JP5682343B2 - Magnetic field measuring device - Google Patents

Magnetic field measuring device Download PDF

Info

Publication number
JP5682343B2
JP5682343B2 JP2011019530A JP2011019530A JP5682343B2 JP 5682343 B2 JP5682343 B2 JP 5682343B2 JP 2011019530 A JP2011019530 A JP 2011019530A JP 2011019530 A JP2011019530 A JP 2011019530A JP 5682343 B2 JP5682343 B2 JP 5682343B2
Authority
JP
Japan
Prior art keywords
light
cell
magnetic field
induced
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011019530A
Other languages
Japanese (ja)
Other versions
JP2012159402A5 (en
JP2012159402A (en
Inventor
上野 仁
仁 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011019530A priority Critical patent/JP5682343B2/en
Publication of JP2012159402A publication Critical patent/JP2012159402A/en
Publication of JP2012159402A5 publication Critical patent/JP2012159402A5/ja
Application granted granted Critical
Publication of JP5682343B2 publication Critical patent/JP5682343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、磁場計測装置に関する。   The present invention relates to a magnetic field measurement apparatus.

生体の心臓等から発せられる磁場を検出する生体磁気計測装置等において、光ポンピングを利用した磁気センサーが利用されている。このような磁気センサーとしては、アルカリ金属原子等のガスが封入された各セルに、円偏光成分を有するポンプ光と直線偏光成分を有するプローブ光とが直交するように照射され、生体から発せられる磁場をプローブ光によって検出するものがある。下記特許文献1には、そのような光ポンピング原子磁力計が開示されている。   A magnetic sensor using optical pumping is used in a biomagnetic measuring apparatus that detects a magnetic field emitted from a living heart or the like. As such a magnetic sensor, each cell in which a gas such as an alkali metal atom is sealed is irradiated with a pump light having a circularly polarized component and a probe light having a linearly polarized component perpendicular to each other and emitted from a living body. There is one that detects a magnetic field by probe light. Patent Document 1 below discloses such an optical pumping atomic magnetometer.

特開2009−236599号公報JP 2009-236599 A

ところで、セルの磁場感度は光ポンピングされている原子が多いほど高くなるため、セル内の原子密度を上げることでセルの磁場感度を高めることができる。アルカリ金属原子のスピン偏極を維持させるために、パラフィン等の化合物がコーティングされた膜が内壁に形成されたセルが存在するが、このようなセルは、製造過程、経時劣化、環境温度、コーティング膜の性能、不純物等のばらつきによって磁場感度に個体差が生じる。このようなセルを複数並べて生体の広範囲な部分を測定する場合、各セル内の原子密度が均一でなければ磁場感度にばらつきが生じ、生体からの磁場の強度を正確に測定することができない。
本発明は、複数のセルを並べて磁場を計測する磁場計測装置において、セル内の原子密度を制御して磁場の測定精度を向上させる技術を提供する。
By the way, since the magnetic field sensitivity of the cell increases as the number of optically pumped atoms increases, the magnetic field sensitivity of the cell can be increased by increasing the atom density in the cell. In order to maintain the spin polarization of alkali metal atoms, there are cells in which a film coated with a compound such as paraffin is formed on the inner wall. Such a cell has a manufacturing process, deterioration with time, environmental temperature, coating, etc. Individual differences occur in magnetic field sensitivity due to variations in film performance and impurities. When measuring a wide range of a living body by arranging a plurality of such cells, unless the atomic density in each cell is uniform, the magnetic field sensitivity varies, and the strength of the magnetic field from the living body cannot be measured accurately.
The present invention provides a technique for improving the measurement accuracy of a magnetic field by controlling the atomic density in the cell in a magnetic field measurement apparatus that measures a magnetic field by arranging a plurality of cells.

本発明に係る磁場計測装置は、ポンプ光により励起される原子が混入されている膜が内壁に形成されると共に、前記原子からなる原子群が含まれたセルを複数有するセルアレイと、前記セルアレイの各セルに対してポンプ光を照射して前記各セルにおける前記原子を励起させ、前記各セルを透過したプローブ光を検出して前記各セルにおける磁場を検出する磁場検出手段と、入力される制御信号に従って、前記原子を前記膜から光誘起脱離させる光を前記各セルに対して照射する照射手段と、前記各セルに対して一定の磁場を印加し、前記各セルに対して照射する前記光の光量を変化させた前記制御信号を前記照射手段に入力して前記磁場検出手段で検出される前記各セルの磁場の検出値が予め定められた目標値となるときの前記光量を前記セル毎に特定する第1の処理と、前記第1の処理に代えて、前記第1の処理で特定した前記セル毎の前記光量を示す前記制御信号を前記照射手段に入力し、測定対象から発せられる磁場を前記磁場検出手段で検出した結果を出力する第2の処理とを行う制御手段とを備えることを特徴とする。この構成によれば、各セルの磁場感度が均一になるように各セルの原子密度が制御されるため、磁場の測定精度を向上させることができる。   The magnetic field measurement apparatus according to the present invention includes a cell array including a plurality of cells each including a group of atoms including the atoms, and a film in which atoms excited by pump light are mixed is formed on the inner wall. Magnetic field detection means for irradiating each cell with pump light to excite the atoms in each cell, detecting probe light transmitted through each cell, and detecting a magnetic field in each cell, and input control Irradiating means for irradiating each cell with light for photoinduced desorption of the atoms from the film according to a signal, applying a constant magnetic field to each cell, and irradiating each cell The control signal in which the amount of light is changed is input to the irradiation unit, and the amount of light when the detected value of the magnetic field of each cell detected by the magnetic field detection unit becomes a predetermined target value. In place of the first process specified for each cell and the first process, the control signal indicating the light quantity for each cell specified in the first process is input to the irradiation unit, And a control unit that performs a second process of outputting a result of detecting the generated magnetic field by the magnetic field detection unit. According to this configuration, since the atomic density of each cell is controlled so that the magnetic field sensitivity of each cell is uniform, the measurement accuracy of the magnetic field can be improved.

また、本発明に係る磁場計測装置は、上記磁場計測装置において、前記制御手段は、前記第1の処理において前記磁場検出手段で検出される前記各セルの検出値に基づいて前記目標値を求めることとしてもよい。この構成によれば、第1の処理における各セルの磁場の検出結果に基づいて各セルの原子密度を制御することができる。   In the magnetic field measurement apparatus according to the present invention, in the magnetic field measurement apparatus, the control unit obtains the target value based on a detection value of each cell detected by the magnetic field detection unit in the first process. It is good as well. According to this configuration, the atomic density of each cell can be controlled based on the detection result of the magnetic field of each cell in the first process.

また、本発明に係る磁場計測装置は、上記磁場計測装置において、前記各セルに対する前記光の光量を示す光量情報を記憶する記憶手段を備え、前記制御手段は、前記第1の処理で特定した前記各セルの前記光量を前記光量情報として前記記憶手段に記憶し、前記第2の処理において、前記記憶手段に記憶された前記各セルに対する前記光量情報に基づく前記制御信号を前記照射手段に入力することとしてもよい。この構成によれば、第1の処理で特定した各セルに対する光量が記憶されるので第1の処理を毎回行う必要がなく、第2の処理を迅速に行うことができる。   Moreover, the magnetic field measurement apparatus according to the present invention includes a storage unit that stores light amount information indicating the light amount of the light with respect to each cell in the magnetic field measurement device, and the control unit is specified in the first process. The light quantity of each cell is stored in the storage means as the light quantity information, and the control signal based on the light quantity information for each cell stored in the storage means is input to the irradiation means in the second process. It is good to do. According to this configuration, since the light amount for each cell specified in the first process is stored, the first process does not need to be performed every time, and the second process can be performed quickly.

また、本発明に係る磁場計測装置は、上記磁場計測装置における前記制御手段は、前記第2の処理において、前記セル毎の前記光量を示す前記制御信号を前記照射手段に入力し、予め定められた時間の経過後に前記磁場検出手段で検出された結果を出力することとしてもよい。この構成によれば、各セルの磁場感度が均一になるように各セルの原子密度が制御された状態で、測定対象からの磁場を検出する処理に移行することができる。   In the magnetic field measurement apparatus according to the present invention, the control means in the magnetic field measurement apparatus inputs the control signal indicating the light amount for each cell to the irradiation means in the second process, and is predetermined. The result detected by the magnetic field detection means may be output after a lapse of time. According to this configuration, it is possible to shift to a process of detecting a magnetic field from a measurement target in a state where the atomic density of each cell is controlled so that the magnetic field sensitivity of each cell is uniform.

実施形態に係る磁場計測装置の構成例を示す図である。It is a figure which shows the structural example of the magnetic field measuring device which concerns on embodiment. 実施形態に係る誘起光照射部と磁場検出部の構成例を説明する図である。It is a figure explaining the structural example of the induced light irradiation part and magnetic field detection part which concern on embodiment. (a)及び(b)は、実施形態におけるキャリブレーション処理を説明する図である。(A) And (b) is a figure explaining the calibration process in embodiment. (a)及び(b)は、変形例(3)における誘起光とポンプ光及びプローブ光の照射例を説明する図である。(A) And (b) is a figure explaining the irradiation example of the induced light in the modification (3), pump light, and probe light.

<実施形態>
(構成)
図1は、本発明に係る実施形態の磁場計測装置の構成を表すブロック図である。磁場計測装置1は、セルアレイ10、誘起光照射ユニット20、磁場検出ユニット30、及び制御部40を備えている。
<Embodiment>
(Constitution)
FIG. 1 is a block diagram showing a configuration of a magnetic field measurement apparatus according to an embodiment of the present invention. The magnetic field measurement apparatus 1 includes a cell array 10, an induced light irradiation unit 20, a magnetic field detection unit 30, and a control unit 40.

セルアレイ10は、複数のセル(10a,10b,10c,10d)を一列に並べて構成されている。各セルは、光を透過するガラス等の素材で形成され、セル内部に所定の原子からなる原子群が含まれた立方体形状の各々独立した物体である。この所定の原子は、円偏光によって励起状態となりスピン偏極する原子であり、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びフランシウム(Fr)等のアルカリ金属である。本実施形態における各セルには、このようなアルカリ金属の原子のスピン偏極を維持させるために、パラフィン等の化合物がコーティングされた膜が内壁に形成されており、この膜中にも同じアルカリ金属の原子が混入されている。なお、各セル内には、アルカリ金属の原子の他に、ヘリウム(He)、窒素(N)などのバッファーガスが含まれていてもよい。アルカリ金属の原子は、磁気を検出する際に気体の状態であればよく、常時気体の状態でなくてもよい。また、本実施形態では、セルアレイ10のセルは一列に4つ並べられている例であるが、セルの数は複数であればよく、複数列であってもよい。また、セルの形状は、立方体形状の例を用いるが、セルの形状はこの形状に限らない。   The cell array 10 is configured by arranging a plurality of cells (10a, 10b, 10c, 10d) in a line. Each cell is made of a material such as glass that transmits light, and each cell is an independent object having a cubic shape in which a group of atoms including predetermined atoms is included inside the cell. This predetermined atom is an atom that is excited by circularly polarized light and spin-polarized. For example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr ) And the like. In each cell in this embodiment, a film coated with a compound such as paraffin is formed on the inner wall in order to maintain the spin polarization of such alkali metal atoms. Metal atoms are mixed. Each cell may contain a buffer gas such as helium (He) and nitrogen (N) in addition to alkali metal atoms. The alkali metal atoms may be in a gaseous state when detecting magnetism, and may not always be in a gaseous state. In the present embodiment, four cells of the cell array 10 are arranged in a line. However, the number of cells may be plural, and may be plural. Moreover, although the example of a cube shape is used for the shape of a cell, the shape of a cell is not restricted to this shape.

磁場検出ユニット30は、各セル(10a,10b,10c,10d)における磁場を検出する磁場検出部(30a,30b,30c,30d)を有する。また、誘起光照射ユニット20は、各セル(10a,10b,10c,10d)に対応する誘起光照射部(20a,20b,20c,20d)を有する。
ここで、各セルにおける磁場を検出するための磁場検出部と誘起光照射部を図2を用いて説明する。なお、図2では、セル10aとセル10bに対応する磁場検出部30a及び30bと誘起光照射部20a及び20bの構成例のみを記載し、セル10c及びセル10dについての記載は省略するが、これらのセルについてもセル10a及びセル10bと同様に構成されている。また、セル10a及びセル10bに対応する磁場検出部と誘起光照射部は同じ構成であるため、以下、セル10aについて説明を行う。
The magnetic field detection unit 30 includes magnetic field detection units (30a, 30b, 30c, 30d) that detect magnetic fields in the cells (10a, 10b, 10c, 10d). Moreover, the induced light irradiation unit 20 has an induced light irradiation part (20a, 20b, 20c, 20d) corresponding to each cell (10a, 10b, 10c, 10d).
Here, a magnetic field detection unit and an induced light irradiation unit for detecting a magnetic field in each cell will be described with reference to FIG. In FIG. 2, only the configuration examples of the magnetic field detection units 30a and 30b and the induced light irradiation units 20a and 20b corresponding to the cell 10a and the cell 10b are described, and description of the cell 10c and the cell 10d is omitted. These cells are also configured in the same manner as the cells 10a and 10b. In addition, since the magnetic field detection unit and the induced light irradiation unit corresponding to the cell 10a and the cell 10b have the same configuration, the cell 10a will be described below.

磁場検出ユニット30は、図2に示すセル10a及び10bの左右に設けられた光学部材301、302、303を有する。この光学部材は、例えば、直角二等辺三角形の三角柱形状を有する全反射プリズム等であり、直角を形成する面(以下、反射面と言う)P1及びP2に入射した光を略90°の方向に反射させる。磁場検出部30aは、磁場検出手段の一例であり、セル10a内の原子を同一方向にスピン偏極させるためのポンプ光を照射する第1照射部310aと、セル10aにおける磁場を検出するためのプローブ光を照射する第2照射部320aと、セル10aを透過したプローブ光を検出する検出部330aとを有する。   The magnetic field detection unit 30 includes optical members 301, 302, and 303 provided on the left and right sides of the cells 10a and 10b shown in FIG. This optical member is, for example, a total reflection prism having a triangular prism shape having a right angled isosceles triangle, and the light incident on the surfaces forming the right angle (hereinafter referred to as reflection surfaces) P1 and P2 is directed in a direction of approximately 90 °. Reflect. The magnetic field detection unit 30a is an example of a magnetic field detection unit, and a first irradiation unit 310a that emits pump light for spin-polarizing atoms in the cell 10a in the same direction, and a magnetic field in the cell 10a. It has the 2nd irradiation part 320a which irradiates probe light, and the detection part 330a which detects the probe light which permeate | transmitted the cell 10a.

第1照射部310aは、無偏光のレーザー光をコリメートレンズ、偏光板、四分の一波長板等の光学部材(図示略)により円偏光成分を有するポンプ光に変換して出力する光源を有し、セル10aの底面方向(図2に示すz軸方向)からポンプ光を照射する。ポンプ光がセル10aに入射すると、セル10a内のアルカリ金属原子はポンプ光によって同一方向にスピン偏極する。   The first irradiation unit 310a has a light source that converts non-polarized laser light into pump light having a circularly polarized component by an optical member (not shown) such as a collimating lens, a polarizing plate, and a quarter-wave plate and outputs the light. Then, the pump light is irradiated from the bottom surface direction of the cell 10a (z-axis direction shown in FIG. 2). When the pump light is incident on the cell 10a, alkali metal atoms in the cell 10a are spin-polarized in the same direction by the pump light.

誘起光照射部20aは、照射手段の一例であり、セル10aと対応して設けられ、セル10aの膜からアルカリ金属の原子を光誘起脱離させるため誘起光の光源を有する。誘起光照射部20aは、制御部40によって入力された制御信号に従って、セル10aの底面方向(図2に示すz軸方向)から誘起光を照射する。本実施形態では、誘起光として紫外光のレーザーを照射する例を説明するが、光誘起脱離現象を生じさせる光であれば、例えばLED(Light Emitting Diode)から出力される光でもよい。なお、誘起光は、ポンプ光及びプローブ光の波長と異なる波長が好ましく、セルの膜の変質や剥離等を生じさせる波長や強度でないことが好ましい。   The induced light irradiation unit 20a is an example of an irradiation unit, and is provided corresponding to the cell 10a. The induced light irradiation unit 20a includes a light source of induced light for photoinduced desorption of alkali metal atoms from the film of the cell 10a. The induced light irradiation unit 20a emits the induced light from the bottom surface direction (z-axis direction shown in FIG. 2) of the cell 10a according to the control signal input by the control unit 40. In the present embodiment, an example of irradiating an ultraviolet laser as the induced light will be described. However, as long as it causes light induced desorption phenomenon, light output from, for example, an LED (Light Emitting Diode) may be used. The induced light preferably has a wavelength different from the wavelengths of the pump light and the probe light, and preferably does not have a wavelength or intensity that causes alteration or peeling of the cell film.

第2照射部320aは、無偏光のレーザー光をコリメートレンズ、偏光板、半波長板等の光学部材(図示略)により直線偏光成分を有するプローブ光に変換して出力する光源を有する。第2照射部320aは、光学部材301の反射面P1に向けてプローブ光を照射する。光学部材301の反射面P1で反射されたプローブ光は、第1照射部310aによって照射されるポンプ光と略直交するように、図2に示すセル10aの左側面方向(図2のx軸方向)から入射する。セル10aに入射したプローブ光は、アルカリ金属原子が磁場の影響で歳差運動を行った回転力に応じて偏光面が回転されてセル10aを透過する。なお、本実施形態では、ポンプ光とプローブ光とが略直交するようにポンプ光とプローブ光とが照射される例であるが、ポンプ光とプローブ光とが交差していれば直交に限らない。   The second irradiating unit 320a has a light source that converts non-polarized laser light into probe light having a linearly polarized component by an optical member (not shown) such as a collimating lens, a polarizing plate, and a half-wave plate and outputs the light. The second irradiation unit 320a irradiates the probe light toward the reflection surface P1 of the optical member 301. The probe light reflected by the reflective surface P1 of the optical member 301 is in the direction of the left side surface of the cell 10a shown in FIG. ). The probe light incident on the cell 10a is transmitted through the cell 10a with its polarization plane rotated according to the rotational force of the alkali metal atoms that precessed under the influence of the magnetic field. In this embodiment, the pump light and the probe light are irradiated so that the pump light and the probe light are substantially orthogonal to each other. However, the pump light and the probe light are not limited to being orthogonal if the pump light and the probe light intersect. .

検出部330aは、各セルを透過したプローブ光を偏光ビームスプリッター等によってP偏光成分とS偏光分成分とに分離し、分離した光をフォトディテクタで受光する。検出部330aは、フォトディテクタから出力されたP偏光成分とS偏光成分の光量に応じた電気信号を解析してプローブ光の偏光面の回転角度を求め、回転角度に応じた磁場の強度を検出する。この例では、図2に示すy軸方向の磁場の強度が検出される。   The detector 330a separates the probe light transmitted through each cell into a P-polarized component and an S-polarized component using a polarization beam splitter or the like, and receives the separated light with a photodetector. The detection unit 330a analyzes the electrical signal corresponding to the light amounts of the P-polarized component and the S-polarized component output from the photodetector to obtain the rotation angle of the polarization plane of the probe light, and detects the strength of the magnetic field corresponding to the rotation angle. . In this example, the strength of the magnetic field in the y-axis direction shown in FIG. 2 is detected.

図1に戻り、構成の説明を続ける。制御部40は、制御手段の一例であり、CPU(Central Processing Unit)とROM(Read Only Memory)及びRAM(Random Access Memory)のメモリとを有する。CPUは、ROMに予め記憶されている制御プログラムを実行することにより、第1の処理としてキャリブレーション処理と、第2の処理として検体から発する磁場を検出する磁場検出処理とを行う。   Returning to FIG. 1, the description of the configuration is continued. The control unit 40 is an example of a control unit, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). By executing a control program stored in advance in the ROM, the CPU performs a calibration process as the first process and a magnetic field detection process for detecting a magnetic field emitted from the specimen as the second process.

制御部40は、キャリブレーション処理として、各セルに対して設けられた図示しないコイルを用い、セルアレイ10に対して図2のy軸方向に一定の磁場を印加すると共に、磁場検出ユニット30を制御して各セル(10a,10b,10c,10d)における磁場を検出する。制御部40は、各セルにおける磁場の検出結果が印加した磁場に相当する値となるように、予め定められた光量の誘起光を各セルに対して照射する制御信号を誘起光照射ユニット20に一定時間入力する。そして、一定時間の経過時に検出された各セルの磁場の検出値に基づいて、制御部40は、全てのセルに共通する磁場の検出目標値を特定し、各セルの磁場の検出値が検出目標値となるように各セルに対する誘起光の光量を調整する。
本実施形態では、一定の光量の誘起光を照射したときの全てのセルの検出値の中で最も検出値が低いセル、即ち、磁場の検出感度が最も低いセルの検出値を検出目標値として特定する。制御部40は、キャリブレーション処理の後、磁場検出処理として、磁場検出ユニット30を制御して、検体から発する磁場を検出し、検出結果を出力する処理を行う。
The control unit 40 applies a constant magnetic field in the y-axis direction of FIG. 2 to the cell array 10 and controls the magnetic field detection unit 30 using a coil (not shown) provided for each cell as a calibration process. Thus, the magnetic field in each cell (10a, 10b, 10c, 10d) is detected. The control unit 40 sends a control signal for irradiating each cell with a predetermined amount of induced light to the induced light irradiation unit 20 so that the detection result of the magnetic field in each cell becomes a value corresponding to the applied magnetic field. Input for a certain time. Then, based on the detected value of the magnetic field of each cell detected when a certain period of time elapses, the control unit 40 specifies the target detection value of the magnetic field common to all the cells, and the detected value of the magnetic field of each cell is detected. The amount of induced light with respect to each cell is adjusted so as to be a target value.
In the present embodiment, the detection value of the cell having the lowest detection value among all the detection values of all the cells when irradiated with a fixed amount of induced light, that is, the detection value of the cell having the lowest magnetic field detection sensitivity is used as the detection target value. Identify. After the calibration process, the control unit 40 controls the magnetic field detection unit 30 as a magnetic field detection process, detects a magnetic field emitted from the specimen, and outputs a detection result.

(動作例)
次に、この磁場計測装置1の動作例について説明する。磁場計測装置1の制御部40は、磁場計測処理を行う前にキャリブレーション処理を開始する。制御部40は、各第1照射部(310a,310b,310c,310d)の各々から円偏光成分を有するポンプ光をセルアレイ10の各セル(10a,10b,10c,10d)に対して照射すると共に、各セルに照射されたポンプ光と略直交するように、直線偏光成分を有するプローブ光を各第2照射部(320a,320b,320c,320d)から照射する。そして、制御部40は、ポンプ光とプローブ光とに直交する方向の一定の磁場を図示しないコイルを用いて印加する。
(Operation example)
Next, an operation example of the magnetic field measurement apparatus 1 will be described. The control unit 40 of the magnetic field measurement apparatus 1 starts the calibration process before performing the magnetic field measurement process. The control unit 40 irradiates each cell (10a, 10b, 10c, 10d) of the cell array 10 with pump light having a circularly polarized component from each of the first irradiation units (310a, 310b, 310c, 310d). The probe light having a linearly polarized light component is irradiated from each second irradiation unit (320a, 320b, 320c, 320d) so as to be substantially orthogonal to the pump light irradiated to each cell. And the control part 40 applies the fixed magnetic field of the direction orthogonal to pump light and probe light using the coil which is not shown in figure.

各セル内の原子は、ポンプ光により励起されて同一方向にスピン偏極され、印加された磁場に応じて磁気モーメントの方向を変化させて歳差運動を行う。各第2照射部から照射されたプローブ光は、各セルの間に配置された光学部材の反射面P1に入射する。各光学部材の反射面P1に入射したプローブ光は90°の角度で反射され、当該光学部材に隣接するセルに入射する。各セルに入射したプローブ光は、当該セル内の原子が受けている磁場の大きさに応じて偏光面を回転させ当該セルを透過する。各セルを透過したプローブ光は、当該セルに隣接する光学部材の反射面P2に入射して90°の角度で反射され、当該セルに対応する検出部で受光される。各検出部(330a,330b,330c,330d)は、プローブ光の光量に応じた電気信号を解析してプローブ光の偏光面の回転角を求め、対応するセルにおける磁場を検出して制御部40に検出結果を出力する。   The atoms in each cell are excited by pump light and spin-polarized in the same direction, and perform precession by changing the direction of the magnetic moment according to the applied magnetic field. The probe light emitted from each second irradiation unit is incident on the reflection surface P1 of the optical member disposed between the cells. The probe light incident on the reflecting surface P1 of each optical member is reflected at an angle of 90 ° and enters a cell adjacent to the optical member. The probe light incident on each cell is transmitted through the cell by rotating the polarization plane according to the magnitude of the magnetic field received by the atoms in the cell. The probe light transmitted through each cell is incident on the reflection surface P2 of the optical member adjacent to the cell, reflected at an angle of 90 °, and received by the detection unit corresponding to the cell. Each detection unit (330a, 330b, 330c, 330d) analyzes an electrical signal corresponding to the light amount of the probe light to determine the rotation angle of the polarization plane of the probe light, detects the magnetic field in the corresponding cell, and controls the control unit 40. The detection result is output to.

制御部40は、各セルについて検出された検出値が印加した磁場に相当する値となるように、誘起光の光量として、各誘起光照射部における最大強度を示す制御信号を各誘起光照射部(20a,20b,20c,20d)に対して入力する。各誘起光照射部は、入力された制御信号に応じた誘起光を各セルに対して照射する。
各セルに形成された膜中のアルカリ金属原子は、誘起光が照射されると膜中から光誘起脱離し、当該セルに照射されているポンプ光によって励起されてスピン偏極され、印加されている磁場に応じて歳差運動を行う。この光誘起脱離現象によって、当該セル内の原子密度は誘起光を照射する前と比べて高くなり、磁場の検出感度が高くなる。
The control unit 40 outputs a control signal indicating the maximum intensity in each induced light irradiation unit as the amount of induced light so that the detected value detected for each cell corresponds to the applied magnetic field. Input for (20a, 20b, 20c, 20d). Each induced light irradiation unit irradiates each cell with induced light according to the input control signal.
Alkali metal atoms in the film formed in each cell are photoinducedly desorbed from the film when irradiated with induced light, excited by the pump light irradiated to the cell, spin-polarized, and applied. Precession is performed according to the magnetic field. Due to this photo-induced desorption phenomenon, the atomic density in the cell becomes higher than before irradiation with the induced light, and the detection sensitivity of the magnetic field is increased.

制御部40は、各誘起光照射部から誘起光を照射した時間を計測し、誘起光の照射開始時から予め定められた一定時間が経過したときの各検出部から検出された各セルの検出値に基づいて、全てのセルに共通する磁場の検出目標値(目標値)を特定する。
例えば、各セル(10a,10b,10c,10d)に対して誘起光を照射したときの各セルにおける磁場の検出値が図3(a)に示す波形で表わされる場合において、誘起光の照射開始から一定時間が経過した時点をt1とする。この例では、t1における各セルの検出値のうち、磁場の検出値が最も小さいセル10bの検出値Sが検出目標値として特定される。つまり、最大強度の誘起光を照射しても全てのセルの中で磁場の検出感度が最も低いセルの最大検出値が目標値として特定される。
The control unit 40 measures the time during which the induced light is irradiated from each induced light irradiation unit, and detects each cell detected from each detection unit when a predetermined time has elapsed since the start of irradiation of the induced light. Based on the value, the detection target value (target value) of the magnetic field common to all the cells is specified.
For example, when the detected value of the magnetic field in each cell when the induced light is irradiated to each cell (10a, 10b, 10c, 10d) is represented by the waveform shown in FIG. Let t1 be the time when a certain amount of time has passed. In this example, the detection value S of the cell 10b having the smallest magnetic field detection value among the detection values of each cell at t1 is specified as the detection target value. That is, the maximum detection value of the cell having the lowest magnetic field detection sensitivity among all the cells even when the induced light with the maximum intensity is irradiated is specified as the target value.

制御部40は、各セルの磁場の検出値が特定した検出目標値となるように誘起光の強度を変化させた制御信号を各誘起光照射部に入力して誘起光の光量を変化させる。各誘起光照射部は、入力された制御信号に応じた強度の誘起光を対応するセルに照射し、制御部40は、セル毎に誘起光の強度を変化させたときの各検出部で検出される検出値が検出目標値となったときの強度をセル毎に特定する。そして、制御部40は、特定した強度で各誘起光照射部から誘起光を照射し続け、磁場検出処理を開始する。   The control unit 40 inputs a control signal in which the intensity of the induced light is changed so that the detected value of the magnetic field of each cell becomes the specified detection target value, and changes the light amount of the induced light. Each induced light irradiating unit irradiates the corresponding cell with induced light having an intensity corresponding to the input control signal, and the control unit 40 detects each detected unit when the intensity of the induced light is changed for each cell. The intensity when the detected value to be detected becomes the detection target value is specified for each cell. And the control part 40 continues irradiating induced light from each induced light irradiation part with the specified intensity | strength, and starts a magnetic field detection process.

具体的には、図3(a)の例の場合、制御部40は、各セルにおける磁場の検出値が検出目標値Sとなるように、t1時点から各セルに対する照射光の強度を変化させ、図3(b)に示すように、各検出部で検出される検出値と検出目標値との差分がΔsの範囲内となった時点t2以降は、各セルに対する磁場の印加を停止する。この例では、t1時点においてセル10bの磁場の検出感度が最も低いため、セル10a、10c、10dに対しては、検出目標値Sに近づくように誘起光の強度を小さくして誘起光照射部20aから誘起光を照射し続けると共に、セル10bに対しては、最大強度で誘起光を照射し続けることで、各セルの原子密度が調整されて磁場の検出感度が均一化される。   Specifically, in the case of the example of FIG. 3A, the control unit 40 changes the intensity of the irradiation light with respect to each cell from time t1 so that the detected value of the magnetic field in each cell becomes the detection target value S. As shown in FIG. 3B, the application of the magnetic field to each cell is stopped after time t2 when the difference between the detection value detected by each detection unit and the detection target value falls within the range of Δs. In this example, since the detection sensitivity of the magnetic field of the cell 10b is the lowest at the time point t1, the induced light irradiation unit reduces the intensity of the induced light so as to approach the detection target value S for the cells 10a, 10c, and 10d. By continuing to irradiate the induced light from 20a and continuously irradiate the cell 10b with the induced light at the maximum intensity, the atomic density of each cell is adjusted and the detection sensitivity of the magnetic field is made uniform.

そして、制御部40は、検出目標値との差分がΔsの範囲内の検出値が得られたときの誘起光の強度を維持した状態で、検体からの磁場を検出する磁場検出処理を開始する。磁場検出処理は、検出対象となる磁場が検体からの磁場である点を除き、上記キャリブレーション処理における各磁場検出部の処理と同様であり、制御部40は、各磁場検出部の各検出部で検出されたセル毎の検出結果を外部装置等に出力する。   And the control part 40 starts the magnetic field detection process which detects the magnetic field from a test substance in the state which maintained the intensity | strength of the induced light when the difference with a detection target value is in the range of (DELTA) s. . The magnetic field detection processing is the same as the processing of each magnetic field detection unit in the calibration processing except that the magnetic field to be detected is a magnetic field from the specimen, and the control unit 40 includes each detection unit of each magnetic field detection unit. The detection result for each cell detected in step 1 is output to an external device or the like.

上記実施形態の例では、検体からの磁場を検出する前に、各セルに対して一定光量の誘起光を照射したときの各セルにおける磁場の検出感度の中で最も検出感度が低いセルの検出値に合わせるように、各セルに対する誘起光の光量を調整することができるので、検体からの磁場の測定時には、各セルの検出感度が均一となり、磁場の測定精度を向上させることができる。   In the example of the above embodiment, before detecting the magnetic field from the specimen, detection of the cell having the lowest detection sensitivity among the detection sensitivity of the magnetic field in each cell when each cell is irradiated with a fixed amount of induced light. Since the amount of induced light with respect to each cell can be adjusted so as to match the value, the detection sensitivity of each cell becomes uniform when measuring the magnetic field from the specimen, and the measurement accuracy of the magnetic field can be improved.

<変形例>
本発明は、上述した実施形態に限定されるものではなく、以下のように変形させて実施してもよい。また、以下の変形例を組み合わせてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and may be carried out by being modified as follows. Further, the following modifications may be combined.

(1)上述した実施形態では、各セルに対して一定光量の誘起光を照射したときの印加した磁場に対する各セルの検出値の中で最も検出値が低いセル、つまり、一定光量の誘起光を照射したときの磁場の検出感度が最も低いセルの最大検出値を検出目標値として特定する例を説明したが、例えば、最も磁場の検出感度が低いセルの最大検出値より低い値を検出目標値としてもよい。 (1) In the above-described embodiment, the cell having the lowest detection value among the detection values of each cell with respect to the applied magnetic field when each cell is irradiated with a constant amount of induced light, that is, the induced light having a constant amount of light. Although the example in which the maximum detection value of the cell having the lowest magnetic field detection sensitivity is specified as the detection target value has been described, for example, a value lower than the maximum detection value of the cell having the lowest magnetic field detection sensitivity is detected target It may be a value.

(2)上述した実施形態では、一定光量の誘起光を各セルに照射したときの各セルにおける磁場の検出値から検出目標値を特定し、各セルの検出値が検出目標値となるように各セルに対する誘起光の光量を調整して各セルの検出感度を均一化する例であったが、以下のようにして各セルの検出感度を均一にしてもよい。例えば、制御部40は、キャリブレーション処理において、一定の磁場を印加したときの各セルにおける磁場を実施形態と同様に検出し、各セルの検出値と目標値(例えば、印加した磁場に相当する値)との差に応じた誘起光の光量を求め、求めた光量の誘起光を各誘起光照射部から照射する。そして、制御部40は、各セルに対して誘起光を照射したときの各磁場検出部で検出される各検出値と目標値との差分が所定値以下となるまで、各セルに対する誘起光の光量を調整するようにしてもよい。なお、検出値と目標値との差に応じた光量は、例えば実験結果等に基づいて目標値との差と光量との関係を予め定義した数式を用いて求めるようにしてもよいし、目標値との差と光量とを対応づけたテーブルをROMに予め記憶させておき、検出値と目標値との差に応じた光量を当該テーブルから選択するようにしてもよい。 (2) In the above-described embodiment, the detection target value is specified from the detection value of the magnetic field in each cell when the cell is irradiated with the constant amount of induced light, and the detection value of each cell becomes the detection target value. In this example, the detection sensitivity of each cell is made uniform by adjusting the amount of induced light for each cell, but the detection sensitivity of each cell may be made uniform as follows. For example, in the calibration process, the control unit 40 detects the magnetic field in each cell when a constant magnetic field is applied in the same manner as in the embodiment, and the detection value and target value of each cell (for example, corresponding to the applied magnetic field). The amount of induced light corresponding to the difference from the value) is obtained, and the induced light having the obtained amount of light is emitted from each induced light irradiation unit. The control unit 40 then transmits the induced light to each cell until the difference between each detected value detected by each magnetic field detection unit and the target value when the induced light is irradiated to each cell is equal to or less than a predetermined value. The amount of light may be adjusted. Note that the amount of light corresponding to the difference between the detected value and the target value may be obtained by using a mathematical expression that defines the relationship between the difference between the target value and the amount of light based on, for example, experimental results, A table in which the difference between the values and the amount of light is associated with each other may be stored in advance in the ROM, and the amount of light corresponding to the difference between the detected value and the target value may be selected from the table.

(3)上述した実施形態では、セル毎に、ポンプ光及びプローブ光の光源を設ける例を説明したが、分岐カプラー等を用いて、各々1つの光源からのポンプ光及びプローブ光を各セルに分配して照射するようにしてもよい。また、例えば、各セルにつき、図4(a)に示すように当該セルの底面方向から誘起光を照射し、図4(b)に示すようにポンプ光とプローブ光とを兼ねた一つの光源を有する第3照射部を設け、第3照射部から照射した光によって当該セル内の原子をポンピングさせ、当該セルを透過した光を検出するように構成してもよい。 (3) In the above-described embodiment, the example in which the light source of the pump light and the probe light is provided for each cell has been described. However, the pump light and the probe light from one light source are respectively supplied to each cell using a branch coupler or the like. You may make it distribute and irradiate. Also, for example, for each cell, one light source that irradiates induced light from the bottom surface direction of the cell as shown in FIG. 4A and serves as both pump light and probe light as shown in FIG. 4B. It is also possible to provide a third irradiating unit having a structure in which atoms in the cell are pumped by light irradiated from the third irradiating unit, and light transmitted through the cell is detected.

(4)上述した実施形態では、各セルに対して誘起光をポンプ光と平行に照射する例を説明したが、誘起光の照射方向は、各セルに対応する検出部におけるプローブ光の検出に影響を与えなければポンプ光と平行でなくてもよい。また、実施形態では、セル毎に誘起光照射部を設ける例を説明したが、以下のように構成してもよい。例えば、磁場計測装置1において、複数のセルに対応する誘起光照射部を一つ設けると共に、当該誘起光照射部を対応する各セルの位置に移動させるための駆動手段を設ける。制御部40は、誘起光照射部を対応する各セルの位置に一定の時間毎に移動させるように駆動手段を制御すると共に、各セルの位置で誘起光を照射するように誘起光照射部へ制御信号を入力し、各セルに対して誘起光を一定時間照射するよう構成してもよい。 (4) In the above-described embodiment, the example in which the induced light is irradiated to each cell in parallel with the pump light has been described. However, the irradiation direction of the induced light is used to detect the probe light in the detection unit corresponding to each cell. If it does not affect, it does not have to be parallel to the pump light. In the embodiment, the example in which the induced light irradiation unit is provided for each cell has been described. However, the following configuration may be adopted. For example, in the magnetic field measurement apparatus 1, one induced light irradiation unit corresponding to a plurality of cells is provided, and driving means for moving the induced light irradiation unit to the position of each corresponding cell is provided. The control unit 40 controls the driving unit so as to move the induced light irradiation unit to the position of each corresponding cell at regular intervals, and also applies the induced light to the induced light irradiation unit so as to irradiate the induced light at the position of each cell. You may comprise so that a control signal may be input and induction light may be irradiated with respect to each cell for a fixed time.

(5)上述した実施形態では、誘起光の強度を変化させて誘起光の光量を調整する例を説明したが、各セルに誘起光が照射される面積、即ち、誘起光のビーム径を変化させて誘起光の光量を調整してもよい。また、誘起光の強度とビーム径とを変化させて誘起光の光量を調整するようにしてもよい。この場合には、制御部40は、各誘起光照射部に対し、誘起光の強度とビーム径とを各々示す制御信号を入力し、各誘起光照射部は、入力された誘起光の強度を示す制御信号とビーム径を示す制御信号とに従って誘起光を照射する。 (5) In the embodiment described above, an example in which the intensity of the induced light is changed by changing the intensity of the induced light has been described. However, the area irradiated with the induced light on each cell, that is, the beam diameter of the induced light is changed. Thus, the amount of induced light may be adjusted. Further, the amount of the induced light may be adjusted by changing the intensity of the induced light and the beam diameter. In this case, the control unit 40 inputs a control signal indicating the intensity and beam diameter of the induced light to each induced light irradiation unit, and each induced light irradiation unit sets the intensity of the input induced light. The induced light is irradiated according to the control signal indicating and the control signal indicating the beam diameter.

(6)上述した実施形態では、キャリブレーション処理の後、磁場検出処理を自動開始する例を説明したが、例えば、磁場計測装置1において、キャリブレーション処理と磁場検出処理とを切り換える操作手段を設け、ユーザー操作に応じてキャリブレーション処理と磁場検出処理とを選択的に行うようにしてもよい。この場合には、セル毎の光量を示す光量情報を記憶する記憶手段を磁場計測装置1に設けるように構成する。制御部40は、キャリブレーション処理において検出目標値の検出値が得られたときの各セルに対する誘起光の光量を光量情報として記憶手段に記憶する。そして、制御部40は、ユーザー操作によって磁場検出処理に切り換えられたときに、記憶手段に記憶されているセル毎の光量情報に基づく制御信号を各誘起光照射部に入力して各セルに誘起光を照射し、予め定められた所定時間が経過した後に磁場検出処理を行うようにしてもよい。要は、キャリブレーション処理と磁場検出処理とが排他的に行われるように構成されていればよい。 (6) In the above-described embodiment, the example in which the magnetic field detection process is automatically started after the calibration process has been described. For example, the magnetic field measurement apparatus 1 includes an operation unit that switches between the calibration process and the magnetic field detection process. The calibration process and the magnetic field detection process may be selectively performed according to a user operation. In this case, the magnetic field measurement apparatus 1 is configured to include storage means for storing light amount information indicating the light amount for each cell. The control unit 40 stores the light amount of the induced light for each cell when the detection value of the detection target value is obtained in the calibration process in the storage unit as the light amount information. When the control unit 40 is switched to the magnetic field detection process by a user operation, the control unit 40 inputs a control signal based on the light amount information for each cell stored in the storage unit to each induced light irradiation unit and induces it in each cell. You may make it perform a magnetic field detection process, after irradiating light and predetermined predetermined time passes. In short, it is only necessary that the calibration process and the magnetic field detection process are performed exclusively.

1・・・磁場計測装置、10・・・セルアレイ、10a,10b,10c,10d・・・セル、20・・・誘起光照射ユニット、20a,20b,20c,20d・・・誘起光照射部、30・・・磁場検出ユニット、30a,30b,30c,30d・・・磁場検出部、40・・・制御部、301,302,303・・・光学部材、310a,310b・・・第1照射部、320a,320b・・・第2照射部、330a,330b・・・検出部   DESCRIPTION OF SYMBOLS 1 ... Magnetic field measuring apparatus, 10 ... Cell array, 10a, 10b, 10c, 10d ... Cell, 20 ... Induced light irradiation unit, 20a, 20b, 20c, 20d ... Induced light irradiation part, 30 ... Magnetic field detection unit, 30a, 30b, 30c, 30d ... Magnetic field detection unit, 40 ... Control unit, 301, 302, 303 ... Optical member, 310a, 310b ... First irradiation unit 320a, 320b, second irradiation unit, 330a, 330b, detection unit

Claims (4)

原子からなる原子群が含まれたセルを複数有するセルアレイと、
ポンプ光を前記各セルに対して照射する第1照射と、
ブローブ光を前記各セルに対して照射する第2照射
前記原子を光誘起離脱させる誘起光を前記各セルに対して照射する誘起光照射部と、
前記各セルを透過したプローブ光を検出して磁場を検出する磁場検手段と、
前記誘起光照射部からの誘起光の光量を変化させ、前記各セルの磁場の検出値が予め定められた目標値となる光量特定する第1の処理と、前記第1の処理で特定された光量の誘起光が照射される制御信号を前記誘起光照射部に入力し、前記磁場検出手段で検出する第2の処理と、を行う制御手段と、
を備えることを特徴とする磁場計測装置。
A cell array having a plurality of cells each including an atomic group of atoms;
A first irradiation unit that irradiates each cell with pump light;
A second irradiation unit for irradiating each cell with probe light ;
An induced light irradiating section for irradiating each cell with induced light for photoinduced desorption of the atoms;
Means leaving the magnetic field detection for detecting a magnetic field by detecting the probe light transmitted through the respective cell,
Wherein varying the amount of the inducing light from inducing light irradiation unit, wherein a first processing the detected value of the magnetic field of each cell to identify the amount of light becomes a predetermined target value, identified in the first processing A control unit that inputs a control signal for irradiating the induced light with a sufficient amount of light to the induced light irradiating unit and detects the magnetic signal by the magnetic field detecting unit;
A magnetic field measurement apparatus comprising:
前記制御手段は、前記第1の処理において前記磁場検出手段で検出される前記各セルの検出値に基づいて前記目標値を求めることを特徴とする請求項1に記載の磁場計測装置。   The magnetic field measurement apparatus according to claim 1, wherein the control unit obtains the target value based on a detection value of each cell detected by the magnetic field detection unit in the first process. 前記各セルに対する前記誘起光の光量を示す光量情報を記憶する記憶手段を備え、
前記制御手段は、前記第1の処理で特定した前記各セルの前記光量を前記光量情報として前記記憶手段に記憶し、前記第2の処理において、前記記憶手段に記憶された前記各セルに対する前記光量情報に基づく前記制御信号を前記誘起光照射部に入力することを特徴とする請求項1又は2に記載の磁場計測装置。
Storage means for storing light amount information indicating the amount of the induced light for each cell;
The control means stores the light quantity of each cell specified in the first process in the storage means as the light quantity information, and in the second process, the control unit stores the light quantity for each cell stored in the storage means. The magnetic field measurement apparatus according to claim 1, wherein the control signal based on light amount information is input to the induced light irradiation unit .
前記制御手段は、前記第2の処理において、前記セル毎の前記光量を示す前記制御信号を前記誘起光照射部に入力し、予め定められた時間の経過後に前記磁場検出手段で検出された結果を出力することを特徴とする請求項1から3のいずれか一項に記載の磁場計測装置。 In the second process, the control unit inputs the control signal indicating the light amount for each cell to the induced light irradiation unit , and a result detected by the magnetic field detection unit after a predetermined time has elapsed. The magnetic field measurement apparatus according to any one of claims 1 to 3, wherein
JP2011019530A 2011-02-01 2011-02-01 Magnetic field measuring device Expired - Fee Related JP5682343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011019530A JP5682343B2 (en) 2011-02-01 2011-02-01 Magnetic field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011019530A JP5682343B2 (en) 2011-02-01 2011-02-01 Magnetic field measuring device

Publications (3)

Publication Number Publication Date
JP2012159402A JP2012159402A (en) 2012-08-23
JP2012159402A5 JP2012159402A5 (en) 2014-02-06
JP5682343B2 true JP5682343B2 (en) 2015-03-11

Family

ID=46840061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011019530A Expired - Fee Related JP5682343B2 (en) 2011-02-01 2011-02-01 Magnetic field measuring device

Country Status (1)

Country Link
JP (1) JP5682343B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167723A1 (en) * 2005-12-29 2007-07-19 Intel Corporation Optical magnetometer array and method for making and using the same

Also Published As

Publication number Publication date
JP2012159402A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP6077050B2 (en) Atomic sensor system
US20150042327A1 (en) Probe beam frequency stabilization in an atomic sensor system
US10921191B2 (en) Atomic sensing method and chip-scale atomic sensor
JP6459167B2 (en) Magnetic field measuring apparatus and magnetic field measuring method
JP5682343B2 (en) Magnetic field measuring device
JP5874808B2 (en) Magnetic field measuring device
JP5434782B2 (en) Magnetic measuring device
JP2011137687A (en) Magnetic measuring apparatus
JP5764949B2 (en) Magnetic field measuring device
CN109059892A (en) Photon suspension gyroscope based on double-beam optical trap system
US20180128886A1 (en) Magnetic sensor and cell unit
JP2011232277A5 (en)
JP2010271068A (en) Magnetooptical spectrum measuring instrument and magnetooptical spectrum measuring method
JP5427509B2 (en) Magnetic characteristic measuring device and magnetic characteristic measuring method
JP2012213547A (en) Magnetic field measurement device
JP5750919B2 (en) Magnetic field measuring device
WO2021229993A1 (en) Magnetic field measurement device and magnetic field measurement method
JP5682344B2 (en) Magnetic measuring device and biological state measuring device
US20130235386A1 (en) Measurement apparatus
JP5469590B2 (en) Magneto-optical spectrum spectrometer, magneto-optical spectrum measuring method and program
US10901052B1 (en) Atomic magnetometer
JP2012168078A (en) Magnetic field measuring device
CN114509410A (en) Chiral molecule identification system and method based on inhibited total reflection light spin Hall effect
JP2018109526A (en) Magnetic field measurement device
JPWO2012090759A1 (en) Surface plasmon excitation enhanced fluorescence measuring apparatus and sensor chip used therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R150 Certificate of patent or registration of utility model

Ref document number: 5682343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees