JP5684086B2 - Physical quantity measurement system - Google Patents

Physical quantity measurement system Download PDF

Info

Publication number
JP5684086B2
JP5684086B2 JP2011224839A JP2011224839A JP5684086B2 JP 5684086 B2 JP5684086 B2 JP 5684086B2 JP 2011224839 A JP2011224839 A JP 2011224839A JP 2011224839 A JP2011224839 A JP 2011224839A JP 5684086 B2 JP5684086 B2 JP 5684086B2
Authority
JP
Japan
Prior art keywords
light
fbgs
physical quantity
fbg
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011224839A
Other languages
Japanese (ja)
Other versions
JP2013083598A (en
Inventor
顕次 柴田
顕次 柴田
功 今岡
功 今岡
嘉文 須崎
嘉文 須崎
中川 清
清 中川
岩田 弘
弘 岩田
孝史 横内
孝史 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Kagawa University NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Toyota Industries Corp
Kagawa University NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Kagawa University NUC, Institute of National Colleges of Technologies Japan filed Critical Toyota Industries Corp
Priority to JP2011224839A priority Critical patent/JP5684086B2/en
Priority to PCT/JP2012/075814 priority patent/WO2013054734A1/en
Publication of JP2013083598A publication Critical patent/JP2013083598A/en
Application granted granted Critical
Publication of JP5684086B2 publication Critical patent/JP5684086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

この発明は物理量計測システムに係り、特に、複数のFBGが設けられた光ファイバを利用して多点の物理量計測を行う物理量計測システムに関する。   The present invention relates to a physical quantity measurement system, and more particularly to a physical quantity measurement system that performs multi-point physical quantity measurement using an optical fiber provided with a plurality of FBGs.

近年、熱や応力あるいは圧力等の物理量を計測するためのセンサとして、FBG(ファイバブラッググレーティング)が設けられた光ファイバが利用される。FBGとは、光ファイバのコアの屈折率を軸方向に沿った所定の長さ周期(グレーティング周期)で変化させた回折格子であって、光ファイバへの入射光に対し、グレーティング周期に応じた特定の波長(ブラッグ波長)の光を反射し、残りの光を透過するという特性を有している。物理量の変化に応じてFBGが伸縮すると、それに伴ってグレーティング周期が変化する。ブラッグ波長は、グレーティング周期の変化に対して線形にシフトするため、ブラッグ波長のシフト量に基づいて物理量を計測することが可能となる。また、一本の光ファイバに複数のFBGを設ければ、複数箇所の物理量を計測する多点計測が可能となる。   In recent years, an optical fiber provided with an FBG (fiber Bragg grating) is used as a sensor for measuring a physical quantity such as heat, stress, or pressure. The FBG is a diffraction grating in which the refractive index of the core of the optical fiber is changed by a predetermined length period (grating period) along the axial direction, and the incident light to the optical fiber depends on the grating period. It has a characteristic of reflecting light of a specific wavelength (Bragg wavelength) and transmitting the remaining light. When the FBG expands and contracts according to the change in the physical quantity, the grating period changes accordingly. Since the Bragg wavelength is linearly shifted with respect to the change in the grating period, the physical quantity can be measured based on the shift amount of the Bragg wavelength. Further, if a plurality of FBGs are provided in one optical fiber, multipoint measurement for measuring physical quantities at a plurality of locations is possible.

このような光ファイバを利用して多点計測を行う物理量計測システムの一例として、特許文献1に記載の温度計測システムが挙げられる。この温度計測システムは、高温の液体または気体が熱媒体として流通する配管に光ファイバを敷設するとともに配管の複数の計測対象部位にFBGを配置し、光ファイバ温度計測装置から光ファイバにレーザパルスを入射して各計測対象部位の温度を計測するものである。尚、各計測対象部位の温度は、光ファイバの光路に発生する散乱光強度と温度との間の相関、すなわち、FBGのブラッグ波長のシフト量と温度変化量との相関に基づいて、光ファイバ温度計測装置が算出する。ある計測対象部位に亀裂等が生じて熱媒体が漏洩すると、その計測対象部位における温度上昇の勾配が他の計測対象部位における勾配に対して大きくなる。光ファイバ温度計測装置は、傾きが大きくなった計測対象部位における温度の異常上昇を検出し、その部位で熱媒体の漏洩が発生していると判断する。   As an example of a physical quantity measurement system that performs multipoint measurement using such an optical fiber, a temperature measurement system described in Patent Document 1 can be cited. In this temperature measurement system, an optical fiber is laid in a pipe through which a high-temperature liquid or gas flows as a heat medium, and FBGs are arranged in a plurality of measurement target parts of the pipe, and laser pulses are sent from the optical fiber temperature measurement device to the optical fiber. Incident light is used to measure the temperature of each measurement target part. The temperature of each measurement target part is determined based on the correlation between the intensity of scattered light generated in the optical path of the optical fiber and the temperature, that is, the correlation between the shift amount of the Bragg wavelength of the FBG and the temperature change amount. The temperature measuring device calculates. When a crack or the like occurs in a certain measurement target part and the heat medium leaks, the gradient of the temperature rise in the measurement target part becomes larger than the gradient in the other measurement target part. The optical fiber temperature measuring device detects an abnormal rise in temperature at the measurement target portion where the inclination is large, and determines that the heat medium leaks at that portion.

特開2002−71472号公報JP 2002-71472 A

特許文献1に記載されているような温度計測システムの用途の一例として、EV(電気自動車)等に用いられる電池の異常温度検出が挙げられる。通常、このような電池は数個から数十個の複数の電池セルを有しており、正常動作時における複数の電池セルの温度は略均一となる。このような電池において、少なくとも一つの電池セルの温度が異常となった場合、他の電池セルの温度が正常であるかどうかに関わらず電池全体の使用を中止することが求められる。つまり、このような用途に用いられる温度計測システムでは各電池セルの温度をそれぞれ計測する必要及び異常が発生している電池セルを特定する必要はなく、異常温度となっている電池セルが存在するかどうかだけを検出できればよい。   As an example of the use of the temperature measurement system described in Patent Document 1, there is an abnormal temperature detection of a battery used in an EV (electric vehicle) or the like. Usually, such a battery has several to several tens of battery cells, and the temperature of the battery cells during normal operation is substantially uniform. In such a battery, when the temperature of at least one battery cell becomes abnormal, it is required to stop using the entire battery regardless of whether the temperature of other battery cells is normal. That is, in the temperature measurement system used for such an application, it is not necessary to measure the temperature of each battery cell, and it is not necessary to specify a battery cell in which an abnormality has occurred, and there is a battery cell having an abnormal temperature. It only needs to be detected.

しかしながら、特許文献1に記載の温度計測システムは、温度変化の勾配を算出するため及び熱媒体の漏洩箇所を特定するために各被計測部の温度をそれぞれ算出している。この場合、複数のFBGが互いに異なる特性を有するような加工、具体的には各FBGの反射帯域が互いに異なるようにする加工が必要となるため、同じ特性を有する複数のFBGを加工する場合と比較して、光ファイバの製造コストは高くなる。すなわち、少なくとも一箇所で異常が発生した場合に装置全体の使用や動作を停止させるような用途に特許文献1に記載の温度計測システムを適用する場合、温度計測システムを低コストで構築することが困難であるという問題点を有していた。尚、特許文献1に記載の温度計測システムを、応力や圧力等の温度以外の物理量計測に適用する場合においても上記の問題点は共通である。   However, the temperature measurement system described in Patent Document 1 calculates the temperature of each measurement target part in order to calculate the gradient of the temperature change and to identify the leakage location of the heat medium. In this case, a process in which a plurality of FBGs have different characteristics, specifically, a process in which the reflection bands of the FBGs are different from each other is required. Therefore, a plurality of FBGs having the same characteristics are processed. In comparison, the manufacturing cost of the optical fiber is high. That is, when the temperature measurement system described in Patent Document 1 is applied to an application in which use or operation of the entire apparatus is stopped when an abnormality occurs in at least one place, the temperature measurement system can be constructed at a low cost. It had the problem of being difficult. The above-mentioned problem is common even when the temperature measurement system described in Patent Document 1 is applied to measurement of physical quantities other than temperature such as stress and pressure.

この発明は、このような問題点を解決するためになされたもので、多点計測時の異常検出を低コストで行うことを実現した物理量測定システムを提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a physical quantity measurement system that realizes anomaly detection at the time of multipoint measurement at a low cost.

この発明に係る物理量計測システムは、複数のFBGが設けられた光ファイバと、光ファイバに入射光を出力する光源と、入射光に対する複数のFBGからの反射光または透過光が入力される計測装置とを備えた物理量計測システムにおいて、複数のFBGは互いに同一となる反射帯域を有しており、光源は、FBGの反射帯域より広帯域の光を入射光として出力しており、計測装置は、複数のFBGからの反射光の総光量または複数のFBGからの透過光の総光量に基づいて、FBGが配置された箇所である被計測部における物理量の変化を判別することを特徴とするものである。   A physical quantity measurement system according to the present invention includes an optical fiber provided with a plurality of FBGs, a light source that outputs incident light to the optical fibers, and a measuring device that receives reflected light or transmitted light from the plurality of FBGs with respect to the incident light. The plurality of FBGs have reflection bands that are the same as each other, the light source outputs light having a wider band than the reflection band of the FBG as incident light, and the measurement apparatus includes a plurality of measurement devices. It is characterized in that a change in a physical quantity in a measurement target portion that is a place where the FBG is arranged is determined based on a total light amount of reflected light from the FBG or a total light amount of transmitted light from a plurality of FBGs. .

被計測部に配置されたFBGの反射スペクトルは、被計測部から印加された物理量に応じてシフトする。また、光源から光ファイバに出力される光は、FBGの反射帯域より広帯域の光であるため、この入射光に対するFBGの反射光のスペクトルは、FBGの反射スペクトルと同一形状のものとなる。ここで、各FBGの反射帯域は互いに同一であるため、被計測部から各FBGに印加される物理量が略均一である場合、各FBGの反射スペクトルも略同一の形状となる。より具体的に説明すると、各FBGから計測装置に入力される反射光の全体的なスペクトルは、1つのピーク値を有する略放物線状となる。一方、例えば、ある1つのFBGに印加される物理量が他のFBGに印加される物理量とは異なる場合、計測装置に入力される反射光の全体的なスペクトルは、2つのピーク値を有するとともに帯域幅が広がった形状に変化する。   The reflection spectrum of the FBG arranged in the measured part shifts according to the physical quantity applied from the measured part. Further, since the light output from the light source to the optical fiber is light in a wider band than the reflection band of the FBG, the spectrum of the reflected light of the FBG with respect to this incident light has the same shape as the reflection spectrum of the FBG. Here, since the reflection bands of the FBGs are the same, when the physical quantity applied to each FBG from the measurement target is substantially uniform, the reflection spectra of the FBGs also have substantially the same shape. More specifically, the entire spectrum of the reflected light input from each FBG to the measuring device is substantially parabolic with one peak value. On the other hand, for example, when a physical quantity applied to one FBG is different from a physical quantity applied to another FBG, the entire spectrum of reflected light input to the measurement apparatus has two peak values and a band. It changes to a shape with a wider width.

この場合、各FBGに印加される物理量が略同一である場合と比較すると、反射光の総光量が大きくなる。すなわち、複数のFBGからの反射光の総光量を計測装置で計測すれば、各FBGに印加される物理量が略均一であるかどうかが分かるため、各FBGが配置された部位に異常が生じているかどうかを判別することが可能となる。尚、FBGからの透過光を利用する場合、透過光のスペクトルは入射光のスペクトルからFBGの反射スペクトルを除いた形状となり、この形状の変化に基づいて物理量の変化を判別できる。上述したように、互いに異なる反射帯域を有する複数のFBGを設ける必要がないため、光ファイバの製造コストが低減される。また、計測装置は、各FBGからの反射光全体のスペクトルまたは透過光全体のスペクトルの形状の変化のみを監視していればよいため、複雑な信号処理を必要としない。したがって、多点計測を行う物理量計測システムにおいて、異常検出を低コストで行うことが可能となる。   In this case, the total amount of reflected light is larger than when the physical quantities applied to each FBG are substantially the same. That is, if the total amount of reflected light from a plurality of FBGs is measured with a measuring device, it can be determined whether or not the physical quantity applied to each FBG is substantially uniform. Therefore, an abnormality occurs at the site where each FBG is arranged. It becomes possible to determine whether or not. When the transmitted light from the FBG is used, the spectrum of the transmitted light has a shape obtained by removing the reflection spectrum of the FBG from the spectrum of the incident light, and a change in physical quantity can be determined based on the change in the shape. As described above, since it is not necessary to provide a plurality of FBGs having different reflection bands, the manufacturing cost of the optical fiber is reduced. In addition, the measuring device only needs to monitor the change in the shape of the spectrum of the entire reflected light from each FBG or the spectrum of the entire transmitted light, and thus does not require complicated signal processing. Therefore, abnormality detection can be performed at a low cost in a physical quantity measurement system that performs multipoint measurement.

計測装置は、所定の波長における複数のFBGからの反射光の強度、または所定の波長における複数のFBGからの透過光の強度を計測可能であってもよい。各FBGにおける物理量の変化に異常がない場合、各FBGに印加される物理量を計測することができる。また、あるFBGにおける物理量の変化に異常が生じて反射光全体のスペクトルまたは透過光全体のスペクトルに形状変化が生じた場合、正常時におけるスペクトルのピーク位置、異常発生時におけるスペクトルのピーク位置、及び正常時に計測された物理量に基づいて、異常となっている被計測部における物理量を計測することもできる。
尚、物理量は、熱、応力または圧力のいずれかであってもよい。また、被計測部は複数設けられ、複数のFBGは被計測部にそれぞれ配置されてもよい。
The measurement device may be capable of measuring the intensity of reflected light from a plurality of FBGs at a predetermined wavelength or the intensity of transmitted light from a plurality of FBGs at a predetermined wavelength. When there is no abnormality in the change in physical quantity in each FBG, the physical quantity applied to each FBG can be measured. In addition, when an abnormality occurs in a change in physical quantity in a certain FBG and a shape change occurs in the spectrum of the entire reflected light or the spectrum of the entire transmitted light, the peak position of the spectrum at the time of normality, Based on the physical quantity measured at the normal time, the physical quantity in the measured part that is abnormal can also be measured.
The physical quantity may be any of heat, stress or pressure. Further, a plurality of measured parts may be provided, and the plurality of FBGs may be arranged in the measured parts, respectively.

この発明によれば、多点計測を行う物理量計測システムにおいて、異常検出を低コストで行うことが可能となる。   According to the present invention, it is possible to detect an abnormality at a low cost in a physical quantity measurement system that performs multipoint measurement.

この発明の実施の形態に係る物理量計測システムの構成を示す概略図である。It is the schematic which shows the structure of the physical quantity measurement system which concerns on embodiment of this invention. 実施の形態に係る物理量計測システムにおけるFBGの構成を示す概略図である。It is the schematic which shows the structure of FBG in the physical quantity measurement system which concerns on embodiment. 実施の形態に係る物理量計測システムを用いて異常検出を行う方法を説明するための図であり、(a)は正常時における各FBGからの反射光のスペクトルを示し、(b)は異常発生時における各FBGからの反射光のスペクトルを示す。It is a figure for demonstrating the method of performing abnormality detection using the physical quantity measurement system which concerns on embodiment, (a) shows the spectrum of the reflected light from each FBG at the time of normal, (b) is at the time of abnormality occurrence The spectrum of the reflected light from each FBG in FIG. 実施の形態に係る物理量計測システムを用いて異常検出を行う方法を示すフローチャートである。It is a flowchart which shows the method of performing abnormality detection using the physical quantity measurement system which concerns on embodiment.

以下に、この発明の実施の形態について添付図に基づいて説明する。
この実施の形態に係る物理量計測システムの構成について、例えばEV(電気自動車)で用いられる電池Vの温度計測システム10として適用した場合を例として、図1、2に基づいて説明する。尚、電池Vは、被計測部としての10個の電池セルV1〜V10を有するものであり、温度計測システム10は、これらの電池セルV1〜V10の温度変化を判別し、それにより、電池セルV1〜V10における異常の有無を判別するものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The configuration of the physical quantity measurement system according to this embodiment will be described based on FIGS. Note that the battery V has ten battery cells V1 to V10 as measured parts, and the temperature measurement system 10 discriminates the temperature change of these battery cells V1 to V10, thereby the battery cells. The presence or absence of abnormality in V1-V10 is discriminated.

図1に示すように、温度計測システム10は一本の光ファイバ11と計測装置12とを備えており、光ファイバ11の一端11a及び他端11bが計測装置12にそれぞれ接続されている。また、光ファイバ11の一端11a側には光サーキュレータ13を介して光源14が接続されており、光源14から出力された光が、矢印A1で示されるように他端11b側に向かって光ファイバ11内を伝播する。さらに、光ファイバ11の途中には、10個のFBG(ファイバブラッググレーティング)21〜30が設けられており、これらのFBG21〜30が電池セルV1〜V10にそれぞれ固定されている。後述するように、FBG21〜30は、入射光に対してブラッグ波長と呼ばれる特定の波長の光を反射するとともに残りの光を透過するものである。これらのFBG21〜30からの反射光は、矢印A2で示される方向に光サーキュレータ13によって導かれ、計測装置12に入力されるようになっている。尚、計測装置12は、FBG21〜30からの反射光に基づいて各電池セルV1〜V9における温度の計測や異常判別を行うための演算装置15を有している。   As shown in FIG. 1, the temperature measurement system 10 includes a single optical fiber 11 and a measurement device 12, and one end 11 a and the other end 11 b of the optical fiber 11 are connected to the measurement device 12. A light source 14 is connected to the one end 11a side of the optical fiber 11 via an optical circulator 13, and the light output from the light source 14 is directed toward the other end 11b as indicated by an arrow A1. 11 is propagated. Further, ten FBGs (fiber Bragg gratings) 21 to 30 are provided in the middle of the optical fiber 11, and these FBGs 21 to 30 are fixed to the battery cells V1 to V10, respectively. As will be described later, the FBGs 21 to 30 reflect light of a specific wavelength called a Bragg wavelength with respect to incident light and transmit the remaining light. Reflected light from these FBGs 21 to 30 is guided by the optical circulator 13 in the direction indicated by the arrow A <b> 2 and input to the measuring device 12. In addition, the measuring device 12 has the calculating device 15 for measuring the temperature in each battery cell V1-V9 based on the reflected light from FBG21-30, and performing abnormality determination.

次に、図2に示されるFBG21を参照して、その構成について説明する。
図2に示すように、光ファイバ11は、光源14(図1参照)から入力される入射光L1が伝播するコア11cと、コア11cの外周部を覆うクラッド11dとを有している。FBG21は、コア11cの屈折率を軸方向に沿った所定の長さ周期(グレーティング周期)Λで変化させた回折格子であって、入射光L1に対し、特定の波長(ブラッグ波長)の光を反射光L2として反射し、残りの光を透過光L3として透過するという特性を有している。尚、光ファイバ11は、例えば石英ガラス等の材料から形成されており、その熱膨張率は正の値となっている。また、一例として、各FBG21〜30は、光ファイバ11に紫外線等を照射することによって加工される。
Next, the configuration will be described with reference to the FBG 21 shown in FIG.
As shown in FIG. 2, the optical fiber 11 includes a core 11c through which incident light L1 input from a light source 14 (see FIG. 1) propagates, and a clad 11d that covers the outer periphery of the core 11c. The FBG 21 is a diffraction grating in which the refractive index of the core 11c is changed by a predetermined length period (grating period) Λ along the axial direction, and emits light having a specific wavelength (Bragg wavelength) with respect to the incident light L1. The reflected light L2 is reflected and the remaining light is transmitted as transmitted light L3. The optical fiber 11 is made of a material such as quartz glass, for example, and has a positive coefficient of thermal expansion. As an example, each of the FBGs 21 to 30 is processed by irradiating the optical fiber 11 with ultraviolet rays or the like.

グレーティング周期Λは、FBG21のブラッグ波長を規定する要素の1つとなっており、グレーティング周期Λの変化量に対してブラッグ波長が線形に変化するようになっている。すなわち、電池セルV1の温度が上昇してFBG21が伸張すると、グレーティング周期Λも大きくなるため、それに伴ってブラッグ波長が長波長側にシフトする。したがって、ブラッグ波長のシフト量に基づいて、電池セルV1の温度を計測することが可能となる。尚、FBG21を透過した透過光L3は、入射光L1から反射光L2を除いたものとなるため、ブラッグ波長のシフト量は反射側及び透過側の双方、すなわち光ファイバ11の一端11a側及び他端11b側の双方から求めることが可能となっている(図1参照)。ここで、FBG21〜30は、これらの全てが同一の構成となるように加工されている。すなわち、上述したFBG21の構成はFBG22〜30においても共通であり、そのため、FBG21〜30は同一の反射帯域を有するものとなる。   The grating period Λ is one of the elements that define the Bragg wavelength of the FBG 21, and the Bragg wavelength changes linearly with respect to the amount of change of the grating period Λ. That is, when the temperature of the battery cell V1 rises and the FBG 21 expands, the grating period Λ also increases, and accordingly, the Bragg wavelength shifts to the long wavelength side. Accordingly, the temperature of the battery cell V1 can be measured based on the shift amount of the Bragg wavelength. Since the transmitted light L3 transmitted through the FBG 21 is obtained by removing the reflected light L2 from the incident light L1, the shift amount of the Bragg wavelength is both on the reflection side and the transmission side, that is, on the one end 11a side of the optical fiber 11 and others. It can be obtained from both ends 11b (see FIG. 1). Here, the FBGs 21 to 30 are processed so that all of them have the same configuration. That is, the configuration of the FBG 21 described above is common to the FBGs 22 to 30, and therefore the FBGs 21 to 30 have the same reflection band.

図1に戻って、光源14は、各FBG21〜30の反射帯域を帯域幅に含む広帯域の光を光ファイバ11に出力可能となっており、例えばASE光源等が光源14として用いられる。一方、計測装置12は、各FBG21〜30の反射帯域を含む帯域幅の総光量を検出可能な光量検出部12aと、各FBG21〜30からの反射光の強度を検出可能な光強度検出部12bとを備えている。計測装置12は、光ファイバ11の一端11aと光量検出部12aとを接続する主導波路12cを有しており、この主導波路12cを介してFBG21〜30の反射光が光量検出部12aに入力される。   Returning to FIG. 1, the light source 14 can output broadband light including the reflection band of each of the FBGs 21 to 30 to the optical fiber 11. For example, an ASE light source or the like is used as the light source 14. On the other hand, the measuring device 12 includes a light amount detection unit 12a that can detect the total light amount of the bandwidth including the reflection bands of the FBGs 21 to 30, and a light intensity detection unit 12b that can detect the intensity of the reflected light from the FBGs 21 to 30. And. The measuring device 12 has a main waveguide 12c that connects one end 11a of the optical fiber 11 and the light amount detection unit 12a, and the reflected light of the FBGs 21 to 30 is input to the light amount detection unit 12a via the main waveguide 12c. The

また、計測装置12は、主導波路12cと光強度検出部12bとを接続する分岐導波路12dを有しており、主導波路12cから分岐されて分岐導波路12d内を伝播する反射光が光強度検出部12bにも入力される。さらに、分岐導波路12dの途中には、所定の波長の光のみを通過させるフィルタ12eが設けられている。すなわち、光強度検出部12bには、FBG21〜30からの反射光のうち、所定の波長の光のみが入力されるようになっている。尚、光量検出部12a及び光強度検出部12bとしては、例えばフォトダイードやフォトカプラ、あるいはCMOS等の光電気変換素子が用いられる。また、光量検出部12a及び光強度検出部12bは演算装置15に電気的に接続されており、演算装置15は、光量検出部12a及び光強度検出部12bが検出した光量及び光の強度に基づいて、各電池セルV1〜V9における温度の計測や異常判別を行う。   The measuring device 12 includes a branching waveguide 12d that connects the main waveguide 12c and the light intensity detector 12b, and the reflected light that is branched from the main waveguide 12c and propagates in the branching waveguide 12d is light intensity. It is also input to the detector 12b. Further, a filter 12e that allows only light of a predetermined wavelength to pass is provided in the middle of the branching waveguide 12d. That is, only light having a predetermined wavelength among the reflected light from the FBGs 21 to 30 is input to the light intensity detection unit 12b. For example, a photo diode, a photo coupler, or a photoelectric conversion element such as a CMOS is used as the light amount detection unit 12a and the light intensity detection unit 12b. The light quantity detector 12a and the light intensity detector 12b are electrically connected to the arithmetic device 15, and the arithmetic device 15 is based on the light quantity and the light intensity detected by the light quantity detector 12a and the light intensity detector 12b. Then, temperature measurement and abnormality determination in each of the battery cells V1 to V9 are performed.

次に、この発明の実施の形態に係る温度計測システム10を用いて電池セルV1〜V10における温度の異常の有無を判別する方法について、図1〜4を用いて説明する。
図1に示すように、まず、光源14から出力された広帯域の光が光サーキュレータ13を介して光ファイバ11に入射される。光源14からの光が光ファイバ11に入射されると、最も上流側に位置するFBG21は、そのブラッグ波長に応じた反射光を反射し、残りの光を透過光として下流側に透過する(図2参照)。同様に、FBG22〜30は、上流側のFBGからの透過光に対してブラッグ波長に応じた反射光を反射し、残りの光を透過する。FBG21〜30の反射光は、光サーキュレータ13によって矢印A2で示される方向に導かれて計測装置12に入力される。計測装置12に入力された反射光の一部は、主導波路12cを介して光量検出部12aに導かれてその総光量を検出され、検出された総光量が演算装置15に入力される。一方、計測装置12に入力された反射光の残りは主導波路12cから分岐導波路12dに分岐され、フィルタ12eを通過した所定の波長の光が光強度検出部12bに入力される。光強度検出部12bは、入力された光の強度を演算装置15に入力する。
Next, a method for determining the presence or absence of temperature abnormality in the battery cells V1 to V10 using the temperature measurement system 10 according to the embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, first, broadband light output from the light source 14 is incident on the optical fiber 11 via the optical circulator 13. When light from the light source 14 enters the optical fiber 11, the FBG 21 located on the most upstream side reflects the reflected light corresponding to the Bragg wavelength, and transmits the remaining light as transmitted light to the downstream side (FIG. 2). Similarly, the FBGs 22 to 30 reflect the reflected light corresponding to the Bragg wavelength with respect to the transmitted light from the upstream FBG, and transmit the remaining light. The reflected light of the FBGs 21 to 30 is guided by the optical circulator 13 in the direction indicated by the arrow A <b> 2 and input to the measuring device 12. A part of the reflected light input to the measuring device 12 is guided to the light amount detection unit 12a via the main waveguide 12c, the total light amount is detected, and the detected total light amount is input to the arithmetic unit 15. On the other hand, the remainder of the reflected light input to the measuring device 12 is branched from the main waveguide 12c to the branching waveguide 12d, and light having a predetermined wavelength that has passed through the filter 12e is input to the light intensity detection unit 12b. The light intensity detector 12 b inputs the input light intensity to the arithmetic device 15.

ここで、電池Vの各電池セルV1〜V10の動作状態が正常である場合、これらの電池セルV1〜V10の温度は略同一となる。また、各FBG21〜30は同様に加工されたものであり、互いに同一の反射帯域を有している。さらに、光源14は、各FBG21〜30の反射帯域を帯域幅に含む光を光ファイバ11に入射している。つまり、電池セルV1〜V10の温度が略同一である場合、各FBG21〜30の反射スペクトルは互いに共通のものとなり、計測装置12に入力される反射光のスペクトルは、図3(a)に示すようにピーク値が1つである放物線状のものとなる。尚、このスペクトルは、各FBG21〜30のブラッグ波長λ1である中心波長でピーク値を示すものである。   Here, when the operation states of the battery cells V1 to V10 of the battery V are normal, the temperatures of the battery cells V1 to V10 are substantially the same. The FBGs 21 to 30 are processed in the same manner and have the same reflection band. Further, the light source 14 is incident on the optical fiber 11 with light including the reflection bands of the FBGs 21 to 30 in the bandwidth. That is, when the temperatures of the battery cells V1 to V10 are substantially the same, the reflection spectra of the FBGs 21 to 30 are common to each other, and the spectrum of the reflected light input to the measuring device 12 is shown in FIG. Thus, it becomes a parabolic shape having one peak value. This spectrum shows a peak value at the center wavelength which is the Bragg wavelength λ1 of each FBG 21-30.

図3(a)に示される波形のスペクトルを有する反射光が光量検出部12aに入力されると、光量検出部12aはその総光量を検出し、検出した総光量を電気信号に変換して演算装置15に出力する(図4のステップS1参照)。また、演算装置15は、予め入力された総光量の閾値を内部情報として記憶しており、光量検出部12aから入力された総光量が閾値より小さい場合、各電池セルV1〜V10の動作状態が正常である、すなわち、各電池セルV1〜V10の温度が略同一であると判別する(図4のステップS2参照)。   When the reflected light having the waveform spectrum shown in FIG. 3A is input to the light amount detection unit 12a, the light amount detection unit 12a detects the total light amount, converts the detected total light amount into an electric signal, and calculates. It outputs to the apparatus 15 (refer step S1 of FIG. 4). In addition, the arithmetic device 15 stores the threshold value of the total light amount input in advance as internal information, and when the total light amount input from the light amount detection unit 12a is smaller than the threshold value, the operation state of each of the battery cells V1 to V10 is It is determined that the battery cells are normal, that is, the temperatures of the battery cells V1 to V10 are substantially the same (see step S2 in FIG. 4).

次いで、演算装置15は、光強度検出部12bから出力される所定波長の光の強度に基づいて、各電池セルV1〜V9の温度を計測する(図4のステップS3参照)。光強度検出部12bは、フィルタ12eを通過した短波長λ2(図3(a)参照)における光の強度Sを検出して演算装置15に出力する。演算装置15は、光強度検出部12bから入力された光の強度Sに基づいて各電池セルV1〜V10の温度を算出し、算出した温度をデータとして出力する(図4のステップS4参照)。   Next, the computing device 15 measures the temperature of each of the battery cells V1 to V9 based on the intensity of light of a predetermined wavelength output from the light intensity detection unit 12b (see step S3 in FIG. 4). The light intensity detector 12b detects the light intensity S at the short wavelength λ2 (see FIG. 3A) that has passed through the filter 12e, and outputs it to the arithmetic unit 15. The computing device 15 calculates the temperature of each of the battery cells V1 to V10 based on the light intensity S input from the light intensity detector 12b, and outputs the calculated temperature as data (see step S4 in FIG. 4).

一方、電池Vの各電池セルV1〜V10のうち、例えば電池セルV2の動作状態が異常となって温度が上昇した場合、電池セルV2に固定されているFBG22のブラッグ波長は、温度の上昇分に応じて長波長側にシフトする。つまり、電池セルV1及びV3〜V10の反射スペクトルが図3(a)に示される反射スペクトルと同様の波形を示すのに対し、電池セルV2の反射スペクトルは、温度の上昇分に応じて長波長側にシフトした波形となる。したがって、FBG21〜30からの反射光の全体的なスペクトルは、図3(b)に示されるように、FBG21及びFBG23〜30のブラッグ波長λ1においてピーク値を示す放物線状の波形と、FBG22のブラッグ波長λ3においてピーク値を示す放物線状の波形とが重なったものに変化する。   On the other hand, among the battery cells V1 to V10 of the battery V, for example, when the operating state of the battery cell V2 is abnormal and the temperature rises, the Bragg wavelength of the FBG 22 fixed to the battery cell V2 is the increase in temperature. Shift to the long wavelength side according to the above. That is, while the reflection spectra of the battery cells V1 and V3 to V10 show the same waveform as the reflection spectrum shown in FIG. 3A, the reflection spectrum of the battery cell V2 has a long wavelength depending on the temperature rise. Waveform shifted to the side. Therefore, as shown in FIG. 3B, the entire spectrum of the reflected light from the FBGs 21 to 30 is a parabolic waveform having a peak value at the Bragg wavelength λ1 of the FBG21 and the FBGs 23 to 30, and the Bragg of the FBG22. It changes to a superposition of a parabolic waveform indicating a peak value at the wavelength λ3.

図3(b)に示される波形のスペクトルを有する反射光が光量検出部12aに入力されると、光量検出部12aはその総光量を計測し、計測した総光量を電気信号に変換して演算装置15に出力する(図4のステップS1参照)。ここで、図3(b)に示される反射光のスペクトルは、図3(a)に示される反射光のスペクトル、すなわち正常時における反射光のスペクトルに対して帯域幅が広がったものとなるため、光量検出部12aによって検出される総光量も増加した状態となる。演算装置15は、光量検出部12aから入力された総光量が閾値を超えた場合に、電池セルV1〜V10の少なくとも1つの動作状態、すなわち温度が異常であると判別する(図4のステップS5参照)。次いで、演算装置15は、例えば電池Vの作動を停止するための処理や、電池Vの異常を示す警告の表示等、所定の処理を行う(図4のステップS6参照)。尚、演算装置15は、波長λ1と波長λ3との差分と波長λ2における反射光の強度Sに基づいて、異常が発生している電池セルV2の温度を計測することも可能となっている。   When the reflected light having the waveform spectrum shown in FIG. 3B is input to the light quantity detection unit 12a, the light quantity detection unit 12a measures the total light quantity and converts the measured total light quantity into an electrical signal for calculation. It outputs to the apparatus 15 (refer step S1 of FIG. 4). Here, the spectrum of the reflected light shown in FIG. 3B has a wider bandwidth than the spectrum of the reflected light shown in FIG. 3A, that is, the spectrum of the reflected light in a normal state. The total light amount detected by the light amount detection unit 12a is also increased. When the total light amount input from the light amount detection unit 12a exceeds the threshold value, the arithmetic device 15 determines that at least one operation state of the battery cells V1 to V10, that is, the temperature is abnormal (step S5 in FIG. 4). reference). Next, the arithmetic device 15 performs predetermined processing such as processing for stopping the operation of the battery V and display of a warning indicating abnormality of the battery V (see step S6 in FIG. 4). The arithmetic device 15 can also measure the temperature of the battery cell V2 in which an abnormality has occurred based on the difference between the wavelengths λ1 and λ3 and the intensity S of the reflected light at the wavelength λ2.

以上に述べたように、互いに同一の反射帯域を有する複数のFBG21〜30が設けられた光ファイバ11に対して広帯域の光を入射するとともに、この入射光に対する反射光の総光量を検出するように温度計測システム10を構成したので、各FBG21〜30からの反射光の全体的なスペクトルの変化に基づいて、電池セルV1〜V10の温度の異常判別を行うことが可能となる。光ファイバ11に対し、互いに異なる反射帯域を有する複数のFBGを設ける必要がないため、光ファイバ11の製造コストが低減される。また、計測装置12は、各FBGからの反射光全体のスペクトルのみを検出していればよいため、複雑な信号処理を必要とすることなく電池セルV1〜V10の異常判別を行うことができる。したがって、多点計測を行う温度計測システム10において、異常検出を低コストで行うことが可能となる。   As described above, broadband light is incident on the optical fiber 11 provided with the plurality of FBGs 21 to 30 having the same reflection band, and the total amount of reflected light with respect to the incident light is detected. Since the temperature measurement system 10 is configured, the abnormality determination of the temperature of the battery cells V1 to V10 can be performed based on the change in the overall spectrum of the reflected light from each of the FBGs 21 to 30. Since it is not necessary to provide the optical fiber 11 with a plurality of FBGs having different reflection bands, the manufacturing cost of the optical fiber 11 is reduced. Moreover, since the measurement apparatus 12 should just detect only the spectrum of the whole reflected light from each FBG, it can perform abnormality determination of battery cell V1-V10, without requiring complicated signal processing. Therefore, it is possible to perform abnormality detection at a low cost in the temperature measurement system 10 that performs multipoint measurement.

また、計測装置12は、FBG21〜30の反射光の総光量を検出する光量検出部12aの他に、所定の波長λ2における反射光の強度を検出可能な光強度検出部12bを有するため、異常がない場合における各電池セルV1〜V10の温度、及び異常が発生した電池セルの温度を計測することが可能となる。   Moreover, since the measuring device 12 has the light intensity detection unit 12b that can detect the intensity of the reflected light at the predetermined wavelength λ2 in addition to the light amount detection unit 12a that detects the total light amount of the reflected light of the FBGs 21 to 30, the measurement device 12 is abnormal. It is possible to measure the temperature of each of the battery cells V1 to V10 and the temperature of the battery cell in which an abnormality has occurred.

上記の実施の形態における物理量計測システムは、電池セルV1〜V10の温度を計測して異常を判別するための温度計測システム10として説明されたが、本発明における計測対象を温度に限定するものではない。FBGは、圧力や応力等、温度以外の物理量の計測用途に適用可能であり、本発明に係る物理量計測システムをそのような物理量の計測システムや異常判別システムに適用することも可能である。
また、上記の実施形態に係る温度計測システム10は、各FBG21〜30の反射光に基づいて電池セルV1〜V10の温度の計測及び異常判別を行うように構成されたが、このような構成に限定するものではなく、FBG21〜30の透過光利用することも可能である。FBG21〜30の透過スペクトルは、光源14が出力する光のスペクトルから各FBGの反射スペクトルを除いたものとなるため、この透過光を光ファイバ11の端部11bから計測装置12に入力可能とすれば、温度計測システム10と同様の効果を得ることができる。
Although the physical quantity measurement system in the above embodiment has been described as the temperature measurement system 10 for measuring the temperature of the battery cells V1 to V10 and discriminating an abnormality, the measurement target in the present invention is not limited to temperature. Absent. The FBG can be used for measuring physical quantities other than temperature, such as pressure and stress, and the physical quantity measuring system according to the present invention can also be applied to such physical quantity measuring systems and abnormality determination systems.
Further, the temperature measurement system 10 according to the above embodiment is configured to measure the temperature of the battery cells V1 to V10 and determine the abnormality based on the reflected light of the FBGs 21 to 30, but in such a configuration, The light transmitted through the FBGs 21 to 30 can be used without limitation. Since the transmission spectra of the FBGs 21 to 30 are obtained by removing the reflection spectrum of each FBG from the spectrum of the light output from the light source 14, the transmitted light can be input to the measuring device 12 from the end 11 b of the optical fiber 11. Thus, the same effect as the temperature measurement system 10 can be obtained.

上記の実施の形態に係る温度計測システム10において、電池セルV1〜V10に対応するFBG21〜30が光ファイバ11に設けられたが、被計測部である電池セルの数及びFBGの数を限定するものではなく、必要に応じて適宜変更可能である。尚、本発明における複数のFBGは、互いに同一の反射帯域を有するように加工されたものであるため、被計測部の数が増加しても、物理量の計測及び異常判別を行うために利用する帯域幅が広がることがない。すなわち、異常の発生を示すFBGを特定することができない代わりに、光ファイバに設けるFBGの数が限られることがなく、利用していない入射光の帯域を他のセンサ用途等に用いることも可能である。   In the temperature measurement system 10 according to the above-described embodiment, the FBGs 21 to 30 corresponding to the battery cells V1 to V10 are provided in the optical fiber 11, but the number of battery cells and the number of FBGs as measurement target parts are limited. It is not a thing and it can change suitably as needed. The plurality of FBGs in the present invention are processed so as to have the same reflection band, so that they are used to measure physical quantities and perform abnormality determination even when the number of measured parts increases. Bandwidth does not increase. In other words, instead of being able to identify the FBG that indicates the occurrence of an abnormality, the number of FBGs provided in the optical fiber is not limited, and the unused incident light band can be used for other sensor applications, etc. It is.

10 温度計測システム(物理量計測システム)、11 光ファイバ、12 計測装置、14 光源、21〜30 FBG、V1〜V10 電池セル(被計測部)。   DESCRIPTION OF SYMBOLS 10 Temperature measurement system (physical quantity measurement system), 11 Optical fiber, 12 Measuring apparatus, 14 Light source, 21-30 FBG, V1-V10 Battery cell (measurement part).

Claims (4)

複数のFBGが設けられた光ファイバと、
前記光ファイバに入射光を出力する光源と、
前記入射光に対する複数の前記FBGからの反射光または透過光が入力される計測装置と
を備えた物理量計測システムにおいて、
複数の前記FBGは互いに同一となる反射帯域を有しており、
前記光源は、前記FBGの前記反射帯域より広帯域の光を前記入射光として出力しており、
前記計測装置は、複数の前記FBGからの前記反射光の総光量または複数の前記FBGからの前記透過光の総光量に基づいて、前記FBGが配置された箇所である被計測部における物理量の変化を判別することを特徴とする物理量計測システム。
An optical fiber provided with a plurality of FBGs;
A light source that outputs incident light to the optical fiber;
In a physical quantity measurement system comprising a measurement device to which reflected light or transmitted light from the plurality of FBGs with respect to the incident light is input,
The plurality of FBGs have reflection bands that are the same as each other,
The light source outputs light having a wider band than the reflection band of the FBG as the incident light,
The measurement device is configured to change a physical quantity at a measurement target portion where the FBG is arranged based on a total light amount of the reflected light from the plurality of FBGs or a total light amount of the transmitted light from the plurality of FBGs. A physical quantity measurement system characterized by discriminating between.
前記計測装置は、所定の波長における複数の前記FBGからの前記反射光の強度、または所定の波長における複数の前記FBGからの前記透過光の強度を計測可能な請求項1に記載の物理量計測システム。   The physical quantity measurement system according to claim 1, wherein the measurement device is capable of measuring the intensity of the reflected light from the plurality of FBGs at a predetermined wavelength or the intensity of the transmitted light from the plurality of FBGs at a predetermined wavelength. . 前記物理量は、熱、応力または圧力のいずれかである請求項1または2に記載の物理量計測システム。   The physical quantity measurement system according to claim 1, wherein the physical quantity is any one of heat, stress, and pressure. 前記被計測部は複数設けられ、複数の前記FBGは前記被計測部にそれぞれ配置される請求項1〜3のいずれか1項に記載の物理量計測システム。   The physical quantity measurement system according to claim 1, wherein a plurality of the measurement target units are provided, and the plurality of FBGs are respectively arranged in the measurement target units.
JP2011224839A 2011-10-12 2011-10-12 Physical quantity measurement system Expired - Fee Related JP5684086B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011224839A JP5684086B2 (en) 2011-10-12 2011-10-12 Physical quantity measurement system
PCT/JP2012/075814 WO2013054734A1 (en) 2011-10-12 2012-10-04 Physical quantity measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224839A JP5684086B2 (en) 2011-10-12 2011-10-12 Physical quantity measurement system

Publications (2)

Publication Number Publication Date
JP2013083598A JP2013083598A (en) 2013-05-09
JP5684086B2 true JP5684086B2 (en) 2015-03-11

Family

ID=48081790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224839A Expired - Fee Related JP5684086B2 (en) 2011-10-12 2011-10-12 Physical quantity measurement system

Country Status (2)

Country Link
JP (1) JP5684086B2 (en)
WO (1) WO2013054734A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973313B (en) * 2016-07-08 2018-05-01 武汉理工光科股份有限公司 Electric automobile charging pile safety monitoring system based on fiber grating
JP6875849B2 (en) * 2016-12-26 2021-05-26 三菱重工業株式会社 Engine exhaust purification device
GB2572767B (en) * 2018-04-09 2020-04-01 Halliburton Energy Services Inc Apparatus for monitoring a measurand
CN108871388B (en) * 2018-05-10 2021-04-09 刘正勇 Optical fiber touch sensor and sensing array
CN109580039A (en) * 2019-01-31 2019-04-05 武汉理工大学 Battery temperature based on intensive fiber grating temperature sensor monitors system
CN109883569B (en) * 2019-02-13 2020-11-06 辽宁达能电气股份有限公司 Lithium battery storage temperature monitoring system based on distributed optical fiber temperature measurement
CN110006584A (en) * 2019-04-11 2019-07-12 西安培华学院 A kind of high-temperature-resistance pressure sensor
CN113237510B (en) * 2021-05-06 2022-07-05 北京理工大学 Battery multisource parameter sensor, battery monomer and battery module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351937B2 (en) * 2004-03-17 2009-10-28 成田国際空港株式会社 Road surface freezing detection sensor, road surface freezing detection sensor installation method and road surface freezing detection method
JP2006215649A (en) * 2005-02-01 2006-08-17 Mitsubishi Electric Corp Method for detecting bragg grating sensor, and method and apparatus for detecting amount of distortion thereof
JP2009059582A (en) * 2007-08-31 2009-03-19 Toyota Motor Corp Pressure detecting device of secondary battery
JP5090136B2 (en) * 2007-11-15 2012-12-05 株式会社Ihi検査計測 Anomaly detection system

Also Published As

Publication number Publication date
WO2013054734A1 (en) 2013-04-18
JP2013083598A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5684086B2 (en) Physical quantity measurement system
EP3161439B1 (en) Optical fibre sensor system for detecting temperature changes in an aircraft
KR101280922B1 (en) Fiber optic sensor apparatus
CN103542925B (en) Quasi-distributed optical vibrating sensing device
JP2008107141A (en) Optical wavelength detection type physical quantity measuring sensor using ring resonator and bragg grating
US9689714B2 (en) Multiplexed fiber-coupled fabry-perot sensors and method therefor
TR201809273T4 (en) Fiber Bragg grid interrogator assembly and method for this.
JP5856307B2 (en) Broadband fiber sensor array
CA2972641C (en) Birefringent multi-peak optical reference element and birefringent sensor system
KR101474068B1 (en) The nuclear power plant monitering system for environment using the fiber bragg grating
JP5944015B2 (en) Power combiner monitoring
KR102036260B1 (en) Submergence detection sensor using optical fiber grating
US20230050697A1 (en) System for measuring a plurality of physical parameters at a measurement point with a multimode optical fiber
WO2013054733A1 (en) Fbg strain sensor and strain quantity measurement system
KR101030728B1 (en) monitoring system using dual wavelength fiber bragg grating sensor and method thereof
KR102028509B1 (en) Apparatus for measuring wavelength using light intensity
WO2012140959A1 (en) Temperature measurement system and temperature measurement method
JP2007205783A (en) Reflection spectrum measurement system
Alberto et al. Simultaneous strain and refractive index sensor based on a TFBG
JP2013036775A (en) Water gauge system
JP2006010449A (en) Optical fiber sensing system
JP2005274333A (en) Fiber-optic sensing system
JP5883730B2 (en) Optical line monitoring device
JP5875771B2 (en) Water level meter system
Mrad Addressing fiber optic sensors limitations for aircraft applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20140314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150114

R150 Certificate of patent or registration of utility model

Ref document number: 5684086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees