shown in FIG. 1, the objective lens system 1 according to the present embodiment includes a pair of objective lenses (an objective front electromagnetic lens 2a and an objective rear electromagnetic lens 2b) made of electromagnetic lenses, which are super high of 500 keV or more. It is an ultra-high magnetic field electromagnetic lens specification (so-called ultra-high-voltage transmission electron microscope specification) that can maintain the objective lens characteristics with respect to a high-voltage acceleration electron beam.

また、対物前方電磁レンズ2aの前(入射側)には、マイクロ波加速器3が設けられ、対物後方電磁レンズ2bの後ろ(出射側)にはマイクロ波減速器4が設けられている。これらマイクロ波加速器3及びマイクロ波減速器4は、それぞれ導波管6を介して同一の高周波電力源5に接続されている。   A microwave accelerator 3 is provided in front of the objective front electromagnetic lens 2a (incident side), and a microwave speed reducer 4 is provided in the rear (exit side) of the objective rear electromagnetic lens 2b. The microwave accelerator 3 and the microwave decelerator 4 are connected to the same high-frequency power source 5 through the waveguide 6.

[マイクロ波加速器3,マイクロ波減速器4]
マイクロ波加速器3は、入射した電子(入射電子8)を加速して超高圧加速電子とするものであり、例えばマイクロ波加速空洞を使用することができる。一方、マイクロ波減速器4は、試料7を透過した電子(透過電子9)を減速するものであり、例えばマイクロ波減速空洞を使用することができる。
[Microwave accelerator 3, microwave decelerator 4]
The microwave accelerator 3 accelerates incident electrons (incident electrons 8) to form ultra-high pressure accelerated electrons. For example, a microwave acceleration cavity can be used. On the other hand, the microwave speed reducer 4 decelerates electrons (transmission electrons 9) transmitted through the sample 7, and for example, a microwave speed reduction cavity can be used.

図2はマイクロ波空洞の内部構造を模式的に示す断面図であり、図3はその外観を示す斜視図である。図2及び図3に示すマイクロ波空洞11は、空洞11a内にマイクロ波を供給し、このマイクロ波により内部を通過する電子線を加速又は減速するものであり、例えば純銅などで形成されている。   FIG. 2 is a cross-sectional view schematically showing the internal structure of the microwave cavity, and FIG. 3 is a perspective view showing the appearance thereof. The microwave cavity 11 shown in FIGS. 2 and 3 supplies a microwave into the cavity 11a, and accelerates or decelerates an electron beam passing through the inside by the microwave, and is made of, for example, pure copper. .

非常に高い電圧安定度が要求される透過型電子顕微鏡では、従来、直流の超高電圧により電子線加速を行っていたが、その場合、高電圧絶縁のための碍子やガス環境が必要となり、巨大なタンクを付随させる必要があった。これに対して、マイクロ波空洞加速の場合は、碍子や付随する巨大タンクは不要であり、直流の超高電圧を使用する場合の1/10以下の長さで、同等の加速電圧を得ることができる。   In transmission electron microscopes that require extremely high voltage stability, electron beam acceleration has been performed with DC ultra-high voltage, but in that case, insulators and gas environments for high-voltage insulation are required. It was necessary to attach a huge tank. On the other hand, in the case of microwave cavity acceleration, an insulator or a giant tank associated therewith is not necessary, and an equivalent acceleration voltage can be obtained with a length of 1/10 or less when using a DC ultrahigh voltage. Can do.

なお、マイクロ波空洞加速の場合、直流電子線は使用せず、1ナノ秒以下の非常に短いパルス状の電子線のみを使用する。これにより、加速電圧の安定度が透過電子顕微鏡に必要なレベルの電子線、即ち安定度が10−3以上の電子線を作り出すことができる。 In the case of microwave cavity acceleration, a DC electron beam is not used, and only a very short pulsed electron beam of 1 nanosecond or less is used. As a result, it is possible to create an electron beam having a level of acceleration voltage stability required for a transmission electron microscope, that is, an electron beam having a stability of 10 −3 or more.

また、図1に示す対物レンズ系1においては、マイクロ波加速器3の前方マイクロ波空洞と、マイクロ波減速器4の後方マイクロ波空洞とが、対称に位置している。特に、電子線の加速及び減速の点から、これらが鏡像対称に配置されていることが望ましい。このようにして加速電圧と減速電圧を等しくすると、コンデンサー電磁レンズ系、投影レンズ系及びエネルギーフィルターが、全て同一の低加速電圧となるため、調整が容易になる。   Further, in the objective lens system 1 shown in FIG. 1, the front microwave cavity of the microwave accelerator 3 and the rear microwave cavity of the microwave speed reducer 4 are positioned symmetrically. In particular, in view of acceleration and deceleration of the electron beam, it is desirable that they are arranged in mirror image symmetry. When the acceleration voltage and the deceleration voltage are made equal in this way, the condenser electromagnetic lens system, the projection lens system, and the energy filter all have the same low acceleration voltage, and adjustment is easy.

[高周波電力源5,導波管6]
高周波動力源5は、前述したマイクロ波加速器3及びマイクロ波減速器4に、マイクロ波を供給するものであり、例えばクライストロンやマグネトロンを使用することができる。
[High-frequency power source 5, waveguide 6]
The high frequency power source 5 supplies microwaves to the microwave accelerator 3 and the microwave decelerator 4 described above, and for example, a klystron or a magnetron can be used.

また、導波管6は、高周波動力源5から発せられたマイクロ波を、マイクロ波加速器3及びマイクロ波減速器4に導入するものであり、マイクロ波加速器3及びマイクロ波減速器4の側面に連結されている。更に、導波管6には、例えば前方マイクロ波空洞及び後方マイクロ波空洞への供給電力を任意に変えることができ、かつ両者のマイクロ波の相対位相を自由に変えることができる強度・位相調整器7が接続されていることが望ましい。   The waveguide 6 introduces microwaves emitted from the high-frequency power source 5 into the microwave accelerator 3 and the microwave reducer 4, and is provided on the side surfaces of the microwave accelerator 3 and the microwave reducer 4. It is connected. Further, the waveguide 6 can have, for example, an intensity / phase adjustment that can arbitrarily change the power supplied to the front microwave cavity and the rear microwave cavity and can freely change the relative phase of both microwaves. It is desirable that the device 7 is connected.

[動作]
次に、前述の如く構成された対物レンズ系1の動作について説明する。本実施形態の対物レンズ系1においては、対物前方電磁レンズ2aと対物後方電磁レンズ2bの間に試料10が配置される。そして、高周波電力源5から導波管6を介して、マイクロ波加速器3及びマイクロ波減速器4の空洞内に、周波数1GHz〜10GHzのマイクロ波が供給される。その際、高周波電力源5から供給するマイクロ波の位相を変えることにより、電子線の加速又は減速を制御することができる。
[Operation]
Next, the operation of the objective lens system 1 configured as described above will be described. In the objective lens system 1 of the present embodiment, the sample 10 is disposed between the objective front electromagnetic lens 2a and the objective rear electromagnetic lens 2b. Then, microwaves having a frequency of 1 GHz to 10 GHz are supplied from the high frequency power source 5 into the cavities of the microwave accelerator 3 and the microwave reducer 4 through the waveguide 6. At that time, the acceleration or deceleration of the electron beam can be controlled by changing the phase of the microwave supplied from the high-frequency power source 5.

この状態で、例えば100〜200kVのパルス入射電子8を入射させると、マイクロ波加速器3において300kV〜3MeVに加速されると共に、対物前方電磁レンズ2aによって集光されて、試料10に照射される。そして、試料10を透過した透過電子9は、対物後方電磁レンズ2bで集光された後、マイクロ波減速器4において減速されて、100〜200kVとなる。   In this state, for example, when pulse incident electrons 8 of 100 to 200 kV are made incident, the microwave accelerator 3 accelerates the electrons to 300 kV to 3 MeV, and the light is condensed by the objective front electromagnetic lens 2 a and irradiated onto the sample 10. The transmitted electrons 9 that have passed through the sample 10 are condensed by the objective rear electromagnetic lens 2b, and then decelerated by the microwave speed reducer 4 to become 100 to 200 kV.

このように、本実施形態の対物レンズ系1では、対物前方電磁レンズ2a及び対物後方電磁レンズ2bの前後に、それぞれマイクロ波加速器3及びマイクロ波減速器4を設け、系内で電子線の加速及び減速を行っているため、加速電圧が100〜200kVの一般的な電子顕微鏡の仕様でも、超高圧電子顕微鏡と同様の測定が可能となる。これにより、大型で高価な直流超高圧電源が不要となるため、従来に比べて、超高圧電子顕微鏡を小型化及び低コスト化することができる。   Thus, in the objective lens system 1 of the present embodiment, the microwave accelerator 3 and the microwave decelerator 4 are provided before and after the objective front electromagnetic lens 2a and the objective rear electromagnetic lens 2b, respectively, and the electron beam is accelerated in the system. In addition, since the deceleration is performed, the same measurement as that of the ultrahigh voltage electron microscope can be performed even with the specification of a general electron microscope having an acceleration voltage of 100 to 200 kV. This eliminates the need for a large and expensive direct current ultra-high voltage power source, so that the ultra-high voltage electron microscope can be reduced in size and cost as compared with the prior art.

この方法を、従来型の直流加速方式で実現しようとした場合、試料を超高電圧にするか、検出部を超高電圧にする必要があるため、試料を外部から挿入することができなくなったり、検出部の危険性が高まったりする。これに対して、本実施形態の対物レンズ系1では、電子源以外の部分の全ての電圧を通常のゼロ電位に落とすことができるため、通常作業が可能となる。   If this method is to be realized with the conventional DC acceleration method, it is necessary to set the sample to a very high voltage or the detection unit to a very high voltage, which makes it impossible to insert the sample from the outside. The risk of the detection unit increases. On the other hand, in the objective lens system 1 of the present embodiment, all the voltages other than the electron source can be dropped to the normal zero potential, so that normal operation is possible.

また、従来、加速電圧が1MeVの超高圧電子顕微鏡は、設置するために大きな建物が必要で、その重量も10t以上となっていたが、本実施形態の対物レンズ系1を適用することにより、大きさが1/10程度、重量は1/100程度になるため、通常の部屋に設置が可能な高電圧電子顕微鏡が実現できる。   Conventionally, an ultra-high voltage electron microscope with an acceleration voltage of 1 MeV requires a large building for installation, and its weight is 10 t or more, but by applying the objective lens system 1 of this embodiment, Since the size is about 1/10 and the weight is about 1/100, a high voltage electron microscope that can be installed in a normal room can be realized.

<第2の実施形態>
次に、本発明の第2の実施形態に係る電子顕微鏡について説明する。本実施形態の電子顕微鏡は、前述した第1の実施形態の対物レンズ系1が組み込まれたものである。その種類は特に限定されるものではなく、対物レンズ系1は、全ての透過型電子顕微鏡、走査型電子顕微鏡(Scanning Electron Microscope:SEM)、走査透過型電子顕微鏡(Scanning Transmission Electron Microscope:STEM)に装着可能である。
<Second Embodiment>
Next, an electron microscope according to a second embodiment of the present invention will be described. The electron microscope of the present embodiment incorporates the objective lens system 1 of the first embodiment described above. The type is not particularly limited, and the objective lens system 1 is applicable to all transmission electron microscopes, scanning electron microscopes (SEMs), and scanning transmission electron microscopes (STEMs). It can be installed.

例えば、透過型電子顕微鏡の場合は、図4に示す従来の透過型電子顕微鏡における対物レンズ(前方対物レンズ部103,後方対物レンズ部105)に代わりに、図1に示す対物レンズ系1を組み込めばよい。また、例えば、投影レンズなどを省略した走査透過型電子顕微鏡(STEM)の場合は、対物レンズ系に前方マイクロ波空洞のみを設置し、マイクロ波加速などによる超高圧走査透過型電子顕微鏡を実現することが可能である。   For example, in the case of a transmission electron microscope, the objective lens system 1 shown in FIG. 1 can be incorporated in place of the objective lenses (the front objective lens unit 103 and the rear objective lens unit 105) in the conventional transmission electron microscope shown in FIG. That's fine. Further, for example, in the case of a scanning transmission electron microscope (STEM) in which a projection lens or the like is omitted, an ultrahigh voltage scanning transmission electron microscope by microwave acceleration or the like is realized by installing only the front microwave cavity in the objective lens system. It is possible.

本実施形態の透過型電子顕微鏡では、マイクロ波加速・減速器を備えた対物レンズ系が組み込まれ、対物レンズの直前で電子を加速し、対物レンズ通過した直後に電子を減速させているため、直流超高圧電源や、超高電圧仕様の各種部品が不要となる。これにより、小型でかつ低コストの超高圧電子顕微鏡を実現することができる。   In the transmission electron microscope of the present embodiment, an objective lens system equipped with a microwave accelerator / decelerator is incorporated, and the electrons are accelerated immediately before the objective lens and decelerated immediately after passing through the objective lens. DC ultra-high voltage power supply and various parts with ultra high voltage specifications are not required. Thereby, a small and low-cost ultrahigh voltage electron microscope can be realized.

1 対物レンズ系
2a 対物前方電磁レンズ
2b 対物後方電磁レンズ
3 マイクロ波加速器
4 マイクロ波減速器
5 高周波電力源
6 導波管
7 強度・位相調整器
8 入射電子
9 透過電子
10、104 試料
11 マイクロ波空洞
11a 空洞
101 電子銃
102 照射レンズ
103 前方対物レンズ部
105 後方対物レンズ部
106 絞り
107 投影レンズ
108 像スクリーン
DESCRIPTION OF SYMBOLS 1 Objective lens system 2a Objective front electromagnetic lens 2b Objective back electromagnetic lens 3 Microwave accelerator 4 Microwave decelerator 5 High frequency power source 6 Waveguide 7 Intensity / phase adjuster 8 Incident electrons 9 Transmitted electrons 10, 104 Sample 11 Microwave Cavity 11a Cavity 101 Electron gun 102 Irradiation lens 103 Front objective lens part 105 Rear objective lens part 106 Aperture 107 Projection lens 108 Image screen

Claims (8)

電磁レンズからなる対物レンズと、
前記対物レンズにおける電子線入射側に配設されたマイクロ波加速器を、
少なくとも有する対物レンズ系。
An objective lens consisting of an electromagnetic lens;
A microwave accelerator disposed on the electron beam incident side of the objective lens,
An objective lens system having at least.
更に、前記対物レンズの電子線出射側に、マイクロ波減速器が配設されていることを特徴とする請求項1に記載の対物レンズ系。   2. The objective lens system according to claim 1, further comprising a microwave speed reducer disposed on the electron beam emitting side of the objective lens. 前記マイクロ波加速器及び前記マイクロ波減速器が、マイクロ波空洞であることを特徴とする請求項に記載の対物レンズ系。 The microwave accelerator and the microwave decelerator is, the objective lens system according to claim 2, characterized in that a microwave cavity. 前記マイクロ波加速器として使用される前方マイクロ波空洞と、前記マイクロ波減速器として使用される後方マイクロ波空洞とが、同一の高周波電力源に接続されており、該高周波電力源から供給されるマイクロ波の位相により、電子線の加速又は減速が制御されること特徴とする請求項3に記載の対物レンズ系。   The front microwave cavity used as the microwave accelerator and the rear microwave cavity used as the microwave decelerator are connected to the same high-frequency power source, and the micro wave supplied from the high-frequency power source 4. The objective lens system according to claim 3, wherein the acceleration or deceleration of the electron beam is controlled by the wave phase. 前記前方マイクロ波空洞と前記後方マイクロ波空洞が等価であり、これらが鏡像対象になるように配置されていることを特徴とする請求項4に記載の対物レンズ系。   5. The objective lens system according to claim 4, wherein the front microwave cavity and the rear microwave cavity are equivalent, and are arranged so as to be mirror images. 前記高周波電力源がクライストロンであることを特徴とする請求項4又は5に記載の対物レンズ系。   6. The objective lens system according to claim 4, wherein the high-frequency power source is a klystron. 請求項1乃至6のいずれか1項に記載の対物レンズ系が組み込まれた電子顕微鏡。   An electron microscope in which the objective lens system according to any one of claims 1 to 6 is incorporated. 透過型電子顕微鏡又は走査透過型電顕微鏡であることを特徴とする請求項7に記載の電子顕微鏡。 Electron microscope according to claim 7, characterized in that a transmission electron microscope or a scanning transmission electron microscope.
JP2010134729A 2010-06-14 2010-06-14 Objective lens system and electron microscope Expired - Fee Related JP5688632B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010134729A JP5688632B2 (en) 2010-06-14 2010-06-14 Objective lens system and electron microscope
PCT/JP2011/060855 WO2011158579A1 (en) 2010-06-14 2011-05-11 Objective lens system and electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134729A JP5688632B2 (en) 2010-06-14 2010-06-14 Objective lens system and electron microscope

Publications (2)

Publication Number Publication Date
JP2012003843A JP2012003843A (en) 2012-01-05
JP5688632B2 true JP5688632B2 (en) 2015-03-25

Family

ID=45347988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134729A Expired - Fee Related JP5688632B2 (en) 2010-06-14 2010-06-14 Objective lens system and electron microscope

Country Status (2)

Country Link
JP (1) JP5688632B2 (en)
WO (1) WO2011158579A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508804B (en) * 2015-10-20 2023-08-29 埃因霍温科技大学 Apparatus for generating electron beam and transmission electron microscope apparatus
JP6955270B2 (en) 2016-03-30 2021-10-27 大学共同利用機関法人自然科学研究機構 Phase difference transmission electron microscope device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766878B2 (en) * 1986-12-24 1995-07-19 三菱電機株式会社 Linear accelerator
US5095208A (en) * 1988-06-24 1992-03-10 Hitachi, Ltd. Charged particle generating device and focusing lens therefor
JPH0519100A (en) * 1991-07-12 1993-01-26 Mitsubishi Electric Corp Electron beam irradiation device
JP3496722B2 (en) * 1993-01-06 2004-02-16 株式会社日立製作所 electronic microscope
JP2935783B2 (en) * 1993-02-04 1999-08-16 三菱電機株式会社 Linear electron accelerator
JPH07318698A (en) * 1994-05-25 1995-12-08 Denki Kogyo Co Ltd Electron beam emitter
JP3334637B2 (en) * 1998-08-26 2002-10-15 三菱電機株式会社 Accelerator tube and charged particle accelerator
JP2000243338A (en) * 1999-02-22 2000-09-08 Hitachi Ltd Transmission electron microscope device and transmitted electron examination device and examination method
JP4572455B2 (en) * 2000-08-08 2010-11-04 株式会社Ihi Accelerating tube
JP2005050646A (en) * 2003-07-28 2005-02-24 Ishikawajima Harima Heavy Ind Co Ltd High-frequency electron gun
JP5544598B2 (en) * 2010-06-21 2014-07-09 学校法人早稲田大学 Photocathode high-frequency electron gun and electron beam apparatus provided with photocathode high-frequency electron gun

Also Published As

Publication number Publication date
WO2011158579A1 (en) 2011-12-22
JP2012003843A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP7178168B2 (en) Time-resolved charged particle microscopy
US9048060B2 (en) Beam pulsing device for use in charged-particle microscopy
Lu et al. Generation of high-power, reversed-Cherenkov wakefield radiation in a metamaterial structure
JP6437020B2 (en) Method using charged particle microscope and charged particle microscope
JP6929730B2 (en) Time-of-flight charged particle spectroscopy
Leemans et al. Interaction of relativistic electrons with ultrashort laser pulses: generation of femtosecond X-rays and microprobing of electron beams
Lau et al. Laser-free GHz stroboscopic transmission electron microscope: Components, system integration, and practical considerations for pump–probe measurements
Bainbridge et al. Femtosecond few-to single-electron point-projection microscopy for nanoscale dynamic imaging
US9697982B2 (en) Apparatus for GHz rate high duty cycle pulsing and manipulation of low and medium energy DC electron beams
JPWO2011093285A1 (en) Ultrafast electron beam diffractometer
EP3584820B1 (en) Electron beam generation for transmission electron microscope
WO2013014953A1 (en) X-ray generating device and method for controlling x-ray generating device
CN110431649A (en) Charged particle beam apparatus
Sannomiya et al. Transmission electron microscope using a linear accelerator
JP5688632B2 (en) Objective lens system and electron microscope
Song et al. Development of a 1.4-cell RF photocathode gun for single-shot MeV ultrafast electron diffraction devices with femtosecond resolution
EP1909095A1 (en) X-ray photoelectron spectroscopy analysis system for surface analysis and method therefor
EP2706553B1 (en) Method of operating a particle beam device
JP5544598B2 (en) Photocathode high-frequency electron gun and electron beam apparatus provided with photocathode high-frequency electron gun
JP2019505984A (en) Free electron laser
Vinogradov et al. A detector of bunch time structure for cw heavy-ion beams
Wang et al. Report of the basic energy sciences workshop on the future of electron sources, september 8-9, 2016
JP6920311B2 (en) Electron source for free electron laser
JPH0249342A (en) Object tester
JP2020043023A (en) X-ray generation apparatus, x-ray apparatus and x-ray generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150115

R150 Certificate of patent or registration of utility model

Ref document number: 5688632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees